JP2020166498A - 情報処理装置、三次元モデルの生成方法、及びプログラム - Google Patents

情報処理装置、三次元モデルの生成方法、及びプログラム Download PDF

Info

Publication number
JP2020166498A
JP2020166498A JP2019065691A JP2019065691A JP2020166498A JP 2020166498 A JP2020166498 A JP 2020166498A JP 2019065691 A JP2019065691 A JP 2019065691A JP 2019065691 A JP2019065691 A JP 2019065691A JP 2020166498 A JP2020166498 A JP 2020166498A
Authority
JP
Japan
Prior art keywords
image
mask
dimensional model
viewpoint
captured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065691A
Other languages
English (en)
Other versions
JP7322460B2 (ja
Inventor
勇一 瀬▲崎▼
Yuichi Sezaki
勇一 瀬▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2019065691A priority Critical patent/JP7322460B2/ja
Publication of JP2020166498A publication Critical patent/JP2020166498A/ja
Application granted granted Critical
Publication of JP7322460B2 publication Critical patent/JP7322460B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Image Analysis (AREA)

Abstract

【課題】三次元形状の再現精度をより高めること。【解決手段】複数の異なる視点から対象物を撮影した複数の撮像画像が格納される記憶部と、複数の撮像画像から対象物の三次元モデルを生成するモデル生成部と、各視点から見た三次元モデルの深度画像を生成し、深度画像に基づいて、画質が低下しやすい特定領域を抽出し、各視点に対応する撮像画像から特定領域を除去するためのマスク画像を生成するマスク生成部と、を備え、モデル生成部は、複数の撮像画像のそれぞれからマスク画像に基づいて特定領域を除去し、除去後の撮像画像に基づいて対象物の三次元モデルを新たに生成する、情報処理装置が提供される。【選択図】図3

Description

本発明は、情報処理装置、三次元モデルの生成方法、及びプログラムに関する。
近年、文化財、美術品、及び工芸品など、保存価値の高い物品をスキャンし、その形状やテクスチャをデジタルデータの形で保存する技術(デジタルアーカイブ)の研究開発が進められている。例えば、対象物の形状は、三次元における自由視点画像(特許文献1)の生成に利用可能な三次元モデルの形で取り込むことができる。なお、三次元モデルは、例えば、多視点の撮像画像に基づいて生成される(非特許文献1)。
なお、非特許文献1では、SIFT(Scale Invariant Feature Transform)を利用して特徴点を抽出し、SFM(Structure from motion)及びMVS(Multi View Stereo)を利用して対象物の三次元モデルを生成する方法が提案されている。また、多視点の撮像画像から対象物の背景を削除したシルエット画像を利用して三次元モデルを生成する方法が提案されている(非特許文献2)。
特開2015-022510号公報
Y.Furukawa and J.Ponce, "Accurate, Dense, and Robust Multi-View Stereopsis", CVPR 2007. W.Matusik et al., "Image-Based Visual Hulls", SIGGRAPH 2000.
上記の提案方法を適用することで対象物の三次元モデルが得られる。しかしながら、ボケや回折などの影響で撮像画像の一部に画質が低くなる領域が生じ、三次元形状の再現精度やテクスチャの品質が低下することがある。例えば、対象物に深い凹凸がある場合や、対象物の先端から背景までの距離が大きい場合、被写界深度から外れた部分にボケが生じたり、回折により背景の画が回り込んで対象物に被ったりする。
ボケや回折により撮像画像の画質が低下すると、三次元形状に貼り付けられるテクスチャの品質も低下する。また、撮像画像の特徴点マッチングを三次元形状の再現に利用している場合、画質の低下が特徴点マッチングの精度を低下させる要因となりうる。なお、上述したボケや回折の影響と同様に光学的な理由で撮像画像の画質低下を招く要因がある場合には上記と同様の課題が生じうる。
そこで、本発明の1つの観点によれば、本発明の目的は、三次元モデルの再現精度を高めることが可能な情報処理装置、三次元モデルの生成方法、及びプログラムを提供することにある。
本発明の一態様によれば、複数の異なる視点から対象物を撮影した複数の撮像画像が格納される記憶部と、複数の撮像画像から対象物の三次元モデルを生成するモデル生成部と、各視点から見た三次元モデルの深度画像を生成し、深度画像に基づいて、画質が低下しやすい特定領域を抽出し、各視点に対応する撮像画像から特定領域を除去するためのマスク画像を生成するマスク生成部と、を備え、モデル生成部は、複数の撮像画像のそれぞれからマスク画像に基づいて特定領域を除去し、除去後の撮像画像に基づいて対象物の三次元モデルを新たに生成する、情報処理装置が提供される。
また、本発明の他の一態様によれば、コンピュータが、複数の異なる視点から対象物を撮影した複数の撮像画像を取得し、複数の撮像画像から対象物の三次元モデルを生成し、各視点から見た三次元モデルの深度画像を生成し、深度画像に基づいて、画質が低下しやすい特定領域を抽出し、各視点に対応する撮像画像から特定領域を除去するためのマスク画像を生成し、複数の撮像画像のそれぞれからマスク画像に基づいて特定領域を除去し、除去後の撮像画像に基づいて対象物の三次元モデルを新たに生成する処理を実行する、三次元モデルの生成方法が提供される。
また、本発明の更に他の一態様によれば、コンピュータに、複数の異なる視点から対象物を撮影した複数の撮像画像を取得し、複数の撮像画像から対象物の三次元モデルを生成し、各視点から見た三次元モデルの深度画像を生成し、深度画像に基づいて、画質が低下しやすい特定領域を抽出し、各視点に対応する撮像画像から特定領域を除去するためのマスク画像を生成し、複数の撮像画像のそれぞれからマスク画像に基づいて特定領域を除去し、除去後の撮像画像に基づいて対象物の三次元モデルを新たに生成する処理を実行させるためのプログラムが提供される。
本発明によれば、三次元モデルの再現精度を高めることができる。
三次元復元システムの構成例を示した模式図である。 情報処理装置の機能を実現可能なハードウェア構成例を示したブロック図である。 情報処理装置が有する機能の一例を示したブロック図である。 三次元モデルの生成方法について説明するための説明図である。 三次元モデルの生成に関する処理の流れを示したフロー図である。 判定処理の流れを示したフロー図である。
以下に添付図面を参照しながら、本発明の実施形態(以下、本実施形態)について説明する。なお、本明細書及び図面において実質的に同一の機能を有する要素については、同一の符号を付することにより重複説明を省略する場合がある。
本実施形態は、立体形状を有する対象物の三次元形状及びそのテクスチャを復元する三次元復元技術に関する。特に、対象物を複数の視点で撮影した複数の撮影画像(以下、多視点画像)を利用して、対象物の三次元形状を再現すると共に、再現した三次元形状にテクスチャを貼り付けて三次元モデルを生成する仕組みに関する。
なお、多視点画像の撮影方法としては、カメラなどの撮影手段を移動させる方法でもよいし、撮影手段を固定して対象物を移動させる方法でもよい。但し、デジタルアーカイブの対象となる対象物を扱う場合には、対象物の損傷や汚損を回避するために、撮影手段を移動させる前者の方法が好ましい。以下では、説明の都合上、上記の仕組みを実現するためのシステムを三次元復元システムと称し、これについて詳細に説明する。
[1−1.三次元復元システム]
図1を参照しながら、本実施形態に係る三次元復元システムについて説明する。図1は、三次元復元システムの構成例を示した模式図である。
図1に示すように、本実施形態に係る三次元復元システムは、情報処理装置101、記憶装置102、及び表示装置103を含む。
情報処理装置101は、例えば、PC(Personal Computer)、サーバ装置、ワークステーションなどのコンピュータである。記憶装置102は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、RAID(Redundant Arrays of Inexpensive Disks)装置、半導体メモリ、又はこれらの組み合わせなどである。表示装置103は、LCD(Liquid Crystal Display)、ELD(Electro-Luminescence Display)などのディスプレイデバイスである。
記憶装置102には、多視点画像の画像データが格納される。
図1には、一例として、対象物10aの周囲に設定された複数の視点#0、#1、…、#24から対象物10aを撮影する様子が模式的に示されている。この例において、多視点画像の撮影には、撮像装置30が利用される。図1の例では1台の撮像装置30が記載されているが、複数台の撮像装置が利用されてもよい。
撮影方法としては、例えば、1台の撮像装置30を視点#0、#1、…、#24の位置に移動して各視点から対象物10aを撮影する方法がある。他の撮影方法としては、各視点の位置に撮像装置を設置し、各撮像装置で対象物10aを撮影する方法がある。
以下では、説明の都合上、1台の撮像装置30を利用して対象物10aする方法を例に挙げて説明を進めるが、多視点画像の撮影方法については、この例に限定されない。例えば、対象物10aの位置や向きを動かすことが可能であれば、撮像装置30の位置を固定した状態で、対象物10aを回転させながら多視点画像を取得することも可能である。
撮像装置30は、撮影後又はリアルタイムに記憶装置102へと多視点画像の画像データを転送する。例えば、撮像装置30は、有線又は無線の通信手段を用いて画像データを記憶装置102に転送してもよい。また、撮影者が、メモリカードなどの記憶媒体を利用して撮像装置30から記憶装置102に画像データをコピーしてもよい。記憶装置102に画像データを格納するタイミングは後述する三次元復元の処理を実行する前でもよいし、その処理の実行中に画像データが記憶装置102に順次格納されるようにしてもよい。
ここで、図1に例示した視点及び対象物10aの見え方について、さらに説明する。
図1に例示した視点#0は、対象物10aを真上から見下ろす視点であってもよい。視点#0から撮影すると、視点#0に対向する対象物10aの上面と共に、背景20が撮影されうる。視点#1、…、#24は、対象物10aを囲むように設定されうる。例えば、視点#1、…、#24は、対象物10aを中心とする円又は楕円状の軌道に沿って配置されうる。この例では、軌道が背景20の面に平行な平面上に設定されている。
例えば、視点#1、…、#24は、対象物10aの中心を通り背景20に垂直な軸を基準とする回転方向に等角度で配置されてもよい。等角度で視点#1、…、#24を配置する場合、例えば、隣り合う2つの視点から撮影された撮影画像の端部が少なくとも一部で重なるように角度が設定されてもよい。なお、視点#0、#1、…、#24の設定方法は、この例に限定されない。例えば、対象物10aの中心に対応する背景20の点を基準とする半球面上に複数の視点を配置してもよい。また、これらの例に限らず、対象物10aに対して様々な角度、位置、距離に視点が配置されてもよい。なお、各視点から対象物10aまでの距離が一定の場合、各視点から撮影した撮影画像の解像度(dpi)が均質になり、テクスチャの品質向上に寄与しうる。
背景20の模様は任意に設定することが可能であるが、画像処理の都合などから黒、白、グレーなどの色で構成される模様が設定されてもよい。但し、背景20の模様は設定されなくてもよい。視点#0から対象物10aを撮影する場合、対象物10aの上面と背景20とが撮像画像に写り込む。このとき、対象物10aの上面と背景20との間の距離が大きいと、回折効果により対象物10aの輪郭部に背景20の色が回り込んで重なることがある。背景20の色が黒、白、グレーなどの目立つ色の場合、撮像画像の画質に対する影響が大きくなる。
また、視点#0に限らず、対象物10aに深い凹凸があると、ボケの効果により、対象物10a上の合焦部分(ピントが合った部分)に比べて、奥行き方向に離れた部分で画像の鮮鋭度が低下する。なお、対象物10aの形状や視点の位置によっては、ボケや回折などの光学的な要因による撮像画像の画質低下が生じうる。こうした画質低下は、三次元復元の精度及びテクスチャの品質に悪影響を及ぼしうる。
上記の三次元復元システムは、多視点画像として撮像された複数の撮影画像の対応関係を特定し、撮影方向及び撮影位置を含む幾何学的な視点情報、特定した対応関係、及び各撮影画像を用いて三次元復元に関する処理を実行する。撮影画像間の対応関係を特定する際、三次元復元システムは、例えば、各撮影画像の特徴点抽出を実行し、隣接する視点に対応する撮像画像間で特徴点マッチングを実行する。
特徴点抽出には、例えば、SIFT、SURF(Speeded-Up Robust Features)、FAST(Features from Accelerated Segment Test)、BRISK(Binary Robust Invariant Scalable Keypoints)、BRIEF(Binary Robust Independent Elementary Features)、ORB(Oriented FAST and Rotated BRIEF)、CARD(Compact And Real-time Descriptors)などの特徴量が利用される。
上述したボケや回折の影響により撮像画像の画質が低下していると、特徴点マッチングの精度が低下しうる。そもそも、ボケた撮影画像や、輪郭部分に背景20の色が被った撮影画像がテクスチャとして三次元形状に貼り付けられれば、当然にテクスチャの品質が低くなる。そのため、本実施形態に係る三次元復元システムでは、画質低下を招く光学的な影響を除去する仕組みを提供する。この仕組みを適用することで、三次元復元の精度を向上させることができる。
[1−2.情報処理装置]
以下、上述した仕組みについての処理を実行する情報処理装置101の機能及びその機能を実現可能なハードウェアの例について説明する。
(ハードウェア)
まず、図2を参照しながら、情報処理装置101のハードウェアについて説明する。図2は、情報処理装置の機能を実現可能なハードウェア構成例を示したブロック図である。後述する情報処理装置101の機能は、コンピュータプログラムを用いて図2に示すハードウェアを制御することにより実現されうる。
図2に示すハードウェアは、主に、プロセッサ101a、メモリ101b、表示I/F(Interface)101c、通信I/F101d、接続I/F101eを有する。なお、図2に示したハードウェア構成は一例であり、一部の要素を省略してもよいし、新たな要素を追加してもよい。このような変形例も当然に本実施形態の技術的範囲に属する。
プロセッサ101aは、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの処理装置である。メモリ101bは、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD、SSD、フラッシュメモリなどの記憶装置である。
表示I/F101cは、LCD、ELDなどのディスプレイデバイス(図1の例では表示装置103)を接続するためのインターフェースである。例えば、表示I/F101cは、プロセッサ101a及び/又は表示I/F101cに搭載されたGPU(Graphic Processing Unit)により表示制御を実施する。
通信I/F101dは、有線及び/又は無線のネットワークに接続するためのインターフェースである。通信I/F101dは、例えば、有線LAN(Local Area Network)、無線LAN、光通信ネットワーク、携帯電話ネットワークなどに接続される。
接続I/F101eは、外部デバイスを接続するためのインターフェースである。接続I/F101eは、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)などである。
接続I/F101eには、例えば、キーボード、マウス、タッチパネル、タッチパッドなどの入力インターフェースが接続されうる。また、接続I/F101eには、スピーカなどのオーディオデバイス及び/又はプリンタなどが接続されうる。また、接続I/F101eには、可搬性の非一時的な記録媒体101fが接続されうる。記録媒体101fは、例えば、磁気記録媒体、光ディスク、光磁気ディスク、半導体メモリなどである。
上述したプロセッサ101aは、記録媒体101fに格納されたプログラムを読み出してメモリ101bに格納し、メモリ101bから読み出したプログラムに従って情報処理装置101の動作を制御しうる。なお、情報処理装置101の動作を制御するプログラムは、メモリ101bに予め格納されてもよいし、通信I/F101dを介してネットワークからダウンロードされてもよい。
(機能ブロック)
次に、図3を参照しながら、情報処理装置101の機能について説明する。図3は、情報処理装置が有する機能の一例を示したブロック図である。
図3に示すように、情報処理装置101は、記憶部111、モデル生成部112、及びマスク生成部113を有する。記憶部111の機能は、上述したメモリ101bなどを用いて実現可能である。モデル生成部112及びマスク生成部113の機能は、上述したプロセッサ101aなどを用いて実現可能である。
(記憶部111)
記憶部111には、モデル情報111a、深度画像の集合111b、フィルタ情報111c、及びマスク画像の集合111dが格納される。
モデル情報111aは、記憶装置102に格納された複数の撮影画像に基づいて生成される三次元モデルの情報である。モデル情報111aには、生成された三次元形状の情報及びその三次元形状に貼り付けられたテクスチャの情報が含まれる。
深度画像の集合111bには、モデル情報111aに含まれる三次元形状に基づいて生成される各視点の深度画像が含まれる。深度画像は、デプスマップなどとも称され、深度画像の各画素に対応する対象物の各点について、撮像面から対象物までの距離を濃淡で表現した画像である。例えば、深度画像は、撮像面からの距離が遠いほど黒に近く、その距離が遠いほど白に近いグレースケールのイメージであってもよい。なお、撮像面は、撮像装置30の撮像素子又はその撮像素子に平行な任意の面に設定されてもよい。
フィルタ情報111cは、深度画像からマスク画像を生成する空間フィルタリングの際に利用される情報である。例えば、フィルタ情報111cは、空間フィルタの種類及びパラメータ(フィルタ値)や、マスク画像の生成時に利用される二値化閾値などを含む。空間フィルタとしては、ガウシアンフィルタなどの平滑化フィルタ、及びラプラシアンフィルタなどの先鋭化フィルタが用いられる。なお、この例に限定されず、実施の態様に応じて様々な種類の空間フィルタが組み合わせて利用されてもよい。この場合、それらの空間フィルタに関する情報もフィルタ情報111cに含まれうる。
マスク画像の集合111dには、各撮影画像から上述した光学的な影響を除去するためのマスク画像が含まれる。マスク画像は、深度画像の空間フィルタリング、及び、空間フィルタリング後の深度画像に対する二値化処理により生成される画像である。各視点に対応する撮影画像に対して、それぞれ対応するマスク画像が生成されるため、マスク画像の集合111dには、各視点に対応するマスク画像が含まれる。マスク画像は、例えば、マスク対象部分を白、マスク対象部分以外の部分を黒で表現した二値画像で表現されうる。
(モデル生成部112)
モデル生成部112は、三次元モデル復元機能112a、及びマスク処理機能112bを有する。三次元モデル復元機能112aは、対象物の三次元形状を復元し、テクスチャを貼り付けて三次元モデルを復元する機能である。マスク処理機能112bは、各視点に対応する撮影画像に対して、その撮影画像に対応するマスク画像を適用する機能である。
例えば、モデル生成部112は、三次元モデル復元機能112aにより、記憶装置102から各視点に対応する撮影画像を取得すると共に、各視点における撮影位置及び撮影方向などの情報に基づいて、各撮影画像から対象物の三次元モデルを復元する。このとき、モデル生成部112は、撮像装置30の撮影パラメータ(レンズの焦点距離、絞り値、撮像素子のサイズ、ISO感度など)や照明の設定パラメータ(照明の位置及び向きなど)の少なくとも1つをさらに考慮してもよい。
また、モデル生成部112は、マスク処理機能112bにより、記憶部111からマスク画像を取得すると共に、各視点の撮影画像に対して、対応するマスク画像を適用する。例えば、モデル生成部112は、マスク画像が示すマスク対象部分を撮影画像から除去するか、三次元モデル復元機能112aによりマスク対象部分が参照されないように設定する。以下では、説明の都合上、マスク対象部分が除去されたか、マスク対象部分が参照されないように設定された撮影画像をマスク後の撮影画像と表記する場合がある。
また、モデル生成部112は、三次元モデル復元機能112aにより、各視点に対応するマスク後の撮影画像に基づいて対象物の三次元モデルを復元する。そして、モデル生成部112は、復元した三次元モデルの情報を用いてモデル情報111aを更新する。モデル生成部112は、後述するマスク生成部113によりマスク画像が生成される度に、マスク処理機能112bによりマスク後の撮影画像を生成し、生成したマスク後の撮影画像に基づいて対象物の三次元モデルを復元する。このように、マスク画像が更新される度に、対象物の三次元モデルが更新される。なお、更新の回数は任意に設定されうる。
(マスク生成部113)
マスク生成部113は、深度画像生成機能113a、空間フィルタリング機能113b、及び二値化機能113cを有する。深度画像生成機能113aは、三次元形状から各視点の深度画像を生成する処理を実行する機能である。空間フィルタリング機能113bは、深度画像に空間フィルタリングを適用して、ボケや回折などの光学的な影響を除去するための処理を実行する機能である。二値化機能113cは、空間フィルタリング後の深度画像を二値化する処理を実行する機能である。
マスク生成部113は、深度画像生成機能113aにより、対象物の三次元形状に基づいて各視点に対応する深度画像を生成する。各視点における撮像装置30の撮影パラメータは事前設定されてもよいし、三次元形状を復元する処理の中で推定及び更新されてもよい。各視点に置かれた撮像面から三次元形状の表面までの距離は、撮影パラメータに基づき、計算により求めることが可能である。そのため、マスク生成部113は、深度画像生成機能113aにより上記の深度画像を生成することができる。
また、マスク生成部113は、空間フィルタリング機能113bにより、各視点に対応する深度画像に空間フィルタリング適用する。さらに、マスク生成部113は、二値化機能113cにより、事前に設定された二値化閾値を用いてマスク画像を生成する。
例えば、深度画像の注目画素を処理する場合、マスク生成部113は、注目画素の画素値と所定の半径内(ボケ・回折幅)にある画素値との差に対し、画素間の距離に応じたガウシアンフィルタの重みを掛けた値を求め、求めた値の中で最大値となる値(以下、評価値)を特定する(空間フィルタリング機能113b)。さらに、マスク生成部113は、深度画像内の各画素について特定した評価値をそれぞれ二値化閾値で判定し、判定結果に応じて各画素の画素値(例えば、1又は0)を決定する(二値化機能113c)。これにより、二値で表現されたマスク画像が得られる。
なお、ボケ・回折幅に対応する所定の半径は、例えば、実際にサンプルを撮影して得られた撮影画像を事前に評価した結果などに基づいて予め設定されうる。また、ユーザが経験などに基づいて任意に設定してもよい。
なお、上述した空間フィルタリングの適用方法は一例であり、他の方法も適用可能である。例えば、マスク生成部113は、深度画像にガウシアンフィルタなどの平滑化フィルタを適用して深度画像のノイズを除去し、ノイズを除去した深度画像に対してラプラシアンフィルタなどの先鋭化フィルタを適用してもよい。先鋭化フィルタの適用により、画素値がプラス方向に変化する位置がボケとみなせ、マイナス方向に変化する位置が回折とみなせる。そのため、プラスの閾値(ボケ用閾値)及びマイナスの閾値(回折用閾値)を利用してマスク画像を生成することができる。
上記の二値化閾値は、シミュレーションや実験などにより事前に決定されうる。例えば、既知の形状を有する対象物のサンプルを利用し、撮影画像から上述した光学的な影響により画質低下が生じている領域を特定することで、特定した領域を深度画像から抽出可能な二値化閾値を決定することができる。また、実際に三次元復元を実施して、復元された三次元形状と実際のサンプル形状との差から二値化閾値を決定することもできる。
ところで、上記の説明では、三次元復元により得られた三次元形状から深度画像を生成する場合について述べたが、デプスセンサなどによる測定を利用して深度画像が得られている場合には、測定により得られた深度画像が利用されてもよい。この場合、測定により得られた深度画像を利用して精度良く対象物の三次元形状が復元されうる。
(繰り返し処理について)
本実施形態に係る三次元復元の処理は、同じ対象物の多視点画像について繰り返し実行される。ここでは、図4を参照しながら、この繰り返し処理の流れについて説明する。図4は、三次元モデルの生成方法について説明するための説明図である。なお、以下の繰り返し処理についての説明では、事前に深度画像が得られていない場合(上述したデプスセンサなどによる測定を行っていない場合)を想定する。
図4には、4つの処理工程S1−S4が模式的に示されている。処理工程S1−S4は繰り返し実行される。以下では、説明の都合上、処理工程S1−S4がj回(J≧2)実行されることを想定し、j回目(j=1,2,…,J)に処理工程S1−S4が実行されることをj回目の処理と称する場合がある。
処理工程S1は、多視点画像として記憶装置102に格納された撮影画像P0、P1、…、P24に対する処理を実行する工程である。撮影画像P0、P1、…、P24は、視点#0、#1、…、#24に対応する。
1回目の処理では、事前に深度画像が得られておらず、深度画像から生成されるマスク画像が記憶部111にないため、モデル生成部112は、撮像画像P0、P1、…、P24に対するマスク画像の適用(マスク処理)をスキップする。2回目以降の処理では、記憶部111にマスク画像があるため、モデル生成部112は、撮像画像P0、P1、…、P24にマスク画像を適用する。
処理工程S2は、撮影画像P0、P1、…、P24から三次元モデルM10aを生成する工程である。1回目の処理では、処理工程S1でマスク処理がスキップされているため、モデル生成部112は、オリジナルの撮影画像P0、P1、…、P24から三次元モデルM10aを生成する。2回目以降の処理では、処理工程S1でマスク処理が適用されているため、モデル生成部112は、マスク後の撮影画像P0、P1、…、P24から三次元モデルM10aを生成する。
処理工程S3は、三次元モデルM10aから深度画像dP0、dP1、…、dP24を生成する工程である。深度画像dP0、dP1、…、dP24の生成は三次元モデルM10aに基づいて実行されるため、処理工程S3で実行される処理の内容は1回目も2回目以降も実質的に同じである。
但し、1回目はオリジナルの撮像画像P0、P1、…、P24に基づく三次元モデルM10aを利用し、2回目以降はマスク後の撮像画像P0、P1、…、P24に基づく三次元モデルM10aを利用して処理が実行される。また、2回目以降も、記憶部111内の各視点に対応するマスク画像が更新されるため、その更新に応じて三次元モデルM10aが更新される。よって、処理工程S3で生成される深度画像dP0、dP1、…、dP24は、処理が繰り返される度に更新される。
処理工程S4は、深度画像dP0、dP1、…、dP24からマスク画像mP0、mP1、…、mP24を生成する工程である。上述したように、マスク画像mP0、mP1、…、mP24は、深度画像dP0、dP1、…、dP24に空間フィルタリング及び二値化処理を適用することで得られる。処理工程S3と同様に、処理工程S4で生成されるマスク画像mP0、mP1、…、mP24は、処理が繰り返される度に更新される。
上記の処理工程S1でマスク処理が適用されることで、ボケにより画質が低下していた部分や、回折により背景の色が被ってしまっていた部分が除去されうる。そのため、処理工程S2における三次元形状の復元精度及びテクスチャの品質が向上しうる。
対象物の再現精度が高い三次元モデルM10aが得られると、その三次元モデルM10aから生成される深度画像dP0、dP1、…、dP24及びマスク画像mP0、mP1、…、mP24の品質も向上する。その結果、光学的な影響が及ぶ領域をより精度良く特定することが可能になる。
繰り返し回数は、例えば、許容される処理時間や処理負荷を考慮して設定されてもよい。上述した処理工程S1−S4の繰り返し回数は事前に設定されてもよいし、或いは、三次元モデルM10aの復元精度に関する評価結果に基づいて処理が終了してもよい。後者の場合、具体的には、前回生成した三次元モデルM10aの形状と、今回生成した三次元モデルM10aの形状との差が所定の判定閾値より小さいかを判定し、小さい場合に繰り返し処理を終了する仕組みが考えられる。
他の方法として、前回生成した深度画像dP0、dP1、…、dP24と、今回生成した深度画像dP0、dP1、…、dP24との差が所定の判定閾値より小さい場合に処理を終了する方法が考えられる。
さらに他の方法として、前回生成したマスク画像mP0、mP1、…、mP24と、今回生成したマスク画像mP0、mP1、…、mP24との差が所定の判定閾値より小さい場合に処理を終了する方法が考えられる。その変形例として、一部の深度画像又は一部のマスク画像について上記の差を評価する方法が考えられる。上記の判定閾値は、シミュレーション又は実験により事前に設定されうる。
[1−3.処理フロー]
ここで、図5を参照しながら、情報処理装置101が実行する処理の流れについて説明する。図5は、三次元モデルの生成に関する処理の流れを示したフロー図である。
(S101)モデル生成部112は、記憶装置102に多視点画像として格納された各視点に対応する撮影画像を取得する。図4に示した例の場合、モデル生成部112が、記憶装置102から撮影画像P0、P1、…、P24を取得する。
(S102)モデル生成部112は、記憶部111にマスク画像の集合111dがあるか否かを判定する。
例えば、図4に示した繰り返し処理の1回目ではマスク画像が生成されていないため、記憶部111にはマスク画像がない。一方、2回目以降ではマスク画像が生成されている。マスク画像が記憶部111に格納されていない場合(1回目)、処理はS104へと進む。マスク画像が記憶部111に格納されている場合(2回目以降)、処理はS103へと進む。
(S103)モデル生成部112は、記憶部111から各視点に対応するマスク画像を読み出し、対応する撮影画像にマスク処理を施す。例えば、モデル生成部112は、撮影画像Pk(k=0、1、…、24)に対してマスク画像mPkを適用する。このマスク処理により、画質の低下が懸念される箇所を撮影画像から除外することができる。
(S104)モデル生成部112は、複数の撮影画像に基づいて三次元モデルを生成する。図4に示した繰り返し処理の1回目では、記憶装置102から取得されたオリジナルの撮影画像に基づいて三次元モデルM10aが生成される。一方、2回目以降ではマスク後の撮影画像に基づいて三次元モデルM10aが生成される。なお、三次元モデルの生成方法については任意のモデリング手法を適用することができる。
(S105)マスク生成部113は、S104で生成された三次元モデルに基づいて各視点に対応する深度画像を生成する。例えば、マスク生成部113は、復元した三次元モデルM10aについて、視点#0、#1、…、#24から三次元モデルM10aの表面までの距離を計算し、計算した距離に基づいて深度画像dP0、dP1、…、dP24を生成する。
(S106)マスク生成部113は、各視点に対応する深度画像に対して空間フィルタリングを適用する。例えば、マスク生成部113は、深度画像dP0、dP1、…、dP24のそれぞれに空間フィルタリングを適用する。
(S107)マスク生成部113は、空間フィルタリングを適用後の各深度画像を対象に二値化処理を実行する。例えば、深度画像dP0、dP1、…、dP24に対応する空間フィルタリング後の深度画像に対して二値化処理を施すことで、マスク画像mP0、mP1、…、mP24が得られる。この場合、マスク生成部113は、マスク画像の集合111dとして、マスク画像mP0、mP1、…、mP24を記憶部111に格納する。
(S108)モデル生成部112は、繰り返し処理を継続するか否かを判定する。
例えば、モデル生成部112は、S102−S107の処理を実行した回数が所定の閾値(以下、繰り返し閾値)に達していない場合に繰り返し処理を継続すると判定してもよい。また、モデル生成部112は、前回生成した三次元モデルと、今回生成した三次元モデルとの間で復元精度を比較し、復元精度が所望の精度に達していない場合に繰り返し処理を継続すると判定してもよい。
繰り返し処理を継続する場合、処理はS102へと進む。一方、繰り返し処理を継続しない場合、図5に示した一連の処理は終了する。
ここで、図6を参照しながら、S108に示した判定処理の一例について、さらに説明する。図6は、判定処理の流れを示したフロー図である。
図6に示した判定処理では、繰り返し閾値に基づく判定結果、及び、三次元モデルの復元精度に基づく判定結果に基づいて繰り返し処理を継続するか否かが判定される。
この例では、復元精度の評価にマスク画像を利用する方法が採用されている。そのため、前回生成されたマスク画像の集合111dが記憶部111から消去されず、今回生成されたマスク画像の集合111dと共に記憶部111に格納されている。例えば、繰り返し処理の3回目においてS107の処理(図5を参照)が終了した時点で、繰り返し処理の2回目及び3回目に生成されたマスク画像の集合111dが記憶部111に格納されている。以下、この前提に基づいて説明を進める。
(S111)モデル生成部112は、繰り返し回数が繰り返し閾値未満であるか否かを判定する。繰り返し閾値は、2以上の整数である。
繰り返し閾値は、例えば、三次元モデルの生成処理に許容される処理時間に基づいて事前に設定されうる。また、繰り返し閾値は、情報処理装置101の処理能力に基づいて設定されてもよいし、ユーザにより任意に指定されてもよい。繰り返し回数が繰り返し閾値未満である場合、処理はS112へと進む。一方、繰り返し回数が繰り返し閾値以上である場合、処理はS119へと進む。
(S112)モデル生成部112は、前回生成されたマスク画像の集合111dを記憶部111から取得する。以下では、説明の都合上、前回生成されたマスク画像の集合111dに含まれるマスク画像を「前回画像」と表記する場合がある。
(S113)モデル生成部112は、今回生成されたマスク画像の集合111dを記憶部111から取得する。以下では、説明の都合上、今回生成されたマスク画像の集合111dに含まれるマスク画像を「今回画像」と表記する場合がある。
(S114、S116)モデル生成部112は、視点#k(k=0,1,…,N)を識別するためのパラメータkを0からNまで変化させながら、S115の処理を実行する。図4に示した例の場合、Nは24である。パラメータkがNの場合についてS115の処理を実行した後、処理はS117へと進む。
(S115)モデル生成部112は、視点#kの前回画像と今回画像との差分を計算する。
例えば、モデル生成部112は、前回画像と今回画像とを比較し、対応する画素の画素値が異なる画素に第1の差分画素値(例えば、1)を割り当て、対応する画素の画素値が同じ画素に第2の差分画素値(例えば、0)を割り当てて差分画像を生成する。第1の差分画素値及び第2の差分画素値は、例えば、対応する画素の2つの画素値を入力とするXORゲートにより容易に計算されうる。
(S117)モデル生成部112は、各視点に対応する差分画像の合計画素値(各差分画像における合計)を計算する。また、モデル生成部112は、全ての視点に対応する合計画素値の総計値(全差分画像における合計)を計算する。そして、モデル生成部112は、計算した総計値が所定の閾値(以下、差分閾値)以上であるか否かを判定する。差分閾値は、例えば、全画素数に占める割合(例えば、1%など)などを基準に事前に設定される。
上記の総計値は、深度画像においてマスク処理の対象となる画素数が、前回の処理と今回の処理との間でどれだけ変化したかを評価するための指標である。繰り返し処理により三次元モデルの復元精度が改善された場合、マスク処理の対象となる画素数が変化する。一方、光学的な影響により画質低下した領域をほとんど除去できるマスク画像が得られ、既に高い復元精度が得られている場合、繰り返し処理によって生じるマスク画像の変化は小さくなる。上記の総計値は、この変化を評価するための指標である。
上記の総計値が差分閾値以上の場合、処理はS118へと進む。一方、上記の総計値が差分閾値未満の場合、処理はS119へと進む。
(S118)モデル生成部112は、処理を継続すると判定し、図6に示した一連の処理を終了する。この場合、図5の処理フローにおいて、処理はS102へと進み、繰り返し処理が継続される。
(S119)モデル生成部112は、処理を継続しないと判定し、図6に示した一連の処理を終了する。この場合、図5の処理フローにおいて、図5に示した一連の処理を終了する。
繰り返し回数が繰り返し閾値以上の場合、及び、マスク画像の改善余地に対応する差分の総計値が閾値未満の場合、処理はS119へと到達する。つまり、図6の例は、処理時間が許す限り繰り返し処理を実行し続け(繰り返し閾値に基づく判定)、十分な復元精度が得られた場合には繰り返し閾値を待たずに処理を終了する(差分閾値に基づく判定)という判定処理の仕組みを具体的に示した処理フローである。
なお、図6に示した判定処理の処理フローは一例であり、繰り返し処理を継続するか否かを判定する方法はこの例に限定されない。例えば、図6に示した処理フローの一部を省略する変形例や、図6とは異なる判定基準に基づく判定処理が採用されてもよい。例えば、繰り返し閾値に基づく判定、又は差分閾値に基づく判定についての処理部分を省略する変形が可能である。こうした変形例についても当然に本実施形態の技術的範囲に属する。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属する。
10a 対象物
20 背景領域
30 撮像装置
101 情報処理装置
102 記憶装置
103 表示装置
111 記憶部
111a モデル情報
111b 深度画像の集合
111c フィルタ情報の集合
111d マスク画像の集合
112 モデル生成部
112a 三次元モデル復元機能
112b マスク処理機能
113 マスク生成部113
113a 深度画像生成機能
113b 空間フィルタ機能
113c 二値化機能
P0、…、P24 撮影画像
dP0、…、dP24 深度画像
mP0、…、mP24 マスク画像
M10a 三次元モデル

Claims (5)

  1. 複数の異なる視点から対象物を撮影した複数の撮像画像が格納される記憶部と、
    前記複数の撮像画像から前記対象物の三次元モデルを生成するモデル生成部と、
    各視点から見た前記三次元モデルの深度画像を生成し、前記深度画像に基づいて、画質が低下しやすい特定領域を抽出し、前記各視点に対応する撮像画像から前記特定領域を除去するためのマスク画像を生成するマスク生成部と、を備え、
    前記モデル生成部は、前記複数の撮像画像のそれぞれから前記マスク画像に基づいて前記特定領域を除去し、除去後の撮像画像に基づいて前記対象物の三次元モデルを新たに生成する、情報処理装置。
  2. 前記マスク生成部により、新たに生成された前記三次元モデルについて前記マスク画像を生成する第1の工程と、前記第1の工程で生成された前記マスク画像に基づいて前記除去後の撮像画像を生成する第2の工程と、前記除去後の撮像画像に基づいて前記対象物の三次元モデルを新たに生成する第3の工程と、を繰り返し実行する、
    請求項1に記載の情報処理装置。
  3. 前記深度画像は、深度に対応する階調値で表現され、
    前記マスク生成部は、前記深度画像の中で、前記階調値の勾配に基づく評価値が所定の閾値より大きい部分を前記特定領域として判定する、
    請求項1又は2に記載の情報処理装置。
  4. コンピュータが、
    複数の異なる視点から対象物を撮影した複数の撮像画像を取得し、
    前記複数の撮像画像から前記対象物の三次元モデルを生成し、
    各視点から見た前記三次元モデルの深度画像を生成し、前記深度画像に基づいて、画質が低下しやすい特定領域を抽出し、前記各視点に対応する撮像画像から前記特定領域を除去するためのマスク画像を生成し、
    前記複数の撮像画像のそれぞれから前記マスク画像に基づいて前記特定領域を除去し、除去後の撮像画像に基づいて前記対象物の三次元モデルを新たに生成する
    処理を実行する、三次元モデルの生成方法。
  5. コンピュータに、
    複数の異なる視点から対象物を撮影した複数の撮像画像を取得し、
    前記複数の撮像画像から前記対象物の三次元モデルを生成し、
    各視点から見た前記三次元モデルの深度画像を生成し、前記深度画像に基づいて、画質が低下しやすい特定領域を抽出し、前記各視点に対応する撮像画像から前記特定領域を除去するためのマスク画像を生成し、
    前記複数の撮像画像のそれぞれから前記マスク画像に基づいて前記特定領域を除去し、除去後の撮像画像に基づいて前記対象物の三次元モデルを新たに生成する
    処理を実行させるためのプログラム。
JP2019065691A 2019-03-29 2019-03-29 情報処理装置、三次元モデルの生成方法、及びプログラム Active JP7322460B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065691A JP7322460B2 (ja) 2019-03-29 2019-03-29 情報処理装置、三次元モデルの生成方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065691A JP7322460B2 (ja) 2019-03-29 2019-03-29 情報処理装置、三次元モデルの生成方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2020166498A true JP2020166498A (ja) 2020-10-08
JP7322460B2 JP7322460B2 (ja) 2023-08-08

Family

ID=72717495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065691A Active JP7322460B2 (ja) 2019-03-29 2019-03-29 情報処理装置、三次元モデルの生成方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP7322460B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763268A (zh) * 2021-08-26 2021-12-07 中国科学院自动化研究所 人脸图像盲修复方法及系统
WO2024034449A1 (ja) * 2022-08-06 2024-02-15 モルゲンロット株式会社 情報処理装置、及び情報処理方法
WO2024080120A1 (ja) * 2022-10-14 2024-04-18 ソニーグループ株式会社 情報処理装置および方法、並びに、情報処理システム
WO2024080121A1 (ja) * 2022-10-14 2024-04-18 ソニーグループ株式会社 情報処理装置および方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224909A (ja) * 2014-05-27 2015-12-14 シャープ株式会社 3次元計測装置及び3次元計測方法
WO2019031259A1 (ja) * 2017-08-08 2019-02-14 ソニー株式会社 画像処理装置および方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224909A (ja) * 2014-05-27 2015-12-14 シャープ株式会社 3次元計測装置及び3次元計測方法
WO2019031259A1 (ja) * 2017-08-08 2019-02-14 ソニー株式会社 画像処理装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763268A (zh) * 2021-08-26 2021-12-07 中国科学院自动化研究所 人脸图像盲修复方法及系统
WO2024034449A1 (ja) * 2022-08-06 2024-02-15 モルゲンロット株式会社 情報処理装置、及び情報処理方法
WO2024080120A1 (ja) * 2022-10-14 2024-04-18 ソニーグループ株式会社 情報処理装置および方法、並びに、情報処理システム
WO2024080121A1 (ja) * 2022-10-14 2024-04-18 ソニーグループ株式会社 情報処理装置および方法

Also Published As

Publication number Publication date
JP7322460B2 (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7322460B2 (ja) 情報処理装置、三次元モデルの生成方法、及びプログラム
TWI441095B (zh) 距離估算方法及其距離估算裝置,及其機器可讀取媒體
US10621729B2 (en) Adaptive focus sweep techniques for foreground/background separation
Levin et al. Image and depth from a conventional camera with a coded aperture
US9843787B2 (en) Generation and use of a 3D radon image
Perra et al. An analysis of 3D point cloud reconstruction from light field images
WO2019119567A1 (en) Systems and methods for block based edgel detection with false edge elimination
Ren et al. Face video deblurring using 3D facial priors
Ruan et al. Learning to deblur using light field generated and real defocus images
JP2009536499A (ja) 2次元画像から3次元オブジェクトを再構成するシステム及び方法
JP2020010146A (ja) 画像処理装置、画像処理方法、及びプログラム
Rajagopalan et al. Space-variant approaches to recovery of depth from defocused images
CN111028170A (zh) 图像处理方法、图像处理装置、电子设备和可读存储介质
Alsadik et al. Efficient use of video for 3D modelling of cultural heritage objects
Paramanand et al. Shape from sharp and motion-blurred image pair
CN116012432A (zh) 立体全景图像的生成方法、装置和计算机设备
JP6867645B2 (ja) 画像処理装置、方法、及びプログラム
Aydin et al. A New Adaptive Focus Measure for Shape From Focus.
KR20180034237A (ko) 화상 처리장치, 화상 처리방법, 기억매체 및 프로그램
Chlubna et al. Real-time per-pixel focusing method for light field rendering
CN111105370A (zh) 图像处理方法、图像处理装置、电子设备和可读存储介质
KR102587298B1 (ko) 멀티뷰 어안 렌즈들을 이용한 실시간 전방위 스테레오 매칭 방법 및 그 시스템
Grossauer Inpainting of movies using optical flow
CN114463405A (zh) 面扫线激光3d相机加速方法、装置、系统及fpga
JP6353415B2 (ja) 辞書生成方法、辞書生成装置、画像処理方法、画像処理装置及び画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150