JP2020162358A - Power monitoring system - Google Patents

Power monitoring system Download PDF

Info

Publication number
JP2020162358A
JP2020162358A JP2019061217A JP2019061217A JP2020162358A JP 2020162358 A JP2020162358 A JP 2020162358A JP 2019061217 A JP2019061217 A JP 2019061217A JP 2019061217 A JP2019061217 A JP 2019061217A JP 2020162358 A JP2020162358 A JP 2020162358A
Authority
JP
Japan
Prior art keywords
load
information
power
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019061217A
Other languages
Japanese (ja)
Other versions
JP7278127B2 (en
Inventor
仁 中島
Hitoshi Nakajima
仁 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP2019061217A priority Critical patent/JP7278127B2/en
Publication of JP2020162358A publication Critical patent/JP2020162358A/en
Application granted granted Critical
Publication of JP7278127B2 publication Critical patent/JP7278127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a power monitoring system capable of estimating operation situations of operating load apparatuses, without providing a measurement device for each of load apparatuses, only by measuring each transformer's power supplied from a high voltage power receiving facility to the respective loads.SOLUTION: A power monitoring system includes: a voltage sensor 4 and a current sensor 5 that acquire information on voltage and current flowing through a transformer of a high voltage power receiving facility; a cloud server 3 for storing load apparatus information including information on working current and a power factor of each load apparatus to which power is supplied from the high voltage power receiving facility; a monitoring device 1 that on the basis of measurement information from the voltage sensor 4 and the current sensor 5 and information from the cloud server 3, estimates operating load apparatuses and estimates power consumption of each of the operating load apparatuses; and a display device 2 for displaying estimation results.SELECTED DRAWING: Figure 1

Description

本発明は、需要家に設置された高圧受電設備の電力状況を監視する電力監視システムに関し、特に高圧受電設備に設置された変圧器の電力情報から稼働負荷を推定する電力監視システムに関する。 The present invention relates to a power monitoring system that monitors the power status of a high-voltage power receiving facility installed in a consumer, and more particularly to a power monitoring system that estimates an operating load from power information of a transformer installed in the high-voltage power receiving facility.

従来より、省エネルギーを推進するために、また稼働状況を把握するために複数の負荷機器を備えた電力設備の電力使用状況を監視する電力監視装置がある。
このような電力監視装置は、負荷機器毎に例えば分電盤や分岐回路毎に電流及び電圧を計測する計測装置を設けて、それらから個々に情報を入手してデータ処理等を行い監視していた(例えば、特許文献1参照)。
Conventionally, there is a power monitoring device that monitors the power usage status of a power facility equipped with a plurality of load devices in order to promote energy saving and to grasp the operating status.
Such a power monitoring device is provided with a measuring device for measuring current and voltage for each load device, for example, for each distribution board or branch circuit, and individually obtains information from them to process data and monitor the power. (See, for example, Patent Document 1).

特開2012−132812号公報Japanese Unexamined Patent Publication No. 2012-132812

上述したように、従来の電力監視装置は多数の計測装置が必要であったし、それらは分散して設置されたため、取り付ける工事も面倒であり大きな費用が発生していた。
しかし、高圧受電設備の場合、電力を供給する負荷機器はそれぞれ稼働する際の電流及び力率特性に特徴を有しており、この特徴を予め把握すれば、個々に電流等を計測しなくても供給元である高圧受電設備から供給される電力及び力率から、稼働している負荷機器を推定することが可能である。
例えば、同様の三相負荷であっても、電気炉であれば三相に均等な電流が流れ、力率は0.9から1であり高いが、モータ負荷であれば、稼働時の電流は比較的小さく、力率は0.6から0.7と低い。このような特性から、電力供給元のみのデータでも判断することが可能である。
As described above, the conventional power monitoring device requires a large number of measuring devices, and since they are installed in a distributed manner, the installation work is troublesome and a large cost is incurred.
However, in the case of high-voltage power receiving equipment, each load device that supplies power has characteristics in terms of current and power factor characteristics when operating, and if these characteristics are grasped in advance, it is not necessary to measure the current and the like individually. It is also possible to estimate the operating load equipment from the power and power factor supplied from the high-voltage power receiving equipment that is the supply source.
For example, even with the same three-phase load, if it is an electric furnace, an even current flows through the three phases, and the power factor is as high as 0.9 to 1, but if it is a motor load, the operating current is high. It is relatively small and has a low power factor of 0.6 to 0.7. From such characteristics, it is possible to judge even the data of only the power supply source.

そこで、本発明はこのような問題点に鑑み、個々の負荷機器に対して計測装置を設けることなく、高圧受電設備から各負荷に供給する変圧器毎の電力を計測するだけで、稼働している負荷機器の稼働状況を推定できる電力監視システムを提供することを目的としている。 Therefore, in view of such a problem, the present invention operates only by measuring the power of each transformer supplied from the high-voltage power receiving equipment to each load without providing a measuring device for each load device. The purpose is to provide a power monitoring system that can estimate the operating status of existing load equipment.

上記課題を解決する為に、請求項1の発明に係る電力監視システムは、高圧受電設備の変圧器に流れる電流と電圧の情報を入手する計測手段と、高圧受電設備から電力が供給される個々の負荷機器の動作電流情報及び力率情報を含む負荷機器情報を記憶する負荷情報記憶部と、計測手段の計測情報と負荷情報記憶部の情報とを基に、稼働している負荷機器を推定すると共に、稼働している個々の負荷機器の使用電力を推定する負荷推定部と、推定結果を表示する表示手段とを有することを特徴とする。
この構成によれば、複数の負荷機器が同時に稼働していても、計測した電流/電圧情報から負荷推定部が稼働状態にある負荷機器及び個々の負荷機器の使用電力を推定する。よって、負荷機器毎に電流計測手段、電圧計測手段を設置することなく、負荷毎の稼働状況を把握することができ、省エネルギーの推進に活用できる。
In order to solve the above problems, the power monitoring system according to the invention of claim 1 includes a measuring means for obtaining information on the current and voltage flowing through the transformer of the high-voltage power receiving equipment, and an individual electric power supplied from the high-voltage power receiving equipment. Estimates the operating load equipment based on the load information storage unit that stores the load equipment information including the operating current information and power factor information of the load equipment, and the measurement information of the measuring means and the information of the load information storage unit. At the same time, it is characterized by having a load estimation unit that estimates the power consumption of each operating load device and a display means for displaying the estimation result.
According to this configuration, even if a plurality of load devices are operating at the same time, the power consumption of the load devices and the individual load devices in which the load estimation unit is in the operating state is estimated from the measured current / voltage information. Therefore, the operating status of each load can be grasped without installing a current measuring means and a voltage measuring means for each load device, which can be utilized for promoting energy saving.

請求項2の発明は、請求項1に記載の構成において、負荷推定部は、所定の時間毎の平均値データを基に稼働負荷を推定することを特徴とする。
この構成によれば、負荷推定部は所定時間の平均値データを基に稼働負荷を推定することで、負荷機器の立ち上がり時の電流の大きな変動やノイズ等の関与を除去でき、精度の高い情報を提供できる。
The invention of claim 2 is characterized in that, in the configuration according to claim 1, the load estimation unit estimates the operating load based on the average value data for each predetermined time.
According to this configuration, the load estimation unit estimates the operating load based on the average value data for a predetermined time, so that large fluctuations in the current at the start-up of the load device and the involvement of noise can be eliminated, and highly accurate information can be obtained. Can be provided.

請求項3の発明は、請求項1又は2に記載の構成において、高圧受電設備に、計測手段と負荷推定部とを備えた監視装置を配置する一方、通信ネットワーク上に配置したクラウドサーバに負荷情報記憶部を配置して、クラウドサーバと監視装置との間で通信を可能とし、表示手段と監視装置とは、伝送線或いは通信ネットワークを介して通信を実施することを特徴とする。
この構成によれば、高圧受電設備の負荷情報を通信ネットワーク上のクラウドサーバが管理することで、複数の需要家の負荷機器の情報を一括管理でき、各需要家においてはシステムを低コストで構築できる。
In the invention of claim 3, in the configuration according to claim 1 or 2, a monitoring device including a measuring means and a load estimation unit is arranged in the high-voltage power receiving equipment, while a load is applied to a cloud server arranged on the communication network. An information storage unit is arranged to enable communication between the cloud server and the monitoring device, and the display means and the monitoring device are characterized in that communication is performed via a transmission line or a communication network.
According to this configuration, the cloud server on the communication network manages the load information of the high-voltage power receiving equipment, so that the information of the load equipment of multiple consumers can be managed collectively, and each customer can build the system at low cost. it can.

本発明によれば、複数の負荷機器が同時に稼働していても、高圧受電設備に設置された変圧器の電流/電圧情報から、負荷推定部が稼働状態にある負荷及び個々の負荷の使用電力を推定する。よって、負荷機器毎に電流計測手段、電圧計測手段を設置することなく、負荷毎の稼働状況を把握することができ、省エネルギーの推進に活用できる。 According to the present invention, even if a plurality of load devices are operating at the same time, the load in which the load estimation unit is in operation and the power consumption of each load are used based on the current / voltage information of the transformer installed in the high-voltage power receiving facility. To estimate. Therefore, the operating status of each load can be grasped without installing a current measuring means and a voltage measuring means for each load device, which can be utilized for promoting energy saving.

本発明に係る電力監視システムの一例を示すブロック図である。It is a block diagram which shows an example of the electric power monitoring system which concerns on this invention. 監視装置の計測結果を表示装置に表示した説明図である。It is explanatory drawing which displayed the measurement result of the monitoring device on the display device. 図2の計測結果から負荷の稼働状況を推定した結果を表示した説明図である。It is explanatory drawing which displayed the result of estimating the operation state of a load from the measurement result of FIG. 表示装置の他の表示を示す説明図である。It is explanatory drawing which shows the other display of the display device.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る電力監視システムの一例を示すブロック図であり、監視装置1、表示装置2、クラウドサーバ3を備えている。
監視装置1とクラウドサーバ3とは、インターネット網等の通信ネットワークを介して接続され、監視装置1と表示装置2とは伝送線を介して接続されている。尚、この監視装置1と表示装置2の間も通信ネットワークを介して接続しても良い。
Hereinafter, embodiments that embody the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of a power monitoring system according to the present invention, which includes a monitoring device 1, a display device 2, and a cloud server 3.
The monitoring device 1 and the cloud server 3 are connected via a communication network such as an Internet network, and the monitoring device 1 and the display device 2 are connected via a transmission line. The monitoring device 1 and the display device 2 may also be connected via a communication network.

監視装置1はキュービクル等の高圧受電設備に設置され、複数の電圧センサ4が接続可能な電圧情報入力部11、複数の電流センサ5が接続可能な電流情報入力部12、各種情報を記憶するメモリ13、監視装置1を制御する監視装置CPU14、クラウドサーバ3と通信する第1通信IF15、表示装置2と通信する第2通信IF16等を備えている。
電圧情報入力部11に接続された電圧センサ4、及び電流情報入力部12に接続された電流センサ5は、高圧受電設備内で高圧を低圧に変換する三相変圧器及び単相変圧器(何れも図示せず)のそれぞれの電圧/電流を計測し、データが監視装置1に送られる。尚、電圧センサ4は計測部位に接続した単なる電線を含む。
The monitoring device 1 is installed in a high-voltage power receiving facility such as a cubicle, and has a voltage information input unit 11 to which a plurality of voltage sensors 4 can be connected, a current information input unit 12 to which a plurality of current sensors 5 can be connected, and a memory for storing various information. 13. It includes a monitoring device CPU 14 that controls the monitoring device 1, a first communication IF 15 that communicates with the cloud server 3, a second communication IF 16 that communicates with the display device 2, and the like.
The voltage sensor 4 connected to the voltage information input unit 11 and the current sensor 5 connected to the current information input unit 12 are a three-phase transformer or a single-phase transformer that converts high voltage to low voltage in the high-voltage power receiving equipment (either Each voltage / current is measured (not shown), and the data is sent to the monitoring device 1. The voltage sensor 4 includes a simple electric wire connected to the measurement site.

この計測データを受けた監視装置1は、監視装置CPU14が所定の演算を行いメモリ13に演算結果を蓄積する。詳しくは、入手した電流データ、電圧データから所定時間毎(ここでは30分毎とする)の平均値を算出し、この平均値を基に電力を算出してメモリ13に蓄積する。また力率も所定時間毎の平均を算出してメモリ13に蓄積する。尚、平均値を算出する所定時間は10分でも良いし、1時間でも良い。 In the monitoring device 1 that receives the measurement data, the monitoring device CPU 14 performs a predetermined calculation and stores the calculation result in the memory 13. Specifically, the average value for each predetermined time (here, every 30 minutes) is calculated from the obtained current data and voltage data, and the electric power is calculated based on this average value and stored in the memory 13. Further, the power factor is also stored in the memory 13 by calculating the average for each predetermined time. The predetermined time for calculating the average value may be 10 minutes or 1 hour.

表示装置2は需要家の管理室等に設置され、表示部21、操作部22、監視装置1と通信する通信IF23等を有している。操作部22を操作して使用電力に関する所望する情報を監視装置1から入手して表示部21に表示できる。また、操作部22の操作により、高圧受電設備が電力を供給する個々の負荷機器の動作電流(電力)、力率等の諸特性の情報を、監視装置1を介してクラウドサーバ3に入力可能としている。 The display device 2 is installed in a customer's management room or the like, and has a display unit 21, an operation unit 22, a communication IF 23 for communicating with the monitoring device 1, and the like. By operating the operation unit 22, desired information regarding the power consumption can be obtained from the monitoring device 1 and displayed on the display unit 21. Further, by operating the operation unit 22, information on various characteristics such as the operating current (electric power) and power factor of each load device to which the high-voltage power receiving equipment supplies power can be input to the cloud server 3 via the monitoring device 1. It is said.

クラウドサーバ3は、通信ネットワークを介して複数の監視装置1と通信を実施する。そして、監視装置1毎(需要家毎)の、高圧受電設備が電力を供給する個々の負荷機器の動作電流(或いは電力)、力率の情報を記憶する負荷情報データベース31、個々の負荷機器の運転開始/終了の平均的な時刻情報、稼働してからの電流変化特性、力率変化の特性等の運転モード特徴を記憶する運転情報データベース32等を備えている。尚、動作電流は、定格電流或いは稼働時の実際の計測電流値の何れかでも良いし、双方のデータを記憶しても良い。 The cloud server 3 communicates with a plurality of monitoring devices 1 via a communication network. Then, for each monitoring device 1 (for each customer), a load information database 31 that stores information on the operating current (or power) and power factor of each load device to which the high-voltage power receiving equipment supplies power, and a load information database 31 for each load device. It is provided with an operation information database 32 and the like that stores operation mode characteristics such as average time information of operation start / end, current change characteristics after operation, and power factor change characteristics. The operating current may be either the rated current or the actual measured current value during operation, or both data may be stored.

図2は表示装置2の表示例を示し、需要家Aの監視装置1が計測した電流(電力)及び力率の推移を示している。図2では、所定時間毎(ここでは30分毎)に算出された平均電流と力率を表示しており、監視装置CPU14が演算してメモリ13に蓄積されているデータが取り出されて表示される。
具体的に、高圧受電設備に設置された三相変圧器の計測値を示している。表示している時間帯では、計測を開始してから30分間は電流を計測しないため無負荷であるが、30分後から3時間後までは電流が計測されている。このことから、負荷機器が稼働していることがわかる。
FIG. 2 shows a display example of the display device 2, and shows the transition of the current (electric power) and the power factor measured by the monitoring device 1 of the consumer A. In FIG. 2, the average current and the power factor calculated at predetermined time intervals (here, every 30 minutes) are displayed, and the data stored in the memory 13 is fetched and displayed by the monitoring device CPU 14. To.
Specifically, the measured values of the three-phase transformer installed in the high-voltage power receiving equipment are shown. In the displayed time zone, there is no load because the current is not measured for 30 minutes after the start of measurement, but the current is measured from 30 minutes to 3 hours later. From this, it can be seen that the load device is operating.

但し、クラウドサーバ3には、需要家Aの負荷機器として、三相変圧器には電気炉とモータが負荷機器として接続されていることで登録されている。また、電気炉の動作電流が100アンペア、力率が1.0で登録され、モータの定格は35アンペア、力率−0.6で登録されている。 However, it is registered in the cloud server 3 as a load device of the consumer A, and in the three-phase transformer by connecting an electric furnace and a motor as load devices. Further, the operating current of the electric furnace is registered at 100 amperes and the power factor is 1.0, and the rating of the motor is registered at 35 amperes and the power factor is −0.6.

この情報を基に、監視装置CPU14は、30分後から1時間後までの間は、電流が約100アンペア、力率が0.9から1.0の間であることから、電気炉がフル稼働状態にあると推定する。
また、1時間後から1.5時間後までは、電流が約135アンペア、力率が0.8から0.9の間であることから、電気炉フル稼働+モータ稼働と推定する。また、1.5時間後から2.5時間後までは、電流が約70アンペア、力率が0.7から0.8の間であることから、電気炉が35アンペア稼働、モータ稼働状態にあると推定する。
更に、2.5時間後から3時間後までは、約35アンペア、力率0.9から1.0の間であることから、モータは停止し電気炉のみ駆動状態にあると推定する。
そして、3時間後は電流が計測されないことから無負荷と推定する。
Based on this information, the monitoring device CPU 14 has a current of about 100 amperes and a power factor of between 0.9 and 1.0 from 30 minutes to 1 hour, so that the electric furnace is full. Estimated to be in operation.
From 1 hour to 1.5 hours, the current is about 135 amperes and the power factor is between 0.8 and 0.9, so it is estimated that the electric furnace is in full operation + the motor is in operation. Also, from 1.5 hours to 2.5 hours, the current is about 70 amperes and the power factor is between 0.7 and 0.8, so the electric furnace is operating at 35 amperes and the motor is operating. Presumed to be.
Furthermore, since the power factor is between 0.9 and 1.0 at about 35 amperes from 2.5 hours to 3 hours later, it is estimated that the motor is stopped and only the electric furnace is in the driving state.
Then, since the current is not measured after 3 hours, it is estimated that there is no load.

図3は、このような推定結果を表示部21に表示した状態を示している。D1が電気炉の稼働状態を示し、D2がモータの稼働状態を示している。図3に示すように、電気炉は計測を開始して30分後から3時間後まで稼働し、モータは1時間後から2.5時間後まで稼働したと推定している。 FIG. 3 shows a state in which such an estimation result is displayed on the display unit 21. D1 indicates the operating state of the electric furnace, and D2 indicates the operating state of the motor. As shown in FIG. 3, it is estimated that the electric furnace operated from 30 minutes to 3 hours after the start of measurement, and the motor operated from 1 hour to 2.5 hours.

このように、複数の負荷機器が同時に稼働していても、高圧受電設備に備えられた変圧器の電流/電圧を計測し、力率を算出するだけで、複数の負荷の稼働状況を把握することができる。よって、負荷機器毎に電流センサ等の計測手段を設置することなく、負荷毎の稼働状況を把握することができ、省エネルギーの推進に活用できる。
また、監視装置1は30分等所定時間の平均値データを基に稼働負荷を推定することで、負荷機器の立ち上がり時の電流の大きな変動やノイズ等の関与を除去でき、精度の高い情報を提供できる。
更に、高圧受電設備の負荷情報を通信ネットワーク上のクラウドサーバ3が管理することで、複数の需要家の負荷機器の情報を一括管理でき、各需要家においてはシステムを低コストで構築できる。
In this way, even if multiple load devices are operating at the same time, the operating status of multiple loads can be grasped simply by measuring the current / voltage of the transformer installed in the high-voltage power receiving equipment and calculating the power factor. be able to. Therefore, the operating status of each load can be grasped without installing a measuring means such as a current sensor for each load device, which can be utilized for promoting energy saving.
In addition, the monitoring device 1 estimates the operating load based on the average value data for a predetermined time such as 30 minutes, so that large fluctuations in the current at the start-up of the load device and the involvement of noise can be eliminated, and highly accurate information can be obtained. Can be provided.
Further, by managing the load information of the high-voltage power receiving equipment by the cloud server 3 on the communication network, it is possible to collectively manage the information of the load devices of a plurality of consumers, and each customer can construct the system at low cost.

図4は、表示装置2の他の表示を示し、需要家Aにおいて、高圧受電設備に備えられている単相変圧器が電力を供給する負荷機器の使用電力情報を、三相変圧器に接続された負荷機器と合わせて表示した例を示し、特定の時刻での使用電力を表示している。
単相変圧器には、主に照明と多数のパーソナルコンピュータが負荷機器として接続されており、クラウドサーバ3にその動作電流(電力)と力率が登録されている。
図4に示すように、単相変圧器に取り付けられた電圧センサ4、電流センサ5の計測値情報を基に、監視装置CPU14がクラウドサーバ3の運転情報データベース32が記憶する運転モード特徴を加味することで照明とパソコンの使用電力を推定できる。
このように、負荷機器が電気炉とモータ等に限定されるもので無く、単相変圧器の接続負荷においても、それぞれの時間帯での稼働状況を把握することはできる。
FIG. 4 shows another display of the display device 2, and the customer A connects the power consumption information of the load device to which the single-phase transformer provided in the high-voltage power receiving equipment supplies the power to the three-phase transformer. An example of displaying together with the load equipment is shown, and the power consumption at a specific time is displayed.
Lighting and a large number of personal computers are mainly connected to the single-phase transformer as load devices, and the operating current (electric power) and power factor thereof are registered in the cloud server 3.
As shown in FIG. 4, based on the measured value information of the voltage sensor 4 and the current sensor 5 attached to the single-phase transformer, the monitoring device CPU 14 adds the operation mode feature stored in the operation information database 32 of the cloud server 3. By doing so, the power consumption of the lighting and the personal computer can be estimated.
As described above, the load equipment is not limited to the electric furnace, the motor, and the like, and the operating status in each time zone can be grasped even in the connection load of the single-phase transformer.

尚、同一変圧器に接続された負荷機器同士が近い特性を有する場合は、定格値情報や力率情報に加えて、それぞれの平均的な稼働時間、起動時の電流特性等をクラウドサーバ3の運転情報データベース32に登録し、監視装置CPU14にこの登録データを参照させて時刻情報や電流の変動情報等を更に加味させることで、稼働している負荷機器を判別し推定することができる。
また上記実施形態では、クラウドサーバ3に負荷情報を蓄積しているが、クラウドサーバ3を配置せずに、個々の監視装置1内に或いは監視装置1毎に負荷情報/運転情報を記憶する記憶部を設けても良い。
If the load devices connected to the same transformer have similar characteristics, in addition to the rated value information and power factor information, the average operating time, current characteristics at startup, etc. of each can be obtained from the cloud server 3. By registering in the operation information database 32 and causing the monitoring device CPU 14 to refer to the registered data and further add time information, current fluctuation information, and the like, it is possible to discriminate and estimate the load device in operation.
Further, in the above embodiment, the load information is stored in the cloud server 3, but the load information / operation information is stored in each monitoring device 1 or for each monitoring device 1 without arranging the cloud server 3. A part may be provided.

1・・監視装置、2・・表示装置(表示手段)、3・・クラウドサーバ、4・・電圧センサ(計測手段)、5・・電流センサ(計測手段)、14・・監視装置CPU(負荷推定部)、21・・表示部、31・・負荷情報データベース(負荷情報記憶部)、32・・運転情報データベース。 1 ... Monitoring device, 2 ... Display device (display means), 3 ... Cloud server, 4 ... Voltage sensor (Measuring means), 5 ... Current sensor (Measuring means), 14 ... Monitoring device CPU (Load) Estimating unit), 21 ... Display unit, 31 ... Load information database (load information storage unit), 32 ... Operation information database.

Claims (3)

高圧受電設備の変圧器に流れる電流と電圧の情報を入手する計測手段と、
前記高圧受電設備から電力が供給される個々の負荷機器の動作電流情報及び力率情報を含む負荷機器情報を記憶する負荷情報記憶部と、
前記計測手段の計測情報と前記負荷情報記憶部の情報とを基に、稼働している負荷機器を推定すると共に、稼働している個々の負荷機器の使用電力を推定する負荷推定部と、
推定結果を表示する表示手段とを有することを特徴とする電力監視システム。
Measuring means to obtain information on the current and voltage flowing through the transformer of high-voltage power receiving equipment,
A load information storage unit that stores load device information including operating current information and power factor information of individual load devices to which power is supplied from the high-voltage power receiving facility.
Based on the measurement information of the measuring means and the information of the load information storage unit, the load estimation unit that estimates the operating load equipment and estimates the power consumption of each operating load equipment, and the load estimation unit.
A power monitoring system characterized by having a display means for displaying an estimation result.
前記負荷推定部は、所定の時間毎の平均値データを基に稼働負荷を推定することを特徴とする請求項1記載の電力監視システム。 The power monitoring system according to claim 1, wherein the load estimation unit estimates an operating load based on average value data for each predetermined time. 前記高圧受電設備に、前記計測手段と前記負荷推定部とを備えた監視装置を配置する一方、
通信ネットワーク上に配置したクラウドサーバに前記負荷情報記憶部を配置して、前記クラウドサーバと前記監視装置との間で通信を可能とし、
前記表示手段と前記監視装置とは、伝送線或いは前記通信ネットワークを介して通信を実施することを特徴とする請求項1又は2記載の電力監視システム。
While arranging a monitoring device including the measuring means and the load estimation unit in the high-voltage power receiving equipment,
The load information storage unit is arranged on a cloud server arranged on a communication network to enable communication between the cloud server and the monitoring device.
The power monitoring system according to claim 1 or 2, wherein the display means and the monitoring device communicate with each other via a transmission line or the communication network.
JP2019061217A 2019-03-27 2019-03-27 Power monitoring system Active JP7278127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061217A JP7278127B2 (en) 2019-03-27 2019-03-27 Power monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061217A JP7278127B2 (en) 2019-03-27 2019-03-27 Power monitoring system

Publications (2)

Publication Number Publication Date
JP2020162358A true JP2020162358A (en) 2020-10-01
JP7278127B2 JP7278127B2 (en) 2023-05-19

Family

ID=72640221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061217A Active JP7278127B2 (en) 2019-03-27 2019-03-27 Power monitoring system

Country Status (1)

Country Link
JP (1) JP7278127B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115137A1 (en) * 2014-01-29 2015-08-06 日本電気株式会社 Monitoring device, monitoring system, monitoring method, correction information creation device, correction information creation method, and program
WO2017038354A1 (en) * 2015-09-03 2017-03-09 日本電気株式会社 Information providing device, information providing method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115137A1 (en) * 2014-01-29 2015-08-06 日本電気株式会社 Monitoring device, monitoring system, monitoring method, correction information creation device, correction information creation method, and program
WO2017038354A1 (en) * 2015-09-03 2017-03-09 日本電気株式会社 Information providing device, information providing method, and program

Also Published As

Publication number Publication date
JP7278127B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
US6927499B2 (en) Power generator and system comprising it
EP3041105A1 (en) Energy management device, energy management method, and energy management system
JP5106514B2 (en) Identification support method of voltage imbalance cause of three-phase distribution line, and information processing apparatus used in this method
JP2008261826A (en) Electric quantity monitoring device and electric quantity monitoring system
JP6268633B2 (en) Power management apparatus, power management method, and program
CN106471694A (en) Load balance for distribution
JP5325604B2 (en) Energy monitoring system
JP2010008108A (en) Electrical energy measuring system, current-measuring apparatus, and voltage-measuring apparatus
JP2007033305A (en) Energy management system
JP2014086890A (en) Device for managing electric apparatus, method for managing electric apparatus, and management program
JP2007006579A (en) System and method for supplying power information
KR101254846B1 (en) Apparatus for measuring generation power and load power for power generation system
JP7278127B2 (en) Power monitoring system
RU2607674C2 (en) Method for determining power consumption in electric installation and alternating current electric installation
US9312727B2 (en) Local monitoring apparatus, monitoring system and method of digital protective relay
JP6597606B2 (en) Monitoring system, monitoring device, server, operation method of monitoring device, operation method of server, and program
CN108872915A (en) Determination method and decision maker
JPWO2014207832A1 (en) Insulation monitoring device
JP4690680B2 (en) Electricity meter
JP3756443B2 (en) Power generation control device for power consignment
JP2005233879A (en) Single-phase three-wire system watt-hour meter equipped with line current monitoring function, and line current managing system thereof
JP2014016844A (en) Power consumption estimation system for station-installed apparatus
JP2019154133A (en) Method and system for obtaining voltage of high-voltage main line
JP7126206B2 (en) DEMAND MONITORING SYSTEM, MONITORING METHOD AND PROGRAM
JP2018019530A (en) Processor, electric power management device, and ems server

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150