JP2020161558A - Composite magnetic material and metal composite core composed of the same - Google Patents
Composite magnetic material and metal composite core composed of the same Download PDFInfo
- Publication number
- JP2020161558A JP2020161558A JP2019057042A JP2019057042A JP2020161558A JP 2020161558 A JP2020161558 A JP 2020161558A JP 2019057042 A JP2019057042 A JP 2019057042A JP 2019057042 A JP2019057042 A JP 2019057042A JP 2020161558 A JP2020161558 A JP 2020161558A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- resin
- magnetic material
- core
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000696 magnetic material Substances 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 37
- 239000002905 metal composite material Substances 0.000 title claims abstract description 9
- 229920005989 resin Polymers 0.000 claims abstract description 72
- 239000011347 resin Substances 0.000 claims abstract description 72
- 239000006247 magnetic powder Substances 0.000 claims abstract description 42
- 239000011737 fluorine Substances 0.000 claims abstract description 23
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 23
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims description 59
- 239000011248 coating agent Substances 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 31
- 230000035699 permeability Effects 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000000465 moulding Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、磁性粉末と樹脂から成る複合磁性材料及びこの複合磁性材料によって構成されたメタルコンポジットコアに関する。 The present invention relates to a composite magnetic material composed of a magnetic powder and a resin, and a metal composite core composed of the composite magnetic material.
OA機器、太陽光発電システム、自動車など様々な用途にリアクトルが用いられている。様々な用途に対応するため、リアクトルに用いられるコアの形状の多様化が要求されている。この要求に応えるため、リアクトルは、メタルコンポジットコア(以下、MCコアとも称する)と呼ばれるコアが用いられる。 Reactors are used in various applications such as office automation equipment, photovoltaic power generation systems, and automobiles. In order to support various applications, diversification of the shape of the core used for the reactor is required. In order to meet this demand, a core called a metal composite core (hereinafter, also referred to as MC core) is used as the reactor.
このMCコアは、磁性粉末と樹脂とを混合させた複合磁性材料を所定の形状に成型し、固化させて成るコアである。複合磁性材料は粘土状である。そのため、複合磁性材料を容器に流し込みやすいので、容器の形状に合わせて成型しやすく、コアを所望の形状に成型できる。 This MC core is a core formed by molding a composite magnetic material, which is a mixture of magnetic powder and resin, into a predetermined shape and solidifying it. The composite magnetic material is clay-like. Therefore, since the composite magnetic material can be easily poured into the container, it can be easily molded according to the shape of the container, and the core can be molded into a desired shape.
リアクトルは、使用する用途に合わせた鉄損などの磁気特性が要求される。例えば、電圧昇降用のコンバータに用いられるリアクトルは、エネルギー変換効率の向上が求められるため、エネルギー損失である鉄損をより小さくすることが求められる。鉄損は、渦電流損失と、ヒステリシス損失の和で表される。 The reactor is required to have magnetic characteristics such as iron loss according to the intended use. For example, a reactor used in a converter for voltage raising and lowering is required to improve energy conversion efficiency, and therefore to reduce iron loss, which is an energy loss. The iron loss is represented by the sum of the eddy current loss and the hysteresis loss.
渦電流損失は、渦電流が発生するために生じる損失である。MCコアにおいて、この渦電流は、磁性粉末の接触によって生じる可能性がある。そして、MCコアの製造過程において、磁性粉末に応力が加えられることがある。この応力によって、磁性粉末同士が接触することがある。 Eddy current loss is a loss caused by the generation of eddy currents. In the MC core, this eddy current can be generated by contact with magnetic powder. Then, in the process of manufacturing the MC core, stress may be applied to the magnetic powder. Due to this stress, the magnetic powders may come into contact with each other.
そこで、例えば、磁性粉末を絶縁性の樹脂で覆い、磁性粉末同士の接触を抑制し、渦電流損失を低減させる手法がある。しかし、近年、リアクトルの使用用途の多様化に伴い、渦電流損失の更なる低減が求められる。 Therefore, for example, there is a method of covering the magnetic powder with an insulating resin to suppress contact between the magnetic powders and reduce the eddy current loss. However, in recent years, with the diversification of usage of reactors, further reduction of eddy current loss is required.
本発明の目的は、上記課題を解決するために提案されたものであり、渦電流損失を抑制することができる複合磁性材料及びこの複合磁性材料を用いたメタルコンポジットコアを提供することにある。 An object of the present invention has been proposed to solve the above problems, and an object of the present invention is to provide a composite magnetic material capable of suppressing eddy current loss and a metal composite core using this composite magnetic material.
上記目的を達成するため、本発明は、磁性粉末と樹脂とを混合してなる複合磁性材料であって、前記磁性粉末は、フッ素系の樹脂を含み構成される絶縁被膜で覆われていること、を特徴とする。 In order to achieve the above object, the present invention is a composite magnetic material obtained by mixing a magnetic powder and a resin, and the magnetic powder is covered with an insulating film containing a fluorine-based resin. It is characterized by.
本発明によれば、渦電流損失を抑制した磁気特性に優れた複合磁性材料及びこの複合磁性材料を用いたメタルコンポジットコアを得ることができる。 According to the present invention, it is possible to obtain a composite magnetic material having excellent magnetic properties with suppressed eddy current loss and a metal composite core using this composite magnetic material.
(実施形態)
まず、本実施形態の構成について説明する。本実施形態のメタルコンポジットコア(以下、MCコアとも称する)は、複合磁性材料を所定の容器に充填し、加圧することで所定の形状のコアとなる。このMCコアは、リアクトルの磁性体として使用される。
(Embodiment)
First, the configuration of this embodiment will be described. The metal composite core of the present embodiment (hereinafter, also referred to as MC core) becomes a core having a predetermined shape by filling a predetermined container with a composite magnetic material and pressurizing it. This MC core is used as a magnetic material for the reactor.
複合磁性材料は、磁性粉末と樹脂とを含み構成される。磁性粉末としては、軟磁性粉末が使用でき、特に、Fe粉末、Fe−Si合金粉末、Fe−Al合金粉末、Fe−Si−Al合金粉末(センダスト)、非晶質合金粉末、ナノクリスタル、又はこれら2種以上の粉末の混合粉などが使用できる。Fe−Si合金粉末としては、例えば、Fe−6.5%Si合金粉末、Fe−3.5%Si合金粉末を使用できる。 The composite magnetic material is composed of a magnetic powder and a resin. As the magnetic powder, soft magnetic powder can be used, and in particular, Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder (Sendust), amorphous alloy powder, nanocrystals, or A mixed powder of these two or more kinds of powder can be used. As the Fe-Si alloy powder, for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used.
磁性粉末は、平均粒子径の異なる磁性粉末を使用する。つまり、磁性粉末は、第1の粉末と、第1の粉末より平均粒子径が小さい第2の粉末から成る。本明細書において平均粒子径とは、特に断りがない限り、D50、すなわちメジアン径を指すものとする。また、第1の粉末と第2の粉末の種類は、同じものでもよいし、異なるものでもよい。なお、本実施形態では、磁性粉末は平均粒子径の異なる第1の粉末及び第2の粉末の2種類の粉末で構成されているが、磁性粉末は、第1の粉末のみ1種類で構成されてもよい。 As the magnetic powder, magnetic powders having different average particle diameters are used. That is, the magnetic powder is composed of a first powder and a second powder having an average particle size smaller than that of the first powder. In the present specification, the average particle size refers to D50, that is, the median diameter, unless otherwise specified. Further, the types of the first powder and the second powder may be the same or different. In the present embodiment, the magnetic powder is composed of two types of powders, a first powder and a second powder having different average particle diameters, but the magnetic powder is composed of only one type of the first powder. You may.
第1の粉末の平均粒子径は100μm〜200μm、第2の粉末の平均粒子径は、3μm〜10μmが好ましい。この範囲とすることで、第1の粉末同士の隙間に平均粒子径の小さい第2の粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができるからである。 The average particle size of the first powder is preferably 100 μm to 200 μm, and the average particle size of the second powder is preferably 3 μm to 10 μm. This is because, within this range, the second powder having a small average particle diameter enters the gap between the first powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.
また、第1の粉末と第2の粉末の重量比率は、第1の粉末:第2の粉末=80:20〜60:40とすることが好ましい。この範囲とすることで密度及び透磁率が向上するとともに、鉄損を小さくすることができる。 The weight ratio of the first powder to the second powder is preferably 1st powder: 2nd powder = 80:20 to 60:40. Within this range, the density and magnetic permeability can be improved, and the iron loss can be reduced.
第1の粉末の周囲は、絶縁被膜により覆われている。絶縁被膜は、絶縁性を有する樹脂から成る。この樹脂の種類は、フッ素系の樹脂を含む。即ち、絶縁被膜は、フッ素系の樹脂を含み成る。絶縁被膜の厚さは、5nm〜500nmであることが好ましい。絶縁被膜の厚さが5nmよりも薄くなると、絶縁性能が悪化する。一方、絶縁被膜の厚さが500nmよりも厚くなると、密度が低下し磁気特性が悪化する。なお、本明細書において、絶縁被膜となる絶縁性を有する樹脂を絶縁被膜樹脂と呼ぶ場合がある。 The circumference of the first powder is covered with an insulating film. The insulating coating is made of an insulating resin. This type of resin includes fluorine-based resins. That is, the insulating film contains a fluorine-based resin. The thickness of the insulating coating is preferably 5 nm to 500 nm. If the thickness of the insulating film is thinner than 5 nm, the insulating performance deteriorates. On the other hand, when the thickness of the insulating film is thicker than 500 nm, the density is lowered and the magnetic characteristics are deteriorated. In addition, in this specification, a resin having an insulating property which becomes an insulating film may be referred to as an insulating film resin.
絶縁被膜となるフッ素系の樹脂の添加量は、磁性粉末に対して、0.1wt%以上1.0wt%以下の範囲が好ましい。フッ素系樹脂の添加量が0.1wt%未満になると、渦電流損失(Pe)の低減効果が低い。一方、フッ素系樹脂の添加量が1.0wt%を超えると、MCコアの密度が低下し、ヒステリシス損失(Ph)が増加する。 The amount of the fluorine-based resin added as the insulating film is preferably in the range of 0.1 wt% or more and 1.0 wt% or less with respect to the magnetic powder. When the amount of the fluorine-based resin added is less than 0.1 wt%, the effect of reducing the eddy current loss (Pe) is low. On the other hand, when the amount of the fluorine-based resin added exceeds 1.0 wt%, the density of the MC core decreases and the hysteresis loss (Ph) increases.
複合磁性材料を構成する樹脂は、磁性粉末と混合され、磁性粉末を保持する。樹脂としては、熱硬化性樹脂、紫外線硬化樹脂、又は熱可塑性樹脂を使用することができる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などが使用できる。紫外線硬化性樹脂としては、ウレタンアクリレート系、エポキシアクリレート系、アクリレート系、エポキシ系の樹脂を使用できる。熱可塑性樹脂としては、ポリイミドやフッ素樹脂などの耐熱性に優れた樹脂を使用することが好ましい。 The resin constituting the composite magnetic material is mixed with the magnetic powder and holds the magnetic powder. As the resin, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin can be used. As the thermosetting resin, phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used. As the ultraviolet curable resin, urethane acrylate-based, epoxy acrylate-based, acrylate-based, and epoxy-based resins can be used. As the thermoplastic resin, it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin.
また、樹脂は、磁性粉末に対して3〜10wt%含有されていることが好ましい。樹脂の含有量が3wt%より少ないと、磁性粉末の接合力が不足し、MCコアの機械的強度が低下する。また、樹脂の含有量が10wt%より多いと、磁性粉末を隙間なく保持することができなくなるなど、MCコアの密度が低下し、透磁率が低下する。 Further, the resin is preferably contained in an amount of 3 to 10 wt% with respect to the magnetic powder. If the content of the resin is less than 3 wt%, the bonding force of the magnetic powder is insufficient, and the mechanical strength of the MC core is lowered. On the other hand, if the resin content is more than 10 wt%, the magnetic powder cannot be held without gaps, the density of the MC core decreases, and the magnetic permeability decreases.
次に、この複合磁性材料を用いたMCコアの製造方法について説明する。本実施形態におけるMCコアの製造方法は、(1)被覆工程、(2)混合工程、(3)成型工程、(4)硬化工程を有する。 Next, a method for manufacturing an MC core using this composite magnetic material will be described. The method for producing an MC core in the present embodiment includes (1) coating step, (2) mixing step, (3) molding step, and (4) curing step.
(1)被覆工程
被覆工程は、第1の粉末をフッ素系樹脂から成る絶縁被膜で覆う工程である。被覆工程では、第1の粉末とフッ素系樹脂を混合し、乾燥させることで、第1の粉末の周囲にフッ素系樹脂を被覆させる。第1の粉末とフッ素系樹脂の混合は、所定の混合器を用いて自動又は手動で行うことができる。混合する時間は、適宜設定することができる。混合する時間は、例えば2分間である。また、乾燥温度や乾燥時間は、フッ素系樹脂で第1の粉末を被覆できるのであれば、適宜な温度及び時間を設定できるが、例えば、180度で120分間乾燥する。
(1) Coating Step The coating step is a step of covering the first powder with an insulating coating made of a fluororesin. In the coating step, the first powder and the fluorine-based resin are mixed and dried to coat the fluorine-based resin around the first powder. The mixing of the first powder and the fluororesin can be performed automatically or manually using a predetermined mixer. The mixing time can be set as appropriate. The mixing time is, for example, 2 minutes. The drying temperature and drying time can be set as appropriate as long as the first powder can be coated with the fluorine-based resin. For example, the drying is performed at 180 degrees for 120 minutes.
(2)混合工程
混合工程は、磁性粉末と樹脂を混合する工程である。混合工程では、まず、被覆工程を経た第1の粉末と、第2の粉末を混合することで、磁性粉末を得る。そして、この磁性粉末に、磁性粉末に対して3〜10wt%の樹脂を添加し、磁性粉末と樹脂を混合する。この混合工程を経ることで、磁性粉末と樹脂との混合物である複合磁性材料を得ることができる。
(2) Mixing step The mixing step is a step of mixing the magnetic powder and the resin. In the mixing step, first, the first powder that has undergone the coating step and the second powder are mixed to obtain a magnetic powder. Then, 3 to 10 wt% of the resin is added to the magnetic powder, and the magnetic powder and the resin are mixed. By going through this mixing step, a composite magnetic material which is a mixture of magnetic powder and resin can be obtained.
(3)成型工程
成型工程は、複合磁性材料を製造するコアの形状に合わせて成型する工程である。成型工程では、まず、製造するコアの形状に合わせた容器に複合磁性材料を充填する。その後、容器に充填された複合磁性材料を、押圧部材で加圧する。この押圧部材で加圧することで、容器の形状に複合磁性材料を押し広げるとともに、複合磁性材料に含まれていた空隙を減少させることでコアの密度が大きくなる。
(3) Molding process The molding process is a process of molding according to the shape of the core for producing the composite magnetic material. In the molding process, first, the composite magnetic material is filled in a container that matches the shape of the core to be manufactured. Then, the composite magnetic material filled in the container is pressed by the pressing member. By pressurizing with this pressing member, the composite magnetic material is spread in the shape of the container, and the voids contained in the composite magnetic material are reduced to increase the density of the core.
複合磁性材料を加圧する圧力は、数ton〜数十tonで磁性粉末を押し固めて成形する圧粉磁心とは異なり、数kg〜数十kgと低い圧力をかければ足りる。そのため、圧粉磁心は磁性粉末が変形するが、MCコアは、加圧しても磁性粉末は変形しない。なお、MCコアの成型においては、圧粉磁心の成型のように加圧することは、必須要件ではないため、複合磁性材料を押圧部材で加圧しなくてもよい。 The pressure for pressurizing the composite magnetic material is several tons to several tens of tons, which is different from the powder magnetic core formed by compacting the magnetic powder, and it is sufficient to apply a low pressure of several kg to several tens of kg. Therefore, the magnetic powder is deformed in the dust core, but the magnetic powder is not deformed in the MC core even when pressurized. In molding the MC core, it is not necessary to pressurize the composite magnetic material with the pressing member because it is not an essential requirement to pressurize as in the molding of the dust core.
(4)硬化工程
硬化工程は、複合磁性材料に含まれる樹脂を硬化させる工程である。樹脂の硬化は、樹脂の種類によって適宜の方法で硬化すればよい。例えば、樹脂が熱硬化性樹脂の場合には、熱を加えることで樹脂を硬化させる。
(4) Curing Step The curing step is a step of curing the resin contained in the composite magnetic material. The resin may be cured by an appropriate method depending on the type of resin. For example, when the resin is a thermosetting resin, the resin is cured by applying heat.
このように、所望の形状の容器に複合磁性材料を充填し、複合磁性材料に含まれる樹脂を硬化させることで、所望の形状となったMCコアが作製される。つまり、MCコアにおいては、混合工程において添加した樹脂は硬化するだけなので、当該樹脂の成分は、分解されない。一方、圧粉磁心では、絶縁被膜として添加した樹脂は、焼鈍工程を経るため熱分解され、残った無機成分などが粉末間のバインダとして機能する。また、圧粉磁心は、数ton〜数十tonで加圧成形することで、所望の形状にしており、樹脂を硬化させることでコアの形状を形成させるMCコアとは異なる。 In this way, a container having a desired shape is filled with the composite magnetic material, and the resin contained in the composite magnetic material is cured to produce an MC core having a desired shape. That is, in the MC core, since the resin added in the mixing step is only cured, the components of the resin are not decomposed. On the other hand, in the dust core, the resin added as the insulating film is thermally decomposed because it undergoes an annealing step, and the remaining inorganic components and the like function as a binder between the powders. Further, the dust core is formed into a desired shape by pressure molding at several tons to several tens of tons, which is different from the MC core in which the shape of the core is formed by curing the resin.
(実施例)
本発明の実施例を表1及び図1−図5を参照しつつ説明する。
(Example)
Examples of the present invention will be described with reference to Table 1 and FIGS. 1 to 5.
実施例1−5は、第1の粉末としては、平均粒子径が150μmのFe−6.5Si合金粉末を使用した。実施例1−5は、絶縁被膜としてフッ素系樹脂を使用し、第1の粉末の周囲を被覆する。実施例1−5は、このフッ素系の樹脂を第1の粉末に対してそれぞれ1.0wt%、0.75wt%、0.5wt%、0.25wt%、0.1wt%添加した。 In Examples 1-5, Fe-6.5Si alloy powder having an average particle diameter of 150 μm was used as the first powder. In Examples 1-5, a fluororesin is used as the insulating film to coat the periphery of the first powder. In Examples 1-5, 1.0 wt%, 0.75 wt%, 0.5 wt%, 0.25 wt%, and 0.1 wt% of this fluorine-based resin were added to the first powder, respectively.
一方、比較例1−3は、第1の粉末を被覆する絶縁被膜の有無及び種類を実施例と変え、その他は実施例と同様に作製した。具体的には、比較例1は、第1の粉末を絶縁被膜の樹脂で被覆せず、即ち、第1の粉末そのものである。比較例2は、被膜樹脂の種類として、アクリルを使用し、このアクリルを第1の粉末に対して1.0wt%添加した。比較例3は、被膜樹脂の種類としてシリコーンを使用し、このシリコーンを第1の粉末に対して1.0wt%添加した。 On the other hand, Comparative Examples 1-3 were prepared in the same manner as in Examples except that the presence / absence and type of the insulating coating for coating the first powder was changed from that in Example. Specifically, in Comparative Example 1, the first powder is not coated with the resin of the insulating coating, that is, the first powder itself. In Comparative Example 2, acrylic was used as the type of coating resin, and 1.0 wt% of this acrylic was added to the first powder. In Comparative Example 3, silicone was used as the type of coating resin, and 1.0 wt% of this silicone was added to the first powder.
次に、実施例1−5及び比較例1−3の第1の粉末から混合工程、成型工程、硬化工程を経て、MCコアを作製した。作製したMCコアは、外径35mm、内径20mm、高さ10mmのトロイダル形状とした。なお、本実施例では、第2の粉末は使用せず、複合磁性材料を作製した。 Next, an MC core was produced from the first powders of Examples 1-5 and Comparative Example 1-3 through a mixing step, a molding step, and a curing step. The produced MC core had a toroidal shape with an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 10 mm. In this example, a composite magnetic material was produced without using the second powder.
絶縁被膜樹脂で被覆した磁性粉末に、磁性粉末に対して6wt%のエポキシ樹脂を添加し、2分間ヘラを用いて手動で混合し、複合磁性材料を形成した。この複合磁性材料を容器に充填し、加圧は行わなかった。そして、容器ごと複合磁性材料を大気中にて85℃で2時間乾燥させ、その後120℃で1時間乾燥させ、さらに150℃で4時間乾燥することで樹脂を硬化した。このようにして、MCコアを作製した。そして、作製したMCコアに、巻線を巻回し、リアクトルを作製した。 To the magnetic powder coated with the insulating coating resin, 6 wt% epoxy resin was added to the magnetic powder and manually mixed with a spatula for 2 minutes to form a composite magnetic material. The container was filled with this composite magnetic material and was not pressurized. Then, the composite magnetic material together with the container was dried in the air at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, and further dried at 150 ° C. for 4 hours to cure the resin. In this way, the MC core was produced. Then, a winding was wound around the produced MC core to produce a reactor.
以上のように作製した実施例1−5及び比較例1−3のリアクトルの透磁率、鉄損及びMCコアの密度を下記の条件の下で測定した。 The magnetic permeability, iron loss, and MC core density of the reactors of Examples 1-5 and Comparative Example 1-3 prepared as described above were measured under the following conditions.
MCコアの密度は、見かけ密度である。即ち、実施例1−5及び比較例1−3のMCコアの外径、内径、及び高さを測り、これらの値から各MCコアの体積(cm3)を、π×(外径2−内径2)×高さに基づき算出した。そして、各MCコアの質量を測定し、測定した質量を算出した体積で除してコアの密度を算出した。 The density of the MC core is the apparent density. That is, the outer diameter, inner diameter, and height of the MC cores of Examples 1-5 and Comparative Example 1-3 are measured, and the volume (cm 3 ) of each MC core is calculated from these values by π × (outer diameter 2- Calculated based on inner diameter 2 ) x height. Then, the mass of each MC core was measured, and the measured mass was divided by the calculated volume to calculate the core density.
透磁率及び鉄損の測定条件は、周波数100kHz、最大磁束密度Bm=30mTとした。透磁率は、鉄損Pcv測定時に最大磁束密度Bmを設定したときの振幅透磁率とした。鉄損については、MCコアにφ1.2mmの銅線で1次巻線40ターン、2次巻線3ターンの巻線を巻回し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8219)を用いて算出した。この算出は、鉄損の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損失係数、渦電流損失係数を算出することで行った。 The measurement conditions for magnetic permeability and iron loss were a frequency of 100 kHz and a maximum magnetic flux density of Bm = 30 mT. The magnetic permeability was taken as the amplitude magnetic permeability when the maximum magnetic flux density Bm was set at the time of iron loss Pcv measurement. For iron loss, a copper wire of φ1.2 mm is used to wind the primary winding 40 turns and the secondary winding 3 turns, and the BH analyzer (Iwadori Measurement Co., Ltd .: SY) is a magnetic measuring device. It was calculated using -8219). This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient by the least squares method using the following equations (1) to (3) for the frequency curve of iron loss.
Pcv =Kh×f+Ke×f2・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f2・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
Pcv = Kh x f + Ke x f 2 ... (1)
Ph = Kh x f ... (2)
Pe = Ke × f 2 ... (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss
(フッ素系樹脂の添加量による特性の比較)
表1は、実施例1−5及び比較例1−3の密度及び鉄損(鉄損Pcv、ヒステリシス損失Ph、渦電流損失Pe)を示す表である。図1は、絶縁被膜樹脂の添加量と密度の関係を示すグラフである。図2は、絶縁被膜樹脂の添加量と鉄損の関係を示すグラフである。図3は、絶縁被膜樹脂の添加量とヒステリシス損失の関係を示すグラフである。図4は、絶縁被膜樹脂の添加量と渦電流損失の関係を示すグラフである。 Table 1 is a table showing the densities and iron losses (iron loss Pcv, hysteresis loss Ph, eddy current loss Pe) of Examples 1-5 and Comparative Example 1-3. FIG. 1 is a graph showing the relationship between the amount of the insulating coating resin added and the density. FIG. 2 is a graph showing the relationship between the amount of the insulating coating resin added and the iron loss. FIG. 3 is a graph showing the relationship between the amount of the insulating coating resin added and the hysteresis loss. FIG. 4 is a graph showing the relationship between the amount of the insulating coating resin added and the eddy current loss.
表1、図4に示すように、フッ素系樹脂で第1の粉末を被覆した実施例1−5は、絶縁被膜によって第1の粉末を被覆していない比較例1よりも渦電流損失Peが低減している。即ち、フッ素系樹脂を0.1wt%以上添加することで、第1の粉末を被覆しない場合と比べて、渦電流損失Peを抑制することができる。これは、第1の粉末をフッ素系樹脂で覆ったことで、第1の粉末同士の接触を抑制することができたため、第1の粉末を絶縁被膜で覆わなかった比較例1よりも渦電流損失Peが低減したと考える。よって、フッ素系樹脂の添加量は、0.1wt%以上とすることで、渦電流損失Peが低減できる。 As shown in Tables 1 and 4, Examples 1-5 in which the first powder is coated with the fluorine-based resin have an eddy current loss Pe as compared with Comparative Example 1 in which the first powder is not coated with the insulating film. It is decreasing. That is, by adding 0.1 wt% or more of the fluorine-based resin, the eddy current loss Pe can be suppressed as compared with the case where the first powder is not coated. This is because the contact between the first powders could be suppressed by covering the first powder with a fluororesin, so that the eddy current was higher than that of Comparative Example 1 in which the first powder was not covered with the insulating film. It is considered that the loss Pe is reduced. Therefore, the eddy current loss Pe can be reduced by setting the addition amount of the fluorine-based resin to 0.1 wt% or more.
もっとも、図3に示すように、フッ素系樹脂の添加量を増加させると、ヒステリシス損失Phが増加する。これは、図1に示すように、フッ素系樹脂の添加量を増加させるとMCコアの密度が低下することに関連する。特に、フッ素系樹脂を1.0wt%添加した場合のヒステリシス損失Phは大きくなっており、1.0wt%よりも添加量を増加させると更にヒステリシス損失Phが増加することが推察できる。よって、フッ素系樹脂の添加量は1.0wt%以下であることが好ましい。以上より、フッ素系樹脂の添加量は0.1wt%〜1.0wt%の範囲であることが好ましい。 However, as shown in FIG. 3, when the amount of the fluororesin added is increased, the hysteresis loss Ph increases. This is related to the fact that the density of the MC core decreases as the amount of the fluororesin added increases, as shown in FIG. In particular, the hysteresis loss Ph is large when 1.0 wt% of the fluorine-based resin is added, and it can be inferred that the hysteresis loss Ph is further increased when the addition amount is increased above 1.0 wt%. Therefore, the amount of the fluorine-based resin added is preferably 1.0 wt% or less. From the above, the amount of the fluorine-based resin added is preferably in the range of 0.1 wt% to 1.0 wt%.
(絶縁被膜の樹脂の種類による特性の比較)
また、表1を参照すると、実施例1−5は、アクリル樹脂又はシリコーン樹脂で第1の粉末を被覆している比較例2、3と比べても、渦電流損失Peは低い。これは、フッ素系樹脂で磁性粉末を被覆することで、磁性粉末の電気抵抗値が高くなることに起因するものと推察する。つまり、磁性粉末の電気抵抗値が高くなったことで、渦電流が流れにくくなり、その結果、大きな渦電流の発生を抑制することができたからであると推察する。よって、アクリル樹脂、シリコーン樹脂で被覆した比較例2及び比較例3よりも、フッ素系樹脂で被覆した実施例1−5の方が、渦電流損失を抑制することができる。
(Comparison of characteristics depending on the type of resin of the insulating film)
Further, referring to Table 1, Example 1-5 has a lower eddy current loss Pe than Comparative Examples 2 and 3 in which the first powder is coated with an acrylic resin or a silicone resin. It is presumed that this is because the electrical resistance value of the magnetic powder is increased by coating the magnetic powder with the fluorine-based resin. That is, it is presumed that the increase in the electric resistance value of the magnetic powder makes it difficult for the eddy current to flow, and as a result, the generation of a large eddy current can be suppressed. Therefore, the eddy current loss can be suppressed more in Example 1-5 coated with the fluororesin than in Comparative Example 2 and Comparative Example 3 coated with the acrylic resin and the silicone resin.
以上に示すように、第1の粉末に添加量0.1wt%〜1.0wt%のフッ素系樹脂で被覆することで、渦電流損失を抑制できる。そして、この結果は、100kHzという高周波において用いた場合にも、同様に渦電流損失を抑制できることを示している。なお、高周波とは、100kHzのみを指すものではなく、20kHzを超えていれば高周波といえる。 As described above, the eddy current loss can be suppressed by coating the first powder with a fluorine-based resin having an addition amount of 0.1 wt% to 1.0 wt%. And this result shows that the eddy current loss can be similarly suppressed even when it is used at a high frequency of 100 kHz. The high frequency does not mean only 100 kHz, but can be said to be a high frequency if it exceeds 20 kHz.
(直流重畳特性の比較)
次に、フッ素系樹脂の添加量の違いによる透磁率の変化について検討する。図5は、各フッ素系樹脂の添加量における透磁率の変化率を示すグラフである。透磁率は、LCRメータ(アジレント・テクノロジー株式会社製:4284A)を使用して、100kHz、1.0Vにおける各磁界の強さのインダクタンスから算出した。そして、透磁率の変化率は、各実施例における直流を重畳させていない状態、即ち、磁界の強さが0H(A/m)の値(初透磁率)を基準にして、各磁界の強さにおける値を初透磁率で除すことで算出した。
(Comparison of DC superimposition characteristics)
Next, the change in magnetic permeability due to the difference in the amount of fluorine-based resin added will be examined. FIG. 5 is a graph showing the rate of change in magnetic permeability with respect to the amount of each fluororesin added. The magnetic permeability was calculated from the inductance of the strength of each magnetic field at 100 kHz and 1.0 V using an LCR meter (manufactured by Agilent Technologies, Inc .: 4284 A). The rate of change in magnetic permeability is based on the state in which direct current is not superimposed in each embodiment, that is, the value of the magnetic field strength of 0H (A / m) (initial magnetic permeability). It was calculated by dividing the value in the above by the initial magnetic permeability.
図5に示すように、実施例1及び3は、実施例5と比べて、磁界の強さHが大きくなるにつれて透磁率の変化率が小さい。特に、磁界の強さ20kH(A/m)の各実施例の値を参照すると、実施例5の変化率は約0.82であるのに対し、実施例1及び3の変化率は0.9以上で、実施例1及び3の変化率は極めて良好な値である。このことから、フッ素系樹脂の添加量は0.5wt%以上とすることで、透磁率の変化率が低減するといえる。よって、フッ素系樹脂の添加量を0.5wt%〜1.0wt%の範囲にすることで、渦電流損失を抑制するのみではなく、直流重畳特性をも向上させることができる。 As shown in FIG. 5, in Examples 1 and 3, the rate of change in magnetic permeability decreases as the magnetic field strength H increases, as compared with Example 5. In particular, referring to the values of each example of the magnetic field strength of 20 kHz (A / m), the rate of change of Example 5 is about 0.82, whereas the rate of change of Examples 1 and 3 is 0. When the value is 9 or more, the rate of change in Examples 1 and 3 is an extremely good value. From this, it can be said that the rate of change in magnetic permeability is reduced by setting the addition amount of the fluorine-based resin to 0.5 wt% or more. Therefore, by setting the addition amount of the fluorine-based resin in the range of 0.5 wt% to 1.0 wt%, it is possible not only to suppress the eddy current loss but also to improve the DC superimposition characteristic.
(他の実施形態)
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。上記のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
Although the embodiment according to the present invention has been described in the present specification, this embodiment is presented as an example and is not intended to limit the scope of the invention. The above-described embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The embodiments and modifications thereof are included in the scope and the gist of the invention as well as the invention described in the claims and the equivalent scope thereof.
Claims (5)
前記磁性粉末は、フッ素系の樹脂を含み構成される絶縁被膜で覆われていること、
を特徴とする複合磁性材料。 A composite magnetic material made by mixing magnetic powder and resin.
The magnetic powder is covered with an insulating film containing a fluorine-based resin.
A composite magnetic material characterized by.
第1の粉末と、
前記第1の粉末より平均粒子径が小さい第2の粉末と、
を有し、
前記第1の粉末は、前記絶縁被膜で覆われていること、
を特徴とする請求項1に記載の複合磁性材料。 The magnetic powder is
The first powder and
A second powder having an average particle size smaller than that of the first powder,
Have,
The first powder is covered with the insulating coating.
The composite magnetic material according to claim 1.
を特徴とする請求項1又は2に記載の複合磁性材料。 The amount of the insulating coating added is 0.1 wt% or more and 1.0 wt% or less with respect to the magnetic powder.
The composite magnetic material according to claim 1 or 2.
を特徴とする請求項4に記載のメタルコンポジットコア。
The resin is cured.
The metal composite core according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019057042A JP7490337B2 (en) | 2019-03-25 | 2019-03-25 | Composite magnetic material and metal composite core made of this composite magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019057042A JP7490337B2 (en) | 2019-03-25 | 2019-03-25 | Composite magnetic material and metal composite core made of this composite magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020161558A true JP2020161558A (en) | 2020-10-01 |
JP7490337B2 JP7490337B2 (en) | 2024-05-27 |
Family
ID=72643671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019057042A Active JP7490337B2 (en) | 2019-03-25 | 2019-03-25 | Composite magnetic material and metal composite core made of this composite magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7490337B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171947A (en) * | 2016-03-18 | 2017-09-28 | Ntn株式会社 | Mixed powder for powder magnetic core and manufacturing method therefor |
JP2017188680A (en) * | 2016-03-31 | 2017-10-12 | Ntn株式会社 | Magnetic material, magnetic core, and method for manufacturing the same |
JP2018125502A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2018125503A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2018125501A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2019041008A (en) * | 2017-08-25 | 2019-03-14 | Ntn株式会社 | Manufacturing method of dust core and mixed powder for dust core used therefor |
-
2019
- 2019-03-25 JP JP2019057042A patent/JP7490337B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171947A (en) * | 2016-03-18 | 2017-09-28 | Ntn株式会社 | Mixed powder for powder magnetic core and manufacturing method therefor |
JP2017188680A (en) * | 2016-03-31 | 2017-10-12 | Ntn株式会社 | Magnetic material, magnetic core, and method for manufacturing the same |
JP2018125502A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2018125503A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2018125501A (en) * | 2017-02-03 | 2018-08-09 | 株式会社タムラ製作所 | Composite magnetic powder material, metal composite core and method for manufacturing metal composite core |
JP2019041008A (en) * | 2017-08-25 | 2019-03-14 | Ntn株式会社 | Manufacturing method of dust core and mixed powder for dust core used therefor |
Also Published As
Publication number | Publication date |
---|---|
JP7490337B2 (en) | 2024-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6858158B2 (en) | Core, reactor, core manufacturing method and reactor manufacturing method | |
JP6393345B2 (en) | Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted | |
JP6545732B2 (en) | Composite magnetic powder material, metal composite core and method of manufacturing metal composite core | |
KR102069475B1 (en) | Green powder core, the manufacturing method of the green powder core, the electrical / electronic component provided with this powder core, and the electrical / electronic device in which the electrical / electronic component was mounted. | |
TW201738908A (en) | Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein | |
JP6545733B2 (en) | Composite magnetic powder material, metal composite core and method of manufacturing metal composite core | |
JP6615850B2 (en) | Composite magnetic material and core manufacturing method | |
JP6545734B2 (en) | Composite magnetic powder material, metal composite core and method of manufacturing metal composite core | |
JP7066586B2 (en) | Manufacturing method of composite magnetic material, metal composite core, reactor, and metal composite core | |
JP6840523B2 (en) | Reactor manufacturing method, core manufacturing method | |
JP7490337B2 (en) | Composite magnetic material and metal composite core made of this composite magnetic material | |
JP6502173B2 (en) | Reactor device and electric / electronic equipment | |
JP7490338B2 (en) | Composite magnetic material and metal composite core made of this composite magnetic material | |
JP7418194B2 (en) | Manufacturing method of powder magnetic core | |
JP2019073748A (en) | Method for producing magnetic material, method for producing dust core, method for manufacturing coil component, dust core, and coil component | |
JP7218337B2 (en) | METAL COMPOSITE CORE AND METHOD FOR MANUFACTURING METAL COMPOSITE CORE | |
JP6817802B2 (en) | Reactor manufacturing method | |
WO2019044698A1 (en) | Dust core, method for producing said dust core, electrical/electronic component provided with said dust core, and electrical/electronic device equipped with said electrical/electronic component | |
JP7138736B2 (en) | CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD | |
JP2024042394A (en) | composite magnetic material | |
JP6326185B1 (en) | Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted | |
WO2019198259A1 (en) | Pressed powder core, method of producing pressed powder core, electric and electronic component, and electric and electronic device | |
JP2021086990A (en) | Reactor | |
JPWO2020090405A1 (en) | A dust molding core, a method for manufacturing the dust molding core, an inductor provided with the dust molding core, and an electronic / electrical device on which the inductor is mounted. | |
JP2020021963A (en) | Metal composite core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20231128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240215 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7490337 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |