JP2020170714A - Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle - Google Patents

Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle Download PDF

Info

Publication number
JP2020170714A
JP2020170714A JP2020112065A JP2020112065A JP2020170714A JP 2020170714 A JP2020170714 A JP 2020170714A JP 2020112065 A JP2020112065 A JP 2020112065A JP 2020112065 A JP2020112065 A JP 2020112065A JP 2020170714 A JP2020170714 A JP 2020170714A
Authority
JP
Japan
Prior art keywords
nanoparticles
composite material
ion conductor
matrix resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020112065A
Other languages
Japanese (ja)
Inventor
庄吾 高椋
Shogo Takakura
庄吾 高椋
力矢 吉田
Rikiya Yoshida
力矢 吉田
ファミョン ジャン
Hwamyung Jang
ファミョン ジャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to JP2020112065A priority Critical patent/JP2020170714A/en
Publication of JP2020170714A publication Critical patent/JP2020170714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide an ion conductor nanoparticle agglomerate with improved ion conductivity and a composite material containing ion conductor nanoparticles.SOLUTION: A composite material contains aggregate of ion conductor nanoparticles 1 or a matrix resin 2, and the ion conductor nanoparticles 1 dispersed in the matrix resin 2. The nanoparticles in the material have a melting point and a decomposition temperature higher than a plasticization temperature of the matrix resin.SELECTED DRAWING: Figure 2

Description

本発明はイオン伝導体ナノ粒子凝集体およびイオン伝導体ナノ粒子を含む複合材料に関する。 The present invention relates to composite materials containing ionic conductor nanoparticles aggregates and ionic conductor nanoparticles.

燃料電池やリチウム電池の分野において電解質は膜状に成形されて使用されてきた。当該膜の強度を高めるために例えば特許文献1にはマトリックス樹脂中に繊維状ナノ粒子を充填することが提案されている。また、マトリックス樹脂中にイオン伝導体ナノファイバーを充填した複合材料を電解質膜として使用することも提案されている(非特許文献1)。 In the fields of fuel cells and lithium batteries, electrolytes have been molded into a film and used. In order to increase the strength of the film, for example, Patent Document 1 proposes filling a matrix resin with fibrous nanoparticles. It has also been proposed to use a composite material in which ionic conductor nanofibers are packed in a matrix resin as an electrolyte membrane (Non-Patent Document 1).

特表2014−522552号公報Japanese Patent Publication No. 2014-522552

M. Tanaka, Polymer. J., 48, pp.51-58, 2016M. Tanaka, Polymer. J., 48, pp.51-58, 2016

発明者らは、イオン伝導体を膜等のバルク成形体として用いると材料が本来有しているイオン伝導体が十分に発揮できないことを見出した。さらに発明者らはマトリックス樹脂中にイオン伝導体ナノファイバーを充填した複合材料はバルク成形体に比べてイオン電導性を向上できるが、依然として材料が本来有しているイオン伝導体が十分に発揮されていないことを見出した。以上を鑑み、本発明はイオン伝導性をより高めたイオン伝導性を有する材料を提供することを課題とする。 The inventors have found that when an ionic conductor is used as a bulk molded product such as a membrane, the ionic conductor originally possessed by the material cannot be sufficiently exhibited. Furthermore, the inventors can improve the ionic conductivity of the composite material in which the ionic conductor nanofibers are filled in the matrix resin as compared with the bulk molded product, but the ionic conductor originally possessed by the material is still fully exhibited. I found that it wasn't. In view of the above, it is an object of the present invention to provide a material having ionic conductivity with higher ionic conductivity.

発明者らは、前者の原因が膜等のバルク成形体では活性な表面の割合が少ないことにあること、後者の原因がイオン伝導体ナノファイバーの加工中の劣化にあることを見出し、本発明を完成した。よって、前記課題は以下の本発明によって解決される。(1)イオン伝導体ナノ粒子の集合体。(2)前記イオン伝導体が、高分子イオン伝導体である、(1)に記載の集合体。(3)マトリックス樹脂と、当該樹脂中に分散しているイオン伝導体ナノ粒子とを含み、 当該ナノ粒子の、融点Tm、ガラス転移温度Tg、および分解温度Tdのうち最も低い温度をTとするとき、当該Tが前記マトリックス樹脂の可塑化温度Tpよりも高い、複合材料。(4)前記粒子が繊維状ナノ粒子である、(3)に記載の複合材料。(5)前記イオン伝導体が、高分子イオン伝導体である、(3)または(4)に記載の凝集体。(6)マトリックス樹脂と、当該樹脂中に分散しているナノ粒子とを、以下の条件を満たす温度t : Tp≦t<Tにおいて溶融混練する工程を含む、(3)に記載の複合材料の製造方法。 The inventors have found that the cause of the former is a small proportion of active surfaces in a bulk molded product such as a membrane, and the cause of the latter is deterioration during processing of ionic conductor nanofibers. Was completed. Therefore, the above problem is solved by the following invention. (1) An aggregate of ionic conductor nanoparticles. (2) The aggregate according to (1), wherein the ionic conductor is a polymer ionic conductor. (3) A matrix resin and ionic conductor nanoparticles dispersed in the resin are contained, and the lowest temperature of the nanoparticles among the melting point Tm, the glass transition temperature Tg, and the decomposition temperature Td is T. When the composite material, the T is higher than the plasticization temperature Tp of the matrix resin. (4) The composite material according to (3), wherein the particles are fibrous nanoparticles. (5) The aggregate according to (3) or (4), wherein the ionic conductor is a polymer ionic conductor. (6) The composite material according to (3), which comprises a step of melt-kneading the matrix resin and the nanoparticles dispersed in the resin at a temperature t: Tp ≦ t <T satisfying the following conditions. Production method.

本発明によりイオン伝導性をより高めたイオン伝導性を有する材料を提供できる。 INDUSTRIAL APPLICABILITY The present invention can provide a material having ionic conductivity with higher ionic conductivity.

(A)は本発明の凝集体の概要を示す図であり、(B)は従来のイオン伝導体の概要を示す図である。(A) is a figure which shows the outline of the aggregate of this invention, and (B) is a figure which shows the outline of the conventional ionic conductor. 本発明の複合材料の概要を示す図である。It is a figure which shows the outline of the composite material of this invention.

1.イオン伝導体ナノ粒子の凝集体 ナノ粒子とはナノサイズの粒子である。本発明においてナノ粒子の形状は、球、円柱、板、楕円体、繊維等の任意の形状としてよい。当該粒子の平均粒子径は1〜1000nmであることが好ましく、5〜500nmであることがより好ましい。平均粒子径は、粒子が球の場合はその直径を、球以外の場合は長径と短径の平均値から求めることができる。 1. 1. Aggregates of ionic conductor nanoparticles Nanoparticles are nano-sized particles. In the present invention, the shape of the nanoparticles may be any shape such as a sphere, a cylinder, a plate, an ellipsoid, and a fiber. The average particle size of the particles is preferably 1 to 1000 nm, more preferably 5 to 500 nm. When the particle is a sphere, the average particle diameter can be obtained from the average value of the major axis and the minor axis when the particle is not a sphere.

ナノ粒子は公知の方法で製造してもよいし、市販品を購入して準備してもよい。例えば、非特許文献1に記載の電界紡糸法を用いれば繊維状のナノ粒子を得ることができる。この他、東レ株式会社からは東レパール(登録商標)、Gala Industryからはマイクロペレットとして市販されているナノ粒子を用いることができる。 The nanoparticles may be produced by a known method, or may be prepared by purchasing a commercially available product. For example, fibrous nanoparticles can be obtained by using the electrospinning method described in Non-Patent Document 1. In addition, nanoparticles commercially available as Toray Pearl (registered trademark) from Toray Industries, Inc. and micropellets from Gala Industry can be used.

イオン伝導体としては、有機高分子材料、無機高分子材料等の高分子材料、セラミックス等が挙げられる。本発明においては入手が容易であることから、高分子材料であることが好ましく、有機高分子材料であることがより好ましい。有機高分子イオン伝導体の例としては、パーフルオロスルホン酸ポリマー、スルホン酸化芳香族ポリエーテル、スルホン酸化芳香族ポリエーテルスルホン、スルホン酸化ポリイミド、ポリベンズイミダゾール等の公知のポリマーが挙げられる。 Examples of the ionic conductor include polymer materials such as organic polymer materials and inorganic polymer materials, and ceramics. In the present invention, a polymer material is preferable, and an organic polymer material is more preferable, because it is easily available. Examples of organic polymer ionic conductors include known polymers such as perfluorosulfonic acid polymers, sulfonated aromatic polyethers, sulfonated aromatic polyether sulfones, sulfonated polyimides, and polybenzimidazoles.

凝集体とはこれらのナノ粒子が互いに凝集してなる構造体である。凝集体を製造する方法は特に限定されない。例えば、粒子を圧縮して凝集体とする乾式法や、特開2013−209316号公報に記載されているようにナノ粒子を揮発性の溶媒と混合してスラリーとし当該スラリーを成形した後に当該溶媒を除去することで凝集体を得る湿式法を用いることができる。湿式法においては少量のバインダーを用いてもよい。バインダーとしては後述するマトリックス樹脂であることが好ましい。 An agglomerate is a structure in which these nanoparticles are agglomerated with each other. The method for producing the agglomerates is not particularly limited. For example, a dry method in which particles are compressed to form an agglomerate, or as described in Japanese Patent Application Laid-Open No. 2013-209316, nanoparticles are mixed with a volatile solvent to form a slurry, and the slurry is formed and then the solvent is used. A wet method can be used to obtain agglomerates by removing the particles. A small amount of binder may be used in the wet method. The binder is preferably a matrix resin described later.

図1は本発明の凝集体を示す。図1において1はイオン伝導体ナノ粒子である。図1に示すとおり、本発明の凝集体は表面積が大きい、すなわち活性な表面の割合が高い。このためイオン伝導性がバルク成形体に比べて飛躍的に向上する。本発明の凝集体はリチウムイオン電池においてはイオン伝導性が求められる任意の電解質として使用できる。また、燃料電池においては触媒層や、セパレーターとして有用である。 FIG. 1 shows the aggregate of the present invention. In FIG. 1, 1 is an ionic conductor nanoparticle. As shown in FIG. 1, the aggregate of the present invention has a large surface area, that is, a high proportion of active surfaces. Therefore, the ionic conductivity is dramatically improved as compared with the bulk molded product. The aggregate of the present invention can be used as an arbitrary electrolyte in which ionic conductivity is required in a lithium ion battery. It is also useful as a catalyst layer and separator in fuel cells.

2.複合材料 本発明の複合材料は、マトリックス樹脂と、当該樹脂中に分散しているイオン伝導体ナノ粒子とを含む。図2は本発明の複合材料を示す。図2中、1はイオン伝導性ナノ粒子、2はマトリックス樹脂である。 2. Composite Material The composite material of the present invention includes a matrix resin and ionic conductor nanoparticles dispersed in the resin. FIG. 2 shows the composite material of the present invention. In FIG. 2, 1 is an ion conductive nanoparticle and 2 is a matrix resin.

マトリックス樹脂とは複合材料の母体をなす樹脂であり、本発明においては任意の樹脂を用いることができる。しかしながら、イオン伝導性を考慮すると、前述の高分子イオン伝導体であることが好ましい。 The matrix resin is a resin that forms a base of a composite material, and any resin can be used in the present invention. However, in consideration of ionic conductivity, the above-mentioned polymer ionic conductor is preferable.

イオン伝導ナノ粒子はすでに述べたとおりである。本発明においてはイオン伝導ナノ粒子として非特許文献1に記載されたイオン伝導性ポリマーナノファイバーを用いることが好ましい。イオン伝導性ポリマーナノファイバーを用いると、複合材料のイオン伝導性のみならず機械的強度も向上させることができる。 Ion conducting nanoparticles are as described above. In the present invention, it is preferable to use the ion conductive polymer nanofibers described in Non-Patent Document 1 as the ion conductive nanoparticles. When ionic conductive polymer nanofibers are used, not only the ionic conductivity of the composite material but also the mechanical strength can be improved.

イオン伝導ナノ粒子の融点Tm、ガラス転移温度Tg、および分解温度Tdのうち最も低い温度をTとするとき、当該Tがマトリックス樹脂の可塑化温度Tpよりも高ことが必要である。このことにより、ナノ粒子は加工中に劣化することなくナノ粒子本来のイオン伝導性を発揮できる。Tm、Tg、およびTdはDSCやTGA等の公知の熱分析によって測定できる。材料によっては、Tm、Tg、およびTdの何れかが存在しない場合もある。この場合、前記Tは存在する温度の中から決定される、例えば、Tg=300℃、Td=450℃で、Tmが存在しない材料の場合、Tは300℃である。 When T is the lowest of the melting point Tm, the glass transition temperature Tg, and the decomposition temperature Td of the ionic conduction nanoparticles, it is necessary that T be higher than the plasticization temperature Tp of the matrix resin. As a result, the nanoparticles can exhibit the original ionic conductivity of the nanoparticles without deterioration during processing. Tm, Tg, and Td can be measured by known thermal analysis such as DSC or TGA. Depending on the material, any of Tm, Tg, and Td may not be present. In this case, T is determined from the existing temperature, for example, Tg = 300 ° C., Td = 450 ° C., and in the case of a material in which Tm does not exist, T is 300 ° C.

Tpは可塑化温度であり、マトリックス樹脂が流動を始める温度である。マトリックス樹脂が非晶性である場合はTgを超えると流動を開始するので、TpはTp>Tgの関係を満たす。マトリックス樹脂が結晶性である場合は一般にTmを超えると流動を開始するので、TpはTp>Tmの関係を満たす。本発明において、非晶性マトリックス樹脂のTpはTg+5℃、結晶性マトリックス樹脂のTpはTm+5℃とすることが好ましい。 Tp is the plasticization temperature, which is the temperature at which the matrix resin begins to flow. When the matrix resin is amorphous, the flow starts when it exceeds Tg, so Tp satisfies the relationship of Tp> Tg. When the matrix resin is crystalline, the flow generally starts when it exceeds Tm, so Tp satisfies the relationship of Tp> Tm. In the present invention, the Tp of the amorphous matrix resin is preferably Tg + 5 ° C., and the Tp of the crystalline matrix resin is preferably Tm + 5 ° C.

例えば、ナフィオン(登録商標)のTgは60〜80℃、Tmは200℃程度であるので、Tdは205℃程度である。またSolvay社から入手可能なパーフルオロスルホン酸ポリマーであるAquivion(登録商標)P98-SO2FのTmは230〜250であるので、Tdは235〜255℃程度である。スルホン化ポリイミドのTgは300℃を超えるので、ナフィオン(登録商標)マトリックスまたはAquivion(登録商標)P98-SO2Fマトリックス中にスルホン化ポリイミドナノ粒子が分散している複合材料は、TmおよびTdがTpよりも高いという条件を満たす。 For example, Tg of Nafion (registered trademark) is about 60 to 80 ° C. and Tm is about 200 ° C., so Td is about 205 ° C. Further, since the Tm of Aquivion (registered trademark) P98-SO2F, which is a perfluorosulfonic acid polymer available from Solvay, is 230 to 250, the Td is about 235 to 255 ° C. Since the Tg of the sulfonated polyimide exceeds 300 ° C., the composite material in which the sulfonated polyimide nanoparticles are dispersed in the Nafion® matrix or the Aquivion® P98-SO2F matrix has Tm and Td higher than Tp. Satisfies the condition that it is also high.

一般に樹脂複合材料を製造するには材料を溶融混練する方法が知られている。溶融混練においては熱による材料の劣化が懸念される。しかし本発明の複合材料はTmおよびTdとTpとが前記関係を満たすので、溶融混練してもマトリックス樹脂は流動するがイオン伝導性ナノ粒子は流動しない。この際の溶融混練温度tはTp≦t<Tの関係を満たす。tは溶融体の実際の温度である。例えばダイから押出されたばかりの溶融体の温度を、放射温度計等を用いて測定することでtを測定できる。押出機のシリンダ温度をTp以上に設定することや、シリンダ温度をTpより低く設定し混練によるせん断発熱で加熱することによりTp≦tとなるようにtを調整できる。また、滞留時間によっても溶融体の温度は変化するのでtがTを超えないように溶融滞留時間を制御することが好ましい。このように製造するとイオン伝導性ナノ粒子の劣化や変形を極力低減できる。したがって本発明の複合材料は高いイオン伝導性を発現する。 Generally, a method of melt-kneading a material is known for producing a resin composite material. In melt kneading, there is concern about deterioration of the material due to heat. However, in the composite material of the present invention, since Tm, Td and Tp satisfy the above relationship, the matrix resin flows but the ionic conductive nanoparticles do not flow even when melt-kneaded. The melt-kneading temperature t at this time satisfies the relationship of Tp ≦ t <T. t is the actual temperature of the melt. For example, t can be measured by measuring the temperature of the melt just extruded from the die using a radiation thermometer or the like. T can be adjusted so that Tp ≦ t by setting the cylinder temperature of the extruder to Tp or higher, or by setting the cylinder temperature lower than Tp and heating with shear heat generated by kneading. Further, since the temperature of the melt changes depending on the residence time, it is preferable to control the melt residence time so that t does not exceed T. When manufactured in this way, deterioration and deformation of ionic conductive nanoparticles can be reduced as much as possible. Therefore, the composite material of the present invention exhibits high ionic conductivity.

この他、樹脂複合材料を製造する方法として、溶媒に溶解してキャストする方法が知られている。一般にキャスト法では材料が膨潤または溶解することによって変形または劣化することが懸念される。しかし、マトリックス樹脂は溶解するがイオン伝導ナノ粒子は溶解または膨潤しない溶媒を選択することで、前記劣化を伴うことなく本発明の複合材料を製造できる。 In addition, as a method for producing a resin composite material, a method of dissolving in a solvent and casting is known. Generally, in the casting method, there is a concern that the material may be deformed or deteriorated due to swelling or melting. However, the composite material of the present invention can be produced without the deterioration by selecting a solvent that dissolves the matrix resin but does not dissolve or swell the ionic conduction nanoparticles.

複合材料中のイオン伝導性ナノ粒子の含有量は複合材料中90〜99.5重量%が好ましく、95〜99重量%がより好ましい。また、当該ナノ粒子が球以外の形状である場合はナノ粒子の配向度合いによって複合材料に異方性が生じる。よって、当該ナノ粒子はランダムに配向していることが好ましい。当該ナノ粒子がナノファイバーである場合、イオン伝導性の観点から、その繊維長はできるだけ長いことが好ましい。 The content of the ionic conductive nanoparticles in the composite material is preferably 90 to 99.5% by weight, more preferably 95 to 99% by weight in the composite material. Further, when the nanoparticles have a shape other than a sphere, anisotropy occurs in the composite material depending on the degree of orientation of the nanoparticles. Therefore, it is preferable that the nanoparticles are randomly oriented. When the nanoparticles are nanofibers, the fiber length is preferably as long as possible from the viewpoint of ionic conductivity.

本発明の複合材料は、低湿度環境においても優れたイオン伝導性を発現するので燃料電池におけるセパレーターとして特に有用である。 The composite material of the present invention is particularly useful as a separator in a fuel cell because it exhibits excellent ionic conductivity even in a low humidity environment.

[実施例1] ナフィオン(登録商標)のナノ粒子を金型に充填し、100℃程度に加熱し、圧縮して、凝集体を得る。当該凝集体は表面積が極めて大きいので、優れたイオン伝導性を有する。 [Example 1] Nanoparticles of Nafion (registered trademark) are filled in a mold, heated to about 100 ° C., and compressed to obtain an aggregate. Since the aggregate has an extremely large surface area, it has excellent ionic conductivity.

[実施例2] 非特許文献1に記載方法に準じ、スルホン化ポリイミドを電解紡糸してスルホン化ポリイミドのナノファイバーを準備する。ナフィオン(登録商標)粒子と、当該ナノファイバーをドライブレンドして、金型に充填する。100℃程度に加熱し、圧縮して、複合材料を得る。 [Example 2] According to the method described in Non-Patent Document 1, sulfonated polyimide is electrolytically spun to prepare sulfonated polyimide nanofibers. Nafion® particles and the nanofibers are dry-blended and filled into a mold. It is heated to about 100 ° C. and compressed to obtain a composite material.

[実施例3] 非特許文献1に記載方法に準じ、スルホン化ポリイミドを電解紡糸してス
ルホン化ポリイミドのナノファイバーを準備する。当該ナノファイバーとナフィオン(登録商標)を押出機に装入し、成形温度250℃で溶融押出して複合材料を得る。250℃は、ナフィオン(登録商標)のTdと同じ温度であり、スルホン化ポリイミドのTmおよびTdよりもはるかに低い温度である。よって当該材料には劣化していないスルホン化ポリイミドナノファイバーが分散しており、優れたイオン伝導性を有する。
[Example 3] According to the method described in Non-Patent Document 1, sulfonated polyimide is electrolytically spun to prepare sulfonated polyimide nanofibers. The nanofiber and Nafion (registered trademark) are charged into an extruder and melt-extruded at a molding temperature of 250 ° C. to obtain a composite material. 250 ° C. is the same temperature as Td of Nafion®, much lower than Tm and Td of sulfonated polyimide. Therefore, sulfonated polyimide nanofibers that have not deteriorated are dispersed in the material, and have excellent ionic conductivity.

1 イオン伝導性ナノ粒子 2 マトリックス樹脂 1 Ion conductive nanoparticles 2 Matrix resin

Claims (4)

マトリックス樹脂と、当該樹脂中に分散しているイオン伝導体ナノ粒子とを含み、 当該ナノ粒子の、融点Tm、ガラス転移温度Tg、および分解温度Tdのうち最も低い温度をTとするとき、当該Tが前記マトリックス樹脂の可塑化温度Tpよりも高い、複合材料。 When the matrix resin and the ionic conductor nanoparticles dispersed in the resin are contained, and the lowest temperature of the nanoparticles among the melting point Tm, the glass transition temperature Tg, and the decomposition temperature Td is T, the said A composite material in which T is higher than the plasticization temperature Tp of the matrix resin. 前記粒子が繊維状ナノ粒子である、請求項1に記載の複合材料。 The composite material according to claim 1, wherein the particles are fibrous nanoparticles. 前記イオン伝導体が、高分子イオン伝導体である、請求項1または2に記載の複合材料。 The composite material according to claim 1 or 2, wherein the ionic conductor is a polymer ionic conductor. マトリックス樹脂と、当該樹脂中に分散しているナノ粒子とを、以下の条件を満たす温度t: Tp≦t<Tにおいて溶融混練する工程を含む、請求項1に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, further comprising a step of melt-kneading the matrix resin and nanoparticles dispersed in the resin at a temperature t: Tp ≦ t <T satisfying the following conditions.
JP2020112065A 2020-06-29 2020-06-29 Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle Pending JP2020170714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020112065A JP2020170714A (en) 2020-06-29 2020-06-29 Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020112065A JP2020170714A (en) 2020-06-29 2020-06-29 Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016136863A Division JP2018010726A (en) 2016-07-11 2016-07-11 Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle

Publications (1)

Publication Number Publication Date
JP2020170714A true JP2020170714A (en) 2020-10-15

Family

ID=72746415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112065A Pending JP2020170714A (en) 2020-06-29 2020-06-29 Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle

Country Status (1)

Country Link
JP (1) JP2020170714A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044766A1 (en) * 2007-10-02 2009-04-09 Toyo Boseki Kabushiki Kaisha Extrafine fiber, ion-conductive composite polymeric membrane, and process for producing the ion-conductive composite polymeric membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044766A1 (en) * 2007-10-02 2009-04-09 Toyo Boseki Kabushiki Kaisha Extrafine fiber, ion-conductive composite polymeric membrane, and process for producing the ion-conductive composite polymeric membrane

Similar Documents

Publication Publication Date Title
Chowreddy et al. Recycled polyethylene terephthalate/carbon nanotube composites with improved processability and performance
KR101197288B1 (en) Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US20030180597A1 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
KR101211134B1 (en) A method for preparing carbon nano material/polymer composites
JP2002530819A (en) Fuel cell collector plate and fabrication method
Tang et al. Conducting polymer nanocomposites: recent developments and future prospects
Tang et al. The creep behaviour of poly (vinylidene fluoride)/“bud-branched” nanotubes nanocomposites
CN112467304B (en) Organic fiber reinforced polyethylene lithium battery diaphragm and preparation method thereof
Vyas et al. Role of organic/inorganic salts and nanofillers in polymer nanocomposites: Enhanced conduction, rheological, and thermal properties
Shrivastava et al. A facile route to develop electrical conductivity with minimum possible multi‐wall carbon nanotube (MWCNT) loading in poly (methyl methacrylate)/MWCNT nanocomposites
Xiang et al. Characterization and structure–property relationship of melt-mixed high density polyethylene/multi-walled carbon nanotube composites under extensional deformation
KR100834057B1 (en) Material for preparing fuel cell separator, fuel cell separator and fuel cell
KR20180135344A (en) The control of carbon materials structure on bipolar plate for fuel cell and its manufacturing method
Gao et al. Composite membrane of poly (vinylidene fluoride) and 2D Ni (OH) 2 nanosheets for high-performance lithium-ion battery
JP3826852B2 (en) Highly conductive resin molded product
JP2020170714A (en) Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle
CN104403168A (en) Graphene fiber reinforced polyethylene material and preparation method thereof
Yang et al. Solvation-Free Fabrication of PEO/LiTFSI/SiO2 Composite Electrolyte Membranes with High Ionic Conductivity Based on a Novel Elongational Flow Field
Liu et al. Development of multilayer polypropylene separators for lithium-ion batteries via an industrial process
JP2018010726A (en) Ion conductor nanoparticle agglomerate and composite material containing ion conductor nanoparticle
Madheswaran et al. Polymer based flow field plates for polymer electrolyte membrane fuel cell and the scope of additive manufacturing: A techno‐economic review
Wang et al. 3D printing of hierarchically micro/nanostructured electrodes for high-performance rechargeable batteries
CN101942137A (en) Method for preparing conductivity-enhanced polymer/carbon nano tube composite material by vibration injection molding device
JP2004034611A (en) Method for molding high electrically conductive resin component
KR100660144B1 (en) Thermoplastic material for injection molding a fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210624