JP2020169852A - Fiber orientation distribution measuring method and fiber orientation distribution measuring system - Google Patents

Fiber orientation distribution measuring method and fiber orientation distribution measuring system Download PDF

Info

Publication number
JP2020169852A
JP2020169852A JP2019070469A JP2019070469A JP2020169852A JP 2020169852 A JP2020169852 A JP 2020169852A JP 2019070469 A JP2019070469 A JP 2019070469A JP 2019070469 A JP2019070469 A JP 2019070469A JP 2020169852 A JP2020169852 A JP 2020169852A
Authority
JP
Japan
Prior art keywords
orientation distribution
fiber
axis
angle
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019070469A
Other languages
Japanese (ja)
Other versions
JP7181600B2 (en
Inventor
宏匡 富岡
Hirokuni Tomioka
宏匡 富岡
元基 吉川
Motoki Yoshikawa
元基 吉川
慶喜 杉本
Yoshiki Sugimoto
慶喜 杉本
太介 島本
Tasuke Shimamoto
太介 島本
裕司 堀田
Yuji Hotta
裕司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyota Industries Corp
Priority to JP2019070469A priority Critical patent/JP7181600B2/en
Publication of JP2020169852A publication Critical patent/JP2020169852A/en
Application granted granted Critical
Publication of JP7181600B2 publication Critical patent/JP7181600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a fiber orientation distribution measuring method and a fiber orientation distribution measuring system capable of dimensionally measuring the orientation distribution.SOLUTION: A fiber orientation distribution measuring method includes: a scattered X-ray acquisition step S1 of acquiring scattered X-rays by a small angle X-ray scattering device; and an acquisition step S2 of calculating the scattering intensity of scattered X-rays in three dimensions and obtaining a relationship between an azimuth angle φ' and the scattering intensity after the scattered X-ray acquisition step S1. Further, the fiber orientation distribution measuring method includes the orientation distribution calculating step S3 of calculating the orientation distribution of the reinforcing fibers in a fiber reinforced composite material from the relationship between the azimuth angle φ' acquired in the acquisition step S2 and the scattering intensity.SELECTED DRAWING: Figure 7

Description

本発明は、繊維配向分布測定方法及び繊維配向分布測定システムに関する。 The present invention relates to a fiber orientation distribution measuring method and a fiber orientation distribution measuring system.

軽量、高強度の材料として繊維強化複合材が使用されている。繊維強化複合材は、強化繊維(強化基材)が樹脂、セラミックス等のマトリックス材料中に複合化されることにより、マトリックス材料自体に比べて力学的特性(機械的特性)が向上するため、構造部品として好ましい。このような繊維強化複合材においては、強化繊維の配向状態は、力学物性に大きな影響を与える。したがって、繊維強化複合材においては、強化繊維の配向分布を把握することが重要である。例えば、特許文献1に開示の繊維配向度算出装置は、プロファイル取得部を備え、このプロファイル取得部は、繊維強化複合材にX線が照射されることによって生じる円状の回折像の中心周りの角度と、回折像の回折強度との関係を示すプロファイルを取得する。また、繊維配向度算出装置は、結晶配向度算出部を備え、この結晶配向度算出部は、取得されたプロファイルに基づき、結晶配向度を算出する。プロファイル取得部は、強化繊維が1方向に引き揃えられた状態の繊維複合材料について、プロファイルを取得する。結晶配向度算出部は、取得されたプロファイルに基づき、繊維強化複合材の結晶配向度を算出する。繊維配向度算出装置の繊維配向度算出部は、結晶配向度に基づき、繊維複合材料の繊維配向度を算出する。 Fiber reinforced composites are used as lightweight and high-strength materials. The fiber-reinforced composite material has a structure because the mechanical properties (mechanical properties) are improved as compared with the matrix material itself by combining the reinforcing fibers (reinforced base material) in the matrix material such as resin and ceramics. Preferable as a part. In such a fiber-reinforced composite material, the orientation state of the reinforcing fibers has a great influence on the mechanical properties. Therefore, in the fiber-reinforced composite material, it is important to grasp the orientation distribution of the reinforcing fibers. For example, the fiber orientation calculation device disclosed in Patent Document 1 includes a profile acquisition unit, which is around the center of a circular diffraction image generated by irradiating a fiber-reinforced composite material with X-rays. Obtain a profile showing the relationship between the angle and the diffraction intensity of the diffraction image. Further, the fiber orientation degree calculation device includes a crystal orientation degree calculation unit, and the crystal orientation degree calculation unit calculates the crystal orientation degree based on the acquired profile. The profile acquisition unit acquires a profile of the fiber composite material in which the reinforcing fibers are aligned in one direction. The crystal orientation calculation unit calculates the crystal orientation of the fiber-reinforced composite material based on the acquired profile. The fiber orientation calculation unit of the fiber orientation calculation device calculates the fiber orientation of the fiber composite material based on the crystal orientation.

特開2016−90259号公報Japanese Unexamined Patent Publication No. 2016-90259

ところが、特許文献1の繊維配向度算出装置においては、繊維強化複合材の2次元での繊維の配向分布しか算出できない。
本発明の目的は、配向分布を3次元的に測定できる繊維配向分布測定方法及び繊維配向分布測定システムを提供することにある。
However, the fiber orientation calculation device of Patent Document 1 can only calculate the two-dimensional fiber orientation distribution of the fiber-reinforced composite material.
An object of the present invention is to provide a fiber orientation distribution measuring method and a fiber orientation distribution measuring system capable of three-dimensionally measuring an orientation distribution.

上記課題を解決するための繊維配向分布測定方法は、強化繊維を含む繊維強化複合材に対するX線の照射によって散乱するX線のうち、散乱角の小さい散乱X線を検出して前記繊維強化複合材における前記強化繊維の配向分布を測定する繊維配向分布測定方法であって、前記散乱X線を取得する散乱X線取得工程と、前記強化繊維の配向軸に直交する1軸をx軸、前記x軸と前記配向軸の交点を原点とし、前記原点から距離sの位置にある点について前記配向軸に対する方位角をφ、前記配向軸の周りでの角度をα、前記配向軸の周りで前記角度αずれた位置での前記方位角をφ’とし、前記散乱X線取得工程の後に行われ、前記散乱X線の3次元での散乱強度を下記の(式1)から算出し、前記方位角φ’と前記散乱強度との関係を取得する取得工程と、前記取得工程の後に行われ、取得した前記関係から前記繊維強化複合材における前記強化繊維の配向分布を算出する配向分布算出工程と、を含むことを要旨とする。 The fiber orientation distribution measuring method for solving the above problem detects the scattered X-rays having a small scattering angle among the X-rays scattered by irradiation of the fiber-reinforced composite material containing the reinforcing fibers with X-rays, and the fiber-reinforced composite. A fiber orientation distribution measuring method for measuring the orientation distribution of the reinforcing fibers in a material, wherein the scattering X-ray acquisition step of acquiring the scattered X-rays and one axis orthogonal to the orientation axis of the reinforcing fibers are the x-axis. The origin is the intersection of the x-axis and the alignment axis, the azimuth angle with respect to the alignment axis is φ, the angle around the alignment axis is α, and the orientation axis is about the point at a distance s from the origin. The azimuth angle at a position deviated by an angle α is set to φ', and the scattering intensity of the scattered X-rays in three dimensions is calculated from the following (Equation 1), which is performed after the scattered X-ray acquisition step. An acquisition step for acquiring the relationship between the angle φ'and the scattering intensity, and an orientation distribution calculation step for calculating the orientation distribution of the reinforcing fibers in the fiber-reinforced composite material from the acquired relationship performed after the acquisition step. , Is included in the gist.

これによれば、散乱X線取得工程の後の取得工程において、(式1)を用いることで、小角X線散乱によって得られる散乱X線の3次元での散乱強度を算出でき、その散乱強度と方位角φ’との関係を取得できる。このため、(式1)を用いることで、強化繊維の配向分布を3次元的に捉えることができる。そして、配向分布算出工程で配向分布を算出することにより、繊維強化複合材において、強化繊維の配向分布を3次元的に測定できる。 According to this, by using (Equation 1) in the acquisition step after the scattered X-ray acquisition step, the scattering intensity of the scattered X-rays obtained by small-angle X-ray scattering can be calculated in three dimensions, and the scattering intensity can be calculated. The relationship between and the azimuth angle φ'can be obtained. Therefore, by using (Equation 1), the orientation distribution of the reinforcing fibers can be grasped three-dimensionally. Then, by calculating the orientation distribution in the orientation distribution calculation step, the orientation distribution of the reinforcing fibers can be measured three-dimensionally in the fiber-reinforced composite material.

また、繊維配向分布測定方法について、前記取得工程では、前記方位角φ’と前記散乱強度との関係を示すプロファイルを取得し、前記配向分布算出工程では、前記方位角φ’を異ならせた前記プロファイルを複数作成し、各プロファイルのピーク幅の増加量と前記配向分布との関係を表す検量線を作成し、前記検量線から前記配向分布を算出してもよい。 Regarding the fiber orientation distribution measurement method, in the acquisition step, a profile showing the relationship between the azimuth φ'and the scattering intensity was acquired, and in the orientation distribution calculation step, the azimuth φ'was different. A plurality of profiles may be created, a calibration curve showing the relationship between the amount of increase in the peak width of each profile and the orientation distribution may be created, and the orientation distribution may be calculated from the calibration curve.

これによれば、配向分布算出工程において、検量線を作成することで、配向分布を速やかに得ることができる。なお、ピーク幅が大きく増加して、増加量が定義できない場合は、強化繊維の配向分布は無配向に相当する。 According to this, the orientation distribution can be quickly obtained by creating a calibration curve in the orientation distribution calculation step. If the peak width increases significantly and the amount of increase cannot be defined, the orientation distribution of the reinforcing fibers corresponds to non-orientation.

上記課題を解決するための繊維配向分布測定システムは、強化繊維を含む繊維強化複合材に対するX線の照射によって散乱するX線のうち、散乱角の小さい散乱X線を検出する小角X線散乱装置と、前記強化繊維の配向軸に直交する1軸をx軸、前記x軸と前記配向軸の交点を原点とし、原点から距離sの位置にある点について前記配向軸に対する方位角をφ、前記配向軸の周りでの角度をα、前記配向軸の周りで前記角度αずれた位置での前記方位角をφ’とした場合、前記小角X線散乱装置から取得される前記散乱X線の3次元での散乱強度を下記の(式1)から算出し、前記方位角φ’と前記散乱強度との関係を示すプロファイルを取得するプロファイル取得部と、取得した前記プロファイルのピーク幅を測定するとともに、前記方位角φ’を異ならせた前記プロファイルを複数作成し、各プロファイルのピーク幅の増加量と配向分布との関係を表す検量線を作成するプロファイル計算部と、前記検量線から前記配向分布を算出する配向分布演算部と、を有することを要旨とする。 The fiber orientation distribution measurement system for solving the above problems is a small-angle X-ray scattering device that detects scattered X-rays having a small scattering angle among the X-rays scattered by irradiation of a fiber-reinforced composite material containing reinforcing fibers with X-rays. The x-axis is one axis orthogonal to the orientation axis of the reinforcing fiber, the intersection of the x-axis and the alignment axis is the origin, and the azimuth angle with respect to the orientation axis is φ at a point located at a distance s from the origin. When the angle around the alignment axis is α and the azimuth angle at a position deviated by the angle α around the alignment axis is φ', 3 of the scattered X-rays acquired from the small-angle X-ray scattering device. The scattering intensity in the dimension is calculated from the following (Equation 1), the profile acquisition unit that acquires the profile showing the relationship between the azimuth angle φ'and the scattering intensity, and the peak width of the acquired profile are measured. , A profile calculation unit that creates a plurality of the profiles having different azimuth angles φ'and creates a calibration line showing the relationship between the increase amount of the peak width of each profile and the orientation distribution, and the orientation distribution from the calibration line. It is a gist to have an orientation distribution calculation unit for calculating.

これによれば、小角X線散乱装置によって散乱X線を検出した後、プロファイル取得部は、(式1)を用いることで、小角X線散乱によって得られる散乱X線の3次元での散乱強度を算出でき、その散乱強度からプロファイルを取得できる。このため、(式1)を用いることで、強化繊維の配向分布を3次元的に捉えたプロファイルを取得できる。そして、プロファイル計算部によって検量線を作成し、配向分布演算部によって、検量線を用いて配向分布を算出することにより、強化繊維の配向分布を3次元的に測定できる。 According to this, after the scattered X-rays are detected by the small-angle X-ray scattering device, the profile acquisition unit uses (Equation 1) to scatter the scattered X-rays obtained by the small-angle X-ray scattering in three dimensions. Can be calculated, and the profile can be obtained from the scattering intensity. Therefore, by using (Equation 1), it is possible to obtain a profile that captures the orientation distribution of the reinforcing fibers in three dimensions. Then, the orientation distribution of the reinforcing fibers can be measured three-dimensionally by creating a calibration curve by the profile calculation unit and calculating the orientation distribution using the calibration curve by the orientation distribution calculation unit.

また、繊維配向分布測定システムについて、前記配向分布演算部によって算出された配向分布を表示する表示部を備えていてもよい。
これによれば、配向分布を表示部で確認することができる。
Further, the fiber orientation distribution measurement system may include a display unit that displays the orientation distribution calculated by the orientation distribution calculation unit.
According to this, the orientation distribution can be confirmed on the display unit.

本発明によれば、配向分布を3次元的に測定できる。 According to the present invention, the orientation distribution can be measured three-dimensionally.

繊維配向分布測定システムを模式的に示す図。The figure which shows typically the fiber orientation distribution measurement system. 小角X線散乱装置を模式的に示す図。The figure which shows typically the small angle X-ray scattering apparatus. 極座標を説明するための図。The figure for demonstrating polar coordinates. 微小面積を説明するための図。The figure for demonstrating the minute area. (a)は完全配向した炭素繊維を模式的に示す図、(b)は散乱パターンを模式的に示す図、(c)は方位角と散乱強度を示すグラフ。(A) is a diagram schematically showing perfectly oriented carbon fibers, (b) is a diagram schematically showing a scattering pattern, and (c) is a graph showing an azimuth angle and scattering intensity. (a)は配向した炭素繊維を模式的に示す図、(b)は散乱パターンを模式的に示す図、(c)は方位角と散乱強度を示すグラフ。(A) is a diagram schematically showing oriented carbon fibers, (b) is a diagram schematically showing a scattering pattern, and (c) is a graph showing an azimuth angle and scattering intensity. 繊維配向分布測定方法を示すフローチャート。The flowchart which shows the fiber orientation distribution measurement method.

以下、繊維配向分布測定方法及び繊維配向分布測定システムを具体化した一実施形態を図1〜図7にしたがって説明する。
図1に示すように、繊維配向分布測定システム100は、小角X線散乱装置10と、繊維配向分布を測定する測定部20と、測定部20による測定結果を表示する表示部30と、を備える。
Hereinafter, an embodiment in which the fiber orientation distribution measuring method and the fiber orientation distribution measuring system are embodied will be described with reference to FIGS. 1 to 7.
As shown in FIG. 1, the fiber orientation distribution measuring system 100 includes a small-angle X-ray scattering device 10, a measuring unit 20 for measuring the fiber orientation distribution, and a display unit 30 for displaying the measurement result by the measuring unit 20. ..

図2に示すように、小角X線散乱装置10は、X線を評価対象としての繊維強化複合材Hに照射して散乱するX線のうち、散乱角が小さいもの(以下、散乱X線という)を検出する装置である。小角X線散乱装置10は、X線照射部11と、散乱X線を検出する検出部12と、を有する。なお、散乱角が小さいとは、散乱角が5度以下のことである。図2は小角X線散乱装置10を模式的に示すため、散乱角が5度より大きくなっている。また、繊維強化複合材Hから検出部12までの距離Lは、繊維強化複合材Hの厚さに応じて変化する。 As shown in FIG. 2, the small-angle X-ray scattering device 10 irradiates the fiber-reinforced composite material H as an evaluation target with X-rays and scatters X-rays having a small scattering angle (hereinafter referred to as scattered X-rays). ) Is a device that detects. The small-angle X-ray scattering device 10 includes an X-ray irradiation unit 11 and a detection unit 12 for detecting scattered X-rays. The small scattering angle means that the scattering angle is 5 degrees or less. Since FIG. 2 schematically shows the small-angle X-ray scattering device 10, the scattering angle is larger than 5 degrees. Further, the distance L from the fiber-reinforced composite material H to the detection unit 12 changes according to the thickness of the fiber-reinforced composite material H.

図1において、測定部20は、図示しないCPUと、RAM及びROM等からなる記憶部と、を備える。CPUと記憶部は信号接続されている。記憶部には、繊維の配向分布を測定するためのプログラム等が記憶されている。CPUは、各種処理のうち少なくとも一部の処理を実行する専用のハードウェア、例えば、特定用途向け集積回路:ASICを備えていてもよい。CPUは、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASIC等の1つ以上の専用のハードウェア回路、あるいは、それらの組み合わせを含む回路として構成し得る。プロセッサは、CPU、並びに、RAM及びROM等のメモリを含む。メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリ、即ち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆるものを含む。そして、測定部20のCPUは、プロファイル取得部21、プロファイル計算部22、及び配向分布演算部23として機能する。 In FIG. 1, the measuring unit 20 includes a CPU (not shown) and a storage unit including a RAM, a ROM, and the like. The CPU and the storage unit are signal-connected. A program or the like for measuring the orientation distribution of fibers is stored in the storage unit. The CPU may be provided with dedicated hardware that executes at least a part of the various processes, for example, an integrated circuit for a specific application: ASIC. The CPU may be configured as one or more processors operating according to a computer program, one or more dedicated hardware circuits such as an ASIC, or a circuit including a combination thereof. The processor includes a CPU and memories such as RAM and ROM. The memory stores a program code or a command configured to cause the CPU to execute the process. Memory, or computer-readable medium, includes anything that can be accessed by a general purpose or dedicated computer. Then, the CPU of the measurement unit 20 functions as a profile acquisition unit 21, a profile calculation unit 22, and an orientation distribution calculation unit 23.

配向分布が測定される繊維強化複合材Hは、強化繊維からなる強化基材にマトリクス材料を含浸して構成されている。なお、図示しないが、繊維強化複合材Hの強化基材は、任意の角度で糸が配列されるとともに、任意の層数に積層して形成される。強化基材は、例えば、第1の糸と第2の糸を平織り、綾織り、又は繻子織りして形成されていてもよい。さらに、強化基材は、単層織物を複数積層し、結合糸で積層方向に結合して形成されていてもよいし、多層織りして形成されていてもよい。 The fiber-reinforced composite material H whose orientation distribution is measured is formed by impregnating a reinforcing base material made of reinforcing fibers with a matrix material. Although not shown, the reinforcing base material of the fiber-reinforced composite material H is formed by arranging threads at an arbitrary angle and laminating them in an arbitrary number of layers. The reinforcing base material may be formed, for example, by weaving a first thread and a second thread in a plain weave, a twill weave, or a satin weave. Further, the reinforced base material may be formed by laminating a plurality of single-layer woven fabrics and bonding them with binding threads in the laminating direction, or may be formed by multi-layer weaving.

繊維配向分布測定システム100は、繊維強化複合材Hにおける強化繊維の配向分布を測定する。配向分布を測定できる強化繊維は、小角X線散乱装置10によって検出される散乱X線のパターンが、中心の円を挟んで水平方向に延びるストリークが生じる繊維材料であればよい。 The fiber orientation distribution measuring system 100 measures the orientation distribution of the reinforcing fibers in the fiber-reinforced composite material H. The reinforcing fiber whose orientation distribution can be measured may be a fiber material in which the pattern of scattered X-rays detected by the small-angle X-ray scattering device 10 causes streaks extending in the horizontal direction across a central circle.

このような繊維材料としては、ナノボイド構造を有するPAN系炭素繊維、Pitch系炭素繊維等の異方性炭素繊維、ナノボイド又はフィブリル構造を有する有機繊維(ポリエステル、ナイロン、ケブラー(登録商標)、ザイロン、ポリアリレート繊維、アラミド繊維)、セラミックス繊維(炭化ケイ素繊維)が挙げられる。また、ガラスウィスカー、カーボンナノファイバー、カーボンナノチューブ、アルミナウィスカー、炭化ケイ素ウィスカーが挙げられる。これら繊維材料は、長繊維、短繊維、ミルド状繊維のいずれでもよい。 Examples of such fiber materials include PAN-based carbon fibers having a nanovoid structure, anisotropic carbon fibers such as Pitch-based carbon fibers, and organic fibers having a nanovoid or fibril structure (polyester, nylon, Kevlar®, Zyrone, etc.). Polyarylate fiber, aramid fiber), ceramic fiber (silicon carbide fiber) can be mentioned. Examples thereof include glass whiskers, carbon nanofibers, carbon nanotubes, alumina whiskers, and silicon carbide whiskers. These fiber materials may be long fibers, short fibers, or milled fibers.

次に、繊維配向分布測定システム100を用いた繊維配向分布測定方法について説明する。本実施形態では、炭素繊維を強化繊維とした繊維強化複合材Hの繊維配向分布を測定する。 Next, a fiber orientation distribution measuring method using the fiber orientation distribution measuring system 100 will be described. In the present embodiment, the fiber orientation distribution of the fiber-reinforced composite material H using carbon fibers as reinforcing fibers is measured.

図7に示すように、繊維配向分布測定方法は、小角X線散乱によって生じる散乱X線を取得する散乱X線取得工程S1と、散乱X線取得工程S1の後に行われ、散乱X線の方位角と散乱強度との関係を取得する取得工程S2と、取得工程S2の後に行われ、取得した関係に基づいて炭素繊維の配向分布を算出する配向分布算出工程S3とを含む。 As shown in FIG. 7, the fiber orientation distribution measuring method is performed after the scattered X-ray acquisition step S1 for acquiring scattered X-rays generated by small-angle X-ray scattering and the scattered X-ray acquisition step S1 and the orientation of the scattered X-rays. It includes an acquisition step S2 for acquiring the relationship between the angle and the scattering intensity, and an orientation distribution calculation step S3 performed after the acquisition step S2 for calculating the orientation distribution of carbon fibers based on the acquired relationship.

散乱X線取得工程S1において、小角X線散乱装置10を用いて炭素繊維にX線を照射すると、炭素繊維の繊維軸方向に延びるナノボイドを反映して、繊維軸方向に直交する方向へのストリークが生じる散乱パターンが得られる。 When the carbon fibers are irradiated with X-rays using the small angle X-ray scattering device 10 in the scattered X-ray acquisition step S1, streaks in the direction orthogonal to the fiber axis direction are reflected, reflecting the nanovoids extending in the fiber axis direction of the carbon fibers. A scattering pattern is obtained.

取得工程S2では、散乱パターンを測定する。この散乱パターンを測定するにあたり、炭素繊維の電子密度分布のフーリエ変換の絶対値の二乗によって得られる逆空間を考え、エバルトの反射球で横切られるパターンを考える。小角X線散乱は、散乱角が小さいことから、エバルトの反射球は平面で近似する。このため、逆空間での原点を通過する平面での切断面が小角X線の散乱パターンを与えることになる。その結果として、炭素繊維の場合は、散乱パターンは、ナノボイドを反映して、逆空間では繊維軸方向が法線方向に一致する円筒対象の円盤形状になる。 In the acquisition step S2, the scattering pattern is measured. In measuring this scattering pattern, consider the reciprocal space obtained by the square of the absolute value of the Fourier transform of the electron density distribution of carbon fibers, and consider the pattern crossed by the Ewald reflective sphere. Since the small-angle X-ray scattering has a small scattering angle, the reflected sphere of Ewald is approximated by a plane. Therefore, the cut surface on the plane passing through the origin in the reciprocal space gives a scattering pattern of small-angle X-rays. As a result, in the case of carbon fibers, the scattering pattern reflects the nanovoids and in the reciprocal space it becomes a cylindrical object whose axial direction coincides with the normal direction.

図3に示すように、散乱パターンの逆空間での極座標は(s、φ)となる。なお、極座標を設定するにあたり、炭素繊維の配向軸zに対し、直交する1軸をx軸とし、配向軸zとx軸が直交する点を原点Oとする。そして、sは原点Oからの距離、φは配向軸zからの方位角である。 As shown in FIG. 3, the polar coordinates of the scattering pattern in the reciprocal space are (s, φ). In setting the polar coordinates, one axis orthogonal to the alignment axis z of the carbon fiber is defined as the x-axis, and the point where the orientation axis z and the x-axis are orthogonal to each other is defined as the origin O. Then, s is the distance from the origin O, and φ is the azimuth angle from the orientation axis z.

この極座標における散乱強度I(s)は、以下の(式2)で表される。 The scattering intensity I (s) in this polar coordinate is represented by the following (Equation 2).

なお、この散乱強度I(s)は炭素繊維が1本の場合である。ここで、繊維強化複合材Hには、3次元の配向分布があるため、その3次元配向分布も考慮する。3次元配向分布関数をf(φ’、α)とする。なお、極座標に対し、配向軸z周りに角度αずれた位置での方位角をφ’とすると、3次元配向分布を考慮した散乱強度Iは、以下の(式1)で表される。 The scattering intensity I (s) is the case where there is only one carbon fiber. Here, since the fiber-reinforced composite material H has a three-dimensional orientation distribution, the three-dimensional orientation distribution is also taken into consideration. Let the three-dimensional orientation distribution function be f (φ', α). Assuming that the azimuth angle at a position deviated by an angle α about the orientation axis z with respect to the polar coordinates is φ', the scattering intensity I considering the three-dimensional orientation distribution is expressed by the following (Equation 1).

なお、上記した(式2)は、三角関数を用いると以下の(式3)で表される。 The above (Equation 2) is represented by the following (Equation 3) using trigonometric functions.

また、上記(式1)において、以下の(式4)で示す部分は、図4に示すように、エバルトの反射球上に形成される微小面積である。この微小面積は、一辺sinφ’dαと、その一辺に交差する他辺dαとの積で算出される。そして、上記(式1)では、この微小面積も積分することで3次元方向での炭素繊維の配向分布が加味されることになる。 Further, in the above (Equation 1), the portion represented by the following (Equation 4) is a minute area formed on the reflection sphere of Ewald as shown in FIG. This minute area is calculated by the product of one side sinφ'dα and the other side dα intersecting the one side. Then, in the above (Equation 1), the orientation distribution of the carbon fibers in the three-dimensional direction is added by integrating this minute area as well.

したがって、(式1)では、3次元配向分布関数f(φ’、α)と、微小面積と、から、3次元配向分布を考慮した散乱強度I(φ)を算出することができる。 Therefore, in (Equation 1), the scattering intensity I (φ) in consideration of the three-dimensional orientation distribution can be calculated from the three-dimensional orientation distribution function f (φ', α) and the minute area.

取得工程S2において、測定部20のプロファイル取得部21は、(式1)から散乱強度I(φ)を算出し、算出した散乱強度I(φ)から散乱パターンに基づくプロファイルを取得する。 In the acquisition step S2, the profile acquisition unit 21 of the measurement unit 20 calculates the scattering intensity I (φ) from (Equation 1) and acquires a profile based on the scattering pattern from the calculated scattering intensity I (φ).

図5(a)に示すように、炭素繊維が配向軸zに引き揃っている場合、図5(b)に示すように、検出部12によって検出される散乱パターンは、中心の円を挟んで水平方向に延びるストリークPが生じるようになる。この散乱パターンを、横軸に方位角、縦軸に散乱強度としたプロファイルとすると、図5(c)に示すようなプロファイルとなる。なお、方位角は0°〜180°である。図5(c)に示すように、炭素繊維が配向軸zに引き揃っている場合のプロファイルでは、ピーク幅Wが狭く、配向分布が小さいことが示される。つまり、方位角φが90°付近に炭素繊維が集中していることが示される。 As shown in FIG. 5A, when the carbon fibers are aligned on the orientation axis z, the scattering pattern detected by the detection unit 12 sandwiches the central circle as shown in FIG. 5B. A streak P extending in the horizontal direction will be generated. When this scattering pattern is a profile in which the horizontal axis is the azimuth and the vertical axis is the scattering intensity, the profile is as shown in FIG. 5 (c). The azimuth is 0 ° to 180 °. As shown in FIG. 5C, in the profile when the carbon fibers are aligned on the orientation axis z, it is shown that the peak width W is narrow and the orientation distribution is small. That is, it is shown that the carbon fibers are concentrated in the vicinity of the azimuth angle φ of 90 °.

図6(a)に示すように、配向軸zに対して配向分布がある場合、図6(b)に示すように、散乱パターンは、水平方向に加え、上下方向に延びるストリークPが生じるようになる。図6(c)では、炭素繊維が配向軸zに引き揃っている場合のプロファイルを1点鎖線で示し、配向軸zに対して配向分布がある場合のプロファイルを実線で示している。配向軸zに対して配向分布がある場合は、散乱強度Iは、方位角φの範囲が広がり、ピーク幅Wが広がっている。このことから、配向分布が大きくなることが示される。 As shown in FIG. 6A, when there is an orientation distribution with respect to the orientation axis z, as shown in FIG. 6B, the scattering pattern is such that a streak P extending in the vertical direction is generated in addition to the horizontal direction. become. In FIG. 6C, the profile when the carbon fibers are aligned on the alignment axis z is shown by a chain line, and the profile when the carbon fibers are aligned with respect to the alignment axis z is shown by a solid line. When there is an orientation distribution with respect to the orientation axis z, the scattering intensity I has a wider range of the azimuth angle φ and a wider peak width W. From this, it is shown that the orientation distribution becomes large.

配向軸zに対して配向分布がある場合、プロファイルのピーク幅Wの広がりは、単純に配向分布の分、広がるわけではなく、炭素繊維が配向軸zに引き揃っている場合のピーク幅Wと、配向分布がある場合のピーク幅Wの二つに依存する。そこで、予測される配向分布関数、例えば正規分布関数から予め数点の方位角φ’での散乱強度Iを算出し、プロファイルのピーク幅Wの広がりを表す標準偏差σを複数算出し、ピーク幅Wの広がりと、実際の配向分布の関係を示す検量線を作成する。 When there is an orientation distribution with respect to the orientation axis z, the spread of the peak width W of the profile does not simply spread by the amount of the orientation distribution, but is the same as the peak width W when the carbon fibers are aligned with the orientation axis z. , It depends on the peak width W when there is an orientation distribution. Therefore, the scattering intensity I at several azimuth angles φ'is calculated in advance from the predicted orientation distribution function, for example, the normal distribution function, and a plurality of standard deviations σ representing the spread of the peak width W of the profile are calculated, and the peak width is calculated. Create a calibration line showing the relationship between the spread of W and the actual orientation distribution.

検量線はプロファイル計算部22によって作成される。プロファイル計算部22は、取得したプロファイルのピーク幅Wを測定するとともに、方位角φ’を異ならせた複数のプロファイルを作成し、各プロファイルのピーク幅Wの増加量と標準偏差σとの関係を表す検量線を作成する。 The calibration curve is created by the profile calculation unit 22. The profile calculation unit 22 measures the peak width W of the acquired profile, creates a plurality of profiles having different azimuth angles φ', and determines the relationship between the increase amount of the peak width W of each profile and the standard deviation σ. Create a calibration curve to represent.

まず、配向分布の広がりを標準偏差σで換算できるように散乱強度I(φ)を(式5)に変換する。 First, the scattering intensity I (φ) is converted into (Equation 5) so that the spread of the orientation distribution can be converted by the standard deviation σ.

なお、(式5)において、fσ(φ’,α)は、予測される配向分布関数、例えば正規分布関数である。 Note that in Equation (5), f σ (φ ' i, α j) , the orientation distribution function to be predicted, for example, a normal distribution function.

そして、(式5)を用いて散乱強度I(φ)を算出する。
次に、算出した散乱強度I(φ)に基づくプロファイルについて、そのピーク幅Wを、積分幅を用いた(式6)によって算出する。なお、ピーク幅Wは、半値幅を用いて算出してもよい。
Then, the scattering intensity I (φ k ) is calculated using (Equation 5).
Next, for the profile based on the calculated scattering intensity I (φ k ), the peak width W is calculated by (Equation 6) using the integrated width. The peak width W may be calculated using the full width at half maximum.

次に、ピーク幅Wの広がりを表すピーク幅Wの増加量Δbσを(式7)に基づいて算出する。(式7)において、ピーク幅Wの増加量Δbσは、算出した散乱強度Iに基づくピーク幅W(bσ)から、1本の炭素繊維の完全配向でのプロファイルにおけるピーク幅W(b)を差し引いて算出される。 Next, the amount of increase Δb σ of the peak width W representing the spread of the peak width W is calculated based on (Equation 7). In (Equation 7), the increase amount Δb σ of the peak width W is the peak width W (b 0 ) in the profile of one carbon fiber in the perfect orientation from the peak width W (b σ ) based on the calculated scattering intensity I. ) Is subtracted.

そして、ピーク幅Wの増加量Δbσと標準偏差σとの関係を、累乗の式を用いて近似式を算出して検量線を作成する。配向分布算出工程S3では、作成された検量線にピーク幅Wの増加量Δbσを代入することで、配向分布の標準偏差σを算出できる。この標準偏差σの算出は、配向分布演算部23によって行われる。配向分布において、標準偏差σの値が小さいほど、炭素繊維は、配向軸zに沿っており、3次元配向へのばらつきが小さいことを示す。標準偏差σの値が大きいほど、炭素繊維は、配向軸zに対し、3次元方向に大きくばらついていることを示す。そして、測定部20は、算出された標準偏差σを表示部30に表示させる。なお、取得されたプロファイルにおいて、ピーク幅Wが大きく増加して、増加量が定義できない場合は、炭素繊維の配向分布は無配向に相当する。 Then, an approximate equation is calculated using the power equation for the relationship between the increase amount Δb σ of the peak width W and the standard deviation σ, and a calibration curve is created. In the orientation distribution calculation step S3, the standard deviation σ of the orientation distribution can be calculated by substituting the increase amount Δb σ of the peak width W into the created calibration curve. The calculation of the standard deviation σ is performed by the orientation distribution calculation unit 23. In the orientation distribution, the smaller the value of the standard deviation σ, the smaller the variation in the three-dimensional orientation of the carbon fibers along the orientation axis z. The larger the value of the standard deviation σ, the greater the variation of the carbon fibers in the three-dimensional direction with respect to the orientation axis z. Then, the measuring unit 20 causes the display unit 30 to display the calculated standard deviation σ. In the acquired profile, when the peak width W increases significantly and the amount of increase cannot be defined, the orientation distribution of the carbon fibers corresponds to non-orientation.

上記実施形態によれば、以下のような効果を得ることができる。
(1)取得工程S2において、プロファイル取得部21は(式1)を用いることで、小角X線散乱によって得られる散乱X線の3次元での散乱強度を算出でき、その散乱強度からプロファイルを取得できる。このため、(式1)を用いることで、炭素繊維の配向分布を3次元的に捉えたプロファイルを取得できる。そして、配向分布算出工程S3で配向分布演算部23が配向分布を算出することにより、繊維強化複合材Hにおいて、炭素繊維の3次元的な配向分布を測定できる。
According to the above embodiment, the following effects can be obtained.
(1) In the acquisition step S2, the profile acquisition unit 21 can calculate the three-dimensional scattering intensity of the scattered X-rays obtained by small-angle X-ray scattering by using (Equation 1), and acquire the profile from the scattering intensity. it can. Therefore, by using (Equation 1), it is possible to obtain a profile that captures the orientation distribution of carbon fibers in three dimensions. Then, the orientation distribution calculation unit 23 calculates the orientation distribution in the orientation distribution calculation step S3, so that the three-dimensional orientation distribution of the carbon fibers can be measured in the fiber-reinforced composite material H.

(2)配向分布算出工程S3では、配向分布演算部23は検量線を作成し、検量線に積分幅の増加量を代入することで、炭素繊維の3次元的な配向分布を迅速に得ることができる。 (2) In the orientation distribution calculation step S3, the orientation distribution calculation unit 23 creates a calibration curve and substitutes the increase amount of the integral width into the calibration curve to quickly obtain a three-dimensional orientation distribution of the carbon fibers. Can be done.

(3)繊維配向分布測定システム100は、表示部30を備える。測定部20は、表示部30に配向分布を表示させるため、作業者は配向分布を容易に確認できる。
(4)小角X線散乱装置10において、検出部12で検出される散乱パターンはX線照射部11と検出部12との距離Lに依存し、繊維強化複合材Hの厚さの影響も受ける。広角X線回折の場合は、繊維強化複合材Hの厚さが厚いと距離Lに対する影響が大きいため、精度が低下しやすいが、小角X線散乱を用いるため、距離Lが長く、繊維強化複合材Hの厚さの影響が小さくなり、より高精度な配向分布の評価が可能になる。
(3) The fiber orientation distribution measurement system 100 includes a display unit 30. Since the measuring unit 20 displays the orientation distribution on the display unit 30, the operator can easily confirm the orientation distribution.
(4) In the small-angle X-ray scattering device 10, the scattering pattern detected by the detection unit 12 depends on the distance L between the X-ray irradiation unit 11 and the detection unit 12, and is also affected by the thickness of the fiber-reinforced composite material H. .. In the case of wide-angle X-ray diffraction, if the thickness of the fiber-reinforced composite material H is large, the effect on the distance L is large and the accuracy tends to decrease. However, since small-angle X-ray scattering is used, the distance L is long and the fiber-reinforced composite The influence of the thickness of the material H is reduced, and more accurate evaluation of the orientation distribution becomes possible.

実施形態は、以下のように変更して実施することができる。実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○ 繊維配向分布測定システム100は、表示部30を備えていなくてもよい。この場合、測定部20は、配向分布演算部23によって算出された配向分布を繊維強化複合材Hにおける強化基材の製造装置にフィードバックしてもよい。そして、強化基材の製造装置は、フィードバックされた配向分布に従って、炭素繊維の配向を調整してもよい。
The embodiment can be modified and implemented as follows. The embodiments and the following modifications can be implemented in combination with each other to the extent that they are technically consistent.
○ The fiber orientation distribution measurement system 100 does not have to include the display unit 30. In this case, the measuring unit 20 may feed back the orientation distribution calculated by the orientation distribution calculation unit 23 to the apparatus for manufacturing the reinforcing base material in the fiber-reinforced composite material H. Then, the reinforcing base material manufacturing apparatus may adjust the orientation of the carbon fibers according to the feedback orientation distribution.

○ 繊維配向分布測定システム100において、配向分布算出工程S3では、配向分布演算部23は、検量線を用いることなく配向分布を算出してもよい。この場合、完全配向したプロファイルのピーク幅Wに対して、測定した繊維強化複合材Hのプロファイルのピーク幅Wを比較して配向分布を算出する。 ○ In the fiber orientation distribution measurement system 100, in the orientation distribution calculation step S3, the orientation distribution calculation unit 23 may calculate the orientation distribution without using a calibration curve. In this case, the orientation distribution is calculated by comparing the peak width W of the profile of the measured fiber-reinforced composite material H with the peak width W of the fully oriented profile.

○ 取得工程S2でプロファイルを取得せず、配向分布算出工程S3では、(式1)を用いて算出した散乱強度と方位角φ’との関係から配向分布を算出してもよい。
○ (式1)の配向分布関数に2次元の配向分布関数を代入して、2次元での配向分布を算出してもよい。
○ In the orientation distribution calculation step S3, the orientation distribution may be calculated from the relationship between the scattering intensity calculated using (Equation 1) and the azimuth angle φ'without acquiring the profile in the acquisition step S2.
○ The two-dimensional orientation distribution function may be calculated by substituting the two-dimensional orientation distribution function into the orientation distribution function of (Equation 1).

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(1)前記強化繊維は炭素繊維である。
Next, the technical idea that can be grasped from the above embodiment and another example will be added below.
(1) The reinforcing fiber is a carbon fiber.

H…繊維強化複合材、10…小角X線散乱装置、21…プロファイル取得部、22…プロファイル計算部、23…配向分布演算部、30…表示部。 H ... Fiber-reinforced composite material, 10 ... Small-angle X-ray scattering device, 21 ... Profile acquisition unit, 22 ... Profile calculation unit, 23 ... Orientation distribution calculation unit, 30 ... Display unit.

Claims (4)

強化繊維を含む繊維強化複合材に対するX線の照射によって散乱するX線のうち、散乱角の小さい散乱X線を検出して前記繊維強化複合材における前記強化繊維の配向分布を測定する繊維配向分布測定方法であって、
前記散乱X線を取得する散乱X線取得工程と、
前記強化繊維の配向軸に直交する1軸をx軸、前記x軸と前記配向軸の交点を原点とし、前記原点から距離sの位置にある点について前記配向軸に対する方位角をφ、前記配向軸の周りでの角度をα、前記配向軸の周りで前記角度αずれた位置での前記方位角をφ’とし、
前記散乱X線取得工程の後に行われ、前記散乱X線の3次元での散乱強度を下記の(式1)から算出し、前記方位角φ’と前記散乱強度との関係を取得する取得工程と、
前記取得工程の後に行われ、取得した前記関係から前記繊維強化複合材における前記強化繊維の配向分布を算出する配向分布算出工程と、を含むことを特徴とする繊維配向分布測定方法。
Fiber orientation distribution for measuring the orientation distribution of the reinforcing fibers in the fiber-reinforced composite material by detecting scattered X-rays having a small scattering angle among the X-rays scattered by irradiation of the fiber-reinforced composite material containing the reinforcing fibers with X-rays. It ’s a measurement method,
The scattered X-ray acquisition step for acquiring the scattered X-rays and
One axis orthogonal to the orientation axis of the reinforcing fiber is the x-axis, the intersection of the x-axis and the alignment axis is the origin, and the azimuth angle with respect to the alignment axis is φ at a point located at a distance s from the origin, and the orientation. Let α be the angle around the axis, and φ'be the azimuth at the position where the angle α deviates around the alignment axis.
An acquisition step performed after the scattered X-ray acquisition step, in which the scattering intensity of the scattered X-rays in three dimensions is calculated from the following (Equation 1), and the relationship between the azimuth angle φ'and the scattering intensity is acquired. When,
A fiber orientation distribution measuring method, which is performed after the acquisition step and includes an orientation distribution calculation step of calculating the orientation distribution of the reinforcing fibers in the fiber-reinforced composite material from the acquired relationship.
前記取得工程では、前記方位角φ’と前記散乱強度との関係を示すプロファイルを取得し、前記配向分布算出工程では、前記方位角φ’を異ならせた前記プロファイルを複数作成し、各プロファイルのピーク幅の増加量と前記配向分布との関係を表す検量線を作成し、前記検量線から前記配向分布を算出する請求項1に記載の繊維配向分布測定方法。 In the acquisition step, profiles showing the relationship between the azimuth φ'and the scattering intensity are acquired, and in the orientation distribution calculation step, a plurality of the profiles having different azimuths φ'are created, and each profile The fiber orientation distribution measuring method according to claim 1, wherein a calibration curve showing the relationship between the amount of increase in the peak width and the orientation distribution is created, and the orientation distribution is calculated from the calibration curve. 強化繊維を含む繊維強化複合材に対するX線の照射によって散乱するX線のうち、散乱角の小さい散乱X線を検出する小角X線散乱装置と、
前記強化繊維の配向軸に直交する1軸をx軸、前記x軸と前記配向軸の交点を原点とし、原点から距離sの位置にある点について前記配向軸に対する方位角をφ、前記配向軸の周りでの角度をα、前記配向軸の周りで前記角度αずれた位置での前記方位角をφ’とした場合、
前記小角X線散乱装置から取得される前記散乱X線の3次元での散乱強度を下記の(式1)から算出し、前記方位角φ’と前記散乱強度との関係を示すプロファイルを取得するプロファイル取得部と、
取得した前記プロファイルのピーク幅を測定するとともに、前記方位角φ’を異ならせた前記プロファイルを複数作成し、各プロファイルのピーク幅の増加量と配向分布との関係を表す検量線を作成するプロファイル計算部と、
前記検量線から前記配向分布を算出する配向分布演算部と、を有することを特徴とする繊維配向分布測定システム。
A small-angle X-ray scattering device that detects scattered X-rays with a small scattering angle among the X-rays scattered by irradiating a fiber-reinforced composite material containing reinforcing fibers with X-rays.
One axis orthogonal to the alignment axis of the reinforcing fiber is the x-axis, the intersection of the x-axis and the alignment axis is the origin, and the azimuth angle with respect to the alignment axis is φ for a point located at a distance s from the origin, and the alignment axis. When the angle around the is α, and the azimuth at a position deviated by the angle α around the orientation axis is φ',
The three-dimensional scattering intensity of the scattered X-rays acquired from the small-angle X-ray scattering device is calculated from the following (Equation 1), and a profile showing the relationship between the azimuth angle φ'and the scattering intensity is acquired. Profile acquisition department and
A profile that measures the acquired peak width of the profile, creates a plurality of the profiles with different azimuths φ', and creates a calibration curve showing the relationship between the increase in the peak width of each profile and the orientation distribution. Calculation department and
A fiber orientation distribution measurement system comprising an orientation distribution calculation unit for calculating the orientation distribution from the calibration curve.
前記配向分布演算部によって算出された配向分布を表示する表示部を備える請求項3に記載の繊維配向分布測定システム。 The fiber orientation distribution measurement system according to claim 3, further comprising a display unit that displays the orientation distribution calculated by the orientation distribution calculation unit.
JP2019070469A 2019-04-02 2019-04-02 Fiber orientation distribution measuring method and fiber orientation distribution measuring system Active JP7181600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070469A JP7181600B2 (en) 2019-04-02 2019-04-02 Fiber orientation distribution measuring method and fiber orientation distribution measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070469A JP7181600B2 (en) 2019-04-02 2019-04-02 Fiber orientation distribution measuring method and fiber orientation distribution measuring system

Publications (2)

Publication Number Publication Date
JP2020169852A true JP2020169852A (en) 2020-10-15
JP7181600B2 JP7181600B2 (en) 2022-12-01

Family

ID=72746325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070469A Active JP7181600B2 (en) 2019-04-02 2019-04-02 Fiber orientation distribution measuring method and fiber orientation distribution measuring system

Country Status (1)

Country Link
JP (1) JP7181600B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090259A (en) * 2014-10-30 2016-05-23 三菱レイヨン株式会社 Method, program, device and system for calculating degree of fiber orientation
JP2018123268A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Fiber-reinforced plastic
JP2018155673A (en) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 Calculation method of tensile modulus of fiber composite material, calculation program, calculation device and calculation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090259A (en) * 2014-10-30 2016-05-23 三菱レイヨン株式会社 Method, program, device and system for calculating degree of fiber orientation
JP2018123268A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Fiber-reinforced plastic
JP2018155673A (en) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 Calculation method of tensile modulus of fiber composite material, calculation program, calculation device and calculation system

Also Published As

Publication number Publication date
JP7181600B2 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7067221B2 (en) X-ray system
Vanaerschot et al. Stochastic framework for quantifying the geometrical variability of laminated textile composites using micro-computed tomography
Nasseri et al. Fracture toughness and fracture roughness in anisotropic granitic rocks
Hufenbach et al. A test device for damage characterisation of composites based on in situ computed tomography
Croom et al. Unveiling 3D deformations in polymer composites by coupled micro X-ray computed tomography and volumetric digital image correlation
Jespersen et al. Uncovering the fatigue damage initiation and progression in uni-directional non-crimp fabric reinforced polyester composite
JP2006518849A (en) Automatic substance identification by using computer tomography
CN104603604B (en) A method of characterization article made of composite material
Wilhelmsson et al. Influence of in-plane shear on kink-plane orientation in a unidirectional fibre composite
Lobanov et al. Effect of increased temperatures on the deformation and strength characteristics of a GFRP based on a fabric of volumetric weave
Shen et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms
López-Santos et al. Measurement of in-plane and out-of-plane elastic properties of woven fabric composites using digital image correlation
JP2020169852A (en) Fiber orientation distribution measuring method and fiber orientation distribution measuring system
Lobanov et al. Mathematical data processing according to digital image correlation method for polymer composites
Tableau et al. Accurate measurement of in-plane and out-of-plane shear moduli on 3D woven SiC-SiBC material
Melenka et al. Advanced testing of braided composite materials
Chen et al. Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose composites
Engqvist et al. Multi-scale measurement of (amorphous) polymer deformation: simultaneous x-ray scattering, digital image correlation and in-situ loading
Ali et al. The role of “thickness effect” on the damage progression and crack growth inside the plain-woven carbon fiber composites
JP6860463B2 (en) Fiber orientation measuring method, fiber orientation measuring device, and control program of fiber orientation measuring device
WO2018079649A1 (en) Method and device for measuring width of gap in reinforced fiber laminate
Demir et al. A numerical methodology for monitoring stress distributions and experimental proof of the concept on metal embedded thin polymer-matrix composites using X-ray Diffraction
Zhang et al. Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle
JP2022093509A (en) X-ray imaging system
Krieger et al. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220207

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7181600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150