JP2020166050A - Light control element - Google Patents

Light control element Download PDF

Info

Publication number
JP2020166050A
JP2020166050A JP2019064333A JP2019064333A JP2020166050A JP 2020166050 A JP2020166050 A JP 2020166050A JP 2019064333 A JP2019064333 A JP 2019064333A JP 2019064333 A JP2019064333 A JP 2019064333A JP 2020166050 A JP2020166050 A JP 2020166050A
Authority
JP
Japan
Prior art keywords
substrate
optical
control element
optical waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064333A
Other languages
Japanese (ja)
Other versions
JP7218652B2 (en
Inventor
山根 裕治
Yuji Yamane
裕治 山根
哲 及川
Satoru Oikawa
哲 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019064333A priority Critical patent/JP7218652B2/en
Publication of JP2020166050A publication Critical patent/JP2020166050A/en
Application granted granted Critical
Publication of JP7218652B2 publication Critical patent/JP7218652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To provide a light control element capable of preventing unnecessary light from being mixed into an optical modulation part or output light and improving properties, such as the extinction ratio of an optical modulation signal.SOLUTION: A light control element comprises: first optical waveguides (21 and 23) formed on one surface of a first substrate (11); an irradiation part (21) radiating the first optical waveguides with light and an emission part (23) emitting the light from the first optical waveguides provided in the end of the first substrate; a second optical waveguide (22) formed on one surface of a second substrate (12); and a light modulation part modulating the light transmitting the second optical waveguide and provided in the second substrate. Translation parts (S1 and S2) of the first and second optical waveguides are optically coupled.SELECTED DRAWING: Figure 3

Description

本発明は、光制御素子に関し、特に、光入射部及び光出射部を有する基板と光変調部を有する基板とを分離した光制御素子に関する。 The present invention relates to an optical control element, and more particularly to an optical control element in which a substrate having a light incident portion and a light emitting portion and a substrate having a light modulation portion are separated.

次世代の光ファイバー通信で用いられる光変調器は、多値変調に利用されるため、小型で低光損失であることに加えて、出力される光信号の消光比(ON/OFF消光比)も高いことが必要になる。光変調器などの小型化を実現する上で、低駆動電圧化のために光と電界の重なり効率を向上させた、薄板構造の光変調器が提案されている。 Since the optical modulators used in next-generation optical fiber communication are used for multi-value modulation, they are compact and have low optical loss, and also have an extinction ratio (ON / OFF extinction ratio) of the output optical signal. It needs to be expensive. In order to realize miniaturization of optical modulators and the like, an optical modulator having a thin plate structure has been proposed in which the overlapping efficiency of light and electric field is improved in order to reduce the driving voltage.

従来の薄板構造の光変調器は、図1及び2に示すように、ニオブ酸リチウム(LN)等の基板1を20μm以下の厚みに薄板化すると共に、該基板1に光導波路2を形成している。図1は、光制御素子である光変調器の平面図であり、変調電極等の電極は、簡略化のため省略している。図2は、図1の側面図である。薄板となる基板1は、接着層3を介して保持基板10に接合されている。Linは入射光、Loutは出射光を示す。 In the conventional light modulator having a thin plate structure, as shown in FIGS. 1 and 2, a substrate 1 such as lithium niobate (LN) is thinned to a thickness of 20 μm or less, and an optical waveguide 2 is formed on the substrate 1. ing. FIG. 1 is a plan view of an optical modulator which is an optical control element, and electrodes such as modulation electrodes are omitted for simplification. FIG. 2 is a side view of FIG. The substrate 1 to be a thin plate is joined to the holding substrate 10 via the adhesive layer 3. Lin indicates incident light, and Lout indicates emitted light.

基板1に形成された光導波路2に光波が入射する入射部や、光導波路2から光波が出射する出射部は、光変調部が形成された基板1と同一基板上に形成されている。例えば、光ファイバーと入射部のモードフィールド径のミスマッチによる迷光や、光変調器をOFF状態にした際に光変調部(マッハツェンダー型光導波路の合波部)から発生する放射光は、光導波路が形成されている薄板構造の基板1の内部に残留する。これらの迷光や放射光などの不要光が、出射部から出射した出力光と一緒に出力用光ファイバーに入射するため、OFF状態の信号レベルを十分に下げられないという問題が発生している。また、不要光が光変調部を構成する光導波路に入射し、変調信号を劣化させるなどの不具合も生じている。 The incident portion where the light wave is incident on the optical waveguide 2 formed on the substrate 1 and the exit portion where the light wave is emitted from the optical waveguide 2 are formed on the same substrate as the substrate 1 on which the optical modulation portion is formed. For example, stray light due to a mismatch between the mode field diameter of the optical fiber and the incident part, and synchrotron radiation generated from the optical modulator (the junction of the Mach-Zehnder type optical waveguide) when the light modulator is turned off are generated by the optical waveguide. It remains inside the thin plate-structured substrate 1 formed. Since these unnecessary lights such as stray light and synchrotron radiation are incident on the output optical fiber together with the output light emitted from the exit portion, there is a problem that the signal level in the OFF state cannot be sufficiently lowered. In addition, unnecessary light enters the optical waveguide that constitutes the optical modulation unit, causing problems such as deterioration of the modulation signal.

薄板である基板1から迷光や放射光の除去するため、特許文献1では、基板の表面に一部に高屈折率部材を配置したり、特許文献2や特許文献3では、不要光用導波路を基板に形成することなどが開示されている。 In order to remove stray light and synchrotron radiation from the thin substrate 1, in Patent Document 1, a high refractive index member is partially arranged on the surface of the substrate, and in Patent Document 2 and Patent Document 3, an unnecessary optical waveguide is provided. Is disclosed on the substrate and the like.

しかしながら、複数のマッハツェンダー型光導波路を入れ子状に組み込んだネスト型光導波路のように、多くのマッハツェンダー型光導波路を集積化した光変調器では、迷光や放射光などの不要光を完全に除去することは困難である。しかも、高周波変調を行う光変調器などでは、わずかな不要光が光変調部の信号光や出力光に混入することによって、変調信号の特性が大きく劣化するという問題がある。 However, in an optical modulator that integrates many Mach-Zehnder-type optical waveguides, such as a nested optical waveguide that incorporates multiple Mach-Zehnder-type optical waveguides in a nested manner, unnecessary light such as stray light and synchrotron radiation is completely eliminated. It is difficult to remove. Moreover, in an optical modulator or the like that performs high-frequency modulation, there is a problem that the characteristics of the modulated signal are greatly deteriorated by mixing a small amount of unnecessary light with the signal light or output light of the optical modulation section.

特許第4658658号公報Japanese Patent No. 4658658 特許第6299170号公報Japanese Patent No. 6299170 特開2016−191820号公報Japanese Unexamined Patent Publication No. 2016-191820

本発明が解決しようとする課題は、上述したような問題を解決し、不要光が光変調部や出力光に混入することを抑制し、光変調信号の消光比等の特性を改善した光制御素子を提供することである。 The problem to be solved by the present invention is optical control that solves the above-mentioned problems, suppresses unnecessary light from being mixed into the optical modulation section and output light, and improves characteristics such as the extinction ratio of the optical modulation signal. It is to provide an element.

上記課題を解決するため、本発明の光制御素子は、以下の技術的特徴を有する。
(1) 第1の基板の一面に第1の光導波路が形成され、前記第1の基板の端には、前記第1の光導波路へ光を入射する入射部、及び前記第1の光導波路から光を出射する出射部が設けられ、第2の基板の一面に第2の光導波路が形成され、前記第2の基板には、前記第2の光導波路を伝搬する光を変調する光変調部を備え、前記第1の光導波路と前記第2の光導波路との並進部において、両者が光結合していることを特徴とする。
In order to solve the above problems, the optical control element of the present invention has the following technical features.
(1) A first optical waveguide is formed on one surface of the first substrate, and at the end of the first substrate, an incident portion for incident light on the first optical waveguide and the first optical waveguide. A second optical waveguide is formed on one surface of the second substrate, and the second substrate is photomodulated to modulate the light propagating through the second optical waveguide. It is characterized in that the first optical waveguide and the second optical waveguide are photocoupled in a translational portion.

(2) 上記(1)に記載の光制御素子において、前記第2の基板の厚みが20μm以下であることを特徴とする。 (2) The optical control element according to (1) above is characterized in that the thickness of the second substrate is 20 μm or less.

(3) 上記(1)又は(2)に記載の光制御素子において、前記第1の基板が石英系材料又はニオブ酸リチウムであり、前記第2の基板がニオブ酸リチウムであることを特徴とする。 (3) In the optical control element according to (1) or (2) above, the first substrate is a quartz-based material or lithium niobate, and the second substrate is lithium niobate. To do.

(4) 上記(1)乃至(3)のいずれかに記載の光制御素子において、前記第1の基板と前記第2の基板とが、直接接合していることを特徴とする。 (4) The optical control element according to any one of (1) to (3) is characterized in that the first substrate and the second substrate are directly bonded to each other.

(5) 上記(1)乃至(4)のいずれかに記載の光制御素子において、該並進部では、前記第1の光導波路の端部又は前記第2の光導波路の端部の少なくとも一方には、光導波路の先端に向かって光導波路の幅が徐々に狭くなるテーパ構造が形成されていることを特徴とする。 (5) In the optical control element according to any one of (1) to (4) above, in the translational portion, at least one of the end portion of the first optical waveguide or the end portion of the second optical waveguide. Is characterized in that a tapered structure is formed in which the width of the optical waveguide gradually narrows toward the tip of the optical waveguide.

(6) 上記(1)乃至(5)のいずれかに記載の光制御素子において、該並進部では、前記第1の基板又は前記第2の基板の少なくとも一方には、周期的な屈折率の構造が形成されていることを特徴とする。 (6) In the optical control element according to any one of (1) to (5) above, in the translational section, at least one of the first substrate or the second substrate has a periodic refractive index. It is characterized in that a structure is formed.

(7) 上記(1)乃至(6)のいずれかに記載の光制御素子において、前記第1の基板又は前記第2の基板のいずれかに、光制御用の直交バイアス電極を設けることを特徴とする。 (7) In the optical control element according to any one of (1) to (6) above, an orthogonal bias electrode for optical control is provided on either the first substrate or the second substrate. And.

(8) 上記(1)乃至(7)のいずれかに記載の光制御素子において、前記第2の基板の該並進部には、光結合用の電極を設けることを特徴とする。 (8) The optical control element according to any one of (1) to (7) above, characterized in that an electrode for optical coupling is provided at the translational portion of the second substrate.

本発明は、第1の基板の一面に第1の光導波路が形成され、前記第1の基板の端には、前記第1の光導波路へ光を入射する入射部、及び前記第1の光導波路から光を出射する出射部が設けられ、第2の基板の一面に第2の光導波路が形成され、前記第2の基板には、前記第2の光導波路を伝搬する光を変調する光変調部を備え、前記第1の光導波路と前記第2の光導波路との並進部において、両者が光結合しているため、不要光が光変調部や出力光に混入することを抑制され、光変調信号の消光比等の特性を改善した光制御素子を提供することが可能となる。 In the present invention, the first optical waveguide is formed on one surface of the first substrate, and at the end of the first substrate, an incident portion that incidents light on the first optical waveguide, and the first light An exit portion that emits light from the waveguide is provided, a second optical waveguide is formed on one surface of the second substrate, and the second substrate is a light that modulates the light propagating through the second optical waveguide. A modulation unit is provided, and in the translational portion of the first optical waveguide and the second optical waveguide, both are photocoupled, so that unnecessary light is prevented from being mixed into the optical modulation section and the output light. It is possible to provide an optical control element having improved characteristics such as an extinction ratio of an optical modulation signal.

従来の光制御素子の例を示す平面図である。It is a top view which shows the example of the conventional optical control element. 図1の光制御素子の側面図である。It is a side view of the optical control element of FIG. 本発明の光制御素子に係る第1の実施例を示す側面図である。It is a side view which shows the 1st Example which concerns on the optical control element of this invention. 図3に示す光制御素子の平面図である。It is a top view of the optical control element shown in FIG. 本発明の光制御素子に係る第2の実施例を示す平面図である。It is a top view which shows the 2nd Example which concerns on the optical control element of this invention. 本発明の光制御素子に係る第3の実施例を示す平面図である。It is a top view which shows the 3rd Example which concerns on the optical control element of this invention. 本発明の光制御素子に係る第4の実施例を示す平面図である。It is a top view which shows the 4th Example which concerns on the optical control element of this invention. 本発明の光制御素子に係る第5の実施例を示す側面図である。It is a side view which shows the 5th Example which concerns on the optical control element of this invention. 本発明の光制御素子に係る第6の実施例を示す平面図である。It is a top view which shows the 6th Example which concerns on the optical control element of this invention. 本発明の光制御素子に用いられる光導波路間の接続構造(その1)を説明する平面図である。It is a top view explaining the connection structure (the 1) between optical waveguides used for the optical control element of this invention. 本発明の光制御素子に用いられる光導波路間の接続構造(その2)を説明する平面図である。It is a top view explaining the connection structure (the 2) between optical waveguides used for the optical control element of this invention. 本発明の光制御素子に用いられる光導波路間の接続構造(その3)を説明する側面図である。It is a side view explaining the connection structure (the 3) between optical waveguides used for the optical control element of this invention. 本発明の光制御素子に用いられる光導波路間の接続構造(その4)を説明する平面図である。It is a top view explaining the connection structure (the 4) between optical waveguides used for the optical control element of this invention.

以下、本発明の光制御素子について、好適例を用いて詳細に説明する。
本発明の光制御素子は、図3及び4に示すように、第1の基板(11)の一面に第1の光導波路(21,23)が形成され、前記第1の基板の端には、前記第1の光導波路へ光を入射する入射部(21)、及び前記第1の光導波路から光を出射する出射部(23)が設けられ、第2の基板(12)の一面に第2の光導波路(22)が形成され、前記第2の基板には、前記第2の光導波路を伝搬する光を変調する光変調部を備え、前記第1の光導波路と前記第2の光導波路との並進部(S1,S2)において、両者が光結合していることを特徴とする。
Hereinafter, the optical control element of the present invention will be described in detail with reference to suitable examples.
In the optical control element of the present invention, as shown in FIGS. 3 and 4, a first optical waveguide (21, 23) is formed on one surface of a first substrate (11), and a first optical waveguide (21, 23) is formed at an end of the first substrate. An incident portion (21) for injecting light into the first optical waveguide and an emitting portion (23) for emitting light from the first optical waveguide are provided, and a second substrate (12) is provided with a first surface. The second optical waveguide (22) is formed, and the second substrate is provided with an optical modulation unit that modulates the light propagating through the second optical waveguide, and the first optical waveguide and the second optical waveguide are provided. In the translational portions (S1 and S2) with the waveguide, both are optically coupled.

本発明の光制御素子は、図3に示すように、光の入射部(21)及び出射部(23)を有する第1の基板(11)と、光変調部(図4のマッハツェンダー型光導波路の2つの分岐導波路部分)を有する第2の基板(12)が分離している。そして、第1の基板(11)と第2の基板(12)は、図2のような樹脂等の接着層3を介さず、直接接合で結合され、基板間の光結合(図3の黒塗りの矢印が表示されている部分参照)を利用している。 As shown in FIG. 3, the optical control element of the present invention includes a first substrate (11) having an incident portion (21) and an emitted portion (23) of light, and an optical modulation unit (Mach-Zehnder type optical light in FIG. 4). The second substrate (12) having the two branched waveguide portions of the waveguide is separated. Then, the first substrate (11) and the second substrate (12) are directly bonded to each other without passing through the adhesive layer 3 such as resin as shown in FIG. 2, and the optical bond between the substrates (black in FIG. 3). (See the part where the fill arrow is displayed) is used.

第1の基板(11)の入射部(21)で発生する光ファイバーと入射部のモードフィールド径のミスマッチによる不要光は、第1の基板内を伝搬するため、光変調部がある第2の基板(12)には伝搬せず、光変調部に不要光が混入することが抑制される。 Unnecessary light due to the mismatch between the optical fiber and the mode field diameter of the incident portion generated in the incident portion (21) of the first substrate (11) propagates in the first substrate, so that the second substrate has the optical modulation portion. It does not propagate to (12), and it is suppressed that unnecessary light is mixed into the optical modulation section.

また、第1の基板(11)の入射部で発生した不要光は、基板(11)の内部(基板の厚み方向)に広がり、図2の基板1(薄板)内を伝搬する不要光よりも、出力光に混入され難い。 Further, the unnecessary light generated at the incident portion of the first substrate (11) spreads inside the substrate (11) (in the thickness direction of the substrate) and is more than the unnecessary light propagating in the substrate 1 (thin plate) of FIG. , It is hard to be mixed in the output light.

さらに、第2の基板(12)の光変調部で発生する変調OFF状態に基板内部に残留する不要光は、第1の基板(11)の出射部(23)に結合しない構造となっている。 Further, the unnecessary light remaining inside the substrate in the modulation OFF state generated in the optical modulation portion of the second substrate (12) is not coupled to the emission portion (23) of the first substrate (11). ..

図1との比較のため、図3の上面図を図4に示す。入射部(21)と出射部(23)の近傍において、第1の基板(11)に形成された光導波路(21,23)と第2の基板(12)に形成された光導波路(22)とは、並進部(S1,S2)において互いに重なり合い、基板間で光結合している。 A top view of FIG. 3 is shown in FIG. 4 for comparison with FIG. Optical waveguides (21, 23) formed on the first substrate (11) and optical waveguides (22) formed on the second substrate (12) in the vicinity of the incident portion (21) and the exit portion (23). Is overlapped with each other in the translational portions (S1 and S2), and is photocoupled between the substrates.

第1の基板(11)として、ガラス基板などの石英系材料を用いた平面光波回路(PLC;Planar Lightwave Circuit)や、ニオブ酸リチウム材料のLN基板が利用可能である。 As the first substrate (11), a plane lightwave circuit (PLC; Planar Lightwave Circuit) using a quartz-based material such as a glass substrate and an LN substrate made of a lithium niobate material can be used.

第2の基板(12)として、電気光学効果を有するニオブ酸リチウム(LN)材料のLN基板が挙げられる。LN基板には、コングルエント組成のLNの他、光損傷耐性の高い酸化マグネシウムドープ(MgOドープ)LNが挙げられる。LN基板に熱拡散やイオン注入などにより金属イオンをドープすることで屈折率を調整することも可能である。 Examples of the second substrate (12) include an LN substrate made of a lithium niobate (LN) material having an electro-optical effect. Examples of the LN substrate include magnesium oxide-doped (MgO-doped) LN having high photodamage resistance, in addition to LN having a congluent composition. It is also possible to adjust the refractive index by doping the LN substrate with metal ions by thermal diffusion or ion implantation.

第2の基板(12)の厚みは、変調信号のマイクロ波と光波との速度整合を図るため、20μm以下、より好ましくは10μm以下に設定される。また、第2の基板(12)の光変調部の下面側に位置する第1の基板の部分には、第2の基板よりもより低誘電率な材料を配置することが、より好ましい。 The thickness of the second substrate (12) is set to 20 μm or less, more preferably 10 μm or less in order to match the speed of the microwave and the light wave of the modulated signal. Further, it is more preferable to dispose a material having a lower dielectric constant than that of the second substrate on the portion of the first substrate located on the lower surface side of the optical modulation portion of the second substrate (12).

並進部(S1,S2)では、近接して配置された導波路間の伝搬距離が完全結合長を満たす場合、光電磁界のエバネッセント結合により、一方の導波路から他方の導波路にパワーが完全に推移する。このため、第1の基板に形成された光導波路(21)から第2の基板に形成された光導波路(22)への光結合、及び第2の基板に形成された光導波路(22)から第1の基板に形成された光導波路(23)への光結合が可能になる。 In the translation section (S1, S2), when the propagation distance between the waveguides arranged in close proximity satisfies the perfect bond length, the evanescent coupling of the photoelectric magnetic field causes the power to be completely transferred from one waveguide to the other waveguide. Transition to. Therefore, from the optical coupling from the optical waveguide (21) formed on the first substrate to the optical waveguide (22) formed on the second substrate, and from the optical waveguide (22) formed on the second substrate. Optical coupling to the optical waveguide (23) formed on the first substrate becomes possible.

第1の基板(11)にガラス材料のPLCを用いる場合、LNの屈折率2.2に対してPLCの屈折率は1.5であり、両者の屈折率差が大きいため、光導波路間の伝搬定数も大きく異なる。このため、単純に近接して光導波路を配置しても光結合は生じない。そこで、第1の基板の光導波路よりも高い屈折率材料からなる層を形成することにより、第2の基板に形成された光導波路の伝搬定数を第2の基板に形成された光導波路の伝搬定数に近づけることによって光導波路間の光結合が可能になる。 When a PLC made of a glass material is used for the first substrate (11), the refractive index of the PLC is 1.5 with respect to the refractive index of 2.2 of the LN, and the difference in the refractive indexes between the two is large. Propagation constants are also very different. Therefore, even if the optical waveguides are simply arranged in close proximity, no optical coupling occurs. Therefore, by forming a layer made of a material having a refractive index higher than that of the optical waveguide of the first substrate, the propagation constant of the optical waveguide formed on the second substrate is propagated by the optical waveguide formed on the second substrate. By approaching a constant, optical coupling between optical waveguides becomes possible.

一方、第1の基板(11)にLNを用いる場合、第1の基板に形成された光導波路の伝搬定数と第2の基板に形成された光導波路の伝搬定数が近いため、高屈折率材料からなる層を形成しなくても近接して配置することで光導波路間の光結合が可能である。 On the other hand, when LN is used for the first substrate (11), the propagation constant of the optical waveguide formed on the first substrate is close to the propagation constant of the optical waveguide formed on the second substrate, so that the material has a high refractive index. Optical coupling between optical waveguides is possible by arranging them in close proximity without forming a layer made of the same.

図5は、本発明の光制御素子に係る第2の実施例であり、第2の基板(12)に光制御用の変調電極(CE)、直交バイアス電極(BE)及び光導波路(22)の分岐部(マッハツェンダー型光導波路の分岐部や合波部)を形成したものである。光結合部(S1,S2)が光入射部(21)と光出射部(23)に限定されるため、光結合部における結合効率がマッハツェンダー型光導波路の両アーム(分岐導波路)間の光強度の差に影響を及ぼすことがないという利点がある。一方、薄板構造である第2の基板(12)に光分岐部および光変調部を形成するため、高精度なプロセス技術が要求される。 FIG. 5 shows a second embodiment of the optical control element of the present invention, in which a modulation electrode (CE) for optical control, an orthogonal bias electrode (BE), and an optical waveguide (22) are mounted on a second substrate (12). (Branch part and combine part of Mach-Zehnder type optical waveguide) are formed. Since the optical coupling portions (S1 and S2) are limited to the light incident portion (21) and the light emitting portion (23), the coupling efficiency in the optical coupling portion is between both arms (branched waveguide) of the Mach-Zehnder type optical waveguide. It has the advantage of not affecting the difference in light intensity. On the other hand, in order to form the optical branching portion and the optical modulation portion on the second substrate (12) having a thin plate structure, a highly accurate process technique is required.

図6は、本発明の光制御素子に係る第3の実施例であり、第1の基板と第2の基板(12)に光導波路の分岐を分けて形成したものである。第2の基板(12)に光制御用の変調電極(CE)、直交バイアス電極(BE)および光導波路の分岐部の一部を形成している。光分岐部の一部を、光導波路を高精度で作製可能な第1の基板(PLC等)に形成できるという利点がある。 FIG. 6 shows a third embodiment of the optical control element of the present invention, in which the first substrate and the second substrate (12) are formed by dividing the branch of the optical waveguide. A modulation electrode (CE) for optical control, an orthogonal bias electrode (BE), and a part of a branch portion of the optical waveguide are formed on the second substrate (12). There is an advantage that a part of the optical branching portion can be formed on a first substrate (PLC or the like) capable of producing an optical waveguide with high accuracy.

図7は、本発明の光制御素子に係る第4の実施例であり、第1の基板に光導波路の全ての分岐部と直交バイアス電極(BE)を形成し、第2の基板(12)に光制御用の変調電極(CE)を形成した構成である。全ての光分岐部を高精度で作製可能な第1の基板(PLC等)に形成でいることが利点となる。ただし、直交バイアス電極(BE)は、熱光学効果によって駆動することが必要になる。薄板構造である第2の基板は、直線の光導波路(22)と光制御用の変調電極(CE)のみであるため、図5の構成と比較して、要求されるプロセス技術の難易度が低下するという利点もある。 FIG. 7 shows a fourth embodiment according to the optical control element of the present invention, in which all the branch portions of the optical waveguide and the orthogonal bias electrode (BE) are formed on the first substrate, and the second substrate (12) is formed. This is a configuration in which a modulation electrode (CE) for optical control is formed. It is an advantage that all the optical branching portions are formed on a first substrate (PLC or the like) that can be manufactured with high accuracy. However, the orthogonal bias electrode (BE) needs to be driven by a thermo-optical effect. Since the second substrate having a thin plate structure has only a linear optical waveguide (22) and a modulation electrode (CE) for optical control, the difficulty of the required process technique is higher than that of the configuration shown in FIG. It also has the advantage of lowering.

図8は、本発明の光制御素子に係る第5の実施例を説明する側面図である。第1の基板(11)と第2の基板(12)は同一のサイズである必要はなく、第2の基板を小型基板にして、縮小投影型露光や電子線描画などのより高精度なプロセス技術を適用することができる。また、第2の基板は1枚である必要は無く、第1の基板上に複数の第2の基板を並べて配置することも可能である。 FIG. 8 is a side view illustrating a fifth embodiment of the optical control element of the present invention. The first substrate (11) and the second substrate (12) do not have to be the same size, and the second substrate can be made into a small substrate for a more accurate process such as reduced projection exposure and electron beam lithography. The technology can be applied. Further, the number of the second substrate does not have to be one, and it is possible to arrange a plurality of second substrates side by side on the first substrate.

図9は、本発明の光制御素子に係る第6の実施例であり、第1の基板と第2の基板(12)の光導波路の並進部における光結合を高効率に行うため、光結合用の電極(OE)を形成した例を示す。電気光学効果を利用することにより、光導波路の伝搬定数を調整することが可能であるため、高効率に光結合を行うことが可能になる。 FIG. 9 shows a sixth embodiment according to the optical control element of the present invention, in which optical coupling is performed in order to perform optical coupling in the translational portion of the optical waveguide of the first substrate and the second substrate (12) with high efficiency. An example of forming an electrode (OE) for light is shown. By utilizing the electro-optical effect, it is possible to adjust the propagation constant of the optical waveguide, so that optical coupling can be performed with high efficiency.

図10は、本発明の光制御素子に用いられる光導波路間の接続構造(その1)を説明する図であり、低駆動電圧化のために、第2の基板(12)にミクロンレベルの微細な光導波路(WG2)を形成した場合の平面図である。低損失な光結合のため、第2の基板に形成された光導波路(WG2)を光結合部においてテーパ構造(T2)にしている。 FIG. 10 is a diagram for explaining the connection structure (No. 1) between the optical waveguides used in the optical control element of the present invention, and in order to reduce the drive voltage, the second substrate (12) has micron-level fineness. It is a top view when a simple optical waveguide (WG2) is formed. For low loss optical coupling, the optical waveguide (WG2) formed on the second substrate has a tapered structure (T2) at the optical coupling portion.

図11は、光導波路間の他の接続構造(その2)を説明する図である。第1の基板(11)に形成された第1の光導波路(WG1)から第2の基板(12)に形成された第2の光導波路(WG2)への低損失な光結合のために、第1の基板に形成された第1の光導波路(WG1)を光結合部においてテーパ構造T1にした構成を示す。テーパ構造にすることで各基板に形成された光導波路のモード移行が円滑になる。 FIG. 11 is a diagram illustrating another connection structure (No. 2) between optical waveguides. Due to the low loss optical coupling from the first optical waveguide (WG1) formed on the first substrate (11) to the second optical waveguide (WG2) formed on the second substrate (12). The configuration in which the first optical waveguide (WG1) formed on the first substrate is formed into a tapered structure T1 at the optical coupling portion is shown. The tapered structure facilitates mode transition of the optical waveguide formed on each substrate.

図12は、光導波路間の他の接続構造(その3)を説明する図である。第1の基板(11)に形成された第1の光導波路(21)から第2の基板(12)に形成された第2の光導波路(22)への低損失な光結合、あるいは第2の基板(12)に形成された第2の光導波路(22)から第1の基板(11)に形成された第1の光導波路(23)への低損失な光結合のために、光結合部において第1の基板の光導波路(21,23)よりも高い屈折率材料からなる高屈折率層(4)を形成した構成を示す。第1の光導波路と第2の光導波路の間に高屈折率層を形成することにより、二つの光導波路の伝搬定数差が緩和されるため、光導波路間の光結合が可能になる。 FIG. 12 is a diagram illustrating another connection structure (No. 3) between optical waveguides. Low-loss optical coupling from the first optical waveguide (21) formed on the first substrate (11) to the second optical waveguide (22) formed on the second substrate (12), or a second. Due to low loss optical coupling from the second optical waveguide (22) formed on the substrate (12) to the first optical waveguide (23) formed on the first substrate (11). A configuration is shown in which a high refractive index layer (4) made of a material having a higher refractive index than that of the optical waveguides (21, 23) of the first substrate is formed. By forming a high refractive index layer between the first optical waveguide and the second optical waveguide, the difference in propagation constant between the two optical waveguides is relaxed, so that optical coupling between the optical waveguides becomes possible.

図13は、光導波路感の他の接続構造(その4)を説明する図である。第1の光導波路(WG1)から第2の光導波路(WG2)、及び第2の光導波路(WG2)から第1の光導波路(WG1)への低損失かつ波長特性の少ない光結合のために、光結合部において周期的な屈折率構造からなるフォトニック結晶構造にした構成を示す。光の禁制帯であるフォトニックバンドギャップを利用することで低損失かつ波長特性に優れた光結合が可能になる。フォトニック結晶構造は、図13の点線領域Aの第1の基板又は第2の基板のいずれかに形成することが可能である。 FIG. 13 is a diagram for explaining another connection structure (No. 4) of the optical waveguide feeling. For low loss and low wavelength characteristic optical coupling from the first optical waveguide (WG1) to the second optical waveguide (WG2) and from the second optical waveguide (WG2) to the first optical waveguide (WG1). , A structure having a photonic crystal structure having a periodic refractive index structure in the optical coupling portion is shown. By using the photonic bandgap, which is a forbidden band of light, optical coupling with low loss and excellent wavelength characteristics becomes possible. The photonic crystal structure can be formed on either the first substrate or the second substrate in the dotted line region A of FIG.

以上説明したように、本発明によれば、不要光が光変調部や出力光に混入することを抑制し、光変調信号の消光比等の特性を改善した光制御素子を提供することが可能となる。 As described above, according to the present invention, it is possible to provide an optical control element that suppresses unnecessary light from being mixed into an optical modulation unit or output light and has improved characteristics such as an extinction ratio of an optical modulation signal. It becomes.

11 第1の基板
12 第2の基板
21,23 第1の光導波路
22 第2の光導波路
S1〜S6 並進部(光結合部)
CE 変調電極
BE 直交バイアス電極
OE 光結合用電極
11 1st substrate 12 2nd substrate 21 and 23 1st optical waveguide 22 2nd optical waveguide S1 to S6 Translation part (optical coupling part)
CE Modulation Electrode BE Orthogonal Bias Electrode OE Optical Coupling Electrode

Claims (8)

第1の基板の一面に第1の光導波路が形成され、
前記第1の基板の端には、前記第1の光導波路へ光を入射する入射部、及び前記第1の光導波路から光を出射する出射部が設けられ、
第2の基板の一面に第2の光導波路が形成され、
前記第2の基板には、前記第2の光導波路を伝搬する光を変調する光変調部を備え、
前記第1の光導波路と前記第2の光導波路との並進部において、両者が光結合していることを特徴とする光制御素子。
A first optical waveguide is formed on one surface of the first substrate,
At the end of the first substrate, an incident portion for incident light on the first optical waveguide and an exit portion for emitting light from the first optical waveguide are provided.
A second optical waveguide is formed on one surface of the second substrate,
The second substrate is provided with an optical modulation section that modulates the light propagating in the second optical waveguide.
An optical control element characterized in that, in a translational portion between the first optical waveguide and the second optical waveguide, both are optically coupled.
請求項1に記載の光制御素子において、前記第2の基板の厚みが20μm以下であることを特徴とする光制御素子。 The optical control element according to claim 1, wherein the thickness of the second substrate is 20 μm or less. 請求項1又は2に記載の光制御素子において、前記第1の基板が石英系材料又はニオブ酸リチウムであり、前記第2の基板がニオブ酸リチウムであることを特徴とする光制御素子。 The optical control element according to claim 1 or 2, wherein the first substrate is a quartz-based material or lithium niobate, and the second substrate is lithium niobate. 請求項1乃至3のいずれかに記載の光制御素子において、前記第1の基板と前記第2の基板とが、直接接合していることを特徴とする光制御素子。 The optical control element according to any one of claims 1 to 3, wherein the first substrate and the second substrate are directly bonded to each other. 請求項1乃至4のいずれかに記載の光制御素子において、該並進部では、前記第1の光導波路の端部又は前記第2の光導波路の端部の少なくとも一方には、光導波路の先端に向かって光導波路の幅が徐々に狭くなるテーパ構造が形成されていることを特徴とする光制御素子。 In the optical control element according to any one of claims 1 to 4, in the translational portion, the tip of the optical waveguide is attached to at least one of the end portion of the first optical waveguide or the end portion of the second optical waveguide. An optical control element characterized in that a tapered structure is formed in which the width of the optical waveguide gradually narrows toward. 請求項1乃至5のいずれかに記載の光制御素子において、該並進部では、前記第1の基板又は前記第2の基板の少なくとも一方には、周期的な屈折率の構造が形成されていることを特徴とする光制御素子。 In the optical control element according to any one of claims 1 to 5, in the translational portion, a structure having a periodic refractive index is formed on at least one of the first substrate and the second substrate. An optical control element characterized by this. 請求項1乃至6のいずれかに記載の光制御素子において、前記第1の基板又は前記第2の基板のいずれかに、光制御用の直交バイアス電極を設けることを特徴とする光制御素子。 The optical control element according to any one of claims 1 to 6, wherein an orthogonal bias electrode for optical control is provided on either the first substrate or the second substrate. 請求項1乃至7のいずれかに記載の光制御素子において、前記第2の基板の該並進部には、光結合用の電極を設けることを特徴とする光制御素子。 The optical control element according to any one of claims 1 to 7, wherein an electrode for optical coupling is provided in the translational portion of the second substrate.
JP2019064333A 2019-03-28 2019-03-28 light control element Active JP7218652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064333A JP7218652B2 (en) 2019-03-28 2019-03-28 light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064333A JP7218652B2 (en) 2019-03-28 2019-03-28 light control element

Publications (2)

Publication Number Publication Date
JP2020166050A true JP2020166050A (en) 2020-10-08
JP7218652B2 JP7218652B2 (en) 2023-02-07

Family

ID=72716643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064333A Active JP7218652B2 (en) 2019-03-28 2019-03-28 light control element

Country Status (1)

Country Link
JP (1) JP7218652B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237001A (en) * 1991-01-21 1992-08-25 Nippon Telegr & Teleph Corp <Ntt> Optical device
JPH06222229A (en) * 1992-11-16 1994-08-12 Matsushita Electric Ind Co Ltd Optical waveguide element and its manufacture
JPH06289346A (en) * 1992-09-01 1994-10-18 Matsushita Electric Ind Co Ltd Dielectric substance optical waveguide element and its production
JP2004325520A (en) * 2003-04-21 2004-11-18 Sony Corp Optical waveguide type optical switch and its manufacturing method
JP2005084290A (en) * 2003-09-08 2005-03-31 Ricoh Co Ltd Manufacturing method of light controlling element
US20050129402A1 (en) * 2003-10-21 2005-06-16 Kim Byoung W. WDM-PON system with optical wavelength alignment function
JP2005300905A (en) * 2004-04-12 2005-10-27 Tokyo Univ Of Agriculture & Technology Producing apparatus of balanced multiple wavelength optical frequency comb
JP2006284961A (en) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd Optical modulator
WO2008114624A1 (en) * 2007-03-20 2008-09-25 Nec Corporation Optical waveguide and spot size converter using this
JP2008281639A (en) * 2007-05-08 2008-11-20 Ricoh Co Ltd Optical deflection element, optical deflection module, optical switch module and optical deflecting method
US20130230274A1 (en) * 2012-03-05 2013-09-05 Gregory Alan Fish Photonic flexible interconnect
JP2013540351A (en) * 2010-09-30 2013-10-31 アルカテル−ルーセント Monolithic integrated structure with buried heterostructure semiconductor optical amplifier and photodetector
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2015516697A (en) * 2012-03-22 2015-06-11 日本電気株式会社 Optical transmitter and control method thereof
JP2015203737A (en) * 2014-04-11 2015-11-16 日本電信電話株式会社 Optical modulation device and optical modulation method
US20160109659A1 (en) * 2014-10-15 2016-04-21 Huawei Technologies Co., Ltd. Stacked Photonic Chip Coupler for SOI Chip-Fiber Coupling
JP2017504830A (en) * 2013-12-25 2017-02-09 華為技術有限公司Huawei Technologies Co.,Ltd. Waveguide polarization splitter and polarization rotator
JP2017227770A (en) * 2016-06-22 2017-12-28 国立研究開発法人産業技術総合研究所 Spot size converter
WO2018174179A1 (en) * 2017-03-23 2018-09-27 公立大学法人兵庫県立大学 Optical modulator

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237001A (en) * 1991-01-21 1992-08-25 Nippon Telegr & Teleph Corp <Ntt> Optical device
JPH06289346A (en) * 1992-09-01 1994-10-18 Matsushita Electric Ind Co Ltd Dielectric substance optical waveguide element and its production
JPH06222229A (en) * 1992-11-16 1994-08-12 Matsushita Electric Ind Co Ltd Optical waveguide element and its manufacture
JP2004325520A (en) * 2003-04-21 2004-11-18 Sony Corp Optical waveguide type optical switch and its manufacturing method
JP2005084290A (en) * 2003-09-08 2005-03-31 Ricoh Co Ltd Manufacturing method of light controlling element
US20050129402A1 (en) * 2003-10-21 2005-06-16 Kim Byoung W. WDM-PON system with optical wavelength alignment function
JP2005300905A (en) * 2004-04-12 2005-10-27 Tokyo Univ Of Agriculture & Technology Producing apparatus of balanced multiple wavelength optical frequency comb
JP2006284961A (en) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd Optical modulator
WO2008114624A1 (en) * 2007-03-20 2008-09-25 Nec Corporation Optical waveguide and spot size converter using this
JP2008281639A (en) * 2007-05-08 2008-11-20 Ricoh Co Ltd Optical deflection element, optical deflection module, optical switch module and optical deflecting method
JP2013540351A (en) * 2010-09-30 2013-10-31 アルカテル−ルーセント Monolithic integrated structure with buried heterostructure semiconductor optical amplifier and photodetector
US20130230274A1 (en) * 2012-03-05 2013-09-05 Gregory Alan Fish Photonic flexible interconnect
JP2015516697A (en) * 2012-03-22 2015-06-11 日本電気株式会社 Optical transmitter and control method thereof
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2017504830A (en) * 2013-12-25 2017-02-09 華為技術有限公司Huawei Technologies Co.,Ltd. Waveguide polarization splitter and polarization rotator
JP2015203737A (en) * 2014-04-11 2015-11-16 日本電信電話株式会社 Optical modulation device and optical modulation method
US20160109659A1 (en) * 2014-10-15 2016-04-21 Huawei Technologies Co., Ltd. Stacked Photonic Chip Coupler for SOI Chip-Fiber Coupling
JP2017227770A (en) * 2016-06-22 2017-12-28 国立研究開発法人産業技術総合研究所 Spot size converter
WO2018174179A1 (en) * 2017-03-23 2018-09-27 公立大学法人兵庫県立大学 Optical modulator

Also Published As

Publication number Publication date
JP7218652B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
JP5433919B2 (en) Optical functional element, driving method and manufacturing method thereof
US6150667A (en) Semiconductor optical modulator
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
JP2006301612A (en) Optical modulator
US9568801B2 (en) Optical modulator
JP2009244812A (en) Optical waveguide element
JP2007304427A (en) Optical switching element
JP2009053499A (en) Optical modulator and optical modulation module
JPH10228006A (en) Optical modulator
US7693355B2 (en) Hybrid electro-optic polymer/sol-gel modulator
JP2005221999A (en) Optical modulator and optical modulator array
US7912325B2 (en) Optical control element
CN214795475U (en) Optical waveguide element, optical modulation device using the same, and optical transmission device
JP5729075B2 (en) Optical waveguide device
CN111220964B (en) Mixed material phased array laser radar transmitting chip, manufacturing method and laser radar
JP6232751B2 (en) Light modulator
JP7218652B2 (en) light control element
JPH0996731A (en) Waveguide type optical device
WO2002056098A1 (en) Optical monitoring in optical interferometric modulators
JP2006243327A (en) Optical waveguide and optical switch using the same
JP2011102891A (en) Optical functional waveguide
JP7400661B2 (en) Optical modulator and optical modulation element driving method
WO2022071283A1 (en) Optical waveguide element, and optical modulation device and optical transmission device that use same
JP3735685B2 (en) Integrated optical waveguide device
JP3740803B2 (en) Light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R150 Certificate of patent or registration of utility model

Ref document number: 7218652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150