JP2020167347A - Semiconductor device and apparatus - Google Patents

Semiconductor device and apparatus Download PDF

Info

Publication number
JP2020167347A
JP2020167347A JP2019068892A JP2019068892A JP2020167347A JP 2020167347 A JP2020167347 A JP 2020167347A JP 2019068892 A JP2019068892 A JP 2019068892A JP 2019068892 A JP2019068892 A JP 2019068892A JP 2020167347 A JP2020167347 A JP 2020167347A
Authority
JP
Japan
Prior art keywords
plate
semiconductor device
resin member
resin
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019068892A
Other languages
Japanese (ja)
Inventor
蜂巣 高弘
Takahiro Hachisu
高弘 蜂巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019068892A priority Critical patent/JP2020167347A/en
Publication of JP2020167347A publication Critical patent/JP2020167347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)
  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

To provide an advantageous technology for improving the reliability of a semiconductor device.SOLUTION: A device plate 10 is disposed between a facing plate 20 and a circuit plate 30. The circuit plate 30 has an overlapping portion 31 that overlaps with the device plate 10 and a non-overlapping portion 32 that does not overlap the device plate 10. A resin member 16 in contact with the non-overlapping portion 32 of the device plate 10 and the circuit plate 30 is in contact with a contact region 21 of a side surface 200 of the facing plate 20 and not in contact with a non-contact region 22 of the side surface 200 of the facing plate 20.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.

半導体装置においては、電子部品は、電子部品を支持するための回路板等に実装される。複数の板を含む電子部品を良好に実装する技術が求められる。特許文献1には、第1の基板と第2の基板で形成されたチップを実装基板に実装し、アンダーフィルを形成した半導体装置が開示されている。 In a semiconductor device, electronic components are mounted on a circuit board or the like for supporting the electronic components. A technique for satisfactorily mounting electronic components including a plurality of plates is required. Patent Document 1 discloses a semiconductor device in which a chip formed of a first substrate and a second substrate is mounted on a mounting substrate to form an underfill.

WO16/203967号公報WO16 / 203967

特許文献1の技術では半導体装置の信頼性が不十分であるので、本発明は、半導体装置の信頼性を向上するうえで有利な技術を提供することを目的とする。 Since the reliability of the semiconductor device is insufficient with the technique of Patent Document 1, it is an object of the present invention to provide an advantageous technique for improving the reliability of the semiconductor device.

上記課題を解決するための手段は、半導体装置であって、電子デバイスを構成する第1板と、前記第1板に対向する第2板と、前記第1板を支持する前記第3板と、を備える半導体装置であって、前記第2板と前記第3板との間に前記第1板が配されており、記第3板は、前記第1板に重なる第1部分と、前記第1板に重ならない第2部分と、を有し、前記第1板および前記第3板の前記第2部分に接触する樹脂部材をさらに備え、前記樹脂部材は、前記第2板の側面の第1領域に接触し、かつ、前記第2板の側面の第2領域に接触しない、ことを特徴とする。 The means for solving the above-mentioned problems is a semiconductor device, the first plate constituting the electronic device, the second plate facing the first plate, and the third plate supporting the first plate. A semiconductor device comprising the above, wherein the first plate is arranged between the second plate and the third plate, and the third plate is a first portion overlapping the first plate and the above. A resin member having a second portion that does not overlap the first plate and that contacts the first plate and the second portion of the third plate is further provided, and the resin member is a side surface of the second plate. It is characterized in that it contacts the first region and does not contact the second region on the side surface of the second plate.

本発明によれば、半導体装置の信頼性を向上するうえで有利な技術を提供することができる。 According to the present invention, it is possible to provide an advantageous technique for improving the reliability of a semiconductor device.

半導体装置を説明する模式図。The schematic diagram explaining the semiconductor device. 半導体装置を説明する模式図。The schematic diagram explaining the semiconductor device. 機器を説明する模式図。The schematic diagram explaining the device.

以下、図面を参照して、本発明を実施するための形態の一例を説明する。なお、以下の説明および図面において、複数の図面に渡って共通の構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。 Hereinafter, an example of a mode for carrying out the present invention will be described with reference to the drawings. In the following description and drawings, common reference numerals are given to common configurations across a plurality of drawings. Therefore, a plurality of drawings will be referred to each other to explain a common configuration, and a configuration with a common reference numeral will be omitted as appropriate.

図1(a)は半導体装置の断面模式図、図1(b)は図1(a)の部分Aの拡大図、図1(c)は半導体装置の平面模式図である。半導体装置の断面模式図は、図1(c)のB−B線における半導体装置の断面に対応する。 1 (a) is a schematic cross-sectional view of the semiconductor device, FIG. 1 (b) is an enlarged view of a portion A of FIG. 1 (a), and FIG. 1 (c) is a schematic plan view of the semiconductor device. The schematic cross-sectional view of the semiconductor device corresponds to the cross section of the semiconductor device in line BB of FIG. 1 (c).

半導体装置は、電子デバイス11を構成するデバイス板10と、デバイス板10に対向する対向板20と、デバイス板10を支持す支持板30と、を備える。対向板20と支持板30との間にデバイス板10が配されている。支持板30は、デバイス板10に重なる重複部分31と、デバイス板10に重ならない非重複部分32と、を有する。半導体装置は、デバイス板10および支持板30の非重複部分32に接触する樹脂部材16をさらに備える。 The semiconductor device includes a device plate 10 that constitutes the electronic device 11, a counter plate 20 that faces the device plate 10, and a support plate 30 that supports the device plate 10. The device plate 10 is arranged between the facing plate 20 and the support plate 30. The support plate 30 has an overlapping portion 31 that overlaps the device plate 10 and a non-overlapping portion 32 that does not overlap the device plate 10. The semiconductor device further includes a resin member 16 that comes into contact with the non-overlapping portion 32 of the device plate 10 and the support plate 30.

対向板20は、2つの主面201、202と、主面201、202に連続する側面200と、を有する。主面201を上面、外面、表面と称し、主面202を下面、内面、裏面と称することができる。対向板20は、例えば、電子デバイス11を保護する保護板であり、例えば、電子デバイス11への光、あるいは電子デバイス11からの光を透過する透光板である。対向板20が電子デバイスを構成することもできる。支持板30は回路板あるいは配線板である。例えば、リジット基板を有するプリント回路板であるが、フレキシブル基板を有するプリント配線板であってもよい。図1(c)に示す様に、本例の支持板30はコネクタ部品34や受動部品33を有する回路板である。或る例では、電子デバイス11が撮像デバイスであり、別の例では、電子デバイス11が表示デバイスであるが、これに限らず一般的な半導体デバイスであってよい。 The facing plate 20 has two main surfaces 201 and 202 and a side surface 200 continuous with the main surfaces 201 and 202. The main surface 201 can be referred to as an upper surface, an outer surface, and a front surface, and the main surface 202 can be referred to as a lower surface, an inner surface, and a back surface. The facing plate 20 is, for example, a protective plate that protects the electronic device 11, and is, for example, a translucent plate that transmits light to the electronic device 11 or light from the electronic device 11. The facing plate 20 can also form an electronic device. The support plate 30 is a circuit board or a wiring board. For example, although it is a printed circuit board having a rigid board, it may be a printed wiring board having a flexible board. As shown in FIG. 1 (c), the support plate 30 of this example is a circuit plate having a connector component 34 and a passive component 33. In one example, the electronic device 11 is an imaging device, and in another example, the electronic device 11 is a display device, but the present invention is not limited to this and may be a general semiconductor device.

樹脂部材16は、対向板20の側面200の接触領域21に接触し、かつ、対向板20の側面200の非接触領域22に接触しない。接触領域21が非接触領域22と支持板30との間に位置する。このように本例では接触領域21と非接触領域22とがZ方向に並んでいるが、接触領域21と非接触領域22とがX方向あるいはY方向に並んでもよい。対向板20はデバイス板10よりも厚い。対向板20とデバイス板10とが重なる方向Zにおいて、接触領域21の長さは非接触領域22の長さよりも小さい。樹脂部材16は、対向板20のデバイス板10の側とは反対側の面を覆わない。 The resin member 16 contacts the contact region 21 of the side surface 200 of the facing plate 20 and does not contact the non-contact region 22 of the side surface 200 of the facing plate 20. The contact area 21 is located between the non-contact area 22 and the support plate 30. As described above, in this example, the contact area 21 and the non-contact area 22 are arranged in the Z direction, but the contact area 21 and the non-contact area 22 may be arranged in the X direction or the Y direction. The facing plate 20 is thicker than the device plate 10. In the direction Z in which the facing plate 20 and the device plate 10 overlap, the length of the contact region 21 is smaller than the length of the non-contact region 22. The resin member 16 does not cover the surface of the facing plate 20 opposite to the side of the device plate 10.

本例では、樹脂部材16はデバイス板10と支持板30の重複部分31との間に延在する。デバイス板10と支持板30の重複部分31との間に位置する樹脂部材が、対向板20やデバイス板10、非重複部分32に接触する樹脂部材16と異なる樹脂材料で構成されていてもよい。半導体装置は、デバイス板10と支持板30とを電気的に接続する導電部材15をさらに備える。デバイス板10と支持板30との間には、デバイス板10と支持板30とを電気的に接続する導電部材15が配されている。樹脂部材16が導電部材15に接触する。 In this example, the resin member 16 extends between the device plate 10 and the overlapping portion 31 of the support plate 30. The resin member located between the device plate 10 and the overlapping portion 31 of the support plate 30 may be made of a resin material different from the resin member 16 that contacts the facing plate 20, the device plate 10, and the non-overlapping portion 32. .. The semiconductor device further includes a conductive member 15 that electrically connects the device plate 10 and the support plate 30. A conductive member 15 that electrically connects the device plate 10 and the support plate 30 is arranged between the device plate 10 and the support plate 30. The resin member 16 comes into contact with the conductive member 15.

図1(b)に示すように、対向板20とデバイス板10とが重なる方向Zにおける、樹脂部材16が対向板20の側面に接触する接触領域21の寸法Wは、対向板20とデバイス板10との間の距離Dの0.8〜1.2倍である。樹脂部材16の対向板20の側面を覆う部分の、対向板20の側面の法線方向Xにおける寸法Tは、対向板20とデバイス板10との間の距離Dの0.8〜1.2倍である。対向板20とデバイス板10との間の距離Dは、デバイス板10と支持板30との間の距離Gよりも小さい。 As shown in FIG. 1B, the dimension W of the contact region 21 in which the resin member 16 contacts the side surface of the facing plate 20 in the direction Z in which the facing plate 20 and the device plate 10 overlap is the facing plate 20 and the device plate. It is 0.8 to 1.2 times the distance D between 10 and 10. The dimension T of the portion of the resin member 16 that covers the side surface of the facing plate 20 in the normal direction X of the side surface of the facing plate 20 is 0.8 to 1.2 of the distance D between the facing plate 20 and the device plate 10. It is double. The distance D between the facing plate 20 and the device plate 10 is smaller than the distance G between the device plate 10 and the support plate 30.

本例は、デバイス板10と対向板20と接合部材14とが電子部品100を構成している。対向板20は、電子デバイス11が撮像デバイスや表示デバイスのような光デバイスである場合には、光透過性のあるガラス板や結晶板、樹脂板を用いる。対向板20の厚さは、例えば100〜1000μm、好ましくは約250〜750μmである。デバイス板10の厚さは、例えば10〜1000μm、好ましくは、50〜500μmである。デバイス板10は対向板20よりも薄くてよい。電子部品100は、WL−CSP(Wafer Level Chip Size Package)プロセスを経て個片化された電子部品である。WLCSPとは、複数の半導体素子をウエハに一括形成した状態のままパッケージ組立工程を行い、その後、裏面配線などのプロセスを経て、上記半導体素子ごとに電子部品として個片化する技術である。デバイス板10は表面と裏面を有する。デバイス板10の表面側にはMOSトランジスタ、配線層、層間絶縁膜層が一般的な半導体プロセスを用いて形成され、さらにその上部にはカラーフィルターやマイクロレンズが形成さている。電子デバイス11は、いわゆる表面照射型イメージセンサー(FSI)と呼ばれる撮像デバイスの構造を有している。電子デバイス11は、裏面照射型イメージセンサー(BSI)と呼ばれる撮像デバイスの構造を有してもよい。また、電子部品100は、積層型イメージセンサーであってもよく、その場合には、デバイス板10にイメージプロセッサを配置し、対向板20にイメージセンサーを配置することできる。 In this example, the device plate 10, the facing plate 20, and the joining member 14 constitute the electronic component 100. When the electronic device 11 is an optical device such as an imaging device or a display device, the facing plate 20 uses a light-transmitting glass plate, crystal plate, or resin plate. The thickness of the facing plate 20 is, for example, 100 to 1000 μm, preferably about 250 to 750 μm. The thickness of the device plate 10 is, for example, 10 to 1000 μm, preferably 50 to 500 μm. The device plate 10 may be thinner than the facing plate 20. The electronic component 100 is an electronic component that has been individualized through a WL-CSP (Wafer Level Chip Size Package) process. WLCSP is a technology in which a package assembly process is performed with a plurality of semiconductor elements collectively formed on a wafer, and then the semiconductor elements are individually separated as electronic components through processes such as backside wiring. The device plate 10 has a front surface and a back surface. A MOS transistor, a wiring layer, and an interlayer insulating film layer are formed on the surface side of the device plate 10 by using a general semiconductor process, and a color filter and a microlens are further formed on the surface side thereof. The electronic device 11 has a structure of an imaging device called a so-called surface-illuminated image sensor (FSI). The electronic device 11 may have a structure of an imaging device called a back-illuminated image sensor (BSI). Further, the electronic component 100 may be a laminated image sensor, in which case the image processor can be arranged on the device plate 10 and the image sensor can be arranged on the facing plate 20.

対向板20はデバイス板10から離間している。対向板20とデバイス板10との間には、対向板20とデバイス板10とを接合する接合部材14が配されている。接合部材14は接着性能を持つ光透過性の樹脂からなり、例えば、弾性率が0.5〜2.0GPaの値をもつ熱硬化性アクリル系材料である。この接合部材14の厚みは例えば30〜50μmである。なお、接合部材14は、光透過性、接着性を有すれば他の樹脂でもよく、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂なども好適に用いられうる。また、熱硬化型だけでなく紫外線などの光硬化型の樹脂を用いてもよい。接合部材14は樹脂部材16とは異なる樹脂材料からなる。樹脂部材16の弾性率は、接合部材14の弾性率よりも高いことが好ましい。接合部材14は、接合面で酸化シリコンのような無機絶縁材料同士が接合を成す部材であってもよい。また、接合部材14は、接合面に絶縁体同士の接合と導電体同士の接合とが共存するハイブリッド接合を成す部材であってもよい。 The facing plate 20 is separated from the device plate 10. A joining member 14 for joining the facing plate 20 and the device plate 10 is arranged between the facing plate 20 and the device plate 10. The joining member 14 is made of a light-transmitting resin having adhesive performance, and is, for example, a thermosetting acrylic material having an elastic modulus of 0.5 to 2.0 GPa. The thickness of the joining member 14 is, for example, 30 to 50 μm. The joining member 14 may be made of another resin as long as it has light transmittance and adhesiveness, and an epoxy resin, a urethane resin, a silicone resin, or the like can also be preferably used. Further, not only a thermosetting type resin but also a photocurable type resin such as ultraviolet rays may be used. The joining member 14 is made of a resin material different from that of the resin member 16. The elastic modulus of the resin member 16 is preferably higher than the elastic modulus of the joining member 14. The joining member 14 may be a member in which inorganic insulating materials such as silicon oxide are joined to each other on the joining surface. Further, the joining member 14 may be a member forming a hybrid joining in which the joining of insulators and the joining of conductors coexist on the joining surface.

デバイス板10の裏面側には、表面側に形成された電子デバイス11を駆動するために、再配線層13が、WL−CSPプロセスの中でフォトプロセスと銅めっきにより形成されている。この再配線層13は、裏面側から表面側へ貫通電極12(TSV:Through Silicon Via)を経由して電気的に接続している。 On the back surface side of the device plate 10, a rewiring layer 13 is formed by a photo process and copper plating in the WL-CSP process in order to drive the electronic device 11 formed on the front surface side. The rewiring layer 13 is electrically connected from the back surface side to the front surface side via a through electrode 12 (TSV: Through Silicon Via).

この貫通電極12の形成においては、いわゆるボッシュプロセスを用いて、デバイス板10となるシリコンウエハの裏面側から表面側に向かって垂直方向Zにエッチング処理し、表面側に形成されているパッド電極に達する貫通孔を形成する。ボッシュプロセスのエッチングガスとしては、SFとCとOの混合ガスを用いることができる。そして、貫通孔の中に、パッド電極に接続する導電材料を形成して、貫通電極12となる。 In the formation of the through electrode 12, a so-called Bosch process is used to perform etching treatment in the vertical direction Z from the back surface side to the front surface side of the silicon wafer to be the device plate 10, and the pad electrode formed on the front surface side is formed. Form a through hole to reach. As the etching gas for the Bosch process, a mixed gas of SF 6 and C 4 F 8 and O 2 can be used. Then, a conductive material to be connected to the pad electrode is formed in the through hole to form the through electrode 12.

貫通電極12内部の構造については詳細な記載は省略するが、デバイス板10と再配線層13で形成した銅めっきとがショートしないようシリコン酸化膜やシリコン窒化膜を用いた絶縁材料で層間膜を形成している。また銅めっき処理は、スパッタ法などを用いて密着層としてチタン、めっきのシード層として銅を成膜してから電解めっき法などを用いて形成している。 Although detailed description of the internal structure of the through electrode 12 is omitted, the interlayer film is made of an insulating material using a silicon oxide film or a silicon nitride film so that the device plate 10 and the copper plating formed by the rewiring layer 13 do not short-circuit. Is forming. Further, in the copper plating treatment, titanium is formed as an adhesion layer by using a sputtering method or the like, and copper is formed as a seed layer for plating, and then formed by an electrolytic plating method or the like.

電子部品100は、デバイス板10の裏面側に形成された再配線層13に接続された半田バンプなどの導電部材15を介して、コネクタ部品34や受動部品33などの電気部品が形成された支持板30と電気的に接続されている。 The electronic component 100 is a support in which electrical components such as a connector component 34 and a passive component 33 are formed via a conductive member 15 such as a solder bump connected to a rewiring layer 13 formed on the back surface side of the device plate 10. It is electrically connected to the plate 30.

支持板30は、いわゆるプリント基板と呼ばれるプリント配線板であり、ガラスエポキシ基板やコンポジット基板などのリジッド基板に配線パターンがプリントされているものである。このとき、電子部品100と支持板30は、約230℃の窒素リフロー装置を用いて半田接合されるが、電子部品100と支持板30との線膨張係数が異なる場合、半田接合後に反りが生じてしまう。電子部品100に使用されているデバイス板10はシリコン板を用いて作られており、対向板20はガラス基板など透過性をもつ基板を用いることが典型的である。よって、電子部品100と支持板30との線膨張係数のズレが生じ、電子部品100が反った状態で固定されてしまう。 The support plate 30 is a printed wiring board, which is a so-called printed circuit board, and has a wiring pattern printed on a rigid substrate such as a glass epoxy board or a composite substrate. At this time, the electronic component 100 and the support plate 30 are solder-bonded using a nitrogen reflow device at about 230 ° C., but if the linear expansion coefficients of the electronic component 100 and the support plate 30 are different, warpage occurs after the solder bonding. It ends up. The device plate 10 used in the electronic component 100 is made of a silicon plate, and the facing plate 20 is typically made of a transparent substrate such as a glass substrate. Therefore, the coefficient of linear expansion of the electronic component 100 and the support plate 30 deviates from each other, and the electronic component 100 is fixed in a warped state.

例えば、電子部品100が3〜5ppm、支持板30が8〜16ppmの線膨張係数であるために、半田接合後には電子部品100が支持板30に対して凸形状となるように反ってしまう可能性がある。このような反った状態で実装信頼性試験を実施すると、信頼性試験の条件にもよるが温度変化が大きいため半田バンプである導電部材15と再配線層13との界面に大きなストレスがかかり、クラックが発生し、電気的に導通不良の可能性となってしまう。このような状態で実装信頼性試験を実施すると、信頼性試験の条件にもよるが温度変化が大きいため半田バンプである導電部材15と再配線層13との界面に大きなストレスがかかり、クラックが拡大し、電気的に導通不良となってしまう。 For example, since the electronic component 100 has a coefficient of linear expansion of 3 to 5 ppm and the support plate 30 has a coefficient of linear expansion of 8 to 16 ppm, the electronic component 100 may warp so as to have a convex shape with respect to the support plate 30 after solder bonding. There is sex. When the mounting reliability test is carried out in such a warped state, a large temperature change is applied depending on the conditions of the reliability test, so that a large stress is applied to the interface between the conductive member 15 which is a solder bump and the rewiring layer 13. Cracks will occur, which may result in poor electrical continuity. When the mounting reliability test is carried out in such a state, a large temperature change is applied depending on the conditions of the reliability test, so that a large stress is applied to the interface between the conductive member 15 which is a solder bump and the rewiring layer 13, and cracks occur. It expands and becomes electrically poor.

そこで、デバイス板10と支持板30との空隙部に樹脂部材16を注入(アンダーフィル)する。樹脂部材16の弾性率は接合部材14の弾性率に比べて大きい値をもち、例えば、硬化後の弾性率が5〜20GPa、例えば10GPa程度となるようなエポキシ系の材料を選択した。デバイス板10と支持板30との空隙部には半田バンプでる導電部材15がある間隔で形成されている。そのため、樹脂部材16を注入する際、ホットプレートなどを用いて電子部品100を100℃以下の温度で温めることで樹脂部材16の粘度を下げ、空孔を発生させないように樹脂部材16を注入、充填させていく。その後、電子部品100の側面にも樹脂部材16を、ディスペンサーなどを用いて、追加塗布形成を行う。その際にデバイス板10の側面および接着性の接合部材14の側面を覆うように形成し、さらに対向板20の側面200の一部の領域である接触領域21に接触するように形成したあと、例えば200℃のオーブンで熱硬化することで半導体装置が完成する。 Therefore, the resin member 16 is injected (underfilled) into the gap between the device plate 10 and the support plate 30. The elastic modulus of the resin member 16 has a value larger than the elastic modulus of the joining member 14, and for example, an epoxy-based material having an elastic modulus of 5 to 20 GPa after curing, for example, about 10 GPa was selected. Conductive members 15 made of solder bumps are formed at intervals in the gaps between the device plate 10 and the support plate 30. Therefore, when injecting the resin member 16, the viscosity of the resin member 16 is lowered by heating the electronic component 100 at a temperature of 100 ° C. or lower using a hot plate or the like, and the resin member 16 is injected so as not to generate holes. Let's fill it. After that, the resin member 16 is additionally coated on the side surface of the electronic component 100 by using a dispenser or the like. At that time, it is formed so as to cover the side surface of the device plate 10 and the side surface of the adhesive joining member 14, and further formed so as to come into contact with the contact region 21 which is a part of the side surface 200 of the facing plate 20. For example, a semiconductor device is completed by thermosetting in an oven at 200 ° C.

図1(b)に示すように、このとき対向板20の側面200の一部の領域である接触領域21とは、側面200の高さ方向Zの領域である。接触領域21の寸法Wは、側面200の上の接合部材14の寸法である厚さTの0.8〜1.2倍になるように形成されうる。接合部材14の側面に形成される樹脂部材16の厚さT(接合部材14の側面に対して垂直方向)は接合部材14の厚さDと概略同等(厚さDの0.8〜1.2倍)の厚みとなるように形成する。 As shown in FIG. 1B, the contact region 21 which is a part of the side surface 200 of the facing plate 20 at this time is a region of the side surface 200 in the height direction Z. The dimension W of the contact region 21 may be formed to be 0.8 to 1.2 times the thickness T, which is the dimension of the joining member 14 on the side surface 200. The thickness T of the resin member 16 formed on the side surface of the joining member 14 (in the direction perpendicular to the side surface of the joining member 14) is substantially the same as the thickness D of the joining member 14 (0.8 to 1. of the thickness D). It is formed so as to have a thickness of (twice).

このような構造において、樹脂部材16の弾性率が接合部材14の弾性率より大きい値であると、実装信頼性試験のような温度変化の大きい条件下においても接合部材14の変形を抑えることができる。さらに樹脂部材16の一部が対向板20をも拘束するため、接合部材14にストレスがかからなくなりクラックを抑制することが可能となる。 In such a structure, if the elastic modulus of the resin member 16 is larger than the elastic modulus of the joining member 14, the deformation of the joining member 14 can be suppressed even under a condition of large temperature change such as a mounting reliability test. it can. Further, since a part of the resin member 16 also restrains the facing plate 20, stress is not applied to the joining member 14, and cracks can be suppressed.

なお、対向板20の側面200の全領域を樹脂部材16で覆ってしまうと、さらに樹脂部材16の量が多いとその応力の大きさから対向板20へダメージがかかり、対向板20にカケなどの破壊が発生してしまう可能性がある。対向板20の主面201の全領域を樹脂部材16で覆ってしまっても同様である。そのため、対向板20の側面200の非接触領域22には樹脂部材16が接触しないようにする。これにより、対向板20にダメージが生じることを抑制できる。また、対向板20の主面201を樹脂部材16が覆うと、対向板20に入射する光を遮ったり乱反射したりするため、光学特性が低下してしまう。そのため、電子デバイス11が光デバイスであれば、樹脂部材16は、対向板20の主面201を樹脂部材16で覆わないことが好ましい。 If the entire area of the side surface 200 of the facing plate 20 is covered with the resin member 16, if the amount of the resin member 16 is further large, the facing plate 20 is damaged due to the magnitude of the stress, and the facing plate 20 is chipped or the like. There is a possibility that the destruction will occur. The same applies even if the entire region of the main surface 201 of the facing plate 20 is covered with the resin member 16. Therefore, the resin member 16 is prevented from coming into contact with the non-contact region 22 of the side surface 200 of the facing plate 20. As a result, it is possible to prevent damage to the facing plate 20. Further, when the resin member 16 covers the main surface 201 of the facing plate 20, the light incident on the facing plate 20 is blocked or diffusely reflected, so that the optical characteristics are deteriorated. Therefore, if the electronic device 11 is an optical device, it is preferable that the resin member 16 does not cover the main surface 201 of the facing plate 20 with the resin member 16.

デバイス板10と対向板20を貼り合わせた電子部品100が支持板30へ実装された半導体装置の実装信頼性に関しては、その線膨張係数のずれにより反りの影響が無視できなくなる。さらにその反りの影響を拡大させないために樹脂部材16を電子部品100と支持板30の間に充填できる。デバイス板10と対向板20とを貼り合せた構造を持つ電子部品100にとっては、貼り合せに使用している樹脂との関係が重要となりうる。 Regarding the mounting reliability of the semiconductor device in which the electronic component 100 in which the device plate 10 and the facing plate 20 are bonded is mounted on the support plate 30, the influence of the warp cannot be ignored due to the deviation of the coefficient of linear expansion. Further, the resin member 16 can be filled between the electronic component 100 and the support plate 30 so as not to increase the influence of the warp. For the electronic component 100 having a structure in which the device plate 10 and the facing plate 20 are bonded together, the relationship with the resin used for bonding may be important.

対向板20の側面200に樹脂部材16が接触しない構造とすると、貼り合せに使用する接合部材14が直接露出してしまうため、耐湿性に弱くなりうる。さらに反った状態で下面のみ固定された電子部品100にとって、上部(対向板20)が固定されていないため温度変化が大きな信頼性試験条件下では、電子部品100の上部と下部とで反りの変化量が異なってしまうため実装信頼性の寿命が短くなってしまう。 If the structure is such that the resin member 16 does not come into contact with the side surface 200 of the facing plate 20, the joining member 14 used for bonding is directly exposed, which may weaken the moisture resistance. Further, for the electronic component 100 in which only the lower surface is fixed in a warped state, the upper part (opposing plate 20) is not fixed, so that the temperature change is large. Under the reliability test condition, the warp changes between the upper part and the lower part of the electronic component 100. Since the amounts are different, the life of mounting reliability is shortened.

電子部品100の側面がすべて樹脂部材16で覆われていると、デバイス板10のクラックは抑制されるが、デバイス板10が樹脂部材16で固定されている状態で、接合部材14を介した対向板20側の拘束力が弱くなる。そのため、電子部品100にストレスが加わりダメージが発生してしまい、半導体装置としての品位が低下してしまう。 When all the side surfaces of the electronic component 100 are covered with the resin member 16, cracks in the device plate 10 are suppressed, but in a state where the device plate 10 is fixed by the resin member 16, they face each other via the joining member 14. The binding force on the plate 20 side becomes weaker. Therefore, stress is applied to the electronic component 100, which causes damage and deteriorates the quality of the semiconductor device.

また、デバイス板10と対向板20を貼り合せるために使用している接合部材14の側面を覆う樹脂部材16の量が不足すると、その部分をきっかけに接合部材14の内部にクラックが発生しうる。接合部材14にクラックが発生すると、そこを起点に大気中の水分が浸透し、密着強度が落ちてしまい、デバイス板10と対向板20とが剥がれてしまう可能性もある。 Further, if the amount of the resin member 16 covering the side surface of the joining member 14 used for bonding the device plate 10 and the facing plate 20 is insufficient, a crack may occur inside the joining member 14 as a result of that portion. .. When a crack is generated in the joining member 14, moisture in the atmosphere permeates from the crack, the adhesion strength is lowered, and the device plate 10 and the facing plate 20 may be peeled off.

以上のように、デバイス板10と対向板20が、支持板30上に搭載された半導体装置において、対向板20の側面200の一部の領域である接触領域21に樹脂部材16が接触することで、実装信頼性の高い半導体装置を提供することが可能となる。 As described above, in the semiconductor device in which the device plate 10 and the facing plate 20 are mounted on the support plate 30, the resin member 16 comes into contact with the contact region 21 which is a part of the side surface 200 of the facing plate 20. Therefore, it is possible to provide a semiconductor device with high mounting reliability.

図2(a)、(b)は半導体装置の他の例である。本例において図1の例と異なる部分は、電子部品100と支持板30との接続方法であり、以下に詳しく記載する。 2 (a) and 2 (b) are other examples of semiconductor devices. In this example, the portion different from the example of FIG. 1 is the connection method between the electronic component 100 and the support plate 30, which will be described in detail below.

本例で電子部品100は、デバイス板10および対向板20を含み、デバイス板10の表面側にはMOSトランジスタ、配線層、層間絶縁層が一般的な半導体プロセスを用いて形成されている。本例では液晶素子や有機EL素子などを用いた表示デバイスが形成されている。デバイス板10の表面側には電子デバイス11が形成されている素子領域、と素子領域の外側にある外部接続端子17が配された周辺領域とに区分されている。 In this example, the electronic component 100 includes a device plate 10 and a facing plate 20, and a MOS transistor, a wiring layer, and an interlayer insulating layer are formed on the surface side of the device plate 10 by using a general semiconductor process. In this example, a display device using a liquid crystal element, an organic EL element, or the like is formed. The surface side of the device plate 10 is divided into an element region in which the electronic device 11 is formed and a peripheral region in which the external connection terminal 17 outside the element region is arranged.

また、本例ではデバイス板10および対向板20は、接着性能を持つ光透過性の接合部材14で貼り合わされている。本例では、この接着性の接合部材14の厚みは約1〜20umで形成されており、熱硬化や紫外線硬化により硬化接着する弾性率が0.5〜2.0GPaの値をもつアクリル系の材料である。また、対向板20は、電子部品100が表示素子であることから、約500umの厚さをもつ光透過性のあるガラス基板を用いている。 Further, in this example, the device plate 10 and the facing plate 20 are bonded by a light-transmitting joining member 14 having adhesive performance. In this example, the adhesive bonding member 14 is formed to have a thickness of about 1 to 20 um, and is made of an acrylic material having an elastic modulus of 0.5 to 2.0 GPa that is cured and bonded by thermosetting or ultraviolet curing. It is a material. Further, since the electronic component 100 is a display element, the facing plate 20 uses a light-transmitting glass substrate having a thickness of about 500 um.

また、外部接続端子17への電気的な接続のために外部接続端子17を露出させる必要があり、対向板20の大きさはデバイス板10よりも小さく形成されている。本例では外部接続端子17が、ある一つの辺から露出した図を示しているが、この形態に限らず他の複数の辺で外部接続端子17を露出させた構造でも問題はない。 Further, it is necessary to expose the external connection terminal 17 for electrical connection to the external connection terminal 17, and the size of the facing plate 20 is formed smaller than that of the device plate 10. In this example, the external connection terminal 17 is exposed from one side, but the present invention is not limited to this form, and there is no problem in a structure in which the external connection terminal 17 is exposed on a plurality of other sides.

デバイス板10と支持板30は、デバイス板10の裏面側に形成された仮止め用の接着部材9を用いて支持板30と局所的に仮固定される。ここで用いていた仮止め用の接着部材9は、シリコンゴムのような弾性率の低い樹脂材料である。本例では0.5〜2.0MPa程度の材料を接着部材9として使用できる。接着部材9は薄く、対向板20とデバイス板10との間の距離Dは、デバイス板10と支持板30との間の距離Gよりも大きい。 The device plate 10 and the support plate 30 are locally temporarily fixed to the support plate 30 by using an adhesive member 9 for temporary fixing formed on the back surface side of the device plate 10. The adhesive member 9 for temporary fixing used here is a resin material having a low elastic modulus such as silicon rubber. In this example, a material of about 0.5 to 2.0 MPa can be used as the adhesive member 9. The adhesive member 9 is thin, and the distance D between the facing plate 20 and the device plate 10 is larger than the distance G between the device plate 10 and the support plate 30.

支持板30は、いわゆるプリント基板と呼ばれるプリント配線板であり、ガラスエポキシ基板やコンポジット基板などのリジッド基板に配線パターンがプリントされているものである。 The support plate 30 is a printed wiring board, which is a so-called printed circuit board, and has a wiring pattern printed on a rigid substrate such as a glass epoxy board or a composite substrate.

本例では、電子部品100が3〜5ppm、支持板30が8〜16ppmの線膨張係数であるが、接着部材9は仮固定のためのものであるから、熱硬化する場合でも100℃以下で硬化するような材料である。したがって、この段階ではデバイス板10と支持板30との線膨張係数の影響は大きくなく、さらに仮止め用接着樹脂が弾性率の低い材料であるため電子部品100が反った形態になるようなことはほとんどない。 In this example, the electronic component 100 has a linear expansion coefficient of 3 to 5 ppm, and the support plate 30 has a linear expansion coefficient of 8 to 16 ppm. However, since the adhesive member 9 is for temporary fixing, the temperature is 100 ° C. or lower even when thermosetting. It is a material that cures. Therefore, at this stage, the influence of the linear expansion coefficient between the device plate 10 and the support plate 30 is not large, and since the adhesive resin for temporary fixing is a material having a low elastic modulus, the electronic component 100 is in a warped form. Is almost nonexistent.

このような形態の状態で、電子部品100のデバイス板10の表面側に形成された外部接続端子17から支持板30の表面上へワイヤーボンディング法を用いて電気的に接続されている。 In such a state, the external connection terminal 17 formed on the surface side of the device plate 10 of the electronic component 100 is electrically connected to the surface of the support plate 30 by a wire bonding method.

しかしこのままでは、ボンディングワイヤーである導電部材18の機械的強度が弱いことと、電子部品100に使われている接着性の接合部材14の耐湿性を考慮し、デバイス板10と支持板30との空隙部に樹脂部材16を注入(アンダーフィル)する。樹脂部材16の弾性率は、接合部材14の弾性率に比べて大きい値をもち、硬化後の弾性率が10GPa程度となるようなエポキシ系の材料を選択してもよい。 However, if nothing is done, the device plate 10 and the support plate 30 are separated from each other in consideration of the weak mechanical strength of the conductive member 18 which is a bonding wire and the moisture resistance of the adhesive bonding member 14 used in the electronic component 100. The resin member 16 is injected (underfilled) into the gap. The elastic modulus of the resin member 16 may have a value larger than the elastic modulus of the joining member 14, and an epoxy-based material may be selected so that the elastic modulus after curing is about 10 GPa.

樹脂部材16の注入、充填方法に関しては、図1の例に記載と同様の方法で行った。このとき、ワイヤーボンディング法で電気的に接続しているボンディングワイヤーである導電部材18を保護するため、樹脂部材16をポッティングなどの手法を使用して形成している。そして、電子部品100の側面に対して、図1の例で記載したようにデバイス板10の側面および接合部材14の側面を覆うように樹脂部材16を形成する。さらに対向板20の側面の一部の領域を覆うように形成したあと、約200℃のオーブンで樹脂部材16を熱硬化することで所望の半導体装置が完成する。 Regarding the injection and filling method of the resin member 16, the same method as described in the example of FIG. 1 was performed. At this time, in order to protect the conductive member 18 which is a bonding wire electrically connected by the wire bonding method, the resin member 16 is formed by using a method such as potting. Then, the resin member 16 is formed so as to cover the side surface of the device plate 10 and the side surface of the joining member 14 with respect to the side surface of the electronic component 100 as described in the example of FIG. Further, a desired semiconductor device is completed by forming the resin member 16 so as to cover a part of a region on the side surface of the facing plate 20 and then heat-curing the resin member 16 in an oven at about 200 ° C.

対向板20の側面の一部の領域とは、側面の高さ方向Zの領域であり、その高さは接着性の接合部材14の厚さと概略同等となるように形成される。さらに接着性の接合部材14の側面に形成される樹脂部材16の厚み(接着性樹脂側面に対して垂直方向)も接着性の接合部材14と概略同等の厚みとなるように形成する。 A part of the side surface region of the facing plate 20 is a region in the height direction Z of the side surface, and the height thereof is formed so as to be substantially equal to the thickness of the adhesive joining member 14. Further, the thickness of the resin member 16 formed on the side surface of the adhesive joining member 14 (in the direction perpendicular to the side surface of the adhesive resin) is also formed to be substantially the same thickness as that of the adhesive joining member 14.

このような構造となるように形成することで、樹脂部材16の弾性率が接着性の接合部材14の弾性率より大きい値であるために、実装信頼性試験のような温度変化の大きい条件下においても接着性の接合部材14の変形を抑えることができる。さらに樹脂部材16の一部が対向板20をも拘束するため、接着性の接合部材14にストレスがかからなくなりクラックを抑制することが可能となる。 By forming the resin member 16 so as to have such a structure, the elastic modulus of the resin member 16 is larger than the elastic modulus of the adhesive joining member 14, and therefore, under conditions such as a mounting reliability test in which the temperature changes significantly. Also, the deformation of the adhesive joining member 14 can be suppressed. Further, since a part of the resin member 16 also restrains the facing plate 20, stress is not applied to the adhesive joining member 14, and cracks can be suppressed.

以上のことから、本例の半導体装置において、デバイス板10と対向板20とが接合部材14で貼り合わされた電子部品100が、支持板30上に搭載さる。そして、対向板20の側面の一部の領域とデバイス板10の側面および支持板30の主面に樹脂部材16が接触する。このようにすることで、実装信頼性の高い半導体装置を提供することが可能となる。 From the above, in the semiconductor device of this example, the electronic component 100 in which the device plate 10 and the facing plate 20 are bonded by the joining member 14 is mounted on the support plate 30. Then, the resin member 16 comes into contact with a part of the side surface of the facing plate 20, the side surface of the device plate 10, and the main surface of the support plate 30. By doing so, it becomes possible to provide a semiconductor device having high mounting reliability.

さらに電子部品100と支持板30とを電気的に接続している導電部材18(ボンディングワイヤー)にも樹脂部材16が接触しているため、耐環境性能、耐強度性も向上することが可能となる。 Further, since the resin member 16 is also in contact with the conductive member 18 (bonding wire) that electrically connects the electronic component 100 and the support plate 30, it is possible to improve the environmental resistance and strength resistance. Become.

本例では、信頼性の高い半導体装置の作製プロセスにおいては、一般的な半導体プロセスを用いた場合や使用している材料、素材に関しても本発明の主旨を逸脱しない範囲でその一部の記載が変更されることも可能である。図2(b)は図2(a)の変形例であり、ボンディングワイヤーとしての導電部材18の代わりに、フレキシブル配線部材19を用いて、支持板30とデバイス板10とを接続している。 In this example, in the manufacturing process of a highly reliable semiconductor device, a part of the description is given when a general semiconductor process is used and the materials and materials used are not deviated from the gist of the present invention. It can be changed. FIG. 2B is a modification of FIG. 2A, in which the support plate 30 and the device plate 10 are connected by using a flexible wiring member 19 instead of the conductive member 18 as the bonding wire.

図3には、図1あるいは図2に示した半導体装置を備える機器60の例を示している。機器60はスマートフォンやパーソナルコンピュータのような電子機器、スチルカメラやビデオカメラのような撮像機器、テレビやディスプレイのような表示機器、車両や船舶、航空機のような輸送機器、である。あるいは、機器60は、プリンタやスキャナ、複合機のような事務機器、ロボットなどの産業機器、内視鏡や放射線医療用の医療機器、顕微鏡などの分析機器である。 FIG. 3 shows an example of the device 60 including the semiconductor device shown in FIG. 1 or 2. The device 60 is an electronic device such as a smartphone or a personal computer, an imaging device such as a still camera or a video camera, a display device such as a television or a display, and a transportation device such as a vehicle, a ship, or an aircraft. Alternatively, the device 60 is an office device such as a printer or a scanner, a multifunction device, an industrial device such as a robot, a medical device for an endoscope or radiology, and an analytical device such as a microscope.

図3の例では機器60はカメラである。カメラとしての機器60は、イメージセンサーISとディスプレイDPとを備える。カメラとしての機器60は、固定式あるいは交換式のレンズLNSを備えうる。イメージセンサーISが本実施形態の半導体装置でありうるし、ディスプレイDPが本実施形態の半導体装置でありうる。ディスプレイは電子ビューファインダーであってもよい。機器60は、本実施形態の半導体装置(イメージセンサーISやディスプレイDP)を保持する保持部材50を備える。保持部材50は半導体装置(イメージセンサーISやディスプレイDP)のうちの支持板30を保持しうる。保持部材50は、機器60の他の部品MBや筐体に固定されている。イメージセンサーISとディスプレイDPはフレキシブル配線板などの配線部材FPC1、FPC2を介して他の部品MBに電気的に接続されている。 In the example of FIG. 3, the device 60 is a camera. The device 60 as a camera includes an image sensor IS and a display DP. The device 60 as a camera may include a fixed or interchangeable lens LNS. The image sensor IS can be the semiconductor device of the present embodiment, and the display DP can be the semiconductor device of the present embodiment. The display may be an electronic viewfinder. The device 60 includes a holding member 50 that holds the semiconductor device (image sensor IS and display DP) of the present embodiment. The holding member 50 can hold the support plate 30 of the semiconductor device (image sensor IS or display DP). The holding member 50 is fixed to another component MB or housing of the device 60. The image sensor IS and the display DP are electrically connected to other component MBs via wiring members FPC1 and FPC2 such as a flexible wiring board.

以上、説明した実施形態は、本発明の思想を逸脱しない範囲において適宜変更が可能である。 The embodiments described above can be appropriately modified without departing from the ideas of the present invention.

11 電子デバイス
10 デバイス板20 対向板
30 支持板
31 重複部分
32 非重複部分
14 接合部材
16 樹脂部材
200 側面
21 接触領域
22 非接触領域
11 Electronic device 10 Device plate 20 Opposing plate 30 Support plate 31 Overlapping part 32 Non-overlapping part 14 Joining member 16 Resin member 200 Side surface 21 Contact area 22 Non-contact area

Claims (20)

電子デバイスを構成する第1板と、
前記第1板に対向する第2板と、
前記第1板を支持する前記第3板と、を備える半導体装置であって、
前記第2板と前記第3板との間に前記第1板が配されており、
前記第3板は、前記第1板に重なる第1部分と、前記第1板に重ならない第2部分と、を有し、
前記第1板および前記第3板の前記第2部分に接触する樹脂部材をさらに備え、
前記樹脂部材は、前記第2板の側面の第1領域に接触し、かつ、前記第2板の側面の第2領域に接触しない、
ことを特徴とする半導体装置。
The first plate that makes up the electronic device and
The second plate facing the first plate and
A semiconductor device including the third plate that supports the first plate.
The first plate is arranged between the second plate and the third plate.
The third plate has a first portion that overlaps the first plate and a second portion that does not overlap the first plate.
A resin member that comes into contact with the first plate and the second portion of the third plate is further provided.
The resin member contacts the first region of the side surface of the second plate and does not contact the second region of the side surface of the second plate.
A semiconductor device characterized by this.
前記第1領域が前記第2領域と前記第3板との間に位置する、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first region is located between the second region and the third plate. 前記第1板と前記第2板とが重なる方向において、前記第1領域の長さは前記第2領域の長さよりも小さい、請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, wherein the length of the first region is smaller than the length of the second region in the direction in which the first plate and the second plate overlap. 前記樹脂は前記第1板と前記第3板の前記第1部分との間に延在する、請求項1乃至3のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the resin extends between the first plate and the first portion of the third plate. 前記第1板と前記第2板との間には、前記第1板と前記第2板とを接合する接合部材が配されている、請求項1乃至4のいずれか1項に記載の半導体装置。 The semiconductor according to any one of claims 1 to 4, wherein a joining member for joining the first plate and the second plate is arranged between the first plate and the second plate. apparatus. 前記第1板は前記第2板から離間している、請求項1乃至5のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 5, wherein the first plate is separated from the second plate. 前記第1板と前記第2板とが重なる方向における、前記樹脂部材が前記第1板の側面に接触する領域の寸法は、前記第1板と前記第2板との間の距離の0.8〜1.2倍である、請求項1乃至6のいずれか1項に記載の半導体装置。 The dimension of the region where the resin member contacts the side surface of the first plate in the direction in which the first plate and the second plate overlap is 0, which is the distance between the first plate and the second plate. The semiconductor device according to any one of claims 1 to 6, which is 8 to 1.2 times. 前記樹脂部材の前記第2板の側面を覆う部分の、前記第2板の側面の法線方向における寸法は、前記第1板と前記第2板との間の距離の0.8〜1.2倍である、請求項1乃至7のいずれか1項に記載の半導体装置。 The dimension of the portion of the resin member covering the side surface of the second plate in the normal direction of the side surface of the second plate is 0.8 to 1. The distance between the first plate and the second plate. The semiconductor device according to any one of claims 1 to 7, which is twice as large. 前記樹脂部材は、前記第2板の前記第1板の側とは反対側の面を覆わない、請求項1乃至8のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 8, wherein the resin member does not cover the surface of the second plate opposite to the side of the first plate. 前記第2板は前記第1板よりも厚い、請求項1乃至9のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 9, wherein the second plate is thicker than the first plate. 前記第1板と前記第2板との間の距離は、前記第1板と前記第3板との間の距離よりも小さい、請求項1乃至10のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 10, wherein the distance between the first plate and the second plate is smaller than the distance between the first plate and the third plate. 前記第1板と前記第2板との間の距離は、前記第1板と前記第3板との間の距離よりも大きい、請求項1乃至10のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 10, wherein the distance between the first plate and the second plate is larger than the distance between the first plate and the third plate. 前記第1板と前記第3板とを電気的に接続する導電部材をさらに備え、前記樹脂部材が前記導電部材に接触する、請求項1乃至12のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 12, further comprising a conductive member that electrically connects the first plate and the third plate, and the resin member comes into contact with the conductive member. 前記第2板は透光板であり、前記第3板は配線板である、請求項1乃至13のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 13, wherein the second plate is a translucent plate and the third plate is a wiring plate. 前記接合部材は前記樹脂部材とは異なる樹脂材料からなる、請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein the joining member is made of a resin material different from the resin member. 前記樹脂部材の弾性率は、前記接合部材の弾性率よりも高い、請求項15に記載の半導体装置。 The semiconductor device according to claim 15, wherein the elastic modulus of the resin member is higher than the elastic modulus of the joining member. 前記第1板と前記第3板との間には、前記第1板と前記第3板とを電気的に接続する導電部材が配されている、請求項1乃至16のいずれか1項に記載の半導体装置。 According to any one of claims 1 to 16, a conductive member for electrically connecting the first plate and the third plate is arranged between the first plate and the third plate. The semiconductor device described. 前記電子デバイスが撮像デバイスである、請求項1乃至17のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 17, wherein the electronic device is an imaging device. 前記電子デバイスが表示デバイスである、請求項1乃至17のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 17, wherein the electronic device is a display device. 請求項1乃至19のいずれか1項に記載の半導体装置と、
前記半導体装置を保持する保持部材と、を備える機器。
The semiconductor device according to any one of claims 1 to 19.
A device including a holding member for holding the semiconductor device.
JP2019068892A 2019-03-29 2019-03-29 Semiconductor device and apparatus Pending JP2020167347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068892A JP2020167347A (en) 2019-03-29 2019-03-29 Semiconductor device and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068892A JP2020167347A (en) 2019-03-29 2019-03-29 Semiconductor device and apparatus

Publications (1)

Publication Number Publication Date
JP2020167347A true JP2020167347A (en) 2020-10-08

Family

ID=72717445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068892A Pending JP2020167347A (en) 2019-03-29 2019-03-29 Semiconductor device and apparatus

Country Status (1)

Country Link
JP (1) JP2020167347A (en)

Similar Documents

Publication Publication Date Title
CN100438023C (en) Imaging module and method for forming the same
KR101120341B1 (en) Solide imaging device and manufacturing method thereof
CN108604574B (en) Semiconductor device and manufacturing method thereof, imaging device, and electronic apparatus
US20100096739A1 (en) Stacked semiconductor module
KR100829276B1 (en) Liquid crystal display device and its manufacturing method
US8823872B2 (en) Image pickup module with improved flatness of image sensor and via electrodes
US20140168510A1 (en) Imaging element module and method for manufacturing the same
JP6732932B2 (en) Base for mounting image pickup element, image pickup device, and image pickup module
JP2004153130A (en) Semiconductor device and its manufacturing method
JP2015041689A (en) Optical device and manufacturing method of the same
KR20160005854A (en) Semiconductor package and method for manufacturing of the same
US20100044880A1 (en) Semiconductor device and semiconductor module
US20200075437A1 (en) Unit with wiring board, module, and equipment
US11094722B2 (en) Image sensor package and imaging apparatus
WO2019007412A1 (en) Encapsulation structure of image sensing chip, and encapsulation method therefor
WO2017138443A1 (en) Semiconductor device and display device
JP2020167347A (en) Semiconductor device and apparatus
US20230005975A1 (en) Imaging element package and method of manufacturing imaging element package
JP4463194B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
KR20220040849A (en) image sensor package for improving reliability
JP2006245359A (en) Photoelectric conversion device, and manufacturing method thereof
JP4463193B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
US20170263581A1 (en) Electronic device, part mounting board, and electronic apparatus
KR102081612B1 (en) Semiconductor package and method for manufacturing the same
JP2011009403A (en) Solid-state imaging device