JP2020166166A - Optical device and optical transmitter/receiver using the same - Google Patents

Optical device and optical transmitter/receiver using the same Download PDF

Info

Publication number
JP2020166166A
JP2020166166A JP2019067753A JP2019067753A JP2020166166A JP 2020166166 A JP2020166166 A JP 2020166166A JP 2019067753 A JP2019067753 A JP 2019067753A JP 2019067753 A JP2019067753 A JP 2019067753A JP 2020166166 A JP2020166166 A JP 2020166166A
Authority
JP
Japan
Prior art keywords
substrate
optical
optical device
reflective member
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019067753A
Other languages
Japanese (ja)
Other versions
JP7172803B2 (en
Inventor
孝知 伊藤
Takatomo Ito
孝知 伊藤
高野 真悟
Shingo Takano
真悟 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019067753A priority Critical patent/JP7172803B2/en
Publication of JP2020166166A publication Critical patent/JP2020166166A/en
Application granted granted Critical
Publication of JP7172803B2 publication Critical patent/JP7172803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

To provide an optical device that, even when an electro-optic substrate and a reflection member are joined, reduces an impact of internal stress generated in a joint portion of those, and has little fluctuation of optical loss or the like.SOLUTION: In an optical device in which a substrate 1 that has an optical waveguide 2 and a control electrode formed and has an electro-optic effect is joined with a reflection member R, the shape of a joint area where the reflection member and an end face of the substrate are joined is set so as to be symmetric in the extending direction of a short side with respect to a center point C1 of the arrangement shape of the end portion of the optical waveguide on the short side (side including a1 to a2) of the substrate or a point C2 where the axis of symmetry of the arrangement shape of a branched waveguide portion near the end intersects with the short side.SELECTED DRAWING: Figure 5

Description

本発明は、光デバイス及びそれを用いた光送受信装置に関し、特に、光導波路や制御電極を形成した電気光学基板に反射部材を接合した光デバイス及びそれを用いた光送受信装置に関する。 The present invention relates to an optical device and an optical transmitter / receiver using the same, and more particularly to an optical device in which a reflective member is bonded to an electro-optical substrate on which an optical waveguide or a control electrode is formed, and an optical transmitter / receiver using the same.

光通信分野や光計測分野において、種々の光変調器などの光デバイスが多用されている。図1に示す従来の光デバイスでは、特許文献1に示す光変調器のように、平面視した形状が略長方形の電気光学基板1(基板1)に光導波路2や制御電極(不図示)が形成されており、略長方形の両短辺に光波の入力用及び出力用の2つの光ファイバ(31,32)が直接接続されている。符号4は基板1を収容する筐体である。 In the field of optical communication and the field of optical measurement, various optical devices such as optical modulators are widely used. In the conventional optical device shown in FIG. 1, an optical waveguide 2 and a control electrode (not shown) are mounted on an electro-optical substrate 1 (substrate 1) having a substantially rectangular shape in a plan view, as in the optical modulator shown in Patent Document 1. It is formed, and two optical fibers (31, 32) for inputting and outputting light waves are directly connected to both short sides of a substantially rectangular shape. Reference numeral 4 is a housing for accommodating the substrate 1.

図1のような光デバイスは、両端から光ファイバが導出されているため、デバイス自体のサイズが大きくなるだけでなく、光デバイスを光送受信装置などのユニットに組み込む際には、筐体4の外部の光ファイバ(31,32)を曲げて実装することが行われており、光デバイスの実装に係る面積が大きくなるという問題を生じている。 In the optical device as shown in FIG. 1, since the optical fiber is derived from both ends, not only the size of the device itself becomes large, but also when the optical device is incorporated into a unit such as an optical transmitter / receiver, the housing 4 The external optical fibers (31, 32) are bent and mounted, which causes a problem that the area for mounting the optical device becomes large.

光デバイスの実装面積を削減するため、特許文献2では図2に示すように、光デバイスに接続される入力用又は出力用の光ファイバ(図2では入力用光ファイバ31)を、レンズ付きの光路変換素子(反射部材)50を使用して任意の角度、例えば90度に曲げる方法が提案されている。符号51は、光ファイバ31を光路変換素子50に直接接合するためのフェルールであり、符号52は、光導波路2から出射される複数の光波を偏波合成するための偏波合成手段である。 In order to reduce the mounting area of the optical device, as shown in FIG. 2 in Patent Document 2, an input or output optical fiber (input optical fiber 31 in FIG. 2) connected to the optical device is provided with a lens. A method of bending at an arbitrary angle, for example, 90 degrees, using an optical path conversion element (reflecting member) 50 has been proposed. Reference numeral 51 is a ferrule for directly joining the optical fiber 31 to the optical path conversion element 50, and reference numeral 52 is a polarization synthesis means for polarization-synthesizing a plurality of light waves emitted from the optical waveguide 2.

また、特許文献3では図3に示すように、入力用光ファイバ31と出力用光ファイバ32を筐体4に対して同じ側壁に配置している。筐体内では2つのプリズム(R1,R2)を用いて光路を折り返す方法が提案されている。符号L1〜L3は集光又はコリメート用のレンズであり、符号53は偏波合成手段を示している。 Further, in Patent Document 3, as shown in FIG. 3, the input optical fiber 31 and the output optical fiber 32 are arranged on the same side wall with respect to the housing 4. A method of folding back an optical path using two prisms (R1 and R2) in the housing has been proposed. Reference numerals L1 to L3 are lenses for condensing or collimating, and reference numeral 53 indicates a polarization synthesizing means.

図2のような光デバイスでは、レンズ付き光路変換素子50と角度や位置を正確に調整し、光ファイバ31の出射端部と光導波路2の入射端部21の光軸を合わせることが必要となる。しかしながら、この調整に係る作業は極めて煩雑であり、多くの労力と時間を必要とする。 In an optical device as shown in FIG. 2, it is necessary to accurately adjust the angle and position with the optical path conversion element 50 with a lens, and to align the optical axis of the exit end of the optical fiber 31 with the incident end 21 of the optical waveguide 2. Become. However, the work related to this adjustment is extremely complicated and requires a lot of labor and time.

しかも、筐体4内で基板1と光路変換素子50とを接着剤などで接合した場合、温度変化により発生する内部応力は、基板1と光路変換素子50との接合部分に集中しやすい。特に基板1と光路変換素子50とが異なる材料の場合は顕著である。このため当該内部応力が光導波路の端部に伝わり、結果的に光導波路の屈折率変化による偏波歪みの発生や、光軸のズレなどの不具合を生じる。 Moreover, when the substrate 1 and the optical path conversion element 50 are bonded to each other in the housing 4 with an adhesive or the like, the internal stress generated by the temperature change tends to be concentrated on the joint portion between the substrate 1 and the optical path conversion element 50. This is particularly remarkable when the substrate 1 and the optical path conversion element 50 are made of different materials. Therefore, the internal stress is transmitted to the end of the optical waveguide, and as a result, problems such as polarization distortion due to a change in the refractive index of the optical waveguide and misalignment of the optical axis occur.

また、図3のような光デバイスでは、光路変換手段である2つのプリズム(R1,R2)の位置及び角度を正確に合わせる必要があり、多くの労力や時間を要する。しかも、反射面がプリズム毎に独立しており、各プリズムは筐体4に接着固定されているため、温度変化により光学部品の位置や角度が微妙に変化し、光損失変動なども発生し易くなる。 Further, in the optical device as shown in FIG. 3, it is necessary to accurately match the positions and angles of the two prisms (R1 and R2) which are the optical path conversion means, which requires a lot of labor and time. Moreover, since the reflective surface is independent for each prism and each prism is adhesively fixed to the housing 4, the position and angle of the optical component change slightly due to temperature changes, and light loss fluctuations are likely to occur. Become.

しかも、光変調器などの光デバイスにおいては、複数のマッハツェンダー型光導波路を入れ子状に組み合わせた、所謂、ネスト型光導波路のように、光導波路の集積化が進んでおり、しかも光変調素子を構成する基板1のサイズをより小さくするため、基板1の短辺側端部から光変調器のマッハツェンダー干渉計部(以下MZ部)や、MZ部への入射前で単に光を分岐する分岐部などまでの距離も極めて短くなっている。このため、基板1の短辺側端部で発生する内部応力は、該端部に留まらず、MZ部や分岐部にまでその影響が及んでいる。 Moreover, in optical devices such as optical modulators, the integration of optical waveguides is progressing, as in the so-called nested optical waveguides in which a plurality of Mach-Zehnder-type optical waveguides are combined in a nested manner, and the light modulation elements. In order to reduce the size of the substrate 1 constituting the substrate 1, light is simply branched from the short side end of the substrate 1 before the light is incident on the Mach-Zehnder interferometer section (hereinafter referred to as the MZ section) of the optical modulator or the MZ section. The distance to the branch is also extremely short. Therefore, the internal stress generated at the short side end portion of the substrate 1 is affected not only at the end portion but also at the MZ portion and the branch portion.

特開2004−125854号公報Japanese Unexamined Patent Publication No. 2004-125854 特開2018−55017号公報JP-A-2018-55017 特開2018−72605号公報JP-A-2018-720605

本発明が解決しようとする課題は、上述したような問題を解決し、電気光学基板と反射部材とを接合した際でも、両者の接合部分に発生する内部応力の影響を抑制し、光損失等の変動の少ない光デバイスを提供することである。 The problem to be solved by the present invention is to solve the above-mentioned problems, suppress the influence of internal stress generated at the joint portion between the electro-optical substrate and the reflective member, and suppress light loss and the like. It is to provide an optical device with little fluctuation.

上記課題を解決するため、本発明の光デバイスは、以下の技術的特徴を有する。
(1) 電気光学効果を有する基板と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする。
In order to solve the above problems, the optical device of the present invention has the following technical features.
(1) A substrate having an electro-optical effect and the substrate include a first surface having a long side facing each other and a short side facing each other in a plan view, and at least one of the first surfaces is on the first surface. An optical waveguide having an incident or exit end in contact with the short side of the optical waveguide and a control electrode for controlling a light wave propagating through the optical waveguide are formed, and the end of the optical waveguide is arranged. In an optical device having a reinforcing member arranged on the substrate along the short side and a reflecting member arranged on the outside of the substrate facing the end of the optical waveguide, the reflecting member is. The joint is joined to the end face of the substrate located on the short side and the end face of the reinforcing member at a joining region, and the reflective member and the end face of the substrate are joined when viewed in a plan view from the extending direction of the long side. The shape of the region is symmetrical to the central point of the arrangement shape of the end portion of the optical waveguide on the short side, or the arrangement shape of the branch waveguide portion for branching or merging near the end portion of the optical waveguide. It is an axis, and the axis of symmetry extending in the same direction as the long side is set to be symmetrical with respect to a point intersecting the short side in the extending direction of the short side.

(2) 上記(1)に記載の光デバイスにおいて、該長辺の延伸方向から平面視した場合、該反射部材と該基板又は該補強部材との接合部分では、該接合領域を取り囲む該反射部材の外周面の少なくとも一部と、該接合領域を取り囲む該基板又は該補強部材の外周面の少なくとも一部とは、連続した面となるように設定されていることを特徴とする。 (2) In the optical device according to (1) above, when viewed in a plan view from the extending direction of the long side, the reflective member surrounding the joint region at the joint portion between the reflective member and the substrate or the reinforcing member. It is characterized in that at least a part of the outer peripheral surface of the above and at least a part of the outer peripheral surface of the substrate or the reinforcing member surrounding the joint region are set to be continuous surfaces.

(3) 上記(1)に記載の光デバイスにおいて、該反射部材の接合領域の面積が、該基板の端面と該補強部材の端面とが形成する端面領域の面積より小さいことを特徴とする。 (3) In the optical device according to (1) above, the area of the joint region of the reflective member is smaller than the area of the end face region formed by the end face of the substrate and the end face of the reinforcing member.

(4) 上記(1)乃至(3)に記載の光デバイスにおいて、該反射部材は少なくとも2つの反射面を有し、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換するよう構成されていることを特徴とする。 (4) In the optical device according to (1) to (3) above, the reflecting member has at least two reflecting surfaces, and a light wave incident on or emitted from the optical waveguide is transmitted to the length of the substrate. It is characterized in that it is configured to convert the optical path in the direction of folding back with respect to the side direction.

(5) 上記(4)に記載の光デバイスにおいて、該光導波路から出射された後に該反射部材で折り返された光路、または該光導波路に入射される光路であって該反射部材で折り返される前の光路は、該基板の第1の面が形成する平面よりも上方を通過するよう設定されていることを特徴とする。 (5) In the optical device according to (4) above, an optical path that is emitted from the optical waveguide and then folded back by the reflective member, or an optical path that is incident on the optical waveguide and before being folded back by the reflective member. The optical path of is set to pass above the plane formed by the first surface of the substrate.

(6) 上記(1)乃至(5)のいずれかに記載の光デバイスにおいて、該基板と該反射部材は筐体内に収容され、該筐体に対して、該基板は固定されるが、該反射部材は固定されていないことを特徴とする。 (6) In the optical device according to any one of (1) to (5) above, the substrate and the reflective member are housed in a housing, and the substrate is fixed to the housing, but the substrate is fixed. The reflective member is not fixed.

(7) 上記(1)乃至(6)のいずれかに記載の光デバイスにおいて、該基板と該反射部材及び中継基板は筐体内に収容され、該制御電極の高周波信号を入力する電気信号入力部が、該基板に対して該反射部材が配置された側の筐体側壁に配置され、該高周波信号は、該中継基板に形成された中継線路を介して、該電気信号入力部から該基板の長辺側に設けられた該制御電極の入力部に伝送されていることを特徴とする。 (7) In the optical device according to any one of (1) to (6) above, the substrate, the reflective member, and the relay substrate are housed in a housing, and an electric signal input unit for inputting a high frequency signal of the control electrode. However, the high frequency signal is arranged on the side wall of the housing on the side where the reflection member is arranged with respect to the substrate, and the high frequency signal is transmitted from the electric signal input portion of the substrate via the relay line formed on the relay substrate. It is characterized in that it is transmitted to the input unit of the control electrode provided on the long side.

(8)上記(1)乃至(7)のいずれかに記載の光デバイスは光変調器であり、さらに光受信器を備えたことを特徴とする光送受信装置である。 (8) The optical device according to any one of (1) to (7) above is an optical modulator, and is an optical transmitter / receiver including an optical receiver.

本発明は、電気光学効果を有する基板と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されているため、以下のような効果が期待できる。
基板と反射部材との接合部に発生する内部応力が、基板端部の光導波路の配置の中心点に対して対称に分布することとなるため、該光導波路端部における光導波路に伝わる内部応力が光導波路端部に対して左右均等となり、光波の偏波の変化が抑制され変調光の品質劣化を低減することができる。
また、光導波路のMZ部や分岐部に達する内部応力に対しても、MZ部や分岐部を構成する分岐導波路部の配置形状の対称軸に対して略対称に分布することとなるため、変調光の品質の劣化等を抑制することが可能となる。
The present invention comprises a substrate having an electro-optical effect and the substrate having a first surface having long sides facing each other and short sides facing each other in a plan view, and at least on the first surface. An optical waveguide having an incident or exit end in contact with one of the short sides and a control electrode for controlling a light wave propagating through the optical waveguide are formed, and the end of the optical waveguide is arranged. In an optical device having a reinforcing member arranged on the substrate along the short side and a reflecting member arranged on the outside of the substrate facing the end of the optical waveguide, the reflecting member is The end face of the substrate located on the short side and the end face of the reinforcing member are joined at a joining region, and the reflective member and the end face of the substrate are joined when viewed in a plan view from the extending direction of the long side. The shape of the junction region is the center point of the arrangement shape of the end portion of the optical waveguide on the short side, or the arrangement shape of the branch waveguide portion for branching or merging near the end portion of the optical waveguide. Since it is an axis of symmetry and the axis of symmetry extending in the same direction as the long side is set to be symmetric in the extending direction of the short side with respect to the point where the short side intersects, the following effects are expected. it can.
Since the internal stress generated at the joint between the substrate and the reflective member is distributed symmetrically with respect to the center point of the arrangement of the optical waveguide at the end of the substrate, the internal stress transmitted to the optical waveguide at the end of the optical waveguide Is even on the left and right with respect to the end of the optical waveguide, the change in the polarization of the light wave is suppressed, and the deterioration of the quality of the modulated light can be reduced.
Further, the internal stress reaching the MZ portion and the branch portion of the optical waveguide is also distributed substantially symmetrically with respect to the axis of symmetry of the arrangement shape of the branch waveguide portion constituting the MZ portion and the branch portion. It is possible to suppress deterioration of the quality of the modulated light.

従来の光デバイス(入出力用光ファイバを直線状に配置)を示す図である。It is a figure which shows the conventional optical device (the optical fiber for input / output is arranged linearly). 従来の光デバイス(入出力用光ファイバを直角に配置)を示す図である。It is a figure which shows the conventional optical device (the optical fiber for input / output is arranged at a right angle). 従来の光デバイス(入出力用光ファイバを折り返して配置)を示す図である。It is a figure which shows the conventional optical device (the optical fiber for input / output is folded and arranged). 本発明の光デバイスに係る第1実施例を説明する図である。It is a figure explaining 1st Example which concerns on the optical device of this invention. 本発明の光デバイスにおける基板と反射部材との接合状況を説明する図である。It is a figure explaining the bonding state of the substrate and the reflective member in the optical device of this invention. 本発明の光デバイスの基板と反射部材との接合を説明する平面図である。It is a top view explaining the joining of the substrate of the optical device of this invention, and a reflection member. 図6の光デバイスの一点鎖線X−X’における断面図である。6 is a cross-sectional view taken along the alternate long and short dash line XX'of the optical device of FIG. 図6の光デバイスの一点鎖線Y−Y’における断面図である。6 is a cross-sectional view taken along the alternate long and short dash line YY'of the optical device of FIG. 図8に係る応用例(その1)を示す図である。It is a figure which shows the application example (the 1) which concerns on FIG. 図8に係る応用例(その2)を示す図である。It is a figure which shows the application example (the 2) which concerns on FIG. 光導波路の端部等が基板の短辺方向の中心からずれた場合を説明する図である。It is a figure explaining the case where the end portion of the optical waveguide deviates from the center in the short side direction of the substrate. 図11の光デバイスの一点鎖線Y−Y’における断面図である。11 is a cross-sectional view taken along the alternate long and short dash line YY'of the optical device of FIG. 反射部材の他の形状(その1)を説明する図である。It is a figure explaining another shape (the 1) of the reflective member. 図13の基板と反射部材との接合状況を説明する図である。It is a figure explaining the bonding state of the substrate of FIG. 13 and a reflective member. 図13に用いた反射部材に目印を設けた例を説明する図である。It is a figure explaining the example which provided the mark in the reflective member used in FIG. 反射部材の他の形状(その2)を説明する図である。It is a figure explaining another shape (the 2) of the reflective member. 図16に用いた反射部材の切り欠きを説明する図である。It is a figure explaining the notch of the reflection member used in FIG. 本発明の光デバイスに係る第2実施例を説明する図である。It is a figure explaining the 2nd Example which concerns on the optical device of this invention. 図18の光デバイスの一点鎖線X−X’における断面図である。FIG. 8 is a cross-sectional view taken along the alternate long and short dash line XX'of the optical device of FIG. 図18の光デバイスの一点鎖線Y−Y’における断面図である。FIG. 8 is a cross-sectional view taken along the alternate long and short dash line YY'of the optical device of FIG. 図20に係る応用例(その1)を示す図である。It is a figure which shows the application example (the 1) which concerns on FIG. 図20に係る応用例(その2)を示す図である。It is a figure which shows the application example (the 2) which concerns on FIG. 本発明の光デバイスに係る第3実施例を説明する図である。It is a figure explaining the 3rd Example which concerns on the optical device of this invention. 図23に用いた反射部材の切り欠きを説明する図である。It is a figure explaining the notch of the reflection member used in FIG. 本発明の光デバイスに係る第4実施例を説明する図である。It is a figure explaining the 4th Example which concerns on the optical device of this invention. 本発明の光デバイスに係る第5実施例を説明する図である。It is a figure explaining the 5th Example which concerns on the optical device of this invention. 本発明の光デバイスに係る第6実施例を説明する図である。It is a figure explaining the 6th Example which concerns on the optical device of this invention.

以下、本発明の光デバイスについて、好適例を用いて詳細に説明する。
本発明の光デバイスは、図4及び5に示すように、電気光学効果を有する基板1と、該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路2と、該光導波路を伝搬する光波を制御するための制御電極(不図示)とが形成され、該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材10と、該光導波路の該端部に対向して該基板の外部に配置される反射部材Rとを有する光デバイスにおいて、該反射部材Rは、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点C1、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点C2に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする。
Hereinafter, the optical device of the present invention will be described in detail with reference to suitable examples.
As shown in FIGS. 4 and 5, the optical device of the present invention has a substrate 1 having an electro-optical effect, and the substrate has a first surface having long sides facing each other and short sides facing each other in a plan view. An optical waveguide 2 having an incident or exit end in contact with at least one of the short sides on the first surface, and a control electrode for controlling the light wave propagating through the optical waveguide ( (Not shown) is formed, and the reinforcing member 10 arranged on the substrate along the short side where the end portion of the optical waveguide is arranged, and the substrate facing the end portion of the optical waveguide. In an optical device having a reflecting member R arranged outside the above, the reflecting member R is joined to the end face of the substrate located on the short side and the end face of the reinforcing member at a joining region, and the long side is extended. When viewed in a plan view from the direction, the shape of the joint region where the reflective member and the end face of the substrate are joined is the center point C1 of the arrangement shape of the end portion of the optical waveguide on the short side, or the optical light. It is the axis of symmetry of the arrangement shape of the branch waveguide section for branching or combining near the end of the waveguide, and with respect to the point C2 where the axis of symmetry extending in the same direction as the long side intersects the short side. It is characterized in that it is set to be symmetrical in the stretching direction of the short side.

本発明の光デバイスで使用する電気光学効果を有する基板1としては、ニオブ酸リチウム(LN)やタンタル酸リチウム、ジルコン酸チタン酸ランタン(PLZT)などの結晶材料や、InPなどの半導体基板、EOポリマー材料などを用いることができる。光導波路の形成方法としては、例えば、ニオブ酸リチウム基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散する方法やプロトン交換法などにより形成される。また、基板1に凹凸を形成してリッジ型導波路を形成することも可能である。 Examples of the substrate 1 having an electro-optical effect used in the optical device of the present invention include crystal materials such as lithium niobate (LN), lithium tantalate, and lanthanum zirconate (PLZT), semiconductor substrates such as InP, and EO. A polymer material or the like can be used. As a method for forming the optical waveguide, for example, a high refractive index substance such as titanium (Ti) is thermally diffused on a lithium niobate substrate (LN substrate), a proton exchange method, or the like. It is also possible to form unevenness on the substrate 1 to form a ridge type waveguide.

制御電極には、光導波路に変調信号による電界を印加する変調電極や、DCバイアス電圧による電界を印加するDC電極がある。これら制御電極は、基板表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設けることも可能である。 The control electrode includes a modulation electrode that applies an electric field due to a modulation signal to the optical waveguide and a DC electrode that applies an electric field due to a DC bias voltage. These control electrodes can be formed by forming a Ti / Au electrode pattern on the surface of the substrate and by a gold plating method or the like. Further, if necessary, a buffer layer such as a dielectric SiO 2 can be provided on the surface of the substrate after the optical waveguide is formed.

図4は本発明の光デバイスの一例を示す平面図である。図4の光デバイスでは、入力用光ファイバ31と出力用光ファイバ32とは筐体4の同じ側壁から筐体内に導入され、筐体内で折り返し光路を形成している。光ファイバ31からの出射光は、集光レンズLにより、基板1に形成された光導波路2の入射端部に集光されている。また、折り返し光路を形成するため、反射部材Rを設けている。基板1の短辺側の端部には、基板上に補強部材10が接合固定され、さらに、基板1と補強部材10の同一端面に反射部材Rが接着剤で接合されている。以下では補強部材10を利用する例を中心に説明するが、補強部材が無い場合であっても、本発明の基本的な考え方が適用できることは、言うまでもない。また、光路の向き(光波の伝搬方向)は図4と逆の方向としてもよい。 FIG. 4 is a plan view showing an example of the optical device of the present invention. In the optical device of FIG. 4, the input optical fiber 31 and the output optical fiber 32 are introduced into the housing from the same side wall of the housing 4, and form a folded optical path in the housing. The light emitted from the optical fiber 31 is collected by the condenser lens L at the incident end of the optical waveguide 2 formed on the substrate 1. Further, a reflection member R is provided to form a folded optical path. A reinforcing member 10 is joined and fixed on the substrate at the end on the short side side of the substrate 1, and a reflective member R is joined to the same end surface of the substrate 1 and the reinforcing member 10 with an adhesive. Hereinafter, an example of using the reinforcing member 10 will be mainly described, but it goes without saying that the basic idea of the present invention can be applied even when there is no reinforcing member. Further, the direction of the optical path (propagation direction of the light wave) may be opposite to that in FIG.

図4における反射部材Rは、2つの反射面を形成したものであるが、反射面の数は、2つに限定されるものではなく、3つ以上又は1つであっても良い。なお、複数の反射面を有する反射部材を用いることで、個々の反射面を別個の反射部材で形成する場合と比較し、温度変化に起因する光損失変動を低減することが可能となる。
また、2つ又はそれ以上の反射面を有する反射部材は1つのプリズムで形成してもよいし、もしくは1つの反射面を持つ2つ又はそれ以上のプリズムを筐体とは別に用意された共通の固定部材に固定配置したものを用いてもよい。これにより、光軸の角度ズレへの許容度が増すことが可能となる。
さらに、図2の従来例に示すように、反射部材Rは、反射面の一部にレンズ機能を付加することも可能である。
The reflective member R in FIG. 4 has two reflective surfaces formed therein, but the number of reflective surfaces is not limited to two, and may be three or more or one. By using a reflective member having a plurality of reflective surfaces, it is possible to reduce fluctuations in light loss due to temperature changes, as compared with the case where each reflective surface is formed by a separate reflective member.
Further, the reflecting member having two or more reflecting surfaces may be formed by one prism, or two or more prisms having one reflecting surface are prepared separately from the housing. You may use the one fixedly arranged on the fixing member of. This makes it possible to increase the tolerance for the angular deviation of the optical axis.
Further, as shown in the conventional example of FIG. 2, the reflecting member R can also add a lens function to a part of the reflecting surface.

図5は、基板1と反射部材Rとの接合部分を拡大して示したものである。図5では、光導波路2の配置等を見易くするため、補強部材の図示を省略している。点線Aの部分は、基板1と反射部材Rとを光学接着剤等で接合する部分を示している。本発明では、基板(補強部材)と反射部材とが互いに接合している点線Aの領域を「接合部分」と称している。点線Aの部分では、接合領域内で接着剤が硬化収縮することにより内部応力が発生する。また、接合領域の外周付近にも接着剤がはみ出し、その接着剤が硬化収縮することにより内部応力が発生することとなる。内部応力は、接合面に露出した光導波路2の入射端部に加わり、光導波路の屈折率変化(偏波の歪みや偏光状態の変化など)を発生させる。これにより消光比や変調効率が劣化し変調光の品質の劣化が生じる。
また、複数の光導波路の端部が接合面に露出している場合(例えば、図27参照)には、光導波路毎の屈折率の変化が異なるため光導波路間の相対的な偏波状態が大きく異なり更なる変調光の品質の劣化を発生する可能性がある。
FIG. 5 is an enlarged view of the joint portion between the substrate 1 and the reflective member R. In FIG. 5, the reinforcing member is not shown in order to make it easier to see the arrangement of the optical waveguide 2. The portion of the dotted line A indicates a portion where the substrate 1 and the reflective member R are joined by an optical adhesive or the like. In the present invention, the region of the dotted line A where the substrate (reinforcing member) and the reflective member are joined to each other is referred to as a "joining portion". In the portion of the dotted line A, internal stress is generated by curing and shrinking the adhesive in the joint region. In addition, the adhesive also squeezes out near the outer periphery of the joint region, and the adhesive cures and shrinks, so that internal stress is generated. The internal stress is applied to the incident end of the optical waveguide 2 exposed on the joint surface, and causes a change in the refractive index of the optical waveguide (distortion of polarization, change in polarization state, etc.). As a result, the extinction ratio and the modulation efficiency deteriorate, and the quality of the modulated light deteriorates.
Further, when the ends of a plurality of optical waveguides are exposed on the joint surface (for example, see FIG. 27), the relative polarization state between the optical waveguides is different because the change of the refractive index is different for each optical waveguide. It is very different and may cause further deterioration of the quality of the modulated light.

また、近年の光変調器などでは、光デバイスの小型化に関するニーズを反映して、図5のように、基板1の短辺端部の近くに配置される、光導波路のMZ部の分岐部や合波部、あるいは光導波路のY字型分岐部やY字型合波部などの分岐導波路部と、該短辺端部との距離Sが小さくなっている。なお、「Y字型分岐部」の一例としては、ネスト型導波路の最初の分岐部や、DP-QPSK変調器のようにX偏波用MZ部とY偏波用MZ部への入射前で単にX偏波用とY偏波用に光を分岐する分岐部などが該当する。このため、接合部分Aではみ出した接着剤による内部応力は、分岐導波路部まで到達する可能性がある。このため、分岐導波路部に対してアンバランスな内部応力が加わると、分岐比が非対称となったり、変調部毎に異なった位相差が発生し、変調信号の歪みなどの悪影響を生じる。このような悪影響は、基板が複数のMZ部からなる変調部を備え、複数の変調信号で異なった変調を行っている場合には、特に顕著となる。 Further, in recent optical modulators and the like, reflecting the needs for miniaturization of optical devices, as shown in FIG. 5, the branch portion of the MZ portion of the optical waveguide is arranged near the short side end portion of the substrate 1. The distance S between the branch waveguide portion such as the light wave junction or the Y-shaped branching portion or the Y-shaped junction portion of the optical waveguide and the short side end portion is small. As an example of the "Y-shaped branching portion", before the incident on the first branching portion of the nested waveguide or the X polarization MZ portion and the Y polarization MZ portion such as the DP-QPSK modulator. This corresponds to a branch portion that simply branches light for X polarization and Y polarization. Therefore, the internal stress due to the adhesive protruding from the joint portion A may reach the branch waveguide portion. Therefore, when an unbalanced internal stress is applied to the branched waveguide section, the branching ratio becomes asymmetrical, a different phase difference is generated for each modulation section, and adverse effects such as distortion of the modulated signal occur. Such an adverse effect becomes particularly remarkable when the substrate includes a modulation section composed of a plurality of MZ sections and different modulations are performed by the plurality of modulation signals.

接合部分Aにおける上述した不具合を解消するため、本発明の光デバイスでは、反射部材Rと基板1の端面とが接合される接合領域の形状は、該基板1の上面(第1の面)の短辺(図5の点a1と点a2を結ぶ線は、該短辺の一部となる)上において、接合面に露出している光導波路の端部の配置形状の中心点C1に対して、該短辺の延伸方向に対称となるよう設定している。 In order to solve the above-mentioned problems in the joint portion A, in the optical device of the present invention, the shape of the joint region where the reflective member R and the end face of the substrate 1 are joined is the shape of the upper surface (first surface) of the substrate 1. On the short side (the line connecting the points a1 and a2 in FIG. 5 is a part of the short side), with respect to the center point C1 of the arrangement shape of the end portion of the optical waveguide exposed on the joint surface. , It is set to be symmetrical in the stretching direction of the short side.

また、該接合領域の形状は、該短辺上において、平面視した際の基板1の長辺と同じ方向に延びる対称軸(光導波路の端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸。図5の二点鎖線参照)が該短辺と交差する点C2に対して、該短辺の延伸方向に対称となるよう設定しても良い。 Further, the shape of the junction region is a branched waveguide for branching or merging near the end of the optical waveguide, which extends in the same direction as the long side of the substrate 1 when viewed in a plan view on the short side. The axis of symmetry of the arrangement shape of the portion; see the two-point chain line in FIG. 5) may be set to be symmetrical with respect to the point C2 that intersects the short side in the extending direction of the short side.

上述した中心点C1と交点C2が一致している場合は、対称の基準となる点は同一点となるが、図5のように両者の位置が異なる場合には、光導波路の端部に加わる内部応力と、MZ部や分岐部の分岐導波路部に加わる内部応力のいずれを重視するかによって、中心点C1または交点C2のどちらかの基準点を選択することが可能である。 When the center point C1 and the intersection C2 described above coincide with each other, the reference points of symmetry are the same points, but when the positions of the two are different as shown in FIG. 5, the points are added to the end of the optical waveguide. It is possible to select either the center point C1 or the intersection C2 as a reference point depending on whether the internal stress or the internal stress applied to the branch waveguide portion of the MZ portion or the branch portion is emphasized.

このように設定すると、点C1又はC2に対して内部応力を対称に分布させることが可能となり、光導波路の端部やMZ部や分岐部の分岐導波路部に対する内部応力のアンバランスを解消することが可能となる。その結果、接着剤の硬化時や硬化後の環境温度の変動時における光導波路の端部での屈折率変化(偏波の歪みなど)や分岐導波路部へのアンバランスな応力による光デバイスの変調特性の劣化などを抑制することができる。 With this setting, the internal stress can be distributed symmetrically with respect to the points C1 or C2, and the imbalance of the internal stress with respect to the end portion of the optical waveguide, the MZ portion, and the branch waveguide portion of the optical waveguide can be eliminated. It becomes possible. As a result, the optical device due to changes in the refractive index at the ends of the optical waveguide (distortion of polarization, etc.) and unbalanced stress on the branched waveguide when the adhesive is cured or when the environmental temperature changes after curing. Deterioration of modulation characteristics can be suppressed.

分岐導波路部については、ネスト型光導波路やDP-QPSK変調器の光導波路では、複数段の分岐導波路部が設けられている。本発明では、基板の短辺側に最も近い分岐導波路部に着目し、対称軸を設定している。
ただし、ネスト型光導波路や多波長用変調器(MZ部間で使用波長が異なる)のように複数のMZ部が並列に配置されている場合には、上記接合領域の短辺方向の中心は複数のMZ部の配置形状の対称軸上に配置してもよい。
また、ネスト型光導波路のように基板の短辺側の近くに親MZ部の分岐部が配置されている場合には、上記接合領域の短辺方向の中心は光導波路端部に対し最も近傍の親MZ部の対称軸上に配置してもよい。
これにより複数のMZ部に影響する応力は上記対称軸に対してほぼ対称となるため変調特性劣化の偏りを小さくすることができる。
Regarding the branched waveguide section, the nested optical waveguide and the optical waveguide of the DP-QPSK modulator are provided with a plurality of stages of the branched waveguide section. In the present invention, the axis of symmetry is set by focusing on the branched waveguide portion closest to the short side of the substrate.
However, when a plurality of MZ portions are arranged in parallel, such as a nested optical waveguide or a multi-wavelength modulator (the wavelength used differs between the MZ portions), the center of the junction region in the short side direction is It may be arranged on the axis of symmetry of the arrangement shape of a plurality of MZ portions.
Further, when the branch portion of the parent MZ portion is arranged near the short side side of the substrate as in the nested optical waveguide, the center of the junction region in the short side direction is closest to the end portion of the optical waveguide. It may be arranged on the axis of symmetry of the parent MZ portion of.
As a result, the stress affecting the plurality of MZ portions becomes substantially symmetric with respect to the axis of symmetry, so that the bias of modulation characteristic deterioration can be reduced.

基板1や反射部材Rは、図4に示すように、筐体4内に収容されている。筐体内では、基板1は筐体4に固定されるが、反射部材Rは筐体4に固定されていない。このため筐体内の温度が変化した場合でも、反射部材Rを筐体4に固定した場合と比較してその固定部から生じる応力がなくなるため、反射部材Rを介して基板1に加わる応力源を減少することができる。 As shown in FIG. 4, the substrate 1 and the reflective member R are housed in the housing 4. In the housing, the substrate 1 is fixed to the housing 4, but the reflective member R is not fixed to the housing 4. Therefore, even when the temperature inside the housing changes, the stress generated from the fixed portion is eliminated as compared with the case where the reflective member R is fixed to the housing 4, so that the stress source applied to the substrate 1 via the reflective member R is used. Can be reduced.

また、特に筐体4と反射部材Rの線膨張率が異なる場合には、温度変化により反射部材Rが伸縮した場合でも、反射部材Rが筐体4に固定されていないため、伸縮による内部応力が基板1に加わることを抑制することが可能となる。このため筐体4内の温度が変化した場合でも、光デバイスの変調特性の劣化などを抑制することができる。 Further, especially when the linear expansion coefficient of the housing 4 and the reflective member R are different, even if the reflective member R expands and contracts due to a temperature change, the reflective member R is not fixed to the housing 4, so that the internal stress due to the expansion and contraction occurs. Can be suppressed from being added to the substrate 1. Therefore, even if the temperature inside the housing 4 changes, deterioration of the modulation characteristics of the optical device can be suppressed.

さらに、集光レンズLを収容するレンズ鏡筒を反射部材Rに接合し、該レンズ鏡筒を筐体4の所定位置に固定することで、基板1とレンズ鏡筒の両者で反射部材Rを支持するよう構成することも可能である。
また筐体4内の温度変化時における変調特性の劣化抑制の観点から、該レンズ鏡筒及び反射部材Rを筐体4に固定しない構成は該筐体4から該レンズ鏡筒及び反射部材Rへの応力の影響をなくすことができるためより好適である。
なお、集光レンズLとしては屈折率分布型(GRIN)レンズを用いることもできる。特に光ファイバの外径に近い外径を有する小型の屈折率分布型レンズは軽量なため、集光レンズLを筐体4に固定せず反射部材Rのみに固定する場合により好適である。
屈折率分布型レンズはレンズ鏡筒を用いずに光ファイバと融着して固定してもよいし、レンズ鏡筒を用いて光ファイバと固定してもよい。
Further, by joining the lens barrel accommodating the condenser lens L to the reflecting member R and fixing the lens barrel at a predetermined position of the housing 4, the reflecting member R is formed on both the substrate 1 and the lens barrel. It can also be configured to support.
Further, from the viewpoint of suppressing deterioration of the modulation characteristics when the temperature inside the housing 4 changes, the configuration in which the lens barrel and the reflecting member R are not fixed to the housing 4 is changed from the housing 4 to the lens barrel and the reflecting member R. It is more preferable because it can eliminate the influence of the stress of.
A refractive index distribution type (GRIN) lens can also be used as the condenser lens L. In particular, since a small refractive index distribution type lens having an outer diameter close to the outer diameter of the optical fiber is lightweight, it is more suitable when the condenser lens L is not fixed to the housing 4 but fixed only to the reflective member R.
The refractive index distribution type lens may be fused and fixed to the optical fiber without using the lens barrel, or may be fixed to the optical fiber by using the lens barrel.

以下に、基板1や補強部材10と反射部材Rとの接合領域の形状について、詳細に説明する。図6は、図4の光デバイスにおける基板1、補強部材10及び反射部材Rを抜き出して示した平面図である。
ただし、図4では、基板1に形成された光導波路2の端部(基板1の左端側の端部)の位置が、基板1の短辺の中央とほぼ一致しているのに対し、図6では、光導波路2の端部の位置C1が、基板1の短辺の中央と一致していない点で異なっている。
また、図7は図6の一点鎖線X−X’における断面図、図8は図6の一点鎖線Y−Y’における断面図を各々示す。図6乃至8では、光導波路2の端部C1を基準点として接合領域の形状を設定している。
The shape of the joint region between the substrate 1 or the reinforcing member 10 and the reflecting member R will be described in detail below. FIG. 6 is a plan view showing the substrate 1, the reinforcing member 10, and the reflecting member R in the optical device of FIG. 4 in an extracted manner.
However, in FIG. 4, the position of the end portion (the end portion on the left end side of the substrate 1) of the optical waveguide 2 formed on the substrate 1 substantially coincides with the center of the short side of the substrate 1, whereas in FIG. No. 6 is different in that the position C1 of the end portion of the optical waveguide 2 does not coincide with the center of the short side of the substrate 1.
Further, FIG. 7 shows a cross-sectional view taken along the alternate long and short dash line XX of FIG. 6, and FIG. 8 shows a sectional view taken along the alternate long and short dash line YY'of FIG. In FIGS. 6 to 8, the shape of the junction region is set with the end C1 of the optical waveguide 2 as a reference point.

図8の例では、反射部材Rの厚み(図面の縦方向の厚み)は、基板1の厚みと補強部材10の厚みを合わせたものと一致している。このため、反射部材Rの上面は補強部材10の上面と連続した同一平面を形成している。また、反射部材Rの下面は、基板1の下面と連続した同一平面を形成している。このように、図8では、反射部材Rの2つの辺に沿って連続した面を形成している。 In the example of FIG. 8, the thickness of the reflective member R (thickness in the vertical direction of the drawing) is the same as the sum of the thickness of the substrate 1 and the thickness of the reinforcing member 10. Therefore, the upper surface of the reflective member R forms a continuous plane with the upper surface of the reinforcing member 10. Further, the lower surface of the reflective member R forms a continuous plane with the lower surface of the substrate 1. As described above, in FIG. 8, continuous surfaces are formed along the two sides of the reflective member R.

このように、反射部材Rと基板1又は補強部材10との接合部分では、該反射部材の該接合領域(斜線部分)を取り囲む外周面の少なくとも一部と、該基板又は該補強部材の該接合領域を取り囲む外周面の少なくとも一部とは、連続した面となるように設定している。このような連続した面を設けることにより、接合部分ではみ出した接着剤を拭き取り易くなる。はみ出した接着剤を拭き取ることは、接着剤の硬化収縮による内部応力の発生を、より少なくすることに繋がる。 As described above, in the joint portion between the reflective member R and the substrate 1 or the reinforcing member 10, at least a part of the outer peripheral surface surrounding the joint region (shaded portion) of the reflective member and the joint portion of the substrate or the reinforcing member. At least a part of the outer peripheral surface surrounding the area is set to be a continuous surface. By providing such a continuous surface, it becomes easy to wipe off the adhesive that has squeezed out at the joint portion. Wiping off the squeezed adhesive leads to less generation of internal stress due to curing shrinkage of the adhesive.

また連続した面を形成するよう設計することは、反射部材Rと基板1又は補強部材10との位置合わせを、各部材の辺を基準に行うことができ、組み立て作業の容易化にも寄与する。 Further, designing to form a continuous surface makes it possible to align the reflective member R with the substrate 1 or the reinforcing member 10 with reference to the side of each member, which also contributes to facilitation of assembly work. ..

図9は、図8よりも反射部材の厚みd(図面の縦方向)を薄くした場合の例である。この場合は反射部材Rの一面(ここでは反射部材Rの下面)は、基板1の一面(ここでは基板1の下面)と連続した面を形成している。 FIG. 9 shows an example in which the thickness d (vertical direction of the drawing) of the reflective member is made thinner than that of FIG. In this case, one surface of the reflective member R (here, the lower surface of the reflective member R) forms a surface continuous with one surface of the substrate 1 (here, the lower surface of the substrate 1).

図10は、図8よりも反射部材Rの厚みdを厚くした場合の例である。この場合も反射部材Rの下面は基板1の一面と一致している。よって、1つの辺に沿って連続した面を形成している。 FIG. 10 shows an example in which the thickness d of the reflective member R is made thicker than that in FIG. In this case as well, the lower surface of the reflective member R coincides with one surface of the substrate 1. Therefore, a continuous surface is formed along one side.

図8乃至10のいずれにおいても、接合領域(斜線部分)の形状は、基板1の上面(第1の面)の短辺(図面の基板1と補強部材10との境界線)上において、光導波路2の中心点に対して対称となるように設定されている。当然、短辺の延伸方向に対する対称の基準点を、光導波路の端部に近い分岐導波路部の対称軸が短辺と交差する点に設定することも可能である。 In any of FIGS. 8 to 10, the shape of the joint region (hatched portion) is optically formed on the short side (the boundary line between the substrate 1 and the reinforcing member 10 in the drawing) of the upper surface (first surface) of the substrate 1. It is set to be symmetrical with respect to the center point of the waveguide 2. Of course, it is also possible to set the reference point of symmetry with respect to the extending direction of the short side at the point where the axis of symmetry of the branched waveguide portion near the end of the optical waveguide intersects the short side.

図6では、基板1に形成された光導波路2の端部(基板1の左端側の端部)の位置が、基板1の該短辺の中央から外れる例を示した。本発明は、このような基板に限らず、図1の従来例に示すように、光導波路の端部の位置や上述した対称軸と短辺とが交差する点の位置が、基板1の該短辺の中央に位置するものも採用できることは、言うまでもない。 FIG. 6 shows an example in which the position of the end portion (the end portion on the left end side of the substrate 1) of the optical waveguide 2 formed on the substrate 1 deviates from the center of the short side of the substrate 1. The present invention is not limited to such a substrate, and as shown in the conventional example of FIG. 1, the position of the end portion of the optical waveguide and the position of the point where the above-mentioned axis of symmetry and the short side intersect are the said of the substrate 1. Needless to say, the one located in the center of the short side can also be adopted.

図11は、基板1に形成された光導波路2の分岐部の対称軸(二点鎖線)が、基板1の短辺の中央から外れている例を示している。図12は、図11の一点鎖線Y−Y’における断面図である。 FIG. 11 shows an example in which the axis of symmetry (dashed line) of the branch portion of the optical waveguide 2 formed on the substrate 1 is deviated from the center of the short side of the substrate 1. FIG. 12 is a cross-sectional view taken along the alternate long and short dash line YY'in FIG.

図11及び12においては、接合領域(図12の斜線部分)の形状は、基板1の短辺の延伸方向(図面の左右方向)の中央に、上述した対称軸(二点鎖線)と短辺との交点(C2)が配置されている。当然、上記接合領域の形状を、光導波路の端部(C1)が当該短辺の延伸方向の中央に位置するよう構成することも可能である。 In FIGS. 11 and 12, the shape of the joint region (hatched portion in FIG. 12) is the center of the extending direction (horizontal direction in the drawing) of the short side of the substrate 1 with the above-mentioned axis of symmetry (dashed line) and the short side. The intersection (C2) with is arranged. Of course, it is also possible to configure the shape of the junction region so that the end portion (C1) of the optical waveguide is located at the center of the short side in the extending direction.

また、図11に示すように光導波路の端部の位置(C1)や上述した対称軸と短辺とが交差する点の位置(C2)が基板1の該短辺の中央から短辺方向にずれている基板1を採用する場合は、反射部材Rを前記交差する点等の位置のずれている方向にシフトして配置されるため、反射部材Rの幅wを狭くすることができ、結果として反射部材Rの全体のサイズもコンパクト化することが可能となる。 Further, as shown in FIG. 11, the position of the end of the optical waveguide (C1) and the position of the point where the above-mentioned axis of symmetry and the short side intersect (C2) are from the center of the short side of the substrate 1 toward the short side. When the displaced substrate 1 is adopted, the reflective member R is shifted and arranged in the displaced direction at the position of the intersecting point or the like, so that the width w of the reflective member R can be narrowed, resulting in a result. As a result, the overall size of the reflective member R can also be made compact.

図13乃至15は、反射部材の他の形状(その1)を説明する図である。反射部材Rの接合領域(図14の斜線部分)が、基板1の端面と補強部材10の端面とが形成する端面領域の範囲内に収まるように、該反射部材Rの接合領域の面積が該端面領域の面積より小さくなるように設定されている。図13の反射部材Rの場合には、接着剤が接合領域の周囲にはみ出すが、接合領域の面積が小さくなるため、接着剤の硬化収縮や硬化後の環境温度の変化による内部応力の影響を少なくすることが可能となる。 13 to 15 are views for explaining another shape (No. 1) of the reflective member. The area of the joint region of the reflective member R is such that the joint region of the reflective member R (the shaded portion in FIG. 14) falls within the range of the end face region formed by the end face of the substrate 1 and the end face of the reinforcing member 10. It is set to be smaller than the area of the end face area. In the case of the reflective member R of FIG. 13, the adhesive protrudes around the joint region, but the area of the joint region is small, so that the influence of internal stress due to the curing shrinkage of the adhesive and the change in the environmental temperature after curing is affected. It is possible to reduce it.

図13の反射部材Rの他の特徴として、反射部材による折り返し光路が、光導波路を光波が伝搬する方向と平行ではなく、角度θだけ広がるように構成していることである。このような構成は、図6の反射部材Rでも採用することができる。この構成により、反射部材Rのサイズを大きくすることなく反射部材R付近にコリメータレンズや偏光子などの光学部品を実装するスペースを確保することができる。 Another feature of the reflective member R in FIG. 13 is that the folded optical path formed by the reflective member is configured to spread by an angle θ, not parallel to the direction in which the light wave propagates through the optical waveguide. Such a configuration can also be adopted in the reflection member R of FIG. With this configuration, it is possible to secure a space for mounting optical components such as a collimator lens and a polarizer in the vicinity of the reflecting member R without increasing the size of the reflecting member R.

反射部材Rは、図15に示すように接合領域の長さT1よりも、T1を除く全体の長さ(基板1と接合しない領域の長さ)T2の方が長くなる場合が多い、このような非対称性を有する形状の反射部材では、接合時の位置決めがより難しくなる。このため、図15に示すように符号7のようなケガキ線等の目印を設けることにより、反射部材の目印7を、基板1の光導波路2の端部や補強部材10の上面に別途形成した目印に、合わせることで、光学部品の位置決めを容易に行うことができる。 As shown in FIG. 15, the reflective member R often has a total length (the length of the region not joined to the substrate 1) T2 excluding T1 longer than the length T1 of the joining region. With a reflective member having a shape having asymmetry, positioning at the time of joining becomes more difficult. Therefore, as shown in FIG. 15, the mark 7 of the reflective member is separately formed on the end portion of the optical waveguide 2 of the substrate 1 and the upper surface of the reinforcing member 10 by providing a mark such as a marking line as shown by reference numeral 7. By aligning with the mark, the optical component can be easily positioned.

図16は他の形状(その2)を有する反射部材Rと基板1、補強部材10の配置図であり、図17は、当該反射部材Rの他の形状(その2)を説明する図である。
反射部材Rには、切り欠き状の段差8を形成し、該段差を基板1又は補強部材10の角に当接させて反射部材Rを基板1等に接合する。このように段差8を目印として使用することにより、機械的に反射部材Rの位置決めができる。
FIG. 16 is a layout drawing of a reflective member R having another shape (No. 2), a substrate 1, and a reinforcing member 10, and FIG. 17 is a diagram for explaining another shape (No. 2) of the reflective member R. ..
A notch-shaped step 8 is formed in the reflective member R, and the step is brought into contact with the corner of the substrate 1 or the reinforcing member 10 to join the reflective member R to the substrate 1 or the like. By using the step 8 as a mark in this way, the reflective member R can be mechanically positioned.

図18乃至22は、本発明の光デバイスに係る第2実施例を説明する図である。図18及び図19が示すように、反射部材Rが形成する折り返し光路(図19の点線矢印)は、基板1の第1の面(上面)が形成する平面よりも上方を通過するよう設定されている。
また、図18乃至22では、接合領域の形状(図20乃至22の斜線部分)が、光導波路の分岐部の対称軸(図18の二点鎖線)と基板1の短辺との交点(C2)が、基板1の短辺の延伸方向の中央に位置するよう配置されている。
18 to 22 are diagrams illustrating a second embodiment of the optical device of the present invention. As shown in FIGS. 18 and 19, the folded optical path (dotted arrow in FIG. 19) formed by the reflective member R is set to pass above the plane formed by the first surface (upper surface) of the substrate 1. ing.
Further, in FIGS. 18 to 22, the shape of the junction region (hatched portion in FIGS. 20 to 22) is the intersection (C2) between the axis of symmetry of the branch portion of the optical waveguide (two-dot chain line in FIG. 18) and the short side of the substrate 1. ) Is arranged so as to be located at the center of the short side of the substrate 1 in the stretching direction.

図20乃至22は、反射部材Rと基板1等との接合部分の配置を図示したものである。
図20は、基板1(補強部材10)の幅と反射部材Rの厚み(図面の横方向の厚み)が同じとなる場合を示している。そして、接合領域(斜線部分)を取り囲む外周面が、基板1(補強部材10)左右の側面の辺と基板1の下面の辺の3つの辺で、連続した面を形成している。このような連続面が多い場合は、接合領域から基板1の外周付近にはみ出した接着剤を拭き取ることが容易に行え、接着剤の硬化収縮による内部応力の影響を抑制することが可能となる。
20 to 22 show the arrangement of the joint portion between the reflective member R and the substrate 1 and the like.
FIG. 20 shows a case where the width of the substrate 1 (reinforcing member 10) and the thickness of the reflective member R (thickness in the lateral direction of the drawing) are the same. The outer peripheral surface surrounding the joint region (hatched portion) forms a continuous surface with three sides, that is, the left and right side surfaces of the substrate 1 (reinforcing member 10) and the lower surface side of the substrate 1. When there are many such continuous surfaces, it is possible to easily wipe off the adhesive protruding from the joint region to the vicinity of the outer periphery of the substrate 1, and it is possible to suppress the influence of internal stress due to curing shrinkage of the adhesive.

図21のように反射部材Rの厚みd(図面横方向の厚み)を薄くすると、反射部材Rの左右に接着剤がはみ出すが、接合部分の面積が小さくなるため、接着剤の硬化収縮による内部応力の影響を少なくすることが可能となる。
また、図22のように反射部材Rの厚みd(図面横方向の厚み)を厚くすると、基板1(補強部材10)の左右側面に接着剤がはみ出す。しかしながら、これらの接着剤のはみだし部分は、接合部分における外周部の左右辺であるため、光導波路の端部へ加わる接着剤のはみだし部分からの応力をほぼ同じにすることができる。
さらに、図21の構成と比較して接着剤のはみだし部分は、光導波路のMZ部や分岐導波路部より離れているため、接着剤の内部応力による影響を減少させさせることが可能である。
When the thickness d (thickness in the horizontal direction of the drawing) of the reflective member R is reduced as shown in FIG. 21, the adhesive protrudes to the left and right of the reflective member R, but the area of the joint portion becomes small, so that the inside due to curing shrinkage of the adhesive It is possible to reduce the influence of stress.
Further, when the thickness d (thickness in the horizontal direction of the drawing) of the reflective member R is increased as shown in FIG. 22, the adhesive protrudes from the left and right side surfaces of the substrate 1 (reinforcing member 10). However, since the protruding portions of these adhesives are the left and right sides of the outer peripheral portion of the joint portion, the stress from the protruding portion of the adhesive applied to the end portion of the optical waveguide can be made substantially the same.
Further, since the protruding portion of the adhesive is separated from the MZ portion and the branched waveguide portion of the optical waveguide as compared with the configuration of FIG. 21, it is possible to reduce the influence of the internal stress of the adhesive.

さらに反射部材Rが形成する折り返し光路(点線矢印)は、基板1の第1の面(上面)が形成する平面よりも上方を通過するよう設定されているため、図4のように入力用光ファイバ31が基板1の側面に配置される構成と比較して光デバイスの面積を小さく(小型化)することができる。
なお、基板1の長辺の延伸方向から基板1の短辺側を見た際に、反射部材Rにおける反射方向は、基板1の上下や左右でなく斜め方向としてもよい。
Further, since the folded optical path (dotted arrow) formed by the reflecting member R is set to pass above the plane formed by the first surface (upper surface) of the substrate 1, the input light is set as shown in FIG. The area of the optical device can be reduced (miniaturized) as compared with the configuration in which the fiber 31 is arranged on the side surface of the substrate 1.
When the short side of the substrate 1 is viewed from the stretching direction of the long side of the substrate 1, the reflection direction of the reflective member R may be an oblique direction instead of the vertical or horizontal direction of the substrate 1.

図23及び24は、本発明の光デバイスに係る第3実施例を説明する図である。ここでは、光導波路や制御電極(不図示)を形成した2つの基板1を、反射部材Rを介して光学的に結合している。反射部材Rと各基板1との接合領域が、上述した種々の条件を満足するよう設定することは言うまでもない。また、図24に示すように、反射部材Rに切り欠き部である溝部80を設けることで、基板1と反射部材Rの接合部分からはみ出した接着剤を溝部80に逃がすことができ、基板1の側面への接着剤の拡がりを抑えることができる。
このため、はみ出した接着剤の硬化収縮により発生する応力の光導波路端部への影響が減少し、光導波路の屈折率変化による偏波歪みの発生や、光軸のズレなどの不具合を抑制することができる。
23 and 24 are diagrams illustrating a third embodiment of the optical device of the present invention. Here, two substrates 1 on which an optical waveguide and a control electrode (not shown) are formed are optically coupled via a reflection member R. Needless to say, the bonding region between the reflective member R and each substrate 1 is set so as to satisfy the various conditions described above. Further, as shown in FIG. 24, by providing the groove portion 80 which is a notch portion in the reflective member R, the adhesive protruding from the joint portion between the substrate 1 and the reflective member R can be released to the groove portion 80, and the substrate 1 can be released. It is possible to suppress the spread of the adhesive on the side surface of the.
For this reason, the effect of stress generated by the curing shrinkage of the adhesive that has squeezed out on the end of the optical waveguide is reduced, and defects such as polarization distortion due to changes in the refractive index of the optical waveguide and misalignment of the optical axis are suppressed. be able to.

図25は、本発明の光デバイスに係る第4実施例を説明する図である。ここでは、基板1の端部近傍に光変調に係るMZ部や分岐導波路部が2個形成されている。このような複数の変調部を有するMZ部や分岐導波路部が基板1の端部近傍にある場合には、端部に最も近いMZ部や分岐導波路部に着目し、該MZ部や分岐導波路部における光導波路の配置形状の対称軸(光波の伝搬方向又は基板の長辺方向の対称軸。図25の二点鎖線)を特定し、該対称軸と接合領域の交点(対称軸と基板の短辺との交点)C2に基づき、上述したように接合領域の形状を設定することが好ましい。なお、図25の場合は、光導波路の端部も複数あることから、該端部の配置形状の中心点C1を特定し、接合領域の形状を設定することも可能である。 FIG. 25 is a diagram illustrating a fourth embodiment according to the optical device of the present invention. Here, two MZ portions and branch waveguide portions related to optical modulation are formed in the vicinity of the end portion of the substrate 1. When the MZ portion or the branched waveguide portion having a plurality of such modulation portions is near the end portion of the substrate 1, the MZ portion or the branched waveguide portion closest to the end portion is focused on, and the MZ portion or the branched waveguide portion is focused on. The axis of symmetry of the arrangement shape of the optical waveguide in the waveguide section (the axis of symmetry in the propagation direction of the light wave or the direction of the long side of the substrate; the two-point chain line in FIG. 25) is specified, and the intersection of the axis of symmetry and the junction region (the axis of symmetry and the axis of symmetry). It is preferable to set the shape of the joint region as described above based on (intersection point with the short side of the substrate) C2. In the case of FIG. 25, since there are a plurality of end portions of the optical waveguide, it is also possible to specify the center point C1 of the arrangement shape of the end portions and set the shape of the junction region.

図26は、本発明の光デバイスに係る第5実施例を説明する図である。ここでは、図25と同様に、基板1の端部近傍に光変調に係るMZ部や分岐導波路部が2個形成されている。図26では、反射部材Rと基板1との接合領域を2つに分割するため、反射部材Rの接合面の一部に凹部を形成している。そして、図26の上側の接合領域の形状の設定は、上側の光導波路2に係る分岐導波路部の対称軸と接合領域の交点(対称軸と基板の短辺との交点)C2に基づき行われている。また、図26の下側の接合領域の形状の設定は、下側の光導波路2’の端部の配置形状の中心点C1’に基づき行われている。当然、下側の接合領域の形状の設定も、下側の光導波路2’に係る分岐導波路部の対称軸と接合領域の交点C2’に基づき行っても良い。 FIG. 26 is a diagram illustrating a fifth embodiment according to the optical device of the present invention. Here, as in FIG. 25, two MZ portions and branch waveguide portions related to optical modulation are formed in the vicinity of the end portion of the substrate 1. In FIG. 26, in order to divide the joint region between the reflective member R and the substrate 1 into two, a recess is formed in a part of the joint surface of the reflective member R. The shape of the upper junction region in FIG. 26 is set based on C2, which is the intersection of the symmetry axis of the branched waveguide portion related to the upper optical waveguide 2 and the junction region (the intersection of the symmetry axis and the short side of the substrate). It has been Further, the shape of the lower joint region in FIG. 26 is set based on the center point C1'of the arrangement shape of the end portion of the lower optical waveguide 2'. Of course, the shape of the lower junction region may also be set based on the intersection C2'of the symmetry axis of the branched waveguide portion related to the lower optical waveguide 2'and the junction region.

図27は、本発明の光デバイスに係る第6実施例を説明する図である。ここでは、上述した本発明の光デバイスの折り返し光路の特徴を生かして、反射部材Rの基板1側とは反対側となる筐体4の側壁に、電気信号入出力端子を配置している。具体的には、基板1と反射部材R及び中継基板9は筐体4内に収容され、基板1上の制御電極に高周波信号を入力する電気信号入力部40が、基板1に対して反射部材Rが配置された側の筐体4の側壁に配置されている。そして、電気信号入力部40に入力された高周波信号は、中継基板9(アルミナ等)に形成された中継線路(不図示)を介して、該基板1の長辺側(図の上側)に設けられた制御電極の入力部(不図示)に伝送されている。必要に応じて、DCバイアス電圧を供給する電気信号入力部や、光導波路2の伝搬光や放射光を検知した検知信号を出力する電気信号出力部を付加することも可能である。 FIG. 27 is a diagram illustrating a sixth embodiment according to the optical device of the present invention. Here, taking advantage of the characteristics of the folded optical path of the optical device of the present invention described above, the electric signal input / output terminal is arranged on the side wall of the housing 4 which is opposite to the substrate 1 side of the reflective member R. Specifically, the substrate 1, the reflective member R, and the relay substrate 9 are housed in the housing 4, and the electric signal input unit 40 that inputs a high frequency signal to the control electrode on the substrate 1 reflects the substrate 1 with respect to the substrate 1. It is arranged on the side wall of the housing 4 on the side where R is arranged. Then, the high frequency signal input to the electric signal input unit 40 is provided on the long side side (upper side of the drawing) of the substrate 1 via a relay line (not shown) formed on the relay substrate 9 (alumina or the like). It is transmitted to the input section (not shown) of the control electrode. If necessary, an electric signal input unit that supplies a DC bias voltage and an electric signal output unit that outputs a detection signal that detects propagating light or synchrotron radiation of the optical waveguide 2 can be added.

中継基板9がアルミナなどで形成された場合、高周波信号の伝送損失は基板1上における伝送損失よりも小さい。
このため、図27のように中継基板9をL字状とし、該基板1から反射部材Rが突出しない該基板1の長辺側(図の上側)まで中継線路(不図示)を配置することで、各構成部品を効率的に配置できるとともに高周波信号を少ない伝送損失で効率よく該基板1の長辺側(図の上側)に設けられた制御電極まで伝送することができる。
なお、図18から図22のように反射部材Rでの折り返し光路が該基板1の長辺側の側面を通らない場合、L字形状の中継基板9及び中継線路(不図示)は該基板1のどちらの長辺側(図27の上側や下側)に配置してもよい。
When the relay board 9 is made of alumina or the like, the transmission loss of the high frequency signal is smaller than the transmission loss on the board 1.
Therefore, as shown in FIG. 27, the relay board 9 is formed into an L shape, and the relay line (not shown) is arranged from the board 1 to the long side side (upper side of the figure) of the board 1 where the reflection member R does not protrude. Therefore, each component can be efficiently arranged, and a high-frequency signal can be efficiently transmitted to the control electrode provided on the long side side (upper side of the drawing) of the substrate 1 with a small transmission loss.
When the folded optical path in the reflective member R does not pass through the side surface of the substrate 1 on the long side as shown in FIGS. 18 to 22, the L-shaped relay substrate 9 and the relay line (not shown) are the substrate 1. It may be arranged on either long side (upper side or lower side in FIG. 27).

上述した光デバイスを光変調器として構成し、さらに光受信器を同じ装置に組み込むことで、光送受信装置を構成することも可能である。 It is also possible to configure an optical transmitter / receiver by configuring the above-mentioned optical device as an optical modulator and further incorporating an optical receiver in the same device.

以上説明したように、本発明によれば、電気光学基板と反射部材とを接合した際でも、両者の接合部分に発生する内部応力の影響を抑制し、光損失等の変動の少ない光デバイスや変調光の品質の劣化等を抑制した光デバイスを提供することができる。 As described above, according to the present invention, even when the electro-optical substrate and the reflective member are joined, the influence of the internal stress generated at the joint portion between the two is suppressed, and the optical device with less fluctuation such as light loss and the like. It is possible to provide an optical device that suppresses deterioration of the quality of the modulated light.

1 電気光学基板
2 光導波路
4 筐体
10 補強部材
31,32 光ファイバ
L,L1〜L3 レンズ
R 反射部材
1 Electro-optical substrate 2 Optical waveguide 4 Housing 10 Reinforcing member 31, 32 Optical fiber L, L1 to L3 Lens R Reflective member

Claims (8)

電気光学効果を有する基板と、
該基板は、平面視した形状が対向する長辺と対向する短辺とを有する第1の面を備え、
該第1の面上には、少なくとも一方の該短辺に接する入射用又は出射用の端部を有する光導波路と、該光導波路を伝搬する光波を制御するための制御電極とが形成され、
該光導波路の該端部が配置される該短辺に沿って該基板上に配置される補強部材と、
該光導波路の該端部に対向して該基板の外部に配置される反射部材とを有する光デバイスにおいて、
該反射部材は、該短辺に位置する該基板の端面と該補強部材の端面に接合領域で接合され、
該長辺の延伸方向から平面視した場合、該反射部材と該基板の端面とが接合される該接合領域の形状は、該短辺上における該光導波路の該端部の配置形状の中心点、又は該光導波路で該端部に近い分岐用又は合波用の分岐導波路部の配置形状の対称軸であり、該長辺と同じ方向に延びる該対称軸が該短辺と交差する点に対して短辺の延伸方向に対称となるよう設定されていることを特徴とする光デバイス。
A substrate with an electro-optical effect and
The substrate comprises a first surface having a long side facing each other and a short side facing each other in a plan view.
On the first surface, an optical waveguide having an incident or exit end tangent to at least one of the short sides and a control electrode for controlling a light wave propagating through the optical waveguide are formed.
A reinforcing member arranged on the substrate along the short side on which the end of the optical waveguide is arranged.
In an optical device having a reflective member arranged on the outside of the substrate facing the end of the optical waveguide.
The reflective member is joined to the end face of the substrate located on the short side and the end face of the reinforcing member at a joining region.
When viewed in a plan view from the extending direction of the long side, the shape of the joint region where the reflective member and the end face of the substrate are joined is the center point of the arrangement shape of the end portion of the optical waveguide on the short side. Or, a point of symmetry of the arrangement shape of the branch waveguide for branching or merging near the end of the optical waveguide, and the axis of symmetry extending in the same direction as the long side intersects the short side. An optical device characterized in that it is set to be symmetrical with respect to the stretching direction of the short side.
請求項1に記載の光デバイスにおいて、該長辺の延伸方向から平面視した場合、該反射部材と該基板又は該補強部材との接合部分では、該接合領域を取り囲む該反射部材の外周面の少なくとも一部と、該接合領域を取り囲む該基板又は該補強部材の外周面の少なくとも一部とは、連続した面となるように設定されていることを特徴とする光デバイス。 In the optical device according to claim 1, when viewed in a plan view from the extending direction of the long side, at the joint portion between the reflective member and the substrate or the reinforcing member, the outer peripheral surface of the reflective member surrounding the joint region An optical device characterized in that at least a part thereof and at least a part of an outer peripheral surface of the substrate or the reinforcing member surrounding the joint region are set to be continuous surfaces. 請求項1に記載の光デバイスにおいて、該反射部材の接合領域の面積が、該基板の端面と該補強部材の端面とが形成する端面領域の面積より小さいことを特徴とする光デバイス。 The optical device according to claim 1, wherein the area of the joint region of the reflective member is smaller than the area of the end face region formed by the end face of the substrate and the end face of the reinforcing member. 請求項1乃至3に記載の光デバイスにおいて、該反射部材は少なくとも2つの反射面を有し、該光導波路に入射又は該光導波路から出射する光波を、該基板の長辺方向に対して折り返す方向に光路を変換するよう構成されていることを特徴とする光デバイス。 In the optical device according to claims 1 to 3, the reflecting member has at least two reflecting surfaces, and a light wave incident on or emitted from the optical waveguide is folded back in the long side direction of the substrate. An optical device characterized by being configured to transform an optical path in a direction. 請求項4に記載の光デバイスにおいて、該光導波路から出射された後に該反射部材で折り返された光路、または該光導波路に入射される光路であって該反射部材で折り返される前の光路は、該基板の第1の面が形成する平面よりも上方を通過するよう設定されていることを特徴とする光デバイス。 In the optical device according to claim 4, the optical path after being emitted from the optical waveguide and then folded back by the reflective member, or the optical path incident on the optical waveguide and before being folded back by the reflective member is An optical device characterized in that it is set to pass above a plane formed by a first surface of the substrate. 請求項1乃至5のいずれかに記載の光デバイスにおいて、該基板と該反射部材は筐体内に収容され、該筐体に対して、該基板は固定されるが、該反射部材は固定されていないことを特徴とする光デバイス。 In the optical device according to any one of claims 1 to 5, the substrate and the reflective member are housed in a housing, and the substrate is fixed to the housing, but the reflective member is fixed. An optical device characterized by no. 請求項1乃至6のいずれかに記載の光デバイスにおいて、該基板と該反射部材及び中継基板は筐体内に収容され、該制御電極の高周波信号を入力する電気信号入力部が、該基板に対して該反射部材が配置された側の筐体側壁に配置され、該高周波信号は、該中継基板に形成された中継線路を介して、該電気信号入力部から該基板の長辺側に設けられた該制御電極の入力部に伝送されていることを特徴とする光デバイス。 In the optical device according to any one of claims 1 to 6, the substrate, the reflective member, and the relay substrate are housed in a housing, and an electric signal input unit for inputting a high frequency signal of the control electrode is provided with respect to the substrate. The high frequency signal is provided on the side wall of the housing on the side where the reflection member is arranged, and the high frequency signal is provided on the long side side of the substrate from the electric signal input portion via the relay line formed on the relay substrate. An optical device characterized in that it is transmitted to an input unit of the control electrode. 請求項1乃至7のいずれかに記載の光デバイスは光変調器であり、さらに光受信器を備えたことを特徴とする光送受信装置。 The optical transmitter / receiver according to any one of claims 1 to 7, wherein the optical device is an optical modulator and further includes an optical receiver.
JP2019067753A 2019-03-29 2019-03-29 Optical device and optical transceiver using the same Active JP7172803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067753A JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067753A JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Publications (2)

Publication Number Publication Date
JP2020166166A true JP2020166166A (en) 2020-10-08
JP7172803B2 JP7172803B2 (en) 2022-11-16

Family

ID=72717300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067753A Active JP7172803B2 (en) 2019-03-29 2019-03-29 Optical device and optical transceiver using the same

Country Status (1)

Country Link
JP (1) JP7172803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781367C1 (en) * 2021-12-24 2022-10-11 Публичное акционерное общество "Пермская научно-производственная приборостроительная компания" Hybrid integrated optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350046A (en) * 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide element
JP2003279769A (en) * 2002-03-20 2003-10-02 Sumitomo Osaka Cement Co Ltd Integrated light guide element
JP2005084090A (en) * 2003-09-04 2005-03-31 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide device
US20050201686A1 (en) * 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2011186170A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2018173595A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Optical communication module and optical modulator used in the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001350046A (en) * 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide element
JP2003279769A (en) * 2002-03-20 2003-10-02 Sumitomo Osaka Cement Co Ltd Integrated light guide element
JP2005084090A (en) * 2003-09-04 2005-03-31 Sumitomo Osaka Cement Co Ltd Integrated optical waveguide device
US20050201686A1 (en) * 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2011186170A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical component
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2018173595A (en) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 Optical communication module and optical modulator used in the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781367C1 (en) * 2021-12-24 2022-10-11 Публичное акционерное общество "Пермская научно-производственная приборостроительная компания" Hybrid integrated optical device

Also Published As

Publication number Publication date
JP7172803B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5421595B2 (en) Traveling wave type optical modulator
US7787717B2 (en) Optical waveguide device
JP7371556B2 (en) Optical waveguide device
US11460650B2 (en) Optical waveguide device, and optical modulation device and optical transmission device using it
WO2014157456A1 (en) Optical modulator
US10598862B2 (en) Optical modulator
JP2016206415A (en) Optical module and optical fiber assembly
JP2012098472A (en) Optical modulator
JP2005345554A (en) Optical device
JP7293605B2 (en) Optical waveguide element and optical modulator
JP7172803B2 (en) Optical device and optical transceiver using the same
JP7054068B2 (en) Optical control element, optical modulation device using it, and optical transmitter
US11493788B2 (en) Optical modulator
JP4183583B2 (en) Integrated optical waveguide device
JP2021189227A (en) Optical modulator
JP2001350046A (en) Integrated optical waveguide element
JPH10213784A (en) Integration type optical modulator
JP6413807B2 (en) Light modulator
JP7135374B2 (en) light modulator
JP2982691B2 (en) Waveguide type optical circulator
JP2004271681A (en) Optical waveguide element
JP2003279769A (en) Integrated light guide element
JP2014059475A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150