JP2020171092A - Manufacturing method of assembly of magnet and housing with elastic deformability - Google Patents

Manufacturing method of assembly of magnet and housing with elastic deformability Download PDF

Info

Publication number
JP2020171092A
JP2020171092A JP2019070261A JP2019070261A JP2020171092A JP 2020171092 A JP2020171092 A JP 2020171092A JP 2019070261 A JP2019070261 A JP 2019070261A JP 2019070261 A JP2019070261 A JP 2019070261A JP 2020171092 A JP2020171092 A JP 2020171092A
Authority
JP
Japan
Prior art keywords
housing
magnet
end side
shaft
adjusting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019070261A
Other languages
Japanese (ja)
Inventor
悟 菅
Satoru Suga
悟 菅
広昭 平野
Hiroaki Hirano
広昭 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2019070261A priority Critical patent/JP2020171092A/en
Publication of JP2020171092A publication Critical patent/JP2020171092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a manufacturing method of press-fitting cylindrical bonded magnets, etc., capable of industrially mass-producing motor enclosures in which inner and outer diameters of a cylindrical part are not coaxial and outer diameters are not uniformly precise.SOLUTION: The present invention provides a manufacturing method of an assembly of a magnet and a housing with elastic deformability in which a housing has a bottomed cylindrical shape and includes a tapered portion expanding to an outer diameter side in a radial direction. A bottom of the housing has one end side outer end surface having a plane perpendicular to a central axis of an inner peripheral surface of a cylinder and is disposed to face the other end side surface, which is a plane of a housing shaft adjustment portion, with a gap in between, a tapered portion of an inner peripheral surface of the housing and one end side end of a magnet are disposed to face each other, an outer end surface on the other end side of the magnet and one end side end surface, which is a plane of the magnet shaft adjustment portion, are disposed to face each other, and at least one of the housing shaft adjustment portion and the magnet shaft adjustment portion is moved in a shaft direction and in a direction in which both come close to each other. Thereby, the magnet is pressed into the housing through an opening in the housing.SELECTED DRAWING: Figure 1

Description

本発明は、筒状ボンド磁石を含む弾性変形能を有する磁石と筒状筐体を一体化した弾性変形能を有する磁石と筐体の組立体の製造方法とその圧入装置に関するものである。 The present invention relates to a method for manufacturing an assembly of a magnet having elastic deformability and a housing, and a press-fitting device thereof, in which a magnet having elastic deformability including a tubular bond magnet and a tubular housing are integrated.

磁石粉末と熱硬化性樹脂(バインダ)とからなるコンパウンドを圧縮成形してなるボンド磁石(以下適宜「ボンド磁石」という。)は、薄肉化等の形状自由度も大きい。このためボンド磁石は、例えば、大きな磁束密度が得られる希土類磁石粉末、特に異方性希土類磁石粉末を使用した場合、高出力化と共に省エネルギー化、小型化、軽量化等の要請の強いモータの界磁用永久磁石として好適であり、その需要が急増している。 A bond magnet (hereinafter, appropriately referred to as a "bond magnet") formed by compression molding a compound composed of magnet powder and a thermosetting resin (binder) has a large degree of freedom in shape such as thinning. Therefore, for example, when a rare earth magnet powder capable of obtaining a large magnetic flux density, particularly an anisotropic rare earth magnet powder, is used as the bond magnet, there is a strong demand for high output, energy saving, miniaturization, weight reduction, etc. It is suitable as a permanent magnet for magnetism, and its demand is rapidly increasing.

特許第4241209号特許公報Patent No. 4241209 Patent Gazette

従来、ボンド磁石(以下、適宜、単に磁石と記す)の筐体内周面への取り付けは、接着剤によって行われていたため、1)磁石と筐体内周面との間に有機物質である接着剤や被膜層が存在するために、磁気抵抗が大きくなり電機子を貫く磁束が小さくなり、その能力を最大限発揮することはできない、2)接着剤にて磁石を筐体内周面に接合するために、製造に時間がかかるという問題点があった。
それに対して、特許4241209号特許公報においては、モータの筐体内周部にキュアー処理されたリング状の異方性ボンド磁石を加熱して圧入する技術が開示されている。この技術によれば、接着材を用いることなく磁石を筐体に固定でき、磁気抵抗の増大がなく固定できるため電機子に供給する磁束を最大化できる効果を有し、この圧入技術による筐体ボンド磁石組立体は広く普及している。
Conventionally, a bond magnet (hereinafter, appropriately simply referred to as a magnet) has been attached to the inner peripheral surface of the housing by an adhesive. Therefore, 1) an adhesive which is an organic substance between the magnet and the inner peripheral surface of the housing. Due to the presence of the magnet and the coating layer, the magnetic resistance becomes large and the magnetic flux penetrating the armature becomes small, and its ability cannot be maximized. 2) Because the magnet is bonded to the inner peripheral surface of the housing with an adhesive. However, there is a problem that it takes time to manufacture.
On the other hand, Japanese Patent No. 4241209 discloses a technique of heating and press-fitting a cured ring-shaped anisotropic bond magnet into the inner peripheral portion of a motor housing. According to this technology, the magnet can be fixed to the housing without using an adhesive, and since it can be fixed without increasing the magnetic resistance, it has the effect of maximizing the magnetic flux supplied to the armature. Bonded magnet assemblies are widespread.

近年、この需要増加に伴って、ボンド磁石のみならず、ボンド磁石を含む部材全体の低価格化が厳しく要求されるようになってきている。ここで高性能ボンド磁石においては、その主原料である希土類元素は資源の偏在等のため安価に入手することが困難である。このため、その低価格化に応えるには、ボンド磁石とそれを納めるケースとの全体(ケース一体型ボンド磁石)での低価格化が必要である。 In recent years, with this increase in demand, there has been a strict demand for lowering the price of not only the bond magnet but also the entire member including the bond magnet. Here, in high-performance bonded magnets, it is difficult to obtain rare earth elements, which are the main raw materials, at low cost due to uneven distribution of resources and the like. Therefore, in order to respond to the price reduction, it is necessary to reduce the price of the entire bond magnet and the case in which the bond magnet is housed (case-integrated bond magnet).

ここでモータ性能には、モータの内側に存在する電機子の外周面と、それに対抗する磁筐体の内部に圧入された磁石の内周面で構成されるエアギャップの精度がモータ性能に大きく影響する。そのため、モータに使用される電機子および磁石の対抗面の加工精度は高いものが要求される。圧入を行う場合において、ボンド磁石は圧入先の筐体内部に沿って圧入されるので、磁石との圧入面となる筐体の内部は高い寸法精度が要求される。また、筐体との圧入面となる磁石の外径、及び、最終的にエアギャップの構成面となる磁石内径、若しくは、磁石厚さの寸法精度も高いものが要求される。
ここにおける筐体内径及び圧入前磁石内外径寸法の設計は、加工温度におけるボンド磁石の変形特性より設計可能である。
Here, in terms of motor performance, the accuracy of the air gap, which is composed of the outer peripheral surface of the armature existing inside the motor and the inner peripheral surface of the magnet press-fitted into the magnetic housing that opposes it, greatly affects the motor performance. Affect. Therefore, the armatures and magnets used in the motor are required to have high machining accuracy on the opposing surfaces. In the case of press-fitting, since the bond magnet is press-fitted along the inside of the housing of the press-fitting destination, high dimensional accuracy is required inside the housing which is the press-fitting surface with the magnet. Further, it is required that the outer diameter of the magnet that becomes the press-fitting surface with the housing, the inner diameter of the magnet that finally becomes the constituent surface of the air gap, or the dimensional accuracy of the magnet thickness is high.
The design of the inner diameter of the housing and the inner and outer diameters of the magnet before press fitting can be designed from the deformation characteristics of the bond magnet at the processing temperature.

通常、圧入工程において圧入装置側の加工軸と有底円筒状の筐体や磁石の中心軸の調整は例えば、図8に示すように行われる。
筐体保持部6の加工軸と磁石保持部7の加工軸は同軸に位置決めされている。これらの同軸の確保は、各保持部の加工軸に同軸に形成された各保持部の内周面81,721を高い真円度で形成し、それらを軸調整することで確保される。そして、圧入に供される有底円筒状の筐体8及び円筒状のボンド磁石9は、それらの内周面81,721が真円度、同軸度、内径寸法等において高い加工精度を有する保持部に挿入することで、保持部の内周面にならって軸調整されるように加工する必要がある。そのため、筐体8の外周面81、および、ボンド磁石8の外周面91は各保持部の内周面81,721の形状にたいして、若干小さめの同一の形状であって寸法ばらつきの少ない形状となる。また、筐体の円筒部の内外周面も高い同軸度、円筒度が必要であり、円筒状のボンド磁石の内外周面も高い同軸度、円筒度が必要である。
Normally, in the press-fitting process, the processing shaft on the press-fitting device side and the bottomed cylindrical housing or the central shaft of the magnet are adjusted as shown in FIG. 8, for example.
The processing shaft of the housing holding portion 6 and the processing shaft of the magnet holding portion 7 are coaxially positioned. The securing of these coaxials is ensured by forming the inner peripheral surfaces 81 and 721 of each holding portion coaxially formed on the processing shaft of each holding portion with high roundness and adjusting the axes. The bottomed cylindrical housing 8 and the cylindrical bond magnet 9 to be press-fitted have their inner peripheral surfaces 81 and 721 held with high processing accuracy in terms of roundness, coaxiality, inner diameter, and the like. By inserting it into the portion, it is necessary to process it so that the axis is adjusted according to the inner peripheral surface of the holding portion. Therefore, the outer peripheral surface 81 of the housing 8 and the outer peripheral surface 91 of the bond magnet 8 have the same shape that is slightly smaller than the shapes of the inner peripheral surfaces 81 and 721 of each holding portion, and have a shape with little dimensional variation. .. Further, the inner and outer peripheral surfaces of the cylindrical portion of the housing also need to have high coaxiality and cylindricity, and the inner and outer peripheral surfaces of the cylindrical bond magnet also need to have high coaxiality and cylindricity.

そのような状態を満たす部材を準備後、圧入は、次のように行われる。上述のように加工の施された筐体保持部6と磁石保持部7の加工軸が同軸に調整されて設置される。そして、加工精度の高い内周面61を有する筐体保持部6に対し、その内周面61の形状に対して若干小さめの同一の形状である外周面81を有する有底円筒筐体8を挿入し、側方から保持具10で筐体の端面を保持する。このことで、加工軸と有底円筒筐体の8の中心軸が調芯される。そして、加工精度の高い内周面721を有する磁石保持部72に対して、若干小さめの同一の形状である外周面91を有する円筒状ボンド磁石9を、磁石保持部71の上方から挿入する。このことで、加工軸と円筒状ボンド磁石9の中心軸が調芯される。なお、有底円筒筐体8の円筒部の開口側端面は面取り部82を有している。
この状態で、両保持具を加工軸方向に相対移動すると、円筒状ボンド磁石9と有底円筒筐体8の同軸が保たれているためボンド磁石9に過大な応力がかからないためを円滑に圧入し、圧入装置の耐久性も保つことができる。
After preparing a member satisfying such a state, press-fitting is performed as follows. The processing shafts of the housing holding portion 6 and the magnet holding portion 7 that have been processed as described above are coaxially adjusted and installed. Then, with respect to the housing holding portion 6 having the inner peripheral surface 61 having high processing accuracy, the bottomed cylindrical housing 8 having the outer peripheral surface 81 having the same shape slightly smaller than the shape of the inner peripheral surface 61 is provided. Insert and hold the end face of the housing with the holder 10 from the side. As a result, the processing shaft and the central shaft of 8 of the bottomed cylindrical housing are aligned. Then, a cylindrical bond magnet 9 having a slightly smaller outer peripheral surface 91 having the same shape is inserted into the magnet holding portion 72 having the inner peripheral surface 721 having high processing accuracy from above the magnet holding portion 71. As a result, the processing shaft and the central shaft of the cylindrical bond magnet 9 are aligned. The opening-side end surface of the cylindrical portion of the bottomed cylindrical housing 8 has a chamfered portion 82.
In this state, when both holders are relatively moved in the machining axis direction, the bond magnet 9 is smoothly press-fitted because the bond magnet 9 is not overstressed because the coaxiality between the cylindrical bond magnet 9 and the bottomed cylindrical housing 8 is maintained. However, the durability of the press-fitting device can be maintained.

しかし、これらのモータにはより低価格化の要請があり、より加工コストの安くなる筐体の加工方法が種々提案されている。その場合、内周面の加工精度は確保されるものの、外周面は確保されない場合がある。そのような場合は、筐体の外径寸法精度が著しく落ちたり、筐体の内外径の同軸度が著しく落ちたりして、個別の部品による寸法バラツキが大きくなる。
この時に、上記の従来の加工方法を適用すると、任意の筐体に合わせて、圧入装置全体としての加工軸を精度合わせして一つが加工できたとしても、筐体ごとに同軸度がばらついたり、外径寸法もばらつくため、筐体側の加工軸が一定せず、同じ圧入装置の位置決めのまま加工すれば、磁石のわれ、金型の破損が生じてしまう。
それを避けるために、筐体毎に、上記の各加工軸の調整をしていては、工業生産は成立しない。
However, there is a demand for lower prices for these motors, and various processing methods for housings with lower processing costs have been proposed. In that case, although the machining accuracy of the inner peripheral surface is ensured, the outer peripheral surface may not be secured. In such a case, the accuracy of the outer diameter of the housing is significantly reduced, or the coaxiality of the inner and outer diameters of the housing is significantly reduced, resulting in a large dimensional variation among individual parts.
At this time, if the above-mentioned conventional processing method is applied, even if one can be processed by adjusting the processing axis of the press-fitting device as a whole according to an arbitrary housing, the coaxiality may vary from housing to housing. Since the outer diameter dimension also varies, the processing axis on the housing side is not constant, and if processing is performed with the same press-fitting device positioned, the magnet will be broken and the mold will be damaged.
In order to avoid this, if the above-mentioned processing shafts are adjusted for each housing, industrial production cannot be established.

そこで、本発明は、内径の同軸度と高い寸法精度を有するものの、外径寸法においては同軸度、寸法精度が低い低価格の筐体への圧入を工業生産可能にする弾性変形能を有する磁石と筐体の組立体の製造方法を提供する。 Therefore, the present invention has an inner diameter coaxiality and high dimensional accuracy, but has an elastic deformability that enables industrial production of press fitting into a low-priced housing having low outer diameter coaxiality and dimensional accuracy. And a method of manufacturing the housing assembly.

本発明者等はこの課題を解決すべく鋭意研究した結果、従来のように加工対象や保持部の寸法精度を高め、保持部間の軸調整等で対応するのは困難であるという認識にたっていた。そして、全く逆の発想、すなわち、加工対象と保持部(本発明では以下、軸調整部と記す)の間に可動性を保持しつつ、軸出しの基準となる面を設定することで、軸方向に筐体軸調整部、筐体、ボンド磁石および磁石軸調整部を近接させると、ボンド磁石の弾性変形能により筐体およびボンド磁石が移動することで軸調整部の加工軸に筐体の中心軸、ひいては磁石の中心軸が自動的に調芯されるのではないかとの着想にもとづき、検討した結果、本発明に到達した。なお、この発明は、所定の弾性変形能を持つ磁石であれば可能であるので、磁石はボンド磁石に限られず、アルニコ磁石やFeCrCo合金磁石等の金属合金磁石でも良い。 As a result of diligent research to solve this problem, the present inventors have recognized that it is difficult to improve the dimensional accuracy of the processing target and the holding portion and to adjust the axis between the holding portions as in the conventional case. There was. Then, the completely opposite idea, that is, by setting a surface that serves as a reference for axis alignment while maintaining mobility between the processing target and the holding portion (hereinafter referred to as the shaft adjusting portion in the present invention), the shaft When the housing shaft adjusting part, the housing, the bond magnet, and the magnet shaft adjusting part are brought close to each other in the direction, the housing and the bond magnet move due to the elastic deformability of the bond magnet, so that the housing is moved to the processing shaft of the shaft adjusting part. The present invention has been reached as a result of examination based on the idea that the central axis and eventually the central axis of the magnet may be automatically centered. Since the present invention is possible as long as the magnet has a predetermined elastic deformability, the magnet is not limited to the bond magnet, and may be a metal alloy magnet such as an alnico magnet or a FeCrCo alloy magnet.

<<弾性変形能を有する磁石と筐体の組立体の製造方法>>
本発明の弾性変形能を有する磁石と筐体の組立体の製造方法は、モータ用筐体に弾性変形能を有する磁石(以下、本段落においいて、単に磁石という)を圧入する筐体と磁石の組立体の製造方法であって、当該筐体は有底円筒状を有し、当該筐体はその底部から中心軸方向に延在し、その中心軸に対して同軸度を有する円筒内周面を有する磁石を収容する収容部を有し、当該筐体の少なくとも内周面は当該収容部の軸方向他端側に向かうにつれて径方向外径側に拡径するテーパ部を有し、当該筐体の一端側外端面は当該円筒内周面の中心軸と垂直な仮想平面における少なくとも3つの独立平面部を有し、磁石は円筒状であって、当該磁石の他端側端面は当該円筒内周面の中心軸と垂直な仮想平面における少なくとも3つの独立平面部を有し、当該磁石外径が筐体の開口側内端の内径より小さく、前記同軸度を有する円筒内周面の内径より大きい磁石外径を有する当該磁石とを準備する準備工程と、当該筐体と当接時に、筐体の一端側外端面において当該仮想平面を共有し、当該各独立平面部と当接する一端側内端面において少なくとも3つ独立平面部を有し、当該各独立平面部から軸方向一端側に少なくとも垂直方向に延びた部材で構成された筐体軸調整部と、当該磁石と当接時に、磁石の他端側端面において当該仮想平面を共有し、当該各独立平面部と当接する一端側端面において少なくとも3つの独立平面部を有し、当該各一端側端面から軸方向他端側に少なくとも垂直方向に延びた部材で構成された磁石軸調整部とを設けることを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。
<< Manufacturing method of assembly of magnet and housing with elastic deformability >>
The method for manufacturing an assembly of a magnet having elastic deformability and a housing according to the present invention is a method of press-fitting a magnet having elastic deformability (hereinafter, simply referred to as a magnet in this paragraph) into a housing for a motor. In the method of manufacturing the assembly of the above, the housing has a bottomed cylindrical shape, and the housing extends from the bottom in the direction of the central axis and has a coaxiality with respect to the central axis. It has an accommodating portion for accommodating a magnet having a surface, and at least the inner peripheral surface of the housing has a tapered portion whose diameter expands to the radial outer diameter side toward the other end side in the axial direction of the accommodating portion. The outer end surface on one end side of the housing has at least three independent plane portions in a virtual plane perpendicular to the central axis of the inner peripheral surface of the cylinder, the magnet is cylindrical, and the other end surface of the magnet is the cylinder. It has at least three independent planes in a virtual plane perpendicular to the central axis of the inner peripheral surface, the outer diameter of the magnet is smaller than the inner diameter of the inner end on the opening side of the housing, and the inner diameter of the inner peripheral surface of the cylinder having the coaxiality. In the preparatory step of preparing the magnet having a larger outer diameter of the cylinder, and at the time of contact with the housing, the virtual plane is shared by the outer end surface on one end side of the housing, and the one end side that contacts each independent plane portion. A housing shaft adjusting portion having at least three independent plane portions on the inner end surface and composed of a member extending in at least a vertical direction from each independent plane portion to one end side in the axial direction, and a magnet at the time of contact with the magnet. The virtual plane is shared by the other end faces of the above, and at least three independent plane portions are provided on the one end side end face that abuts on each independent plane portion, and at least in the direction perpendicular to the other end side in the axial direction from each one end side end face. It is a method of manufacturing an assembly of a magnet and a housing having an elastic deformability, which is characterized by providing a magnet shaft adjusting portion composed of a member extending to.

なお、本明細書では、適宜、圧入装置の筐体軸調整部側を一端側、それに対向する磁石軸調整部側を他端側として、各部材の位置等を特定する。さらに、本明細書では、適宜、円筒座標(r、θ、z)を念頭に、各部材の形状や位置等を特定する。筐体軸調整部、磁石軸調整部における中心軸(z軸)を加工軸といい、筐体、ボンド磁石における中心軸(z軸)を単に中心軸といい、その延在方向を軸方向(z方向)という。その中心軸に直交する放射方向を径方向(r方向)という。その中心軸まわりの方向を周方向(θ方向)という。 In this specification, the position and the like of each member are specified with the housing shaft adjusting portion side of the press-fitting device as one end side and the magnet shaft adjusting portion side facing the other end side as appropriate. Further, in the present specification, the shape, position, and the like of each member are specified with the cylindrical coordinates (r, θ, z) in mind as appropriate. The central axis (z-axis) in the housing axis adjustment part and magnet axis adjustment part is called the processing axis, the central axis (z-axis) in the housing and bond magnet is simply called the central axis, and the extending direction is the axial direction (axial direction). (Z direction). The radial direction orthogonal to the central axis is called the radial direction (r direction). The direction around the central axis is called the circumferential direction (θ direction).

径方向に関して、中心軸に近い側(rが小さい側)を、小径側、内周側または内側という。径方向に関して、中心軸に遠い側(rが大さい側)を、大径側、外周側または外側という。また、各部材において、中心軸または中心(中心軸上の中央)に、最も近い部分を内周端(部)または内端(部)といい、中心軸または中心から最も遠い部分を外周端(部)または外端(部)という。軸方向に関して、中心に近い側を内側、遠い側を外側という。 In the radial direction, the side closer to the central axis (the side where r is small) is called the small diameter side, the inner peripheral side, or the inside. In the radial direction, the side far from the central axis (the side where r is large) is called the large diameter side, the outer peripheral side, or the outside. Further, in each member, the part closest to the central axis or the center (center on the central axis) is called the inner peripheral end (part) or the inner end (part), and the part farthest from the central axis or the center is the outer peripheral end (part). Part) or outer edge (part). In the axial direction, the side closer to the center is called the inside, and the side far from the center is called the outside.

また、ここで有底円筒状とは、円筒体の開口側の一端側に径方向内側に張り出し部(底部)を有しているものである。そして、少なくとも径方向の張り出し部(底部)の一部が筐体の一端側外端面を構成することとなる。この場合、円筒体と張り出し部は1つの部品でも、複数部品でもいい。張り出し部は、面を形成していても良く、開口部を有する形状でも良い。また、底部とは、本発明における筐体軸調整部における、筐体の中心軸と筐体軸調整部の加工軸の軸を平行にするための独立平面部を有する、若しくは、当該独立平面部を含む平面を含むものである。よって、例えば底部と円筒体(部)が2部品で構成され、円筒部の一端側端面のみの3つ以上の独立平面部、若しくは、一端部端面が一つの平面で構成される場合も、その部位は、円筒体(部)であるだけでなく、底部でもある。
本発明での底部は、いわゆる底に相当する部分が無く、円筒部の一端側端面のみが底部である場合を含むものである。なお、弾性変形能を有する磁石は、適宜、本明細書中、磁石、ボンド磁石、円筒状ボンド磁石等と記載する。
Further, the bottomed cylindrical shape here means that the cylindrical body has an overhanging portion (bottom portion) inward in the radial direction on one end side on the opening side. Then, at least a part of the overhanging portion (bottom portion) in the radial direction constitutes the outer end surface on one end side of the housing. In this case, the cylindrical body and the overhanging portion may be one component or a plurality of components. The overhanging portion may form a surface or may have a shape having an opening. Further, the bottom portion has an independent flat surface portion for parallelizing the central axis of the housing and the processing axis of the housing shaft adjusting portion in the housing shaft adjusting portion of the present invention, or the independent flat surface portion. It includes a plane containing. Therefore, for example, even when the bottom portion and the cylindrical body (part) are composed of two parts and three or more independent plane portions having only one end side end face of the cylindrical portion, or the one end end face is composed of one plane. The part is not only a cylinder (part) but also a bottom.
The bottom portion in the present invention includes a case where there is no portion corresponding to the so-called bottom portion and only one end side end surface of the cylindrical portion is the bottom portion. The magnet having elastic deformability is appropriately described as a magnet, a bond magnet, a cylindrical bond magnet, or the like in the present specification.

上記の本発明の弾性変形能を有する磁石と筐体の組立体の製造方法を採用することで、筐体軸調整部、筐体、磁石、磁石軸調整部を所定の位置に配置し、筐体軸調整部と磁石軸調整部を相対的に近接させることにより、内径の同軸度と高い寸法精度を有するものの、外径寸法においては同軸度、寸法精度が低い低価格の筐体への円筒状の弾性変形能を有する磁石(特にボンド磁石等)の圧入を、従来のように、一つ一つの筐体の内外径の同軸度がずれていたり、外径の寸法がばらついているものを圧入装置にセットするときに、いちいち筐体の保持冶具の内面を加工したり、筐体にあわせて加工軸をそろえる作業をしてから圧入するということをすることなく、連続的に圧入を可能とする工業生産に適した弾性変形能を有する磁石と筐体の組立体の製造方法を提供することができる。 By adopting the method of manufacturing the assembly of the magnet and the housing having the elastic deformability of the present invention, the housing shaft adjusting portion, the housing, the magnet, and the magnet shaft adjusting portion are arranged at predetermined positions, and the housing is By making the body axis adjustment part and the magnet axis adjustment part relatively close to each other, it has the coaxiality of the inner diameter and high dimensional accuracy, but the coaxiality and dimensional accuracy of the outer diameter are low, and it is a cylinder to a low-priced housing. For press-fitting magnets with elastic deformability (especially bond magnets, etc.), the coaxiality of the inner and outer diameters of each housing is deviated or the outer diameter dimensions are different as in the past. When setting in the press-fitting device, it is possible to continuously press-fit without processing the inner surface of the holding magnet of the housing or by aligning the processing axis according to the housing and then press-fitting. It is possible to provide a method for manufacturing an assembly of a magnet and a housing having an elastic deformability suitable for industrial production.

ここで、弾性変形能を有する磁石と筐体の組立体の製造方法の主作用を説明する。なお、圧入装置内部での各部材の動きは観察することはできないので、なぜ、本発明の作用効果が得られたかは明確には分からないが、効果から考えると以下のようであると思われる。また、技術的に必ずしも必須ではないものであるが、本発明の作用効果をわかりやすく説明するために、前提として、本発明の筐体軸調整部の加工軸と磁石軸調整部の加工軸は同軸に位置決めされている(両者は同軸加工軸を共有している)こととして以下説明する。更に、なお、本発明は、加工軸を鉛直方向に制限するものではなく、水平方向等の任意の方向に加工軸を有することができる。
以下に、本発明における圧入装置である筐体軸調整部と磁石軸調整部と、圧入装置を用いて加工される対象物である筐体とボンド磁石を、それらの構成から想定しうる圧入工程を適用することよって生じる作用効果を示すことによって、説明する。
Here, the main action of a method for manufacturing an assembly of a magnet having elastic deformability and a housing will be described. Since the movement of each member inside the press-fitting device cannot be observed, it is not clear why the action and effect of the present invention were obtained, but the effect is considered to be as follows. .. Further, although it is not necessarily technically essential, in order to explain the operation and effect of the present invention in an easy-to-understand manner, as a premise, the processing shaft of the housing shaft adjusting portion and the processing shaft of the magnet shaft adjusting portion of the present invention are It will be described below assuming that they are positioned coaxially (both share a coaxial processing axis). Furthermore, the present invention does not limit the machining axis in the vertical direction, and can have the machining axis in any direction such as the horizontal direction.
The press-fitting process in which the housing shaft adjusting portion and the magnet shaft adjusting portion, which are the press-fitting devices in the present invention, and the housing and the bond magnet, which are the objects to be machined by using the press-fitting device, can be assumed from their configurations. Will be described by showing the effects produced by the application of.

まず、当該筐体軸調整部の他端側端面における各独立平面部と当該筐体の一端側外端面における各独立平面部が、例えば、空間を空けて対向しうるように配置する。また、当該筐体の内周面のテーパ部と当該磁石の一端側端が対向しうるように配置する。更に、当該磁石の他端側端面における各独立平面部と当該磁石軸調整部の一端側端面における各独立平面部が対向しうるように配置する。ここで対向しうるようにとは、これらの部材を直接若しくは間接的に同軸加工軸方向に相対的に近接させたとき、所定の時間経過後には互いの面(点を含む)が当接することを意味する。その後、当該筐体軸調整部と当該磁石軸調整部の少なくともいずれか一方を同軸加工軸方向に両者が近接するように相対移動させる。 First, each independent flat surface portion on the other end side end surface of the housing shaft adjusting portion and each independent flat surface portion on the one end side outer end surface of the housing are arranged so as to face each other with a space, for example. Further, the tapered portion on the inner peripheral surface of the housing is arranged so that the one end side end of the magnet can face each other. Further, each independent flat surface portion on the other end side end surface of the magnet and each independent flat surface portion on the one end side end surface of the magnet shaft adjusting portion are arranged so as to face each other. Here, to be able to face each other means that when these members are directly or indirectly brought close to each other in the coaxial machining axis direction, their surfaces (including points) come into contact with each other after a predetermined time has elapsed. Means. After that, at least one of the housing shaft adjusting portion and the magnet shaft adjusting portion is relatively moved so as to be close to each other in the coaxial processing axis direction.

その場合、円筒状のボンド磁石は筐体の開口部の端面にさえぎられること無く筐体内側に侵入し、筐体内周面に形成されたテーパ部の任意の箇所で当接するようになる。ここで最初の当接が上記の点とは限らない。筐体のテーパ部の他端側に存在する部材に当接し、摺動しながら、連続的にテーパ部に当接する場合もある。更なる相対移動により、筐体の一端側外端が筐体軸調整部の他端側端面と当接する。この状態では、各軸の関係は変化していない。 In that case, the cylindrical bond magnet penetrates into the inside of the housing without being blocked by the end surface of the opening of the housing, and comes into contact with the tapered portion formed on the inner peripheral surface of the housing at an arbitrary position. Here, the first contact is not always the above point. In some cases, it abuts on a member existing on the other end side of the tapered portion of the housing, and continuously abuts on the tapered portion while sliding. Due to the further relative movement, the outer end on one end side of the housing comes into contact with the end surface on the other end side of the housing shaft adjusting portion. In this state, the relationship between the axes has not changed.

更に、両軸調整部を同軸加工軸方向に相対的に近接させると、筐体軸調整部と筐体の間では、筐体の一端側前方および同軸加工軸に垂直な径方向にも空間があるため、筐体の一端側外端を支点として筐体が回転する。そのため、筐体軸調整部の軸出しの基準平面である他端側端面と筐体の底部における軸出しの基準平面である一端側外端面が面同士で当接することができる。
このとき、筐体の一端側外端面における少なくとも3つ以上の独立平面部と筐体軸調整部の他端側端面における少なくとも3つ以上の独立平面部で当接することで、お互いに同軸加工軸に垂直な仮想平面を共有することになる。それにより、筐体軸調整部の加工軸と筐体の中心軸が軸方向には平行に調芯(以下、適宜、平行調芯という)される。このとき、筐体は加工軸に垂直に移動している場合が多いと想定されるが、そのことは平行調芯をさまたげるものではない。このとき、両軸の軸方向に垂直な方向においてはずれたままである。
Further, when both axis adjusting parts are relatively close to each other in the coaxial processing axis direction, a space is created between the housing axis adjusting part and the housing in the front of one end side of the housing and in the radial direction perpendicular to the coaxial processing axis. Therefore, the housing rotates around the outer end on one end side of the housing as a fulcrum. Therefore, the other end side end surface, which is the reference plane for the axis alignment of the housing shaft adjusting portion, and the one end side outer end surface, which is the reference plane for the axis alignment at the bottom of the housing, can come into contact with each other.
At this time, at least three or more independent flat surfaces on the outer end surface on one end side of the housing and at least three independent flat surfaces on the other end surface of the housing shaft adjusting portion are brought into contact with each other, so that the coaxial processing shafts are mutually coaxially processed. It will share a virtual plane perpendicular to. As a result, the processing shaft of the housing shaft adjusting portion and the central axis of the housing are aligned in parallel in the axial direction (hereinafter, appropriately referred to as parallel alignment). At this time, it is assumed that the housing is often moved perpendicular to the machining axis, but this does not prevent the parallel alignment. At this time, it remains deviated in the direction perpendicular to the axial direction of both axes.

ここで、筐体軸調整部の(同軸)加工軸に対する垂直面は、筐体軸調整部の他端側端面における各独立平面部が(同軸)加工軸に垂直に位置決めすることにより形成される。ここで、同一仮想平面に含まれる少なくとも3つ面同士での当接を規定しているのは、少なくとも3つの面で当接しないと、一義的に面の精度出しができないためである。両面の当接を点とせず面としているのは、点どうしの当接では、位置決めが困難すぎるためである。 Here, the vertical plane of the housing shaft adjusting portion with respect to the (coaxial) machining shaft is formed by positioning each independent flat surface portion on the other end surface of the housing shaft adjusting portion perpendicular to the (coaxial) machining shaft. .. Here, the reason why the contact between at least three surfaces included in the same virtual plane is defined is that the accuracy of the surfaces cannot be uniquely obtained unless the contact is made with at least three surfaces. The reason why the contact between both sides is not a point but a surface is that the contact between points is too difficult to position.

ここで、同時に、筐体軸調整部と筐体との間と同様の位置関係を有する磁石軸調整部と磁石との間でも同様の作用が生じる。磁石の一端側前方および同軸加工軸に垂直な径方向にも空間があるため、磁石の他端側外端を支点として始点として磁石が回転しうる。そのため、磁石軸調整部の軸出しの基準平面である一端側端面と磁石の他端側端面における軸出しの基準平面である一端側外端面が面同士で当接することができる。
このとき、磁石の他端側外端面における少なくとも3つ以上の独立平面部と磁石軸調整部の一端側端面における少なくとも3つ以上の独立平面部で当接することで、お互いに同軸加工軸に垂直な仮想平面を共有することになる。それにより、磁石軸調整部の加工軸と磁石の中心軸が軸方向には平行調芯される。
Here, at the same time, the same action occurs between the magnet shaft adjusting portion and the magnet having the same positional relationship as between the housing shaft adjusting portion and the housing. Since there is space in front of one end of the magnet and in the radial direction perpendicular to the coaxial processing axis, the magnet can rotate with the outer end on the other end of the magnet as a fulcrum. Therefore, the end surface on one end side, which is the reference plane for alignment of the magnet shaft adjusting portion, and the outer end surface on one end side, which is the reference plane for alignment on the other end surface of the magnet, can come into contact with each other.
At this time, at least three or more independent plane portions on the outer end surface on the other end side of the magnet and at least three or more independent plane portions on the end surface on one end side of the magnet shaft adjusting portion abut each other so as to be perpendicular to the coaxial processing axis. Virtual plane will be shared. As a result, the processing shaft of the magnet shaft adjusting portion and the central shaft of the magnet are aligned in parallel in the axial direction.

一方、前記の筐体の動きに連動した筐体Kと磁石Mと磁石軸調整部2の動きを説明する。ここで、再度、段落番号19に記載の状態から当該筐体軸調整部と当該磁石軸調整部の少なくともいずれか一方を同軸加工軸方向に両者が近接するように相対移動させる。
当該筐体の内周面におけるテーパ部と当該磁石の外周面における一端側外端とのみ当接しているが、他の面は筐体の内周面と磁石の外周面との間に空間を有している。そのため、両軸調整部を軸方向に相対的に近接させると、前記の筐体の回転等と同時に、磁石から一端側にある筐体を見ると、磁石の相対移動方向である磁石の一端側前方および同軸加工軸に垂直な径方向にも空間があるため、当該磁石が筐体の中心軸に添って傾斜したり、加工軸に垂直な方向へ移動しうる。そのことは、同時に、筐体から他端側にある磁石を見ると、筐体の相対移動方向である筐体の他端側前方および同軸加工軸に垂直な径方向にも空間があるため、筐体が磁石の中心軸に添って傾斜したり、加工軸に垂直な方向へ移動しうる。これらの筐体と磁石の姿勢変更、移動の自由度の高さが、両軸調整部を近接する方向に移動中に、特に、磁石がテーパ部を同軸加工軸方向一端側に相対的に移動中に、筐体の中心軸と磁石の中心軸が徐々に同軸化するように誘導し調芯(以下、同軸調芯という)する効果を有するものと思われる。
On the other hand, the movements of the housing K, the magnet M, and the magnet shaft adjusting unit 2 that are linked to the movement of the housing will be described. Here, again, from the state described in paragraph number 19, at least one of the housing shaft adjusting portion and the magnet shaft adjusting portion is relatively moved so as to be close to each other in the coaxial processing axis direction.
Only the tapered portion on the inner peripheral surface of the housing is in contact with the outer end on one end side of the outer peripheral surface of the magnet, but the other surface creates a space between the inner peripheral surface of the housing and the outer peripheral surface of the magnet. Have. Therefore, when both axis adjusting portions are relatively close to each other in the axial direction, when the housing on one end side is viewed from the magnet at the same time as the rotation of the housing, one end side of the magnet, which is the relative movement direction of the magnet, is viewed. Since there is also space in the radial direction perpendicular to the front and coaxial machining axes, the magnet can tilt along the central axis of the housing or move in the direction perpendicular to the machining axis. This is because, at the same time, when looking at the magnet on the other end side from the housing, there is space in the front of the other end side of the housing, which is the relative movement direction of the housing, and in the radial direction perpendicular to the coaxial processing axis. The housing can tilt along the central axis of the magnet or move in a direction perpendicular to the machining axis. Due to the high degree of freedom of changing the posture and movement of these housings and magnets, the magnet moves the tapered part relatively to one end side in the coaxial processing axial direction while the both axis adjustment parts are moving in the proximity direction. It is thought that it has the effect of guiding the central axis of the housing and the central axis of the magnet to be gradually coaxialized and aligning them (hereinafter referred to as coaxial alignment).

そして、当該ボンド磁石の一端側端が中心軸に対して同軸度を有する円筒内周面を有するボンド磁石を収容する収容部まで相対移動する時点では、相対的押し圧力も大きくなっているので、筐体軸調整部と筐体の中心軸の平行調芯、及び、磁石軸調整部と磁石との中心軸の平行調芯は完了し、同時に筐体の中心軸と、磁石の中心軸の同軸調芯も完了していると思われる。どちらの調芯が先に始まり、どちらが先に終わる等は、加工軸中心に対する当初の筐体や磁石の位置、筐体や磁石の配置の傾斜角度、テーパの角度等の種々の要因によって変わるものと思われる。 Then, when the one end side end of the bond magnet moves relative to the accommodating portion accommodating the bond magnet having the inner peripheral surface of the cylinder having the coaxiality with respect to the central axis, the relative pressing pressure is also large. The parallel alignment of the housing axis adjustment part and the central axis of the housing and the parallel alignment of the central axis of the magnet axis adjustment part and the magnet are completed, and at the same time, the central axis of the housing and the central axis of the magnet are coaxial. It seems that the alignment has been completed. Which alignment starts first and which ends first depends on various factors such as the initial position of the housing and magnet with respect to the center of the processing axis, the inclination angle of the housing and magnet arrangement, and the taper angle. I think that the.

なお、本説明においては、例えば、筐体軸調整部と筐体の位置関係において、両者の
間に空間を設けて配置したが、必要に応じて筐体軸調整部と筐体の一部で当接していてもよいし、予め全面的に当接したりして、種々の配置を取りうる。その場合、前者では作用効果は変わらず、後者では、筐体軸調整部と筐体間の平行調芯が先に終了させた状態ということであり、その後、筐体と磁石との同軸調芯の効果及び磁石と磁石軸調整部との平行調芯の効果を有することとなる。筐体と磁石の位置関係、及び、磁石と磁石軸調整部にお いても同様である。
In this description, for example, in the positional relationship between the housing shaft adjusting portion and the housing, a space is provided between the two, but if necessary, the housing shaft adjusting portion and a part of the housing are used. They may be in contact with each other, or they may be in contact with each other in advance in various arrangements. In that case, the action and effect do not change in the former, and in the latter, the parallel alignment between the housing axis adjustment part and the housing is completed first, and then the coaxial alignment between the housing and the magnet is completed. And the effect of parallel alignment of the magnet and the magnet shaft adjusting part. The same applies to the positional relationship between the housing and the magnet, and the magnet and the magnet shaft adjusting part.

なお、これらの発明の効果が発生する条件として、磁石は弾性変形能を有していなければならならず、弾性変形能が高いほど好ましい。なお、ボンド磁石の場合は、ボンド磁石に使用される樹脂が熱硬化性樹脂が好ましく、円筒状ボンド磁石に成形された後に、熱硬化処理(キュアー処理)がされていることが好ましい。そうでない場合は、磁石が筐体の内周面を基準に調芯されるときに受ける大きな弾性変形に耐えられず、強度不足になる場合がある。アルニコ磁石やFeCrCo合金磁石等の金属合金磁石であり十分な弾性変形能を有する。
また、圧入時には、筐体およびボンド磁石を所定の温度に加熱することが望ましい。加熱しない場合、十分な磁石の変形能が得られず磁石が破損する場合がある。また、それにより変形能が少ないと圧入代が少なくなるため、磁石が筐体から抜けやすくなる傾向になる。
As a condition for the effects of these inventions to occur, the magnet must have an elastic deformability, and the higher the elastic deformability, the more preferable. In the case of a bond magnet, the resin used for the bond magnet is preferably a thermosetting resin, and it is preferable that a thermosetting treatment (cure treatment) is performed after the resin is formed into a cylindrical bond magnet. If this is not the case, the magnet may not be able to withstand the large elastic deformation that it receives when it is centered with respect to the inner peripheral surface of the housing, and the strength may be insufficient. It is a metal alloy magnet such as an alnico magnet or a FeCrCo alloy magnet and has sufficient elastic deformability.
Further, it is desirable to heat the housing and the bond magnet to a predetermined temperature at the time of press fitting. If it is not heated, the magnet may not be sufficiently deformable and the magnet may be damaged. Further, as a result, if the deformability is small, the press-fitting allowance is small, so that the magnet tends to easily come off from the housing.

なお、本実施例の筐体軸調整部の加工軸と磁石軸調整部の加工軸は同軸に位置決めされていることを前提にして、上述の発明の作用効果を説明してきた。
しかしながら、上記の説明で明らかなように、筐体軸調整部と磁石軸調整部の加工軸の軸に垂直方向の軸ずれは、軸ずれ量があっても、磁石が筐体に挿入可能であり、筐体、および、磁石を保持しながら相対的にお互いに平行な加工軸方向に近接する方向へ押圧可能な範囲であれば、圧入が成立する。
そのため、筐体の開口部端面の内径D1のばらつきを含めた最小径D1min、ボンド磁石の外径dのばらつきを含めた最大径dmaxとした場合、軸調整を容易にするために許容できる筐体軸調整部と磁石軸調整部の加工軸の軸に垂直方向の許容軸ずれ量を、例えば、一方を同軸加工軸と仮定した場合、δs1とする。また、筐体Kや磁石Mの中心軸が加工軸から傾斜することによる当該筐体等の同軸加工軸に垂直な平面への投影形状における最大外形の許容増加量δs2とする。また、磁石Mと筐体Kの配置位置による同軸加工軸に対する垂直方向への両者の中心軸の許容軸ズレ量をδs3とする。その場合、妥当に選択された同軸加工軸に対する最大許容軸ズレ量ΔS=δs1+δs2+δs3となる。
その場合、Dmin>dmax+ΔSが成立し、本発明の各種寸法関係に加え、上述の寸法を管理すれば、時間のかかる筐体軸調整部と磁石軸調整部の加工軸の調整を短縮化することができる。なお、各ずれ量δsは、公知の手段で、縮小方向にすることは可能である。例えば、δs2であれば、筐体の外周面と筐体保持部の内周面との間の空間を狭めること等により可能となる。
The effects of the above invention have been described on the premise that the processing shaft of the housing shaft adjusting portion and the processing shaft of the magnet shaft adjusting portion of this embodiment are coaxially positioned.
However, as is clear from the above explanation, the axis deviation in the direction perpendicular to the axis of the processing axis of the housing axis adjusting portion and the magnet axis adjusting portion allows the magnet to be inserted into the housing even if there is an amount of axis deviation. Yes, press-fitting is established as long as the housing and the magnet can be pressed in a direction relatively parallel to each other in the machining axis direction while holding the magnet.
Therefore, when the minimum diameter D1min including the variation of the inner diameter D1 of the opening end face of the housing and the maximum diameter dmax including the variation of the outer diameter d of the bond magnet are set, the housing is acceptable in order to facilitate the axis adjustment. The permissible amount of axis deviation in the direction perpendicular to the axis of the processing axis of the axis adjusting unit and the magnet axis adjusting unit is, for example, δs1 when one is assumed to be a coaxial processing axis. Further, the maximum allowable increase in outer shape in the projected shape on a plane perpendicular to the coaxial processing axis of the housing or the like due to the central axis of the housing K or the magnet M being inclined from the processing axis is δs2. Further, the allowable axis deviation amount of the central axes of both in the direction perpendicular to the coaxial processing axis depending on the arrangement position of the magnet M and the housing K is defined as δs3. In that case, the maximum allowable axis deviation amount ΔS = δs1 + δs2 + δs3 with respect to the appropriately selected coaxial processing axis.
In that case, Dmin> dmax + ΔS is established, and if the above-mentioned dimensions are managed in addition to the various dimensional relationships of the present invention, the time-consuming adjustment of the processing shafts of the housing shaft adjusting portion and the magnet shaft adjusting portion can be shortened. Can be done. It should be noted that each deviation amount δs can be set in the reduction direction by a known means. For example, in the case of δs2, it is possible by narrowing the space between the outer peripheral surface of the housing and the inner peripheral surface of the housing holding portion.

また、筐体軸調整部と磁石軸調整部の加工軸の傾斜においても、磁石の他端側端面を収容部(同軸度必要部)のどこのあたりまで送り込む必要があるか、筐体の内周面の形状(各種寸法、寸法精度を含む)、磁石軸調整部の一端側端面の外径形状(各種寸法、寸法精度を含む)とボンド磁石等の弾性変形能の範囲で、ある程度の軸ずれは許容される。
そのため、本発明においては、筐体軸調整部と磁石軸調整部の加工軸の調芯を必須条件とはしていない。
ただし、筐体軸調整部と磁石軸調整部の加工軸(中心軸)が平行であることが望ましい。さらには、筐体軸調整部と磁石軸調整部の加工軸(中心軸)が同軸であることが望ましい。
Further, even when the processing shafts of the housing shaft adjusting portion and the magnet shaft adjusting portion are tilted, it is necessary to feed the other end surface of the magnet to the accommodating portion (coaxiality required portion) in the housing. A certain amount of shaft within the range of the shape of the peripheral surface (including various dimensions and dimensional accuracy), the outer diameter shape of the end face on one end side of the magnet shaft adjustment part (including various dimensions and dimensional accuracy), and the elastic deformability of the bond magnet, etc. Misalignment is acceptable.
Therefore, in the present invention, the alignment of the processing shafts of the housing shaft adjusting portion and the magnet shaft adjusting portion is not an essential condition.
However, it is desirable that the processing shaft (central shaft) of the housing shaft adjusting portion and the magnet shaft adjusting portion are parallel. Further, it is desirable that the processing shaft (central shaft) of the housing shaft adjusting portion and the magnet shaft adjusting portion is coaxial.

実施例の圧入装置を模式的に示しつつ、圧入工程において筐体を保持冶具で支えている状態を示す正面断面図である。It is a front sectional view which shows the state which the housing is supported by the holding jig in the press-fitting process while schematically showing the press-fitting apparatus of an Example. 圧入工程において筐体の内周面に磁石の一端側端が当接後、さらに、磁石を一端側に押し上げたときに、筐体の一端側端が筐体軸調整部の調整部の他端側端面に当接した様子を示す正面断面図である。In the press-fitting process, when one end of the magnet comes into contact with the inner peripheral surface of the housing and then the magnet is pushed up to one end, the one end of the housing becomes the other end of the adjustment part of the housing shaft adjustment part. It is a front sectional view which shows the state of contact with a side end face. 圧入工程において、さらに、磁石を一端側に押し上げたとき、筐体軸調整部と磁石軸調整部の同軸加工軸と筐体の中心軸が平行調芯され、かつ、磁石の中心軸が筐体の中心軸に同軸調芯された様子を示す正面断面図である。In the press-fitting process, when the magnet is further pushed up to one end side, the coaxial processing shaft of the housing shaft adjusting portion and the magnet shaft adjusting portion and the central axis of the housing are aligned in parallel, and the central axis of the magnet is the housing. It is a front sectional view which shows the state of having been coaxially aligned with the central axis of. 変形例の筐体の上面図である。It is a top view of the housing of the modified example. 変形例の圧入装置を模式的に示しつつ、圧入工程を示すために図4の変形例の筐体のA−A断面を矢印方向からみた正面矢視図である。While schematically showing the press-fitting device of the modified example, it is a front arrow view of the AA cross section of the housing of the modified example of FIG. 4 as viewed from the direction of the arrow in order to show the press-fitting process. 変形例の筐体の正面断面図である。It is a front sectional view of the housing of a modification. 図6の変形例の場合の圧入工程における実施例の場合の図3に相当する平行調芯と同軸調芯後の様子を示す正面断面図である。It is a front sectional view which shows the state after the parallel alignment and the coaxial alignment corresponding to FIG. 3 in the case of the example in the press-fitting process in the case of the modification of FIG. 従来の圧入装置と圧入工程を説明する正面断面図Front sectional view illustrating a conventional press-fitting device and a press-fitting process

本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を上述した本発明の構成に付加しえる。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。製造方法に関する構成要素も、物に関する構成要素ともなり得る。 One or more components arbitrarily selected from the matters described herein may be added to the configuration of the present invention described above. Whether or not which embodiment is the best depends on the target, required performance, and the like. A component related to a manufacturing method can also be a component related to a product.

本発明は、さらに当該筐体の一端側外端面は当該円筒内周面の中心軸と垂直な少なくとも3つ独立平面部を含む連続した平面を有すること特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このように筐体の一端側外端面が連続した平面を有していれば、製造が容易であり、筐体軸調整部の他端側端面における少なくとも3つの独立平面部と容易に位置決めすることができる。 The present invention further relates to a magnet and a housing having elastic deformability, characterized in that the outer end surface on one end side of the housing has a continuous plane including at least three independent plane portions perpendicular to the central axis of the inner peripheral surface of the cylinder. It is a method of manufacturing a body assembly. If the outer end surface on one end side of the housing has a continuous flat surface in this way, it is easy to manufacture, and it can be easily positioned with at least three independent flat surfaces on the end surface on the other end side of the housing shaft adjusting portion. Can be done.

本発明における筐体は磁性体とすることができる。また、軟磁性体とすることができる。例えば、鉄や鉄を多く含む金属合金からなる軟磁性体とすることができる。但し、軟磁性体は物理的にやわらかいので、筐体の内周面は摺動面であるため、摺動をスムーズにするための表面加工、表面処理を施すことができる。 The housing in the present invention can be made of a magnetic material. Further, it can be a soft magnetic material. For example, it can be a soft magnetic material made of iron or a metal alloy containing a large amount of iron. However, since the soft magnetic material is physically soft, the inner peripheral surface of the housing is a sliding surface, so that surface treatment and surface treatment for smooth sliding can be performed.

本発明は、さらに当該筐体軸調整部が当該他端側端面において当該少なくとも3つ独立平面部を含む連続した平面を有すること特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このように当該筐体軸調整部は当該他端側端面が連続した平面を有していれば、製造が容易であり、筐体の一端側外端面における少なくとも3つの独立平面部と容易に位置決めすることができる。 The present invention further manufactures an assembly of a magnet and a housing having elastic deformability, characterized in that the housing shaft adjusting portion has a continuous flat surface including at least three independent plane portions on the other end surface. The method. As described above, if the housing shaft adjusting portion has a continuous flat surface on the other end surface, it can be easily manufactured and easily positioned with at least three independent flat surfaces on the outer end surface on one end side of the housing. can do.

本発明は、さらに当該磁石の他端側端面は当該円筒内周面の中心軸と垂直な少なくとも3つ独立平面部を含む連続した平面を有すること特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このように磁石の他端側端面が連続した平面を有していれば、製造が容易であり、磁石軸調整部の一端側端面における少なくとも3つの独立平面部と容易に位置決めすることができる。 The present invention further describes a magnet and a housing having elastic deformability, wherein the other end surface of the magnet has a continuous plane including at least three independent plane portions perpendicular to the central axis of the inner peripheral surface of the cylinder. It is a manufacturing method of the assembly of. When the other end surface of the magnet has a continuous flat surface in this way, it is easy to manufacture, and it can be easily positioned with at least three independent plane portions on the one end side end surface of the magnet shaft adjusting portion.

本発明は、さらに当該磁石軸調整部が当該一端側端面において当該少なくとも3つ独立平面部を含む連続した平面部を有すること特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このように当該磁石軸調整部は当該一端側端面が連続した平面を有していれば、製造が容易であり、磁石の他端側端面における少なくとも3つの独立平面部と容易に位置決めすることができる。 The present invention further relates to a method for manufacturing an assembly of a magnet and a housing having elastic deformability, wherein the magnet shaft adjusting portion has a continuous flat surface portion including at least three independent flat surface portions on one end side end surface. Is. As described above, the magnet shaft adjusting portion can be easily manufactured if the one end side end face has a continuous flat surface, and can be easily positioned with at least three independent plane portions on the other end side end face of the magnet. it can.

本発明は、当該磁石軸調整部が当該一端側端面において、当該少なくとも3つ独立平面部を含む連続した平面が円形であり、当該磁石の他端側端面を全周にわたって支えることを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。これにより、磁石に均一な圧力がかかり、圧入時の磁石の破損等を防止する。例えば、筐体軸調整部と磁石軸調整部が鉛直方向に配置されているとき、当該磁石を磁石軸調整部にセットするとき脱落しにくい。
さらに、当該磁石軸調整部を円柱状とすれば、当該磁石軸調整部を比較的小さくすることができる。
The present invention is characterized in that the magnet shaft adjusting portion has a circular continuous plane including at least three independent plane portions on the one end side end surface, and supports the other end side end surface of the magnet over the entire circumference. This is a method for manufacturing an assembly of a magnet and a housing having elastic deformability. As a result, uniform pressure is applied to the magnet, and damage to the magnet during press fitting is prevented. For example, when the housing shaft adjusting portion and the magnet shaft adjusting portion are arranged in the vertical direction, they are unlikely to fall off when the magnet is set in the magnet shaft adjusting portion.
Further, if the magnet shaft adjusting portion is made cylindrical, the magnet shaft adjusting portion can be made relatively small.

本発明は、当該磁石軸調整部が当該一端側端面において、連続した平面が円形であり、当該円形の内側に軸方向一端側に凸部を有することを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。これにより、磁石を磁石軸調整部にセットするとき、例えば、筐体軸調整部と磁石軸調整部が鉛直方向に配置されているとき、より確実に磁石を脱落、転倒させること無く設置できる。 The present invention is a magnet having an elastic deformability, characterized in that the magnet shaft adjusting portion has a circular flat surface on the end surface on one end side and a convex portion on the one end side in the axial direction inside the circle. This is a method for manufacturing an assembly of a housing. As a result, when the magnet is set in the magnet shaft adjusting portion, for example, when the housing shaft adjusting portion and the magnet shaft adjusting portion are arranged in the vertical direction, the magnet can be installed more reliably without falling off or tipping over.

本発明は、当該磁石軸調整部が当該一端側端面において連続した平面が円形であり、当該円形の内側に軸方向一端側に円柱状若しくは円筒状の凸部を有する磁石軸調整部であって、当該凸部は当該磁石の内周面と所定距離はなれていることを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。本発明(基本発明)の場合、基本的に、当該所定距離の空間を設けて、円筒状磁石が筐体のテーパ部に当接後、磁石の中心軸が筐体の中心軸に調芯するため、円筒状磁石の一端側が大きな変形をうける。特に、ボンド磁石の厚さが薄い場合は、あまり、軸の調整の度合いが高い場合、ボンド磁石の強度が不十分となる場合がある。そのような場合においては、上記の限定をすると、ボンド磁石の姿勢変更、移動の量を制限できるため、ボンド磁石がテーパ部に添って調芯されるときに磁石に過大な応力がかからず、薄い円筒状ボンド磁石の強度を向上することができる。 The present invention is a magnet shaft adjusting portion in which the continuous plane of the magnet shaft adjusting portion on one end side end surface is circular, and the inside of the circle has a columnar or cylindrical convex portion on one end side in the axial direction. , The convex portion is a method for manufacturing an assembly of a magnet and a housing having an elastic deformability, which is characterized in that the convex portion is separated from the inner peripheral surface of the magnet by a predetermined distance. In the case of the present invention (basic invention), basically, a space of the predetermined distance is provided, and after the cylindrical magnet comes into contact with the tapered portion of the housing, the central axis of the magnet is aligned with the central axis of the housing. Therefore, one end side of the cylindrical magnet undergoes a large deformation. In particular, when the thickness of the bond magnet is thin, the strength of the bond magnet may be insufficient if the degree of shaft adjustment is too high. In such a case, the above limitation can limit the amount of change and movement of the bond magnet, so that excessive stress is not applied to the magnet when the bond magnet is centered along the tapered portion. , The strength of the thin cylindrical bond magnet can be improved.

本発明は、当該磁石軸調整部が当該一端側端面において、当該少なくとも3つ独立平面部を含む連続した平面を頂面とする円筒形状であって、当該磁石の他端側端面を全周にわたって支えることを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。これにより、当該磁石軸調整部が小さくて済む。 In the present invention, the magnet shaft adjusting portion has a cylindrical shape having a continuous plane including at least three independent plane portions as a top surface on the one end side end surface, and covers the other end side end surface of the magnet over the entire circumference. It is a method of manufacturing an assembly of a magnet and a housing having elastic deformability, which is characterized by supporting. As a result, the magnet shaft adjusting portion can be made small.

本発明は、当該磁石軸調整部の少なくとも当該一端側端面の外径が、当該磁石の(平均)外径よりも小さいことを特徴とする、弾性変形能を有する磁石と筐体の組立体の製造方法である。これにより、当該磁石を筐体の収容部近傍まで確実に圧入できる。 The present invention comprises an assembly of a magnet and a housing having elastic deformability, characterized in that the outer diameter of at least one end side end surface of the magnet shaft adjusting portion is smaller than the (average) outer diameter of the magnet. It is a manufacturing method. As a result, the magnet can be reliably press-fitted to the vicinity of the housing portion of the housing.

本発明は、当該磁石軸調整部の外径が、筐体の収容部の内径よりも小さいことを特徴とする、弾性変形能を有する磁石と筐体の組立体の製造方法である。これにより、磁石を筐体の収容部まで確実に圧入できる。 The present invention is a method for manufacturing an assembly of a magnet having elastic deformability and a housing, characterized in that the outer diameter of the magnet shaft adjusting portion is smaller than the inner diameter of the housing portion of the housing. As a result, the magnet can be reliably press-fitted to the housing portion of the housing.

本発明は、さらに当該筐体の当該テーパ部は、その軸方向他端側に軸に平行な延在部を有することを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このように筐体の当該テーパ部がその軸方向他端側に軸に平行な延在部を有すれば、当該筐体軸調整部と当該磁石軸調整部とからなる圧入装置への磁石の配置が容易となり、加工軸が鉛直、水平にかかわらず、磁石が圧入装置において脱落、転倒しにくくすることができる。 The present invention further relates to a method for manufacturing an assembly of a magnet and a housing having elastic deformability, wherein the tapered portion of the housing has an extending portion parallel to the axis on the other end side in the axial direction. Is. If the tapered portion of the housing has an extending portion parallel to the axis on the other end side in the axial direction, the magnet can be inserted into the press-fitting device including the housing shaft adjusting portion and the magnet shaft adjusting portion. The arrangement becomes easy, and the magnet can be prevented from falling off or tipping over in the press-fitting device regardless of whether the processing shaft is vertical or horizontal.

本発明は、上記の当該筐体の平行な延在部がさらに、当該ボンド磁石の最外径より内径が大きいことを特長とする弾性変形能を有する磁石と筐体の組立体の製造方法である。このようにすれば、当該筐体軸調整部と当該磁石軸調整部とからなる圧入装置への筐体の配置がより確実性をまし、加工軸が鉛直、水平にかかわらず、筐体および磁石が圧入装置において脱落、転倒しにくくすることができる。 The present invention is a method for manufacturing an assembly of a magnet and a housing having elastic deformability, wherein the parallel extending portion of the housing has an inner diameter larger than the outermost diameter of the bonded magnet. is there. By doing so, the arrangement of the housing on the press-fitting device including the housing shaft adjusting portion and the magnet shaft adjusting portion is more reliable, and the housing and the magnet regardless of whether the processing shaft is vertical or horizontal. Can be prevented from falling off or tipping over in the press-fitting device.

<<ボンド磁石>>
弾性変形能を有する磁石はボンド磁石であることが好ましい。
ボンド磁石は、異方性磁石粒子と(バインダ)樹脂からなる異方性ボンド磁石でも、等方性磁石粉末とバインダ樹脂からなる等方性ボンド磁石でもよい。磁石粒子には種々の物を用いることができる。磁気特性に優れる希土類磁石粒子が少なくともボンド磁石中に含まれていると好ましい。希土類磁石粒子には、例えば、Nd−Fe−B系磁石粒子の他、Sm−Fe−N系磁石粒子、SmCo系磁石粒子等がある。さらに、磁石粒子は、単種にかぎらず、複数種が混合したものでもよい。
<< Bond Magnet >>
The magnet having elastic deformability is preferably a bonded magnet.
The bond magnet may be an anisotropic bond magnet composed of anisotropic magnet particles and (binder) resin, or an isotropic bond magnet composed of isotropic magnet powder and binder resin. Various things can be used as the magnet particles. It is preferable that at least rare earth magnet particles having excellent magnetic properties are contained in the bond magnet. Examples of the rare earth magnet particles include Nd-Fe-B magnet particles, Sm-Fe-N magnet particles, SmCo magnet particles, and the like. Further, the magnet particles are not limited to a single type, and may be a mixture of a plurality of types.

樹脂には、基本的に熱硬化性樹脂が使用される。ボンド磁石における熱硬化性樹脂の重量割合を、2W%以上4W%以下とすることが好ましい。圧入を容易に行うことができるためである。ボンド磁石の樹脂は、加熱磁場中成形時に流動性が高く熱硬化する熱硬化性樹脂が用いられる。具体的には、ビスフェノールA型、フェノールノボラック型エポキシ樹脂、多環能型のエポキシ系樹脂が用いられるが、公知の熱硬化性樹脂を使用することができる。 As the resin, a thermosetting resin is basically used. The weight ratio of the thermosetting resin in the bond magnet is preferably 2 W% or more and 4 W% or less. This is because press-fitting can be easily performed. As the resin of the bond magnet, a thermosetting resin having high fluidity and thermosetting during molding in a heating magnetic field is used. Specifically, bisphenol A type, phenol novolac type epoxy resin, and polycyclic epoxy resin are used, but known thermosetting resins can be used.

円筒状ボンド磁石の成形は、通常、磁石粉末と樹脂の混合物(コンパウンド)を金型のキャビティ内に充填し、配向磁場中で成形するという公知の方法で製造される。成形されたボンド磁石は公知の加熱条件でキュアーされ、その後、公知の加熱温度で圧入加工に供される。例えば、圧入時の加熱温度は60〜100℃程度である。圧入温度等は樹脂の種類等によって適宜変更される。 Molding of a cylindrical bond magnet is usually produced by a known method in which a mixture (compound) of magnet powder and resin is filled in a cavity of a mold and molded in an orientation magnetic field. The formed bond magnet is cured under known heating conditions and then subjected to press-fitting at a known heating temperature. For example, the heating temperature at the time of press fitting is about 60 to 100 ° C. The press-fitting temperature and the like are appropriately changed depending on the type of resin and the like.

本実施例では、円筒状の異方性希土類ボンド磁石Mを有底円筒状の筐体Kの内周面の同軸度を有する収容部へ圧入する際に使用する圧入装置とその製造工程に関して、本発明をより具体的に説明する。なお、圧入装置内部での各部材の動きは観察することはできないので、なぜ、本発明の作用効果が得られたかは明確には分からないが、効果から考えると以下のようであると思われる。 In this embodiment, the press-fitting device used for press-fitting the cylindrical anisotropic rare earth bond magnet M into the accommodating portion having the coaxiality of the inner peripheral surface of the bottomed cylindrical housing K and the manufacturing process thereof. The present invention will be described more specifically. Since the movement of each member inside the press-fitting device cannot be observed, it is not clear why the action and effect of the present invention were obtained, but the effect is considered to be as follows. ..

圧入装置の模式図を図1に示した。なお、説明の便宜上、一端側および他端側を、図1に示した。
圧入装置は、筐体軸調整部1と磁石軸調整部2と、筐体軸調整部を保持しつつ、筐体軸調整部の加工軸を調整する機能を有する保持部(図示せず)と磁石軸調整部2を保持しつつ、筐体軸調整部の加工軸を調整する機能を有する保持部(図示せず)からなる。
ここでは、筐体軸調整部1の加工軸と磁石軸調整部2の加工軸は鉛直方向に同軸に位置決めされている。図1から図3及び図5の一点鎖線は同軸となっている筐体軸調整部1と磁石軸調整部2の同軸加工軸A1を示している。なお、本発明は、本実施例のごとく、鉛直方向に加工軸を制限するものではなく、水平方向等の任意の方向に加工軸を有することができる。筐体軸調整部1は、有底円筒体を形状を有しており、調整部11と保持部12を有し、保持部12は円筒状の内周面121を有し、その他端側は開口部を有している。
また、磁石軸調整部2は、円柱状の形状を有している。
A schematic diagram of the press-fitting device is shown in FIG. For convenience of explanation, one end side and the other end side are shown in FIG.
The press-fitting device includes a housing shaft adjusting portion 1, a magnet shaft adjusting portion 2, and a holding portion (not shown) having a function of adjusting the machining axis of the housing shaft adjusting portion while holding the housing shaft adjusting portion. It is composed of a holding portion (not shown) having a function of adjusting the processing shaft of the housing shaft adjusting portion while holding the magnet shaft adjusting portion 2.
Here, the processing shaft of the housing shaft adjusting unit 1 and the processing shaft of the magnet shaft adjusting unit 2 are coaxially positioned in the vertical direction. The alternate long and short dash lines in FIGS. 1 to 3 and 5 show the coaxial processing shaft A1 of the housing shaft adjusting portion 1 and the magnet shaft adjusting portion 2 which are coaxial. The present invention does not limit the machining axis in the vertical direction as in the present embodiment, but can have the machining axis in any direction such as the horizontal direction. The housing shaft adjusting portion 1 has a bottomed cylindrical body, has an adjusting portion 11 and a holding portion 12, the holding portion 12 has a cylindrical inner peripheral surface 121, and the other end side has a cylindrical inner peripheral surface 121. It has an opening.
Further, the magnet shaft adjusting portion 2 has a columnar shape.

筐体Kは有底円筒状を有し、筐体Kはその底部KBから、二点鎖線で示した筐体Kの中心軸A2に沿った方向に延在し、その中心軸A2に対して同軸度を有する円筒内周面K11を有するボンド磁石Mを収容する収容部K12を有し、筐体Kの内周面K1は収容部K12の軸方向他端側に向かうにつれて径方向外径側に拡径するテーパ部K13を有している。筐体Kの一端側外端面KB1は円筒内周面K1の中心軸A2と垂直な平面を有している。この平面である一端側外端面KB1は、円筒内周面K1の中心軸A2と垂直な仮想平面における少なくとも3つの独立平面部を有し、その少なくとも3つ独立平面部を含む連続した平面に該当する。 The housing K has a bottomed cylindrical shape, and the housing K extends from the bottom KB in the direction along the central axis A2 of the housing K indicated by the alternate long and short dash line, with respect to the central axis A2. It has an accommodating portion K12 for accommodating a bond magnet M having a cylindrical inner peripheral surface K11 having coaxiality, and the inner peripheral surface K1 of the housing K is on the radial outer diameter side toward the other end side in the axial direction of the accommodating portion K12. It has a tapered portion K13 that expands in diameter. The outer end surface KB1 on one end side of the housing K has a plane perpendicular to the central axis A2 of the inner peripheral surface K1 of the cylinder. The one end side outer end surface KB1 which is this plane has at least three independent plane portions in a virtual plane perpendicular to the central axis A2 of the inner peripheral surface K1 of the cylinder, and corresponds to a continuous plane including at least three independent plane portions. To do.

一方、ボンド磁石Mは円筒状であって、磁石Mの他端側端面ME1は太破線で示した磁石Mの円筒内周面M1の中心軸A3と垂直な平面を有している。この平面である他端側端面ME1も、磁石Mの円筒内周面M1の中心軸A3と垂直な少なくとも3つ独立平面部を含む連続した平面に該当する。このように筐体Kの一端側外端面KB1や磁石Mの他端側端面ME1が平面を有しているため、ともに製造が容易であり、筐体Kと筐体軸調整部1の他端側端面11E1における平行調芯のための周方向の位置決め不要であり、磁石Mと磁石軸調整部2の一端側端面2E1における周方向の位置決めも同様である。 On the other hand, the bond magnet M has a cylindrical shape, and the other end surface ME1 of the magnet M has a plane perpendicular to the central axis A3 of the inner peripheral surface M1 of the cylinder of the magnet M shown by the thick broken line. The other end surface ME1 which is this plane also corresponds to a continuous plane including at least three independent plane portions perpendicular to the central axis A3 of the cylindrical inner peripheral surface M1 of the magnet M. Since the outer end surface KB1 on one end side of the housing K and the other end surface ME1 on the other end side of the magnet M have a flat surface in this way, both are easy to manufacture, and the other ends of the housing K and the housing shaft adjusting portion 1 It is not necessary to position the magnet M in the circumferential direction for parallel alignment on the side end surface 11E1, and the same applies to the positioning in the circumferential direction on the end surface 2E1 on one end side of the magnet M and the magnet shaft adjusting portion 2.

また、磁石Mは、その外径dが筐体の開口側内端の内径D1より小さくする。このことにより磁石Mは、筐体K内部にスムーズに侵入し、後の圧入を行うことができる。なお、磁石M及び筐体Kが同軸加工軸A1に対して傾斜する場合もあり、その場合はそれも考慮に入れて適宜当該内径D1を大きくする。磁石と筐体の中心軸上の重心が同軸加工軸に垂直な方向へずれがある場合も、それも考慮して適宜当該内径D1を大きくする。磁石は、その同軸度を有する収容部K12の内径D2より大きい磁石外径dを有する。これにより、磁石Mと筐体Kが調芯されて、磁石Mが筐体K内に圧入されたときに圧入代が発生し、筐体Kから磁石Mが抜け落ちることを防止する。 Further, the outer diameter d of the magnet M is smaller than the inner diameter D1 of the inner end on the opening side of the housing. As a result, the magnet M can smoothly penetrate into the housing K and can be press-fitted later. The magnet M and the housing K may be inclined with respect to the coaxial processing shaft A1, and in that case, the inner diameter D1 is appropriately increased in consideration of this. Even if the center of gravity of the magnet and the center of gravity of the housing deviates in the direction perpendicular to the coaxial processing axis, the inner diameter D1 is appropriately increased in consideration of this. The magnet has a magnet outer diameter d larger than the inner diameter D2 of the accommodating portion K12 having the coaxiality thereof. As a result, the magnet M and the housing K are centered, and when the magnet M is press-fitted into the housing K, a press-fitting allowance is generated to prevent the magnet M from falling out of the housing K.

筐体軸調整部1は、有底円筒状の形状を有し、調整部11の他端側端面11E1は、同軸加工軸A1に垂直な平面を有している。
これにより、筐体Kの平面である一端側外端面KB1と筐体軸調整部1の平面である他端側端面11E1が面として当接時には、筐体軸調整部1の同軸加工軸A1と筐体1の中心軸A2が平行に調芯されうる。
また、上述したように他端側端面11E1は、平面であるため筐体Kとの当接時の当接面の周方向の位置決めが不要となる。
The housing shaft adjusting portion 1 has a bottomed cylindrical shape, and the other end surface 11E1 of the adjusting portion 11 has a flat surface perpendicular to the coaxial processing shaft A1.
As a result, when the one end side outer end surface KB1 which is the flat surface of the housing K and the other end side end surface 11E1 which is the flat surface of the housing shaft adjusting portion 1 come into contact with each other as surfaces, the coaxial processing shaft A1 of the housing shaft adjusting portion 1 The central axis A2 of the housing 1 can be aligned in parallel.
Further, as described above, since the other end surface 11E1 is flat, positioning of the contact surface in the circumferential direction at the time of contact with the housing K becomes unnecessary.

磁石軸調整部2は、円柱状の形状を有し、その一端側端面2E1は、同軸加工軸A1に垂直な平面を有している。
これにより、磁石2の平面である他端側端面ME1と磁石軸調整部2の平面である一端側端面2E1が面として当接時には、磁石軸調整部2の同軸加工軸A1と磁石2の中心軸A3が平行に調芯されうる。
また、上述したように一端側端面2E1は、平面であるため筐体Kとの当接時の当接面の周方向の位置決めが不要となる。
The magnet shaft adjusting portion 2 has a columnar shape, and the end surface 2E1 on one end side thereof has a plane perpendicular to the coaxial processing shaft A1.
As a result, when the other end surface ME1 which is the flat surface of the magnet 2 and the one end side end surface 2E1 which is the flat surface of the magnet shaft adjusting portion 2 come into contact with each other as surfaces, the coaxial processing shaft A1 of the magnet shaft adjusting portion 2 and the center of the magnet 2 The axis A3 can be aligned in parallel.
Further, as described above, since the one end side end surface 2E1 is flat, it is not necessary to position the contact surface in the circumferential direction at the time of contact with the housing K.

以上のように、装置、部材を用意した後に、一端側から他端側に向けて、以下に述べるように、筐体軸調整部1、筐体K、磁石M、磁石軸調整部2となるように配置する。
鉛直軸方向一端側に位置する筐体軸調整部1の開口部から、筐体Kの一端側外端面KB1を一端側に向けた状態で筐体Kを挿入する。その後、筐体軸調整部1の下方(他端側)から保持冶具3を径方向内側に位置させることで、筐体Kを他端側端面KO1で保持する。
これにより、筐体Kの姿勢の保持と、脱落を防止する。
その時、筐体軸調整部1の平面を有する他端側端面11E1と筐体Kの底部KBにおける平面を有する一端側外端面KB1が空間を空けて対向するように配置する(以下、配置1と言う。)。これにより、磁石Mの圧入中に、筐体Kおよび磁石Mの両方が、加工軸に対して傾斜したり、加工軸に対して垂直方向に移動できる自由度が大きくなり、調芯機能が高くできる。本実施例では、筐体軸調整部1と筐体Kの間に空間を設けて配置したが、配置時に、筐体軸調整部1と筐体Kが一部で当接していてもよいし、予め全面的に当接していてもよい。
As described above, after the device and the member are prepared, the housing shaft adjusting portion 1, the housing K, the magnet M, and the magnet shaft adjusting portion 2 are formed from one end side to the other end side as described below. Arrange as follows.
The housing K is inserted from the opening of the housing shaft adjusting portion 1 located on one end side in the vertical axis direction with the outer end surface KB1 on one end side of the housing K facing one end side. After that, by locating the holding jig 3 radially inward from below (the other end side) of the housing shaft adjusting portion 1, the housing K is held by the other end side end surface KO1.
As a result, the posture of the housing K is maintained and it is prevented from falling off.
At that time, the other end side end surface 11E1 having a flat surface of the housing shaft adjusting portion 1 and the one end side outer end surface KB1 having a flat surface at the bottom portion KB of the housing K are arranged so as to face each other with a space (hereinafter referred to as arrangement 1). To tell.). As a result, during press fitting of the magnet M, both the housing K and the magnet M have a greater degree of freedom in being able to tilt with respect to the machining axis and move in the direction perpendicular to the machining axis, and the centering function is high. it can. In this embodiment, a space is provided between the housing shaft adjusting unit 1 and the housing K, but the housing shaft adjusting unit 1 and the housing K may be partially in contact with each other at the time of arrangement. , It may be in contact with the entire surface in advance.

また、筐体軸調整部1の開口部と対向する磁石軸調整部2の一端側端面2E1上に磁石Mの他端側端面ME1を配置する(以下、配置3という。)。このとき、後に筐体軸調整部1と磁石軸調整部2間の距離を相対的に同軸加工軸方向に近接させたときに、磁石Mが筐体Kの開口部を通過可能な位置に配置する。その位置決め方法は公知の方法を活用できる。これにより、磁石Mの中心軸A3と磁石軸調整部2の同軸加工軸A1は平行調芯されるが、同軸ではない。
そして、筐体軸調整部1と磁石軸調整部2間の距離を相対的に軸方向に近接させる。ここで磁石Mの外径dが筐体の開口側内端の内径D1より小さいため、磁石Mは筐体Kの開口部の端面KO1にさえぎられること無く、他端側内周面K14に沿って筐体K内側に侵入することができる。更に、両者を相対的に軸方向に近接させると、筐体Kの内周面K1のテーパ部K13と磁石Mの一端側端MO11が対向するように配置される(以下、配置2という。)。これにより、後の圧入工程で、磁石Mが筐体Kのテーパ部に当接し、圧入工程が実行されうる。この段階においては、図1には、上述した、配置1、配置2、配置3が同時に実現されている。
なお、これらの配置は一例を示しただけで、本実施例の効果を得るためには、必ずこのような配置をとらなければならないわけではない。例えば、磁石Mが最初に、筐体Kの内周面K14と当接してもよく、そのとき、筐体Kが、磁石Mと当接した側と反対側に傾斜して筐体Kの一端側端KB1が筐体軸調整部1の円筒体12の内周面121と接触しても良い。
Further, the other end surface ME1 of the magnet M is arranged on the one end side end surface 2E1 of the magnet shaft adjusting portion 2 facing the opening of the housing shaft adjusting portion 1 (hereinafter, referred to as arrangement 3). At this time, when the distance between the housing shaft adjusting portion 1 and the magnet shaft adjusting portion 2 is made relatively close in the coaxial processing axis direction, the magnet M is arranged at a position where it can pass through the opening of the housing K. To do. As the positioning method, a known method can be utilized. As a result, the central axis A3 of the magnet M and the coaxial processing axis A1 of the magnet axis adjusting portion 2 are aligned in parallel, but are not coaxial.
Then, the distance between the housing shaft adjusting portion 1 and the magnet shaft adjusting portion 2 is relatively close in the axial direction. Here, since the outer diameter d of the magnet M is smaller than the inner diameter D1 of the inner end on the opening side of the housing, the magnet M is not blocked by the end surface KO1 of the opening of the housing K and is along the inner peripheral surface K14 on the other end side. It is possible to invade the inside of the housing K. Further, when both are relatively close to each other in the axial direction, the tapered portion K13 of the inner peripheral surface K1 of the housing K and the one end side end MO11 of the magnet M are arranged so as to face each other (hereinafter referred to as arrangement 2). .. As a result, in the subsequent press-fitting step, the magnet M comes into contact with the tapered portion of the housing K, and the press-fitting step can be executed. At this stage, in FIG. 1, the above-mentioned arrangement 1, arrangement 2, and arrangement 3 are simultaneously realized.
It should be noted that these arrangements are only shown as an example, and it is not always necessary to take such an arrangement in order to obtain the effect of this embodiment. For example, the magnet M may first come into contact with the inner peripheral surface K14 of the housing K, and then the housing K is inclined toward the side opposite to the side in contact with the magnet M and one end of the housing K. The side end KB1 may come into contact with the inner peripheral surface 121 of the cylindrical body 12 of the housing shaft adjusting portion 1.

更に、筐体軸調整部1と磁石軸調整部2間の距離を相対的に軸方向に近接させると図2に示すごとく、磁石Mと筐体Kが内周面K13の点KAで当接する。更なる相対移動により、筐体Kの一端側外端KB11が筐体軸調整部1の他端側端面11E1と当接する。
この状態では、各軸の関係は変化していない。
Further, when the distance between the housing shaft adjusting portion 1 and the magnet shaft adjusting portion 2 is relatively close in the axial direction, the magnet M and the housing K abut at the point KA on the inner peripheral surface K13 as shown in FIG. .. Due to the further relative movement, the outer end KB11 on one end side of the housing K comes into contact with the other end surface 11E1 of the housing shaft adjusting portion 1.
In this state, the relationship between the axes has not changed.

更に、両軸調整部を軸方向に相対的に近接させると、結果として、図3にしめすように、磁石の中心軸A3と筐体Kの中心軸A2は両軸調整部の同軸加工軸A1に対して平行調芯し、かつ、磁石の中心軸A3は筐体Kの中心軸A2との同軸調芯がおこなわれている。
これにより、更に、両軸調整部を軸方向に相対的に近接させると、磁石が同軸度を有する内周面K11に沿って、磁石Mに過大な応力がかかることなく圧入加工を進めることができる。
Further, when both axis adjusting portions are relatively close to each other in the axial direction, as a result, as shown in FIG. 3, the central axis A3 of the magnet and the central axis A2 of the housing K are coaxially processed axes A1 of both axis adjusting portions. The central axis A3 of the magnet is coaxially aligned with the central axis A2 of the housing K.
As a result, when both axis adjusting portions are brought relatively close to each other in the axial direction, the press-fitting process can proceed along the inner peripheral surface K11 at which the magnet has coaxiality without applying excessive stress to the magnet M. it can.

調芯のメカニズムについては考え方を先に詳述したが、本実施例について説明する。
図2の状態から、さらに、両軸調整部を軸方向に相対的に近接させると、筐体軸調整部1と筐体Kの間では、筐体の一端側前方および同軸加工軸A1に垂直な径方向にも空間があるため、筐体Kの一端側外端KB11を支点として筐体が回転する。そのため、筐体軸調整部1の軸出しの基準平面である調整部11の他端側端面11E1と筐体Kの底部KBにおける軸出しの基準平面である一端側外端面KB1が面同士で当接することで、筐体軸調整部1の同軸加工軸A1と筐体Kの中心軸A2は同軸でないが、平行に調芯される。このとき、筐体Kは加工軸に移動している場合が多いと想定されるが、そのことは平行調芯をさまたげるものではない。
Although the concept of the centering mechanism has been described in detail earlier, this embodiment will be described.
From the state of FIG. 2, when both axis adjusting portions are further brought close to each other in the axial direction, the housing shaft adjusting portion 1 and the housing K are perpendicular to the front end side of the housing and the coaxial processing shaft A1. Since there is space in the radial direction as well, the housing rotates with the outer end KB11 on one end side of the housing K as a fulcrum. Therefore, the other end side end surface 11E1 of the adjustment portion 11 which is the reference plane for the axis alignment of the housing shaft adjustment unit 1 and the one end side outer end surface KB1 which is the reference plane for the axis alignment at the bottom KB of the housing K are in contact with each other. By being in contact with each other, the coaxial processing shaft A1 of the housing shaft adjusting unit 1 and the central shaft A2 of the housing K are not coaxial, but are aligned in parallel. At this time, it is assumed that the housing K is often moved to the machining axis, but this does not hinder the parallel alignment.

ここで、筐体Kの一端側外端KB11と筐体軸調整部1の他端側端面11E1での当接したままの移動、すなわち摺動が想定されるので、その移動がスムーズに行われるようにする場合は、少なくとも一端側外端KB11及び他端側端面11E1は、摺動容易なように摩擦係数をさげるべく表面加工、若しくは表面処理を施すのが好ましい。より好ましくは、筐体Kの一端側外端面KB1や外周面K2や、筐体軸調整部1の内周面121にも表面加工、若しくは表面処理を施すのが好ましい。両者が円筒体(部)で当接する場合にもスムーズに姿勢変更、移動を可能にするからである。 Here, since it is assumed that the outer end KB11 on one end side of the housing K and the end surface 11E1 on the other end side of the housing shaft adjusting portion 1 are in contact with each other, that is, sliding is assumed, the movement is smoothly performed. In this case, it is preferable that at least one end side outer end KB11 and the other end side end surface 11E1 are surface-treated or surface-treated so as to reduce the friction coefficient so that they can be easily slid. More preferably, the outer end surface KB1 and the outer peripheral surface K2 on one end side of the housing K and the inner peripheral surface 121 of the housing shaft adjusting portion 1 are also surface-treated or surface-treated. This is because the posture can be changed and the movement can be smoothly performed even when the two are in contact with each other by a cylindrical body (part).

一方、それに連動して筐体Kと磁石Mと磁石軸調整部2の動きを説明する。図2の状態においては、筐体Kは、筐体Kの一端側外端面KB1においては筐体軸調整部1の調整部11の他端側外端11E1と一端側外端KB11のみで当接しているが、筐体Kの他の面である円筒体外周面K2は筐体軸調整部1の円筒体12の内周面121との間に空間を有している。また、筐体Kは、筐体の内周面K11において磁石Mの一端側端MO11とのみ当接しているが、他の面は筐体の内周面K11と磁石の外周面M2との間に空間を有している。そのため、両軸調整部を軸方向に相対的に近接させると、上述の筐体Kの回転等と同時に、磁石Mから一端側にある筐体Kを見ると、磁石Mの相対移動方向である磁石の一端側前方および同軸加工軸A1垂直な径方向にも空間があるため、当該磁石が筐体の中心軸A2に添って傾斜したり、加工軸に垂直な方向へ移動しうる。 On the other hand, the movements of the housing K, the magnet M, and the magnet shaft adjusting unit 2 will be described in conjunction with this. In the state of FIG. 2, the housing K abuts on the outer end surface KB1 on one end side of the housing K only at the outer end 11E1 on the other end side and the outer end KB11 on the one end side of the adjusting portion 11 of the housing shaft adjusting portion 1. However, the outer peripheral surface K2 of the cylindrical body, which is the other surface of the housing K, has a space between the outer peripheral surface K2 of the cylindrical body and the inner peripheral surface 121 of the cylindrical body 12 of the housing shaft adjusting portion 1. Further, the housing K is in contact with only one end side end MO11 of the magnet M on the inner peripheral surface K11 of the housing, but the other surface is between the inner peripheral surface K11 of the housing and the outer peripheral surface M2 of the magnet. Has a space in. Therefore, when both axis adjusting portions are relatively close to each other in the axial direction, the housing K on one end side of the magnet M is seen at the same time as the rotation of the housing K described above, which is the relative movement direction of the magnet M. Since there is a space in front of one end of the magnet and in the radial direction perpendicular to the coaxial processing axis A1, the magnet can be tilted along the central axis A2 of the housing or move in a direction perpendicular to the processing axis.

そのことは、同時に、筐体Kから他端側にある磁石Mを見ると、筐体Kの相対移動方向である筐体Kの他端側前方および同軸加工軸A1垂直な径方向にも空間があるため、筐体Kが磁石Mの中心軸A3に添って傾斜したり、加工軸に垂直な方向へ移動しうる。これらの筐体Kと磁石Mの姿勢変更、移動の自由度の高さが、両軸調整部を近接する方向に移動中に、磁石Mがテーパ部を軸方向一端側に相対的に移動中に、筐体の中心軸と磁石の中心軸が徐々に同軸化するように誘導する効果を有するものと思われる。 At the same time, when looking at the magnet M on the other end side of the housing K, there is space in the front of the other end side of the housing K, which is the relative movement direction of the housing K, and in the radial direction perpendicular to the coaxial processing axis A1. Therefore, the housing K can be tilted along the central axis A3 of the magnet M or can move in a direction perpendicular to the processing axis. The posture change of the housing K and the magnet M and the high degree of freedom of movement allow the magnet M to move the tapered portion relatively to one end side in the axial direction while the both axis adjusting portions are moving in the proximity direction. In addition, it seems to have the effect of inducing the central axis of the housing and the central axis of the magnet to gradually become coaxial.

そして、図3に示すように、磁石Mの一端側端面MO1が中心軸に対して同軸度を有する円筒内周面K11まで相対移動した時点では、相対的押し圧力も大きくなっているので、前記の筐体軸調整部1の他端側端面11E1と筐体Kの一端側外端面KB1が面同士で当接により筐体軸調整部1の同軸加工軸A1と筐体Kの中心軸A2の平行調芯は完了しており、かつ、筐体の中心軸A2と、磁石の中心軸A3の同軸調芯も完了していると思われる。どちらの調芯が先に始まり、どちらが先に終わる等は、加工軸中心に対する当初の筐体や磁石の相対的位置関係、筐体や磁石の配置の傾斜角度、テーパの角度等の種々の要因によって変わるものと思われる。 Then, as shown in FIG. 3, when the end surface MO1 on one end side of the magnet M moves relative to the inner peripheral surface K11 of the cylinder having coaxiality with respect to the central axis, the relative pushing pressure is also large. The other end surface 11E1 of the housing shaft adjusting portion 1 and the outer end surface KB1 on the one end side of the housing K are brought into contact with each other, so that the coaxial processing shaft A1 of the housing shaft adjusting portion 1 and the central axis A2 of the housing K It seems that the parallel alignment has been completed, and the coaxial alignment between the central axis A2 of the housing and the central axis A3 of the magnet has also been completed. Which alignment starts first and which ends first depends on various factors such as the relative positional relationship of the initial housing and magnets with respect to the center of the machining axis, the inclination angle of the housing and magnet arrangement, and the taper angle. It seems that it will change depending on.

なお、この圧入に供される磁石Mに使用される樹脂が熱硬化性樹脂であり、円筒状ボンド磁石に成形された後に、熱硬化処理(キュアー処理)がされている。これにより、磁石Mの一端側端面MO1近傍が筐体の内周面を基準に調芯されるときに受ける弾性変形に対して、より十分な強度を得ることができる。また、圧入時には、ボンド磁石を所定の温度に加熱した状態で行った。筐体も所定の温度に加熱した状態で行った。加熱した場合、より十分な磁石の変形能を得ることができる。その場合、圧入代を大きく取ることができ、磁石と筐体の密着力を高めることができる。ここでボンド磁石に使用した磁石粉末は、NdFeB系異方性磁石粉末とSmFeN系磁石粉末の混合粉末を用いた。これにより高磁気特性のボンド磁石が得られ、モータの小型高性能化に寄与しうる。磁石粉末の配向パターンは、主にラジアル方向とした。もちろん、各種の公知の配向パターンを適用できる。 The resin used for the magnet M to be press-fitted is a thermosetting resin, and after being formed into a cylindrical bond magnet, a thermosetting treatment (cure treatment) is performed. As a result, it is possible to obtain more sufficient strength against the elastic deformation that is received when the vicinity of the one end surface MO1 of the magnet M is centered with respect to the inner peripheral surface of the housing. Further, at the time of press-fitting, the bond magnet was heated to a predetermined temperature. The housing was also heated to a predetermined temperature. When heated, more sufficient magnet deformability can be obtained. In that case, the press-fitting allowance can be increased, and the adhesion between the magnet and the housing can be enhanced. As the magnet powder used for the bond magnet, a mixed powder of NdFeB-based anisotropic magnet powder and SmFeN-based magnet powder was used. As a result, a bonded magnet having high magnetic characteristics can be obtained, which can contribute to miniaturization and high performance of the motor. The orientation pattern of the magnet powder was mainly in the radial direction. Of course, various known orientation patterns can be applied.

なお、本実施例の筐体軸調整部の加工軸と磁石軸調整部の加工軸は同軸に位置決めされていることを前提にして、上述の発明の作用効果を説明してきた。
しかしながら、上記の説明で明らかなように、筐体軸調整部1と磁石軸調整部2の加工軸の軸に垂直方向の軸ずれは、軸ずれ量があっても、磁石Mが筐体Kに挿入可能であり、筐体K、および、磁石Mを保持しながら相対的に近接する方向へ押圧可能な範囲であれば、圧入が成立する。
そのため、筐体の開口部端面の内径D1のばらつきを含めた最小径D1min、ボンド磁石の外径dのばらつきを含めた最大径dmaxとした場合、軸調整を容易にするために許容できる筐体軸調整部1と磁石軸調整部2の加工軸の軸に垂直方向の許容軸ずれ量を、例えば、一方を同軸加工軸と仮定した場合、δs1とする。また、筐体Kや磁石Mの中心軸が加工軸から傾斜することによる当該筐体等の同軸加工軸に垂直な平面への投影形状における最大外形の許容増加量δs2とする。また、磁石Mと筐体Kの配置位置による同軸加工軸に対する垂直方向への両者の中心軸の許容軸ズレ量をδs3とする。その場合、妥当に選択された同軸加工軸に対する最大許容軸ズレ量ΔS=δs1+δs2+δs3となる。その場合、Dmin>dmax+ΔSが成立し、本発明の各種寸法関係に加え、上述の寸法を管理すれば、時間のかかる筐体軸調整部1と磁石軸調整部2の加工軸の調整を短縮化することができる。なお、各ずれ量δsは、公知の手段で、縮小方向にすることは可能である。例えば、δs2であれば、筐体Kの外周面と筐体保持部1の内周面との間の空間を狭めること等により可能となる。
The effects of the above invention have been described on the premise that the processing shaft of the housing shaft adjusting portion and the processing shaft of the magnet shaft adjusting portion of this embodiment are coaxially positioned.
However, as is clear from the above description, even if there is an amount of misalignment in the direction perpendicular to the axis of the processing shaft of the housing shaft adjusting unit 1 and the magnet shaft adjusting unit 2, the magnet M is the housing K. Press-fitting is established as long as it can be inserted into the housing K and can be pressed in a relatively close direction while holding the housing K and the magnet M.
Therefore, when the minimum diameter D1min including the variation of the inner diameter D1 of the opening end face of the housing and the maximum diameter dmax including the variation of the outer diameter d of the bond magnet are set, the housing is acceptable in order to facilitate the axis adjustment. The permissible amount of axis deviation in the direction perpendicular to the axis of the processing axis of the axis adjusting unit 1 and the magnet axis adjusting unit 2 is, for example, δs1 when one is assumed to be a coaxial processing axis. Further, the maximum allowable increase in outer shape in the projected shape on a plane perpendicular to the coaxial processing axis of the housing or the like due to the central axis of the housing K or the magnet M being inclined from the processing axis is δs2. Further, the allowable axis deviation amount of the central axes of both in the direction perpendicular to the coaxial processing axis depending on the arrangement position of the magnet M and the housing K is defined as δs3. In that case, the maximum allowable axis deviation amount ΔS = δs1 + δs2 + δs3 with respect to the appropriately selected coaxial processing axis. In that case, Dmin> dmax + ΔS is established, and if the above-mentioned dimensions are managed in addition to the various dimensional relationships of the present invention, the time-consuming adjustment of the processing shafts of the housing shaft adjusting unit 1 and the magnet shaft adjusting unit 2 can be shortened. can do. It should be noted that each deviation amount δs can be set in the reduction direction by a known means. For example, in the case of δs2, it is possible by narrowing the space between the outer peripheral surface of the housing K and the inner peripheral surface of the housing holding portion 1.

また、筐体軸調整部1と磁石軸調整部2の加工軸の傾斜においても、磁石Mの他端側端面ME1を収容部K12(同軸度必要部)のどこのあたりまで送り込む必要があるか、筐体の内周面K1の形状(各種寸法、寸法精度を含む)、磁石軸調整部1の一端側端面2E1の外径形状(各種寸法、寸法精度を含む)とボンド磁石等の弾性変形能の範囲で、ある程度の軸ずれは許容される。 Further, even when the processing shafts of the housing shaft adjusting portion 1 and the magnet shaft adjusting portion 2 are tilted, where is it necessary to feed the other end surface ME1 of the magnet M to the accommodating portion K12 (coaxiality required portion)? , The shape of the inner peripheral surface K1 of the housing (including various dimensions and dimensional accuracy), the outer diameter shape of the end surface 2E1 on one end side of the magnet shaft adjusting portion 1 (including various dimensions and dimensional accuracy), and elastic deformation of the bond magnet, etc. A certain amount of misalignment is allowed within the range of capability.

また、ここで磁石Mについて、他端側端面ME1の平面が本実施例のように一つの平面で無く、例えば、磁石Mの円筒軸内周面M1の中心軸A3に対して垂直な仮想平面に一致する均一な距離で離れた4つの独立平面部を有している場合がある。それらの4つの独立平面部が、磁石軸調整部2の一端側端面2E1と当接する場合、実施例と同様に、磁石軸調整部2の同軸加工軸A1と垂直な軸出しの基準平面の一端側端面2E1と、磁石の他端側端面ME1が面同士で当接することで、磁石軸調整部2の同軸加工軸A1と磁石Mの中心軸A3は同軸でないが、平行に調芯される。後は、実施例と同じである。よって、このような場合も本発明に包含される。 Further, regarding the magnet M, the plane of the other end surface ME1 is not one plane as in this embodiment, for example, a virtual plane perpendicular to the central axis A3 of the inner peripheral surface M1 of the cylindrical axis of the magnet M. It may have four independent planes separated by a uniform distance that matches. When these four independent plane portions come into contact with the end surface 2E1 on one end side of the magnet shaft adjusting portion 2, one end of the reference plane for axising perpendicular to the coaxial processing shaft A1 of the magnet shaft adjusting portion 2 is the same as in the embodiment. When the side end surface 2E1 and the other end surface ME1 of the magnet come into contact with each other, the coaxial processing axis A1 of the magnet shaft adjusting portion 2 and the central axis A3 of the magnet M are not coaxial, but are aligned in parallel. The rest is the same as in the embodiment. Therefore, such a case is also included in the present invention.

<<変形例>>
図4、5は、実施例に対して、筐体、筐体軸調整部、磁石軸調整部において一部を変化させ筐体L、筐体軸調整部3、磁石軸調整部4とし他は同じ構成とするものである。まず、実施例における筐体Kの底部KBの形状を、3箇所の凹部LB2を有する底部LBとした筐体Lとした。そして、実施例における一端側外端面KB1に相当する部分を筐体Lの中心軸A2に垂直な3つの平面として凹部外端面LB21を設けている。また、底部KBの中央に穴部LB3を設けている。
<< Modification example >>
4 and 5 show the housing L, the housing shaft adjusting portion 3, and the magnet shaft adjusting portion 4 by partially changing the housing, the housing shaft adjusting portion, and the magnet shaft adjusting portion with respect to the embodiment. It has the same configuration. First, the shape of the bottom KB of the housing K in the embodiment is a housing L having a bottom LB having three recesses LB2. Then, the concave outer end surface LB21 is provided with the portion corresponding to the one end side outer end surface KB1 in the embodiment as three planes perpendicular to the central axis A2 of the housing L. Further, a hole LB3 is provided in the center of the bottom KB.

一方、実施例における筐体軸調整部1は、磁石軸調整部2の加工軸と同軸となる同軸加工軸A1を有したまま、その加工軸A1に平行で、上記の3つの角柱状部材31を設けた筐体軸調整部3として形成される。なお、角柱状部材31の軸方向に垂直な面における位置関係は、筐体Lの3箇所の凹部LB2の位置関係に応じて形成される。そのため、筐体Lと筐体軸調整部3は周方向の位置決めをする必要がある。また、各角柱状部材31の他端側端面3E1は、加工軸A1に垂直な平面と一致する平面で構成される。また、筐体軸調整部3の各角柱状部材31の他端側端面3E1の断面形状は、筐体Lの凹部外端面LB21の断面形状より小さく形成する。 On the other hand, the housing shaft adjusting portion 1 in the embodiment has the coaxial machining shaft A1 coaxial with the machining shaft of the magnet shaft adjusting portion 2, and is parallel to the machining shaft A1. Is formed as a housing shaft adjusting portion 3 provided with the above. The positional relationship of the prismatic member 31 on the plane perpendicular to the axial direction is formed according to the positional relationship of the three concave portions LB2 of the housing L. Therefore, the housing L and the housing shaft adjusting unit 3 need to be positioned in the circumferential direction. Further, the other end surface 3E1 of each prismatic member 31 is formed of a plane that coincides with a plane perpendicular to the processing axis A1. Further, the cross-sectional shape of the other end side end surface 3E1 of each prismatic member 31 of the housing shaft adjusting portion 3 is formed to be smaller than the cross-sectional shape of the concave outer end surface LB21 of the housing L.

一方、実施例における磁石軸調整部2は、筐体軸調整部3の加工軸と同軸となる同軸加工軸A1を有したまま、円柱状部41の磁石Mとの当接面である一端側端面41E1から一端側へ突出した同軸加工軸A1と同軸で、かつ、円柱状部41から縮径した円柱状部42を有し、さらに、円柱状部42の一端側端面42E2から一端側へ突出した同軸加工軸A1と同軸で、かつ、円柱状部42から縮径した円柱状部43を有する磁石軸調整部4として形成される。この円柱状部42の軸方向の長さは、磁石Mの軸方向の長さと同じとした。 On the other hand, the magnet shaft adjusting portion 2 in the embodiment has one end side which is a contact surface of the columnar portion 41 with the magnet M while having the coaxial machining shaft A1 coaxial with the machining shaft of the housing shaft adjusting portion 3. It has a columnar portion 42 that is coaxial with the coaxial processing shaft A1 projecting from the end surface 41E1 to one end side and has a reduced diameter from the columnar portion 41, and further projects from the end surface 42E2 on one end side of the columnar portion 42 to one end side. It is formed as a magnet shaft adjusting portion 4 which is coaxial with the coaxial processing shaft A1 and has a cylindrical portion 43 whose diameter is reduced from the cylindrical portion 42. The axial length of the columnar portion 42 is the same as the axial length of the magnet M.

磁石Mは磁石軸調整部4の一端側上方より、円柱状部43及び、円柱状部42の外周面
422に添って、挿入位置決めされる。磁石軸調整部がこのような形状とすれば、磁石の磁石軸調整部への載置が容易なり、かつ、脱落しなくなる。
また、磁石軸調整部4の円柱部42の外周の外径は磁石Mの内径より小さく形成されている。このような構成とした場合、実施例と同じように、図5の状態から筐体軸調整部3と磁石軸調整部4を軸方向に相対的に近接させると、実施例と同様に、筐体軸調整部3の同軸加工軸A1と垂直な3つの角柱状部材31の他端側端面3E1と筐体Lの底部LBにおける凹部LB2の軸出しの基準平面である一端側外端面LB21が面同士で当接することで、筐体軸調整部3の同軸加工軸A1と筐体Lの中心軸A2は同軸でないが、平行に調芯される。
The magnet M is inserted and positioned along the columnar portion 43 and the outer peripheral surface 422 of the columnar portion 42 from above one end side of the magnet shaft adjusting portion 4. If the magnet shaft adjusting portion has such a shape, the magnet can be easily placed on the magnet shaft adjusting portion and will not fall off.
Further, the outer diameter of the outer circumference of the cylindrical portion 42 of the magnet shaft adjusting portion 4 is formed to be smaller than the inner diameter of the magnet M. In the case of such a configuration, as in the embodiment, when the housing shaft adjusting portion 3 and the magnet shaft adjusting portion 4 are relatively close to each other in the axial direction from the state shown in FIG. The other end side end surface 3E1 of the three prismatic members 31 perpendicular to the coaxial processing axis A1 of the body axis adjusting portion 3 and the one end side outer end surface LB21 which is the reference plane for the axis of the recess LB2 in the bottom LB of the housing L are surfaces. By abutting each other, the coaxial processing shaft A1 of the housing shaft adjusting portion 3 and the central shaft A2 of the housing L are not coaxial, but are aligned in parallel.

同時に、図5の状態から筐体Lと磁石M及び磁石軸調整部が軸方向に近接するときを考える。磁石Mは、磁石Mから一端側にある筐体Lを見ると、磁石Mの相対移動(軸)方向である磁石の一端側前方および同軸加工軸A1垂直な径方向に、実施例と異なり制限された空間がある。実施例の図1場合、軸方向に垂直な空間が広く、磁石Mの移動自由度が非常に高い。そのため、円筒状ボンド磁石Mは筐体のテーパ部に当接後、磁石の中心軸A3が筐体の中心軸A2に調芯するときには、円筒状磁石Mの一端側が大きな変形をうける。特に、円筒状ボンド磁石Mの厚さが薄い場合は、あまりボンド磁石Mの中心軸A3の調整の度合いが高い場合、ボンド磁石Mの強度が十分でない場合がある。それに対し、本変形例においては、円筒状磁石Mの姿勢変更や軸に垂直方向の移動の自由度、距離が適度に制限されるため、磁石Mがテーパ部に添って調芯されるときにボンド磁石Mの一端側に過大な応力がかからず、薄い円筒状ボンド磁石の強度を向上することができる。 At the same time, consider the case where the housing L, the magnet M, and the magnet shaft adjusting portion are close to each other in the axial direction from the state of FIG. When the housing L on one end side of the magnet M is viewed, the magnet M is restricted to the front one end side of the magnet and the radial direction perpendicular to the coaxial processing axis A1 which are the relative movement (axis) directions of the magnet M, unlike the embodiment. There is a space that has been created. In the case of FIG. 1 of the embodiment, the space perpendicular to the axial direction is wide, and the degree of freedom of movement of the magnet M is very high. Therefore, when the central axis A3 of the magnet is aligned with the central axis A2 of the housing after the cylindrical bond magnet M comes into contact with the tapered portion of the housing, one end side of the cylindrical magnet M undergoes a large deformation. In particular, when the thickness of the cylindrical bond magnet M is thin, the strength of the bond magnet M may not be sufficient if the degree of adjustment of the central axis A3 of the bond magnet M is too high. On the other hand, in this modification, the degree of freedom and distance of changing the posture of the cylindrical magnet M and moving in the direction perpendicular to the axis are appropriately limited, so that when the magnet M is centered along the tapered portion, Excessive stress is not applied to one end side of the bond magnet M, and the strength of the thin cylindrical bond magnet can be improved.

また、図5の角柱状部材31の先端部を半球状部311(図示せず)とすることもできる。当然、この場合の筐体軸調整部3の同軸加工軸A1に垂直な仮想平面と各半球状部311は、点で接することとなる。この場合、各半球状部311と筐体Lの底部LBにおける凹部LB2の軸出しの基準平面である三つの各一端側外端面LB21とは、上記仮想平面を共有しつつ、基準点で同時に当接することで、筐体軸調整部3の同軸加工軸A1と筐体Lの中心軸A2は同軸でないが、平行に調芯される。後は、実施例と同じである。 Further, the tip end portion of the prismatic member 31 in FIG. 5 may be a hemispherical portion 311 (not shown). Naturally, in this case, the virtual plane perpendicular to the coaxial processing shaft A1 of the housing shaft adjusting portion 3 and each hemispherical portion 311 come into contact with each other at a point. In this case, each hemispherical portion 311 and each of the three outer end surfaces LB21 on one end side, which are reference planes for axising the recess LB2 in the bottom LB of the housing L, simultaneously hit at the reference point while sharing the above virtual plane. By being in contact with each other, the coaxial processing shaft A1 of the housing shaft adjusting portion 3 and the central shaft A2 of the housing L are not coaxial, but are aligned in parallel. The rest is the same as in the embodiment.

もう一つの変形例として筐体の明確な底部がない場合を図6に示す。実施例の筐体Kをその形状が単なる円筒体の筐体Nに変更しただけである。この場合、筐体Nの一端側端面NB1が筐体Nの底部であり、筐体Nの一端側端面NB1を有する。この変形例では、実施例と同じように、図2の状態の筐体Kを図6の筐体Nに変えて、その状態から筐体軸調整部1と磁石軸調整部2を軸方向に相対的に近接させると、図7に示すように、実施例と同様に、筐体軸調整部1の同軸加工軸A1と垂直な平面の他端側端面11E1と、筐体Nの底部であり軸出しの基準平面である一端側端面NB1が面同士で当接することで、筐体軸調整部1の同軸加工軸A1と筐体Nの中心軸A2は同軸でないが、平行に調芯される。後は、実施例と同じである。よって、このような変形例も本発明に包含される。 As another modification, FIG. 6 shows a case where there is no clear bottom of the housing. The housing K of the embodiment is simply changed to a housing N having a cylindrical shape. In this case, one end side end surface NB1 of the housing N is the bottom portion of the housing N, and has one end side end surface NB1 of the housing N. In this modification, as in the embodiment, the housing K in the state of FIG. 2 is changed to the housing N of FIG. 6, and the housing shaft adjusting unit 1 and the magnet shaft adjusting unit 2 are moved in the axial direction from that state. When they are relatively close to each other, as shown in FIG. 7, they are the other end surface 11E1 of the plane perpendicular to the coaxial processing shaft A1 of the housing shaft adjusting portion 1 and the bottom portion of the housing N, as in the embodiment. When the end faces NB1 on one end side, which is the reference plane for shafting, come into contact with each other, the coaxial processing shaft A1 of the housing shaft adjusting portion 1 and the central axis A2 of the housing N are not coaxial, but are aligned in parallel. .. The rest is the same as in the embodiment. Therefore, such a modification is also included in the present invention.

K 筐体
M 磁石
1 筐体軸調整部
2 磁石軸調整部
K housing M magnet 1 housing shaft adjustment part 2 magnet shaft adjustment part

Claims (1)

モータ用筐体に弾性変形能を有する磁石(以下、請求項中、単に磁石という)を圧入する筐体と磁石の組立体の製造方法であって、当該筐体は有底円筒状を有し、当該筐体はその底部から中心軸方向に延在し、その中心軸に対して同軸度を有する円筒内周面を有する磁石を収容する収容部を有し、当該筐体の少なくとも内周面は当該収容部の軸方向他端側に向かうにつれて径方向外径側に拡径するテーパ部を有し、
当該筐体の一端側外端面は当該円筒内周面の中心軸と垂直な仮想平面における少なくとも3つの独立平面部を有し、
磁石は円筒状であって、当該磁石の他端側端面は当該円筒内周面の中心軸と垂直な仮想平面における少なくとも3つの独立平面部を有し、
当該磁石外径が筐体の開口側内端の内径より小さく、前記同軸度を有する円筒内周面の内径より大きい磁石外径を有する当該磁石とを準備する準備工程と、
当該筐体と当接時に、筐体の一端側外端面において当該仮想平面を共有し、当該各独立平面部と当接する他端側端面において少なくとも3つ独立平面部を有し、当該各独立平面部から軸方向一端側に少なくとも垂直方向に延びた部材で構成された筐体軸調整部と、
当該磁石と当接時に、磁石の他端側端面において当該仮想平面を共有し、当該各独立平面部と当接する一端側端面において少なくとも3つの独立平面部を有し、当該各一端側端面から軸方向他端側に少なくとも垂直方向に延びた部材で構成された磁石軸調整部とを設けることを特徴とする弾性変形能を有する磁石と筐体の組立体の製造方法。
A method for manufacturing a housing and an assembly of magnets in which a magnet having elastic deformability (hereinafter, simply referred to as a magnet in the claim) is press-fitted into a housing for a motor, and the housing has a bottomed cylindrical shape. The housing extends from the bottom thereof in the direction of the central axis, and has a housing portion for accommodating a magnet having a cylindrical inner peripheral surface having a coaxiality with the central axis, and at least the inner peripheral surface of the housing. Has a tapered portion that expands in the radial outer diameter side toward the other end side in the axial direction of the accommodating portion.
The outer end surface on one end side of the housing has at least three independent plane portions in a virtual plane perpendicular to the central axis of the inner peripheral surface of the cylinder.
The magnet has a cylindrical shape, and the other end surface of the magnet has at least three independent plane portions in a virtual plane perpendicular to the central axis of the inner peripheral surface of the cylinder.
A preparatory step for preparing the magnet having an outer diameter of the magnet smaller than the inner diameter of the inner end on the opening side of the housing and larger than the inner diameter of the inner peripheral surface of the cylinder having the same coaxiality.
At the time of contact with the housing, the virtual plane is shared by the outer end surface on one end side of the housing, and at least three independent plane portions are provided on the other end surface in contact with each independent plane portion. A housing shaft adjustment part composed of members extending at least vertically from the part to one end side in the axial direction,
At the time of contact with the magnet, the virtual plane is shared by the other end surface of the magnet, and at least three independent plane portions are provided on the one end side end surface that abuts on each independent plane portion, and the shaft is formed from each one end side end surface. A method for manufacturing an assembly of a magnet and a housing having elastic deformability, which comprises providing a magnet shaft adjusting portion composed of a member extending at least in the vertical direction on the other end side in the direction.
JP2019070261A 2019-04-01 2019-04-01 Manufacturing method of assembly of magnet and housing with elastic deformability Pending JP2020171092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070261A JP2020171092A (en) 2019-04-01 2019-04-01 Manufacturing method of assembly of magnet and housing with elastic deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070261A JP2020171092A (en) 2019-04-01 2019-04-01 Manufacturing method of assembly of magnet and housing with elastic deformability

Publications (1)

Publication Number Publication Date
JP2020171092A true JP2020171092A (en) 2020-10-15

Family

ID=72746090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070261A Pending JP2020171092A (en) 2019-04-01 2019-04-01 Manufacturing method of assembly of magnet and housing with elastic deformability

Country Status (1)

Country Link
JP (1) JP2020171092A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (en) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp Assembly for rotor of generator
JP2011015571A (en) * 2009-07-03 2011-01-20 Panasonic Corp Method of manufacturing rotor, motor, and electronic apparatus equipped with the motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (en) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp Assembly for rotor of generator
JP2011015571A (en) * 2009-07-03 2011-01-20 Panasonic Corp Method of manufacturing rotor, motor, and electronic apparatus equipped with the motor

Similar Documents

Publication Publication Date Title
JP4812787B2 (en) Method of manufacturing rotor for pump motor, pump motor, pump and rotor for pump motor
JP2013247721A (en) Anisotropic magnet rotor, manufacturing method thereof and motor using the same
CN105745823B (en) motor and air conditioner
JP2007287365A (en) Multipole lens and multipole lens manufacturing method
US10673290B2 (en) Brushless DC electric motor
US9225212B2 (en) Method of manufacturing bonded-magnet rotor
JP2020171092A (en) Manufacturing method of assembly of magnet and housing with elastic deformability
WO2012033202A1 (en) Arched magnet and magnetic field molding die
US20210288568A1 (en) Axial Gap Type Rotating Electric Machine
JP2011015571A (en) Method of manufacturing rotor, motor, and electronic apparatus equipped with the motor
US20190238016A1 (en) Rotor for an electric machine, electric machine with the rotor and to method for producing the rotor
EP3146222B1 (en) Elongated permanent ring magnet with a plurality of axially directed magnetized zones and magnetic bearing with such a ring magnet
US20190356203A1 (en) Sensor magnet assembly and motor
JP7302418B2 (en) Rotating electric machine rotor manufacturing method and rotating electric machine rotor manufacturing apparatus
CN113875137B (en) Method for manufacturing exciting element
CN208209692U (en) Motor
CN207835191U (en) A kind of rotor using Halbach magnet ring
US11710598B2 (en) Method for manufacturing field magnet
JP2020129946A (en) Manufacturing device for rotor core and manufacturing method of rotor core
WO2022224628A1 (en) Permanent magnet manufacturing method and magnetizing device
JP2024007081A (en) Rotor manufacturing device for rotary electric machine, and rotor manufacturing method for the rotary electric machine
WO2023120242A1 (en) Production method for permanent magnet, and permanent magnet
US4193184A (en) Method of manufacturing a stator for an electrical machine
CN114303211A (en) Electromagnet and method for manufacturing same
CN117730470A (en) Permanent magnet type rotary electric machine and magnet positioning structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606