JP2020161557A - Gap control method and electrical characteristic measurement method - Google Patents

Gap control method and electrical characteristic measurement method Download PDF

Info

Publication number
JP2020161557A
JP2020161557A JP2019056967A JP2019056967A JP2020161557A JP 2020161557 A JP2020161557 A JP 2020161557A JP 2019056967 A JP2019056967 A JP 2019056967A JP 2019056967 A JP2019056967 A JP 2019056967A JP 2020161557 A JP2020161557 A JP 2020161557A
Authority
JP
Japan
Prior art keywords
gap
electrode
sample
probe
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019056967A
Other languages
Japanese (ja)
Other versions
JP7142293B2 (en
Inventor
守也 宮下
Moriya Miyashita
守也 宮下
貴弘 前田
Takahiro Maeda
貴弘 前田
弘 久保田
Hiroshi Kubota
弘 久保田
裕巳 鈴木
Hiromi Suzuki
裕巳 鈴木
剛 橋新
Takeshi Hashishin
剛 橋新
小林 一博
Kazuhiro Kobayashi
一博 小林
翔太郎 葛川
Shotaro Kuzukawa
翔太郎 葛川
浩輝 松山
Koki Matsuyama
浩輝 松山
祐希 熊谷
Yuki Kumagai
祐希 熊谷
古田 正昭
Masaaki Furuta
正昭 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
GlobalWafers Japan Co Ltd
Original Assignee
Kumamoto University NUC
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, GlobalWafers Japan Co Ltd filed Critical Kumamoto University NUC
Priority to JP2019056967A priority Critical patent/JP7142293B2/en
Publication of JP2020161557A publication Critical patent/JP2020161557A/en
Application granted granted Critical
Publication of JP7142293B2 publication Critical patent/JP7142293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To correctly measure a gap width between a probe electrode and a sample surface, thereby improving the measurement accuracy of the electrical characteristics of a sample.SOLUTION: A gap control method includes the steps of actually measuring a charging voltage ratio v (t)/V (t) of a voltage V (t) applied from a probe electrode to a sample by a pulsed photoconduction method and a charging voltage v (t) of the sample, obtaining an ideal curve of the charging voltage ratio v (t)/V (t) with respect to a gap width W obtained by considering the slope θ between the entire electrode and the sample surface, specifying the slope θ at which the actually measured value of the charging voltage ratio v (t)/V (t) and the ideal curve match, and obtaining a gap capacitance Cgap in consideration of the slope θ.SELECTED DRAWING: Figure 1

Description

本発明は、ギャップ制御方法及び電気特性測定方法に関し、半導体ウェーハの電気特性、例えば半導体ウェーハに形成された誘電体膜の静電容量、或いは誘電体膜と半導体の界面準位を非破壊で測定する際、プローブ電極と半導体ウェーハ間のギャップ(空間)を精密に制御するギャップ制御方法及び電気特性測定方法に関する。 The present invention relates to a gap control method and an electrical characteristic measurement method, and measures the electrical characteristics of a semiconductor wafer, for example, the capacitance of a dielectric film formed on a semiconductor wafer, or the interface state between a dielectric film and a semiconductor in a non-destructive manner. The present invention relates to a gap control method and an electrical characteristic measurement method for precisely controlling the gap (space) between the probe electrode and the semiconductor wafer.

半導体ウェーハの試料に電極を近づけて、試料の静電容量を測定する装置においては、試料の静電容量とプローブ電極−試料間のギャップ(空間)で生じる静電容量とが直列に配置される。従って、試料の静電容量を正しく計測する為には、ギャップの静電容量を正確に制御、把握することが求められる。 In a device that measures the capacitance of a sample by bringing an electrode close to the sample of a semiconductor wafer, the capacitance of the sample and the capacitance generated in the gap (space) between the probe electrode and the sample are arranged in series. .. Therefore, in order to correctly measure the capacitance of the sample, it is necessary to accurately control and grasp the capacitance of the gap.

ギャップの静電容量Cgapは、式1で表される。ギャップは空気で満たされているので誘電率ε、電極面積Sは既知であるため、ギャップの静電容量を正しく求めるには、電極と試料間のギャップ幅Wgapを正確に計測することが求められる。 The capacitance C gap of the gap is represented by Equation 1. Since the gap is filled with air, the dielectric constant ε 0 and the electrode area S are known. Therefore, in order to correctly determine the capacitance of the gap, it is necessary to accurately measure the gap width W gap between the electrode and the sample. Desired.

Figure 2020161557
Figure 2020161557

特許文献1においては、試料(半導体ウェーハ)のC−V特性などの電気特性を非破壊で測定する装置が開示されている。電気特性を測定する為には、測定用電極を試料に近づけて、測定用電極と試料表面間のギャップ幅を正しく計測する必要があり、その為の手段として、光のトンネリング現象を利用した測定方法を採用している。 Patent Document 1 discloses an apparatus for nondestructively measuring electrical characteristics such as CV characteristics of a sample (semiconductor wafer). In order to measure the electrical characteristics, it is necessary to bring the measurement electrode close to the sample and measure the gap width between the measurement electrode and the sample surface correctly. As a means for that, measurement using the tunneling phenomenon of light is used. The method is adopted.

この光のトンネリング現象について説明すると、レーザ光を反射部によって幾何光学的な全反射条件で反射させる場合に、その反射面(電極保持面)と試料表面との間のギャップがレーザ光の波長と同程度以下の大きさになると、レーザ光の一部が反射面から試料の内部に浸出する。これがトンネリング現象といわれ、試料側に浸出す透過光の強度は、ギャップの幅に依存する。 Explaining this light tunneling phenomenon, when laser light is reflected by a reflecting portion under geometrical optics total reflection conditions, the gap between the reflecting surface (electrode holding surface) and the sample surface is the wavelength of the laser light. When the size is less than the same, a part of the laser beam seeps out from the reflecting surface into the sample. This is called the tunneling phenomenon, and the intensity of the transmitted light that seeps into the sample side depends on the width of the gap.

同様に、反射部の反射面で反射されるレーザ光の強度もギャップの幅に依存する。この反射光の強度とギャップとの関係は、マックスウェルの方程式を基礎とする計算で予め求めておくことができる。この関係を利用すれば、反射光の強度を測定することにより、ギャップの幅を求めることができる。 Similarly, the intensity of the laser beam reflected by the reflecting surface of the reflecting portion also depends on the width of the gap. The relationship between the intensity of the reflected light and the gap can be obtained in advance by a calculation based on Maxwell's equation. By utilizing this relationship, the width of the gap can be obtained by measuring the intensity of the reflected light.

また、非特許文献1には、パルス光伝導法(pulsephotoconductivity method : PPCM)により非破壊で界面準位密度を求める方法が開示され、そこで電極と試料との間のギャップ幅を測定値から求める方法が述べられている。 Further, Non-Patent Document 1 discloses a method for obtaining the interface state density in a non-destructive manner by a pulse photoconductivity method (PPCM), and there is a method for obtaining a gap width between an electrode and a sample from a measured value. Is stated.

非特許文献1に開示されるパルス光伝導法を実施する測定装置の等価回路を図14に示す。図14の等価回路では、シリコンウェーハの試料(酸化膜抵抗Roxと酸化膜容量Cox)12の上面(酸化膜側)に対し所定のギャップ(容量Cgap)を空けてプローブ電極(図示せず)が設置され、このプローブ電極からパルス電圧印加部11より試料12に対し矩形波状のパルス電圧が印加される。
尚、前記プローブ電極内には、光ファイバ(図示せず)が通され、前記パルス電圧の印加と同時に、試料12に対し紫外線(UV)のパルス光を照射できるように構成されている。
FIG. 14 shows an equivalent circuit of a measuring device that implements the pulsed photoconduction method disclosed in Non-Patent Document 1. In the equivalent circuit of FIG. 14, a probe electrode (shown) is provided with a predetermined gap (capacity C gap ) with respect to the upper surface (oxide film side) of the silicon wafer sample (oxide resistance R ox and oxide film capacity C ox ). Is installed, and a rectangular wavy pulse voltage is applied to the sample 12 from the pulse voltage application unit 11 from the probe electrode.
An optical fiber (not shown) is passed through the probe electrode so that the sample 12 can be irradiated with ultraviolet (UV) pulsed light at the same time as the pulse voltage is applied.

また、試料12の下面側(シリコン基板側)には、試料中のフォトキャリアの移動に伴う過渡的な信号応答を拾うための同軸ケーブル(寄生容量C)13が設けられ、同軸ケーブルの他端の測定部15はプリアンプ(内部抵抗Rin)14を介してオシロスコープ(図示せず)に接続されている。 Further, on the lower surface side (silicon substrate side) of the sample 12, a coaxial cable (parasitic capacitance C f ) 13 for picking up a transient signal response accompanying the movement of the photocarrier in the sample is provided, and in addition to the coaxial cable. The measuring unit 15 at the end is connected to an oscilloscope (not shown) via a preamplifier (internal resistance R in ) 14.

また、前記寄生容量Cと並列に充電抵抗Rが接続され、それにより試料12を充電可能となされている。
また、測定部15には、負荷抵抗Rが接続されている。測定時においては、前記充電抵抗Rを測定回路から除くと同時に負荷抵抗Rに切り替えることで、試料12の内部電界を緩和し、測定可能な状態を作るように構成されている。
Further, a charging resistor R c is connected in parallel with the parasitic capacitance C f , whereby the sample 12 can be charged.
Further, a load resistor RL is connected to the measuring unit 15. At the time of measurement, the internal electric field of the sample 12 is relaxed and a measurable state is created by removing the charge resistance R c from the measurement circuit and switching to the load resistance RL at the same time.

印加電圧は、プローブ電極と試料12の間のギャップ(容量Cgap)および酸化膜(酸化膜抵抗Roxと酸化膜容量Cox)、ケーブル寄生容量Cに分配される。ギャップ幅に応じてギャップ部での印加電圧消費量が変わる為、酸化膜の電界強度が変化する。出力信号は、酸化膜の電界強度に依存する為、ギャップ幅を一定にすることが必要である。 The applied voltage is distributed to the gap (capacity C gap ) between the probe electrode and the sample 12, the oxide film (oxide resistance R ox and oxide film capacitance C ox ), and the cable parasitic capacitance C f . Since the applied voltage consumption in the gap portion changes according to the gap width, the electric field strength of the oxide film changes. Since the output signal depends on the electric field strength of the oxide film, it is necessary to keep the gap width constant.

測定は、測定回路の回路方程式のパラメータを確定させるため、シリコン基板を強反転状態にし、酸化膜容量を固定値として取り扱う。
このため、測定シーケンスは、まず試料12の酸化膜を充電させ、その後に紫外線のパルス光を照射し、その時の過渡的な信号応答を観測するという流れになる。
In the measurement, in order to determine the parameters of the circuit equation of the measurement circuit, the silicon substrate is put into a strongly inverted state, and the oxide film capacity is treated as a fixed value.
Therefore, the measurement sequence is such that the oxide film of the sample 12 is first charged, then the pulsed light of ultraviolet rays is irradiated, and the transient signal response at that time is observed.

図15のグラフに充電電圧v(t)と印加電圧V(t)、光信号ΔV(t)を示す。矩形波パルス電圧を試料に印加して酸化膜容量を充電完了した後、試料に紫外線のパルス光を照射し過渡的な信号変化を観測する。その際の印加電圧V(t)と充電電圧v(t)の比は、図14の等価回路より次式2となる。 The graph of FIG. 15 shows the charging voltage v (t), the applied voltage V (t), and the optical signal ΔV (t d ). After the rectangular wave pulse voltage is applied to the sample to complete charging of the oxide film capacity, the sample is irradiated with ultraviolet pulsed light and transient signal changes are observed. The ratio of the applied voltage V (t) to the charging voltage v (t) at that time is given by the following equation 2 from the equivalent circuit of FIG.

Figure 2020161557
Figure 2020161557

gapはギャップ容量、Coxideは酸化膜容量、Cは測定回路内ケーブルの浮遊容量である。この式中で、CoxideおよびCは既知の定数である。
ギャップ幅Wgapを変数とし、それに対応する充電圧比v(t)/V(t)の理論曲線を予め作成し、この理論曲線と実測充電圧比v(t)/V(t)を比較することでギャップ幅を得ることができる。
C gap is the gap capacitance, C oxid is the oxide film capacitance, and C f is the stray capacitance of the cable in the measurement circuit. In this equation, Oxide and C f are known constants.
Using the gap width W gap as a variable, create a theoretical curve of the charging pressure ratio v (t) / V (t) corresponding to it in advance, and compare this theoretical curve with the measured charging pressure ratio v (t) / V (t). The gap width can be obtained with.

非特許文献1に開示される測定方法では、上記のように求めたギャップ幅に基づき酸化膜への電界強度を一定とし、光信号ΔV(t)から励起キャリア密度を算出し、キャリア密度の電圧依存グラフから印加電圧V(t)=0の時のキャリア密度を外挿で求めることで、界面準位密度が算出される。 In the measuring method disclosed in Non-Patent Document 1, the electric field strength to the oxide film is made constant based on the gap width obtained as described above, the excitation carrier density is calculated from the optical signal ΔV (t d ), and the carrier density is calculated. The interface state density is calculated by extrapolating the carrier density when the applied voltage V (t) = 0 from the voltage dependence graph.

特許第2802825号公報Japanese Patent No. 2802825

Masaaki Furuta, Kojiro Shimizu, Takahiro Maeta, Moriya Miyashita,Koji Izunome, and Hiroshi Kubota: Japanese Journal of Applied Physics, Vol.57,031301 (2018)Masaaki Furuta, Kojiro Shimizu, Takahiro Maeta, Moriya Miyashita, Koji Izunome, and Hiroshi Kubota: Japanese Journal of Applied Physics, Vol.57,031301 (2018)

しかしながら、非特許文献1に開示される電極と試料間のギャップ制御方法においては、試料のウェーハや試料ホルダーのうねり、電極の傾きなどにより、電極が試料表面に対して傾いている場合に、正確なギャップの静電容量が得られなくなるという課題があった。
精密な測定の為には、このギャップと試料の傾きを極小にすること、或いは傾きを測定の際の演算において補正し、ギャップ幅を正しく計測することが求められる。特にパルス光伝導法においては、正確な界面準位密度を求める為に、ギャップの精密な制御が求められる。
However, the gap control method between the electrode and the sample disclosed in Non-Patent Document 1 is accurate when the electrode is tilted with respect to the sample surface due to the waviness of the sample wafer or sample holder, the tilt of the electrode, or the like. There is a problem that the capacitance of a large gap cannot be obtained.
For precise measurement, it is required to minimize the inclination of the gap and the sample, or to correct the inclination in the calculation at the time of measurement and measure the gap width correctly. Especially in the pulsed photoconduction method, precise control of the gap is required in order to obtain an accurate interface state density.

本発明は、前記したような事情の下になされたものであり、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する電気特性測定において、前記プローブ電極と試料表面間のギャップ幅を正しく計測し、それにより試料の電気特性の測定精度を向上することのできるギャップ制御方法及び電気特性測定方法を提供することを目的とする。 The present invention has been made under the above-mentioned circumstances, and in the measurement of electrical characteristics in which probe electrodes are arranged with a predetermined gap width in a semiconductor sample on which a dielectric film is formed, the probe electrodes are used. It is an object of the present invention to provide a gap control method and an electrical characteristic measurement method capable of accurately measuring the gap width between the sample and the sample surface and thereby improving the measurement accuracy of the electrical characteristics of the sample.

前記課題を解決するためになされた、本発明に係るギャップ制御方法は、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程と、パルス光伝導法による前記プローブ電極から前記試料への印加電圧V(t)と、前記試料の充電電圧v(t)と、の充電電圧比v(t)/V(t)を実測する工程と、電極全体と試料表面間の傾きθを考慮したギャップ幅Wに対する充電電圧比v(t)/V(t)の理想曲線を求める工程と、前記充電電圧比v(t)/V(t)の実測値と理想曲線とが一致する傾きθを特定する工程と、前記傾きθを考慮したギャップ容量Cgapを求める工程と、を備え、電極の直径をΦ、電極先端面を径方向にk個(kは2以上の整数)に等分割し、電極全表面積に占める領域の割合をαとしたとき、電極全体と試料表面間の傾きθを考慮したギャップ幅Wは、下記式により求められ、

Figure 2020161557
凹凸と傾きを考慮しないギャップ幅をWgapとし、空気の誘電率をεとし、φ/kの領域を更にn個に分割して最も突起が大きいところからの変位をWcnとし、n個に分割された各領域の面積をS〜Sとすると、前記傾きθを考慮したギャップ容量Cgapは、下記式により求められることに特徴を有する。
Figure 2020161557
The gap control method according to the present invention, which has been made to solve the above problems, includes a step of arranging probe electrodes with a predetermined gap width in a semiconductor sample on which a dielectric film is formed, and a pulsed photoconduction method. The step of actually measuring the charging voltage ratio v (t) / V (t) of the voltage V (t) applied from the probe electrode to the sample and the charging voltage v (t) of the sample, and the entire electrode. The step of obtaining the ideal curve of the charging voltage ratio v (t) / V (t) with respect to the gap width W in consideration of the inclination θ between the sample surfaces, and the measured value of the charging voltage ratio v (t) / V (t). It includes a step of specifying a slope θ that matches the ideal curve and a step of obtaining a gap capacitance C gap in consideration of the slope θ, and the electrode diameter is Φ and the electrode tip surface is k pieces in the radial direction (k is). When the ratio of the region to the total surface area of the electrode is α k , the gap width W k considering the inclination θ between the entire electrode and the sample surface can be calculated by the following formula.
Figure 2020161557
The gap width that does not consider unevenness and inclination is W gap , the permittivity of air is ε 0 , the region of φ / k is further divided into n, and the displacement from the largest protrusion is W cn , n. the area of each divided region is When S 1 to S n, the gap capacitance C gap considering the inclination θ is characterized in that obtained by the following equation.
Figure 2020161557

尚、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程において、管状の絶縁性の合成樹脂材を前記プローブ電極の先端部に組込み、前記絶縁性の合成樹脂材の管先端と電極先端とのギャップを予め調整する工程と、前記プローブ電極を上下方向に揺動可能に保持し、前記絶縁性の合成樹脂材の管先端を試料表面に当接させてギャップ調整する工程と、を備えることが望ましい。 In the step of arranging the probe electrodes with a predetermined gap width in the semiconductor sample on which the dielectric film is formed, a tubular insulating synthetic resin material is incorporated into the tip of the probe electrodes to provide the insulating properties. The step of adjusting the gap between the tube tip of the synthetic resin material and the electrode tip in advance, and holding the probe electrode swingably in the vertical direction, the tube tip of the insulating synthetic resin material comes into contact with the sample surface. It is desirable to provide a step of adjusting the gap.

或いは、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程において、独立する2つの軸を中心に回転するジンバル機構にプローブ電極を取り付けることで傾き調整し、且つ、静電容量変位計を前記プローブ電極に隣設して、ギャップ幅の測定を行うようにしてもよい。 Alternatively, in the step of arranging the probe electrodes with a predetermined gap width for the semiconductor sample on which the dielectric film is formed, the inclination is adjusted by attaching the probe electrodes to the gimbal mechanism that rotates around two independent axes. However, a capacitance displacement meter may be installed next to the probe electrode to measure the gap width.

このような方法によれば、パルス光伝導法により充電電圧比v(t)/V(t)を実測するとともに、電極の傾きを考慮したギャップ幅に対する充電電圧比v(t)/V(t)の理想曲線を求め、電極の傾きθを特定する。これにより電極全体と試料表面間の傾きθを考慮したギャップ容量Cgapを求めることができ、それに基づき試料の電気特性を高精度に測定することができる。 According to such a method, the charging voltage ratio v (t) / V (t) is actually measured by the pulsed photoconduction method, and the charging voltage ratio v (t) / V (t) with respect to the gap width considering the inclination of the electrode is taken into consideration. ) Is obtained, and the inclination θ of the electrode is specified. As a result, the gap capacitance C gap can be obtained in consideration of the inclination θ between the entire electrode and the sample surface, and the electrical characteristics of the sample can be measured with high accuracy based on the gap capacitance C gap .

また、前記課題を解決するためになされた、本発明に係る電気特性測定方法は、前記ギャップ制御方法によりギャップ容量Cgapを求め、パルス光伝導法により電気特性を測定することに特徴を有する。 Further, the method for measuring electrical characteristics according to the present invention, which has been made to solve the above problems, is characterized in that the gap capacitance C gap is obtained by the gap control method and the electrical characteristics are measured by the pulsed photoconduction method.

本発明によれば、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する電気特性測定において、前記プローブ電極と試料表面間のギャップ幅を正しく計測し、それにより試料の電気特性の測定精度を向上することのできるギャップ制御方法及び電気特性測定方法を提供することができる。 According to the present invention, in the electrical property measurement in which a probe electrode is arranged with a predetermined gap width in a semiconductor sample on which a dielectric film is formed, the gap width between the probe electrode and the sample surface is correctly measured. Thereby, it is possible to provide a gap control method and an electrical characteristic measurement method capable of improving the measurement accuracy of the electrical characteristics of the sample.

図1は、本発明の充電電圧比法における傾きの補正方法を説明するための電極先端の平面図である。FIG. 1 is a plan view of an electrode tip for explaining a method of correcting an inclination in the charge voltage ratio method of the present invention. 図2は、本発明の充電電圧比法における傾きの補正方法を説明するための電極先端の断面図である。FIG. 2 is a cross-sectional view of the tip of the electrode for explaining the method of correcting the inclination in the charge voltage ratio method of the present invention. 図3は、本発明の充電電圧比法における傾きの補正方法を説明するための電極先端の他の断面図である。FIG. 3 is another cross-sectional view of the tip of the electrode for explaining the method of correcting the inclination in the charge voltage ratio method of the present invention. 図4は、電極先端に傾きがある場合の断面図である。FIG. 4 is a cross-sectional view when the tip of the electrode is tilted. 図5は、プローブ電極先端にPTFE管を設けた構造を示す断面図である。FIG. 5 is a cross-sectional view showing a structure in which a PTFE tube is provided at the tip of the probe electrode. 図6は、図5のプローブ電極を複数並べた構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration in which a plurality of probe electrodes of FIG. 5 are arranged side by side. 図7は、ジンバル光学マウントにプローブ電極を取り付けた構成を示す斜視図である。FIG. 7 is a perspective view showing a configuration in which a probe electrode is attached to a gimbal optical mount. 図8は、本発明の実施例1の結果を示すグラフである。FIG. 8 is a graph showing the results of Example 1 of the present invention. 図9は、本発明の実施例1の結果を示す他のグラフである。FIG. 9 is another graph showing the results of Example 1 of the present invention. 図10は、本発明の実施例2の装置構成を示す正面図である。FIG. 10 is a front view showing the apparatus configuration of the second embodiment of the present invention. 図11は、本発明の実施例2の結果を示すグラフである。FIG. 11 is a graph showing the results of Example 2 of the present invention. 図12は、本発明の実施例3の装置構成を説明するための側面図である。FIG. 12 is a side view for explaining the apparatus configuration of the third embodiment of the present invention. 図13は、本発明の実施例3の結果を示すグラフである。FIG. 13 is a graph showing the results of Example 3 of the present invention. 図14は、従来のパルス光伝導法を実施する測定装置の等価回路である。FIG. 14 is an equivalent circuit of a measuring device that implements a conventional pulsed photoconduction method. 図15は、図14の等価回路で測定される充電波形と光信号を示すグラフである。FIG. 15 is a graph showing a charging waveform and an optical signal measured by the equivalent circuit of FIG.

以下、本発明に係るギャップ制御方法の実施の形態について図面を用いて説明する。
本実施形態に係るギャップ制御方法は、誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する電気特性測定において、ギャップ容量の誤差要因となる電極表面の凹凸、及び電極表面と試料表面間との傾きを補正する方法である。
Hereinafter, embodiments of the gap control method according to the present invention will be described with reference to the drawings.
The gap control method according to the present embodiment is an unevenness of the electrode surface that causes an error in the gap capacitance in the measurement of electrical characteristics in which the probe electrodes are arranged with a predetermined gap width in the semiconductor sample on which the dielectric film is formed. , And a method of correcting the inclination between the electrode surface and the sample surface.

図1は、本発明のギャップ制御方法を適用する測定用電極(以下、単に電極とも称する)において、電極をその径方向に沿って等間隔に分割した場合の複数の領域を示す電極先端の平面図である。
図1において、電極1の直径(φとする)が数mmであるのに対し、電極表面の凹凸の周期は数μmであるので、電極の大きさに比べれば電極表面の凹凸の周期は非常に小さい。従って、図1のように、電極径に沿ってk等分した領域の任意の一つの領域を触針式の粗さ計測器で計測することで、電極全領域の粗さを知ることができ、図1の各領域1、2、・・・kの電極表面の凹凸は、各領域間で等しいものと近似される。
FIG. 1 is a plane of the electrode tip showing a plurality of regions of a measuring electrode (hereinafter, also simply referred to as an electrode) to which the gap control method of the present invention is applied, when the electrode is divided at equal intervals along the radial direction thereof. It is a figure.
In FIG. 1, while the diameter (assumed as φ) of the electrode 1 is several mm, the period of the unevenness on the electrode surface is several μm, so that the period of the unevenness on the electrode surface is very large compared to the size of the electrode. Is small. Therefore, as shown in FIG. 1, the roughness of the entire electrode region can be known by measuring any one region of the region divided into k equal parts along the electrode diameter with a stylus type roughness measuring instrument. , The unevenness of the electrode surface of each of the regions 1, 2, ... K in FIG. 1 is approximated to be equal between the regions.

粗さ測定の結果から、図2の電極先端の断面図に示すように、φ/kの領域内で最も突起している点を基準とし、φ/kの領域を更にn個に分割して最も突起が大きいところからの変位をWc2、Wc3、・・・Wcnとし、n個に分割された各領域の面積をS、S、S、・・・Sとする。
電極が試料表面に対して図3のように平行に設置されている場合、φ/kの領域の電極と試料間のギャップ容量Cは、静電容量計で計測されたギャップ距離Wgapから、式3で表すことができる。
From the result of the roughness measurement, as shown in the cross-sectional view of the electrode tip in FIG. 2, the φ / k region is further divided into n pieces with reference to the most protruding point in the φ / k region. the displacement from the most where the projection is large W c2, W c3, and · · · W cn, the area of each region divided into n S 1, S 2, S 3 , and · · · S n.
If the electrode is installed parallel to, as shown in FIG. 3 with respect to the sample surface, the gap capacitance C k between the electrodes and the sample in the region of phi / k from the gap distance W gap measured by the capacitance meter , Can be expressed by Equation 3.

Figure 2020161557
Figure 2020161557

また、電極全体と試料表面間のギャップ容量Cgapは式4で表わされる。α、α、α、・・・αは、電極全表面積に占める領域1、2、3、・・・kの面積の割合である。 The gap capacitance C gap between the entire electrode and the sample surface is represented by Equation 4. α 1 , α 2 , α 3 , ... α k is the ratio of the area of the regions 1, 2, 3, ... k to the total surface area of the electrode.

Figure 2020161557
Figure 2020161557

また、電極1表面と試料12の表面間で図4に示すように傾きθがある場合は、電極の各領域2、3、・・・kにおける電極1と試料12表面間の距離W、W、・・・、Wは式5で表され、電極1全体と試料12表面間のギャップ容量Cgapは式6で表わされる。 Further, when there is an inclination θ between the surface of the electrode 1 and the surface of the sample 12 as shown in FIG. 4, the distance W 2 between the electrode 1 and the surface of the sample 12 in each region 2, 3, ... K of the electrode, W 3 , ..., W k are represented by the formula 5, and the gap capacitance C gap between the entire electrode 1 and the surface of the sample 12 is represented by the formula 6.

Figure 2020161557
Figure 2020161557

Figure 2020161557
Figure 2020161557

即ち、傾きθを求めることができれば、式6によりプローブ電極1全体と試料12表面間の傾きθを考慮したギャップ容量Cgapを求めることができ、それに基づき試料の電気特性を高精度に測定することが可能となる。 That is, if the inclination θ can be obtained, the gap capacitance C gap considering the inclination θ between the entire probe electrode 1 and the surface of the sample 12 can be obtained by Equation 6, and the electrical characteristics of the sample are measured with high accuracy based on the gap capacitance C gap. It becomes possible.

本発明に係るギャップ制御方法においては、プローブ電極1全体と試料表面間の傾きθは、次のようにして求める。
(1)矩形波パルス電圧を試料に印加して酸化膜容量を充電完了した後、試料に紫外線のパルス光を照射し過渡的な信号変化を観測する。その際の充電電圧v(t)と印加電圧V(t)とを測定し、充電電圧比v(t)/V(t)の実測プロットを取得する。
In the gap control method according to the present invention, the inclination θ between the entire probe electrode 1 and the sample surface is obtained as follows.
(1) After the rectangular wave pulse voltage is applied to the sample to complete charging the oxide film capacity, the sample is irradiated with an ultraviolet pulsed light and a transient signal change is observed. The charging voltage v (t) and the applied voltage V (t) at that time are measured, and an actual measurement plot of the charging voltage ratio v (t) / V (t) is obtained.

(2)充電電圧比を算出するマクロ(式(2)に基づきCgap、Coxide、C値を設定すると各ギャップ幅におけるv(t)/V(t)値が算出されて理論曲線を表示するプログラム)を用い、ギャップ幅に対するv(t)/V(t)の理論曲線を求める。
この理論曲線を求めるにあたり、Cgapは、式(5)、(6)に示したように傾きθを含むため、Cgapを求めるためのθ値を適当に振り、実測プロットに重なる曲線を求めることにより傾き角度θを特定することができる。
(2) Macro for calculating the charging voltage ratio (When the C gap , C box , and C f values are set based on the equation (2), the v (t) / V (t) values at each gap width are calculated to obtain a theoretical curve. Using the program to be displayed), the theoretical curve of v (t) / V (t) with respect to the gap width is obtained.
In obtaining this theoretical curve, since C gap includes the slope θ as shown in equations (5) and (6), the θ value for obtaining C gap is appropriately assigned to obtain a curve that overlaps the actual measurement plot. Therefore, the inclination angle θ can be specified.

また、本実施形態においては、プローブ電極1と試料12間の傾きを最小とするために、絶縁性の合成樹脂材、例えばPTFE(polytetrafluoroethylene)管を用いたプローブ電極構造を採用している。
プローブ電極1の材質は金属である為、電極1の試料ウェーハ12への接触は、金属汚染の懸念から避けなければならない。試料12に対する電極1からの金属汚染防止と物理的ストレス軽減とのため、本実施形態においては、図5に示すようなプローブ電極構造を採用している。
Further, in the present embodiment, in order to minimize the inclination between the probe electrode 1 and the sample 12, a probe electrode structure using an insulating synthetic resin material, for example, a PTFE (polytetrafluoroethylene) tube is adopted.
Since the material of the probe electrode 1 is metal, contact of the electrode 1 with the sample wafer 12 must be avoided due to concerns about metal contamination. In order to prevent metal contamination from the electrode 1 and reduce physical stress on the sample 12, the probe electrode structure as shown in FIG. 5 is adopted in this embodiment.

図5に示すようにPTFE管4(管状のPTFE材)をプローブ電極1の先端部に履かせるように組込んでいる。PTFE管4先端とプローブ電極1先端のギャップをあらかじめ調整しておき、PTFE管4先端が試料12の表面に軽く接触することで、調整したギャップの状態で測定を行う。PTFE管4を組込んだプローブ電極1が試料表面に接触するため、その凹凸に応じて鉛直方向に自動で調整される必要がある。そのため、図示するように、プローブ電極1が取り付けられたメタルガイド6に対してスプリング7により上下方向に揺動可能な構造となっている。 As shown in FIG. 5, a PTFE tube 4 (tubular PTFE material) is incorporated so as to be worn on the tip of the probe electrode 1. The gap between the tip of the PTFE tube 4 and the tip of the probe electrode 1 is adjusted in advance, and the tip of the PTFE tube 4 comes into light contact with the surface of the sample 12 to perform measurement in the adjusted gap state. Since the probe electrode 1 incorporating the PTFE tube 4 comes into contact with the sample surface, it needs to be automatically adjusted in the vertical direction according to the unevenness thereof. Therefore, as shown in the figure, the structure is such that the metal guide 6 to which the probe electrode 1 is attached can be swung in the vertical direction by the spring 7.

この機構により、図6に示すように試料12の凹凸に追従してギャップ機構を一定にすることができる。尚、絶縁性の合成樹脂材としてPTFE材を選択した理由は、絶縁性の高さ、耐熱性の高さ、加工の容易性、等が挙げられる。 By this mechanism, as shown in FIG. 6, the gap mechanism can be made constant by following the unevenness of the sample 12. The reasons for selecting the PTFE material as the insulating synthetic resin material include high insulation, high heat resistance, and ease of processing.

また、本発明にあっては、ジンバル光学マウントを用いたギャップ幅の調整機構(ジンバル機構と称する)を採用してもよい。この機構により、プローブ電極1を試料面に対し平行となるように調整することができる。
即ち、図7に示すようにジンバル機構21にプローブ電極1を取り付けることで傾き調整機構としている。また、この場合、静電容量変位計9をプローブ電極1の隣に取り付けることで、プローブ電極1と試料12面とのギャップ幅の測定を行うことが望ましい。
Further, in the present invention, a gap width adjusting mechanism (referred to as a gimbal mechanism) using a gimbal optical mount may be adopted. By this mechanism, the probe electrode 1 can be adjusted so as to be parallel to the sample surface.
That is, as shown in FIG. 7, the probe electrode 1 is attached to the gimbal mechanism 21 to form an inclination adjusting mechanism. Further, in this case, it is desirable to measure the gap width between the probe electrode 1 and the sample 12 surface by attaching the capacitance displacement meter 9 next to the probe electrode 1.

以上のように本発明に係る実施の形態によれば、パルス光伝導法により充電電圧比v(t)/V(t)を実測するとともに、電極の傾きを考慮したギャップ幅に対する充電電圧比v(t)/V(t)の理想曲線を求め、電極の傾きθを特定した。これにより電極全体と試料表面間の傾きθを考慮したギャップ容量Cgapを求めることができ、それに基づき試料の電気特性を高精度に測定することができる。 As described above, according to the embodiment of the present invention, the charging voltage ratio v (t) / V (t) is actually measured by the pulsed photoconduction method, and the charging voltage ratio v with respect to the gap width in consideration of the inclination of the electrode. The ideal curve of (t) / V (t) was obtained, and the inclination θ of the electrode was specified. As a result, the gap capacitance C gap can be obtained in consideration of the inclination θ between the entire electrode and the sample surface, and the electrical characteristics of the sample can be measured with high accuracy based on the gap capacitance C gap .

本発明に係るギャップ制御方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に基づき以下の実験を行った。 The gap control method according to the present invention will be further described based on examples. In this example, the following experiment was performed based on the above embodiment.

(実施例1)
実施例1では、充電電圧比法を用いた傾き補正について検証した。
直径300mmのシリコンウェーハに厚さ82.9nmの酸化膜を形成した試料を準備した。測定に使用する電極の横断面は円形状であって、その直径は3.15mmであり、中央に直径1mmの中空が形成されたものとした。
(Example 1)
In Example 1, the inclination correction using the charge voltage ratio method was verified.
A sample in which an oxide film having a thickness of 82.9 nm was formed on a silicon wafer having a diameter of 300 mm was prepared. The cross section of the electrode used for the measurement was circular, the diameter was 3.15 mm, and a hollow with a diameter of 1 mm was formed in the center.

電極表面の表面粗さを触針式の粗さ計測器で測定した結果を図8のグラフに示す。図8のグラフにおいて横軸は移動距離(μm)、縦軸は基準点との差(μm)である。
図8のグラフに示すように電極表面の凹凸の最大高低差は2.4μm程度であった。最大高さから、0.1μm間隔で全測定領域中の占有率を算出したものを表1に示す。
The graph of FIG. 8 shows the result of measuring the surface roughness of the electrode surface with a stylus type roughness measuring instrument. In the graph of FIG. 8, the horizontal axis is the moving distance (μm), and the vertical axis is the difference from the reference point (μm).
As shown in the graph of FIG. 8, the maximum height difference of the unevenness on the electrode surface was about 2.4 μm. Table 1 shows the calculation of the occupancy rate in the entire measurement area from the maximum height at intervals of 0.1 μm.

Figure 2020161557
Figure 2020161557

表1における基準からの距離が、式3におけるWC2、・・・WCnに相当し、電極面積×占有率が式3におけるS、S、・・・Sに相当する。
電極表面を径方向に例えば10等分すると、全電極面積に占める領域の占有率は、表2のようになる。
The distance from the reference in Table 1, W C2, corresponds to · · · W Cn in equation 3, S 1, S 2 electrode area × occupancy in Equation 3 corresponds to · · · S n.
When the electrode surface is divided into 10 equal parts in the radial direction, the occupancy rate of the region in the total electrode area is as shown in Table 2.

Figure 2020161557
Figure 2020161557

表2における占有率が、式4におけるα、α、・・・αに相当する。
次いで、パルス光伝導法に従い、矩形波パルス電圧を試料に印加して酸化膜容量を充電完了した後、試料に紫外線のパルス光を照射し過渡的な信号変化を観測した。その際のギャップ幅と充電電圧比v(t)/V(t)の実測プロットを取得するとともに、式2、及び式6において前記実測との誤差が小さくなるような角度θを与えたときの理論曲線を計算した。
The occupancy rates in Table 2 correspond to α 1 , α 2 , ... α k in Equation 4.
Then, according to the pulsed photoconduction method, a square wave pulse voltage was applied to the sample to complete charging the oxide film capacitance, and then the sample was irradiated with ultraviolet pulsed light to observe a transient signal change. When the actual measurement plot of the gap width and the charging voltage ratio v (t) / V (t) at that time is acquired, and the angle θ is given in the equations 2 and 6 so as to reduce the error from the actual measurement. The theoretical curve was calculated.

具体的には、式2の充電電圧比を算出するマクロ(Cgap、Coxide、C値を設定すると各ギャップ幅におけるv(t)/V(t)値が算出されプロットし曲線を引くことで理論曲線を表示するプログラム)を用い、Cgapを求めるためのθ値を適当に振り、実測プロットと重なる角度θを仮の電極傾きとした。その結果を図9のグラフに示す。
図9のグラフにおいて、横軸はギャップ幅(μm)であり、縦軸は充電電圧比(v(t)/V(t))である。このとき実測プロットと一致するθは、0.96°となった。
Specifically, when the macro (C gap , C oxide , C f value) for calculating the charge voltage ratio of Equation 2 is set, the v (t) / V (t) value at each gap width is calculated, plotted, and a curve is drawn. By using a program that displays the theoretical curve), the θ value for obtaining the C gap was appropriately assigned, and the angle θ that overlaps with the measured plot was used as the temporary electrode inclination. The result is shown in the graph of FIG.
In the graph of FIG. 9, the horizontal axis is the gap width (μm), and the vertical axis is the charging voltage ratio (v (t) / V (t)). At this time, θ, which matches the measured plot, was 0.96 °.

表面凹凸、傾きを考慮した理論曲線に対する実測平均値の誤差を表3に示す。 Table 3 shows the error of the measured average value with respect to the theoretical curve considering the surface unevenness and inclination.

Figure 2020161557
Figure 2020161557

θ=0.96°と与えることで、表3のように、0.5〜3.0μmの範囲では5%以内の誤差で理論曲線を算出することができた。この表面凹凸、傾きを考慮した理論曲線を用いて、試料の各点で実測した充電電圧比から補正されたギャップ幅を求めることができた。 By giving θ = 0.96 °, as shown in Table 3, the theoretical curve could be calculated with an error of 5% or less in the range of 0.5 to 3.0 μm. Using the theoretical curve considering the surface unevenness and inclination, it was possible to obtain the corrected gap width from the charging voltage ratio measured at each point of the sample.

尚、上記手順によって酸化膜内電界強度を揃えて、パルス光伝導法による測定を行うことにより、精度よく光信号ΔV(td)を測定することが可能となる。 It is possible to measure the optical signal ΔV (td) with high accuracy by adjusting the electric field strength in the oxide film by the above procedure and performing the measurement by the pulsed photoconduction method.

(実施例2)
実施例2では、PTFE管(管状のPTFE材)プローブ構造について検証した。
装置構成として、図10に示すように、PTFE管プローブ構造を10本のプローブに適用し、パルス光伝導法測定を行う機構を構築した。構築プロセスを以下に示す。
(Example 2)
In Example 2, the PTFE tube (tubular PTFE material) probe structure was verified.
As an apparatus configuration, as shown in FIG. 10, a PTFE tube probe structure was applied to 10 probes to construct a mechanism for performing pulsed photoconduction measurement. The construction process is shown below.

(1)光ファイバに付属しているフェルール付SMAアダプタ(オス)とSMAアダプタ(メス)を接続する。
(2)フェルール付SMAアダプタのフェルール部先端にPTFE管を取り付け、プローブ電極(SMAアダプタのフェルール部)先端−PTFE管先端間のギャップを調整する。
(3)プラスチックネジを用いてSMAアダプタ(メス)をメタルガイドに取り付ける。この際、メタルガイド−SMAアダプタ間の絶縁のための雲母板とプローブを安定させ且つプローブの上下位置を調整するためのバネを組み込む。
(4)上記(1)〜(3)を繰り返し10本のプローブをメタルガイドに取り付け、ウェーハ半径方向に並べる。
(5)メタルガイドをフォークリフトに取り付け、固定する。
(1) Connect the SMA adapter with ferrule (male) and the SMA adapter (female) attached to the optical fiber.
(2) Attach a PTFE tube to the tip of the ferrule portion of the SMA adapter with ferrule, and adjust the gap between the tip of the probe electrode (ferrule portion of the SMA adapter) and the tip of the PTFE tube.
(3) Attach the SMA adapter (female) to the metal guide using plastic screws. At this time, a mica plate for insulation between the metal guide and the SMA adapter and a spring for stabilizing the probe and adjusting the vertical position of the probe are incorporated.
(4) Repeat steps (1) to (3) above to attach 10 probes to the metal guide and arrange them in the radial direction of the wafer.
(5) Attach the metal guide to the forklift and fix it.

尚、上記プロセス(2)に関して、プローブ電極先端−PTFE管先端間のギャップを調整可能かつギャップの測定が可能な機構が必要となる。そこで、プローブ電極先端−PTFE管先端間のギャップ調整機構を構築した。具体的にはSMAアダプタ(メス)をアーム付スタンドに固定し、ステージ(ウェーハチャック)をZ軸方向に移動させ、PTFE管を押し込むことでギャップを調整した。ギャップ調整後、図10の装置においてステージをX軸方向に移動させ、レーザ変位計でプローブ先端をスキャンすることでギャップ測定を行った。 Regarding the above process (2), a mechanism capable of adjusting the gap between the tip of the probe electrode and the tip of the PTFE tube and measuring the gap is required. Therefore, a gap adjustment mechanism between the tip of the probe electrode and the tip of the PTFE tube was constructed. Specifically, the SMA adapter (female) was fixed to the stand with an arm, the stage (wafer chuck) was moved in the Z-axis direction, and the PTFE tube was pushed in to adjust the gap. After adjusting the gap, the stage was moved in the X-axis direction in the apparatus of FIG. 10, and the gap was measured by scanning the probe tip with a laser displacement meter.

上記で構築した機構を充電波形や光信号を取得できるパルス光伝導法測定系として構築し、パルス光伝導法測定を行った。試料ウェーハは、p型シリコンウェーハ上に10nm厚の熱酸化膜を形成したものである。印加電圧は6V、電圧印加からパルス光印加までの遅延時間tdは1msecとした。
その結果、図11(a)〜(j)に示すように全てのプローブNo.1〜No.10に対して充電波形を観測しながらギャップの状態を統一し、調整したプローブで光信号を取得できることを実際に確認した。
The mechanism constructed above was constructed as a pulsed photoconductivity measurement system capable of acquiring a charging waveform and an optical signal, and pulsed photoconductivity measurement was performed. The sample wafer is a p-type silicon wafer on which a 10 nm-thick thermal oxide film is formed. The applied voltage was 6 V, and the delay time td from the voltage application to the pulsed light application was 1 msec.
As a result, as shown in FIGS. 11A to 11J, all probe Nos. 1-No. While observing the charging waveform for 10, the state of the gap was unified, and it was actually confirmed that the optical signal could be acquired with the adjusted probe.

(実施例3)
また、実施例3では、ジンバル機構を用いたパルス光伝導法測定におけるギャップ幅の調整について検証した。
図7に示した構成のようにジンバル光学マウント(T−OMG−KT03U、Zaber Technologies社製)にプローブ電極を取り付けることで傾き調整機構とした。取り付け手法としては、真鋳を用いたL字型の治具を作成し、プローブ電極とジンバル光学マウントを接続した。また、図7に示したように静電容量変位計(MicroSense4830日本レーザー社製)プローブをプローブ電極隣に取り付けることで、ギャップ幅の測定を行う機構とした。取り付け手法としては、プローブ電極取り付け位置に対し、Z軸方向に50μm程度高い位置にてネジ留めを行った。
具体的なギャップ幅の調整方法を図12(a)〜(c)に示す。
(Example 3)
Further, in Example 3, the adjustment of the gap width in the pulsed photoconduction method measurement using the gimbal mechanism was verified.
As shown in FIG. 7, a probe electrode was attached to a gimbal optical mount (T-OMG-KT03U, manufactured by Zaber Technologies) to form a tilt adjusting mechanism. As a mounting method, an L-shaped jig using brass was prepared, and the probe electrode and the gimbal optical mount were connected. Further, as shown in FIG. 7, a capacitance displacement meter (MicroSense 4830 Nippon Laser Co., Ltd.) probe is attached next to the probe electrode to measure the gap width. As a mounting method, screwing was performed at a position about 50 μm higher in the Z-axis direction with respect to the probe electrode mounting position.
Specific methods for adjusting the gap width are shown in FIGS. 12 (a) to 12 (c).

(1)即ち図12(a)に示すようにプローブ電極と試料とのギャップ幅を10mm程度開け、ジンバル光学マウントの初期化により(θ,Φ)=(0,0)点出しする。
(2)次いで図12(b)に示すようにギャップ幅を静電容量変位計値で1μmにマニュアル調整する。
(3)最後に図12(c)に示すように充電電圧値が最大となるようθ・φ軸方向に±0.005°毎駆動させる。
(1) That is, as shown in FIG. 12 (a), a gap width of about 10 mm is opened between the probe electrode and the sample, and (θ, Φ) = (0,0) is pointed out by initializing the gimbal optical mount.
(2) Next, as shown in FIG. 12B, the gap width is manually adjusted to 1 μm with the capacitance displacement meter value.
(3) Finally, as shown in FIG. 12 (c), the drive is driven every ± 0.005 ° in the θ · φ axis direction so that the charging voltage value becomes maximum.

この機構を組み込んでパルス光伝導法による測定を行った。試料ウェーハは、N型シリコンウェーハに厚さ9.3nmの熱酸化膜を形成したものである。印加電圧は6V、tは5deg、ギャップ幅は、100nmである。
この測定結果を図13に示す。図13(a)は傾き調整前の波形であり、図13(b)は傾き調整後の波形である。本機構による傾き調整により、光信号が大きく増加していることを確認した。
This mechanism was incorporated and the measurement was performed by the pulsed photoconduction method. The sample wafer is an N-type silicon wafer formed with a thermal oxide film having a thickness of 9.3 nm. The applied voltage is 6 V, t d is 5 deg, and the gap width is 100 nm.
The measurement result is shown in FIG. FIG. 13A is a waveform before tilt adjustment, and FIG. 13B is a waveform after tilt adjustment. It was confirmed that the optical signal was greatly increased by adjusting the tilt by this mechanism.

以上の実施例の結果、電極と試料間のギャップ制御方法における、試料ウェーハや試料ホルダーのうねり、電極の傾きなどを正確に補正することができた。この結果、半導体ウェーハ上に形成された誘電体膜の電気容量測定、パルス光伝導法による誘電対膜の界面準位測定の測定精度が大幅に向上することを確認できた。 As a result of the above examples, it was possible to accurately correct the waviness of the sample wafer and the sample holder, the inclination of the electrode, and the like in the gap control method between the electrode and the sample. As a result, it was confirmed that the measurement accuracy of the electric capacity measurement of the dielectric film formed on the semiconductor wafer and the interface state measurement of the dielectric pair film by the pulsed photoconduction method was significantly improved.

1 プローブ電極
4 PTFE管
6 メタルガイド
12 試料
21 ジンバル機構
1 Probe electrode 4 PTFE tube 6 Metal guide 12 Sample 21 Gimbal mechanism

Claims (4)

誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程と、
パルス光伝導法による前記プローブ電極から前記試料への印加電圧V(t)と、前記試料の充電電圧v(t)と、の充電電圧比v(t)/V(t)を実測する工程と、
電極全体と試料表面間の傾きθを考慮したギャップ幅Wに対する充電電圧比v(t)/V(t)の理想曲線を求める工程と、
前記充電電圧比v(t)/V(t)の実測値と理想曲線とが一致する傾きθを特定する工程と、
前記傾きθを考慮したギャップ容量Cgapを求める工程と、を備え、
電極の直径をΦ、電極先端面を径方向にk個(kは2以上の整数)に等分割し、電極全表面積に占める領域の割合をαとしたとき、電極全体と試料表面間の傾きθを考慮したギャップ幅Wは、下記式により求められ、
Figure 2020161557
凹凸と傾きを考慮しないギャップ幅をWgapとし、誘電率をεとし、φ/kの領域を更にn個に分割して最も突起が大きいところからの変位をWcnとし、n個に分割された各領域の面積をS〜Sとすると、前記傾きθを考慮したギャップ容量Cgapは、下記式により求められることを特徴とするギャップ制御方法。
Figure 2020161557
The process of arranging the probe electrodes with a predetermined gap width for the semiconductor sample on which the dielectric film is formed, and
A step of actually measuring the charging voltage ratio v (t) / V (t) of the voltage V (t) applied from the probe electrode to the sample by the pulsed photoconduction method and the charging voltage v (t) of the sample. ,
The process of obtaining the ideal curve of the charging voltage ratio v (t) / V (t) with respect to the gap width W considering the inclination θ between the entire electrode and the sample surface, and
A step of specifying a slope θ at which the measured value of the charging voltage ratio v (t) / V (t) and the ideal curve match, and
A step of obtaining a gap capacitance C gap in consideration of the inclination θ is provided.
When the diameter of the electrode is Φ, the tip surface of the electrode is divided into k pieces in the radial direction (k is an integer of 2 or more), and the ratio of the region to the total surface area of the electrode is α k , the distance between the entire electrode and the sample surface The gap width W k considering the inclination θ is calculated by the following equation.
Figure 2020161557
The gap width that does not consider unevenness and inclination is W gap , the permittivity is ε 0 , the region of φ / k is further divided into n pieces, and the displacement from the place with the largest protrusion is W cn, and it is divided into n pieces. and the area of each region and S 1 to S n, the gap capacitance C gap considering the inclination θ, the gap control method characterized in that it is determined by the following equation.
Figure 2020161557
誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程において、
管状の絶縁性の合成樹脂材を前記プローブ電極の先端部に組込み、前記絶縁性の合成樹脂材の管先端と電極先端とのギャップを予め調整する工程と、
前記プローブ電極を上下方向に揺動可能に保持し、前記絶縁性の合成樹脂材の管先端を試料表面に当接させてギャップ調整する工程と、を備えることを特徴とする請求項1に記載されたギャップ制御方法。
In the step of arranging the probe electrodes with a predetermined gap width for the semiconductor sample on which the dielectric film is formed,
A step of incorporating a tubular insulating synthetic resin material into the tip of the probe electrode and adjusting the gap between the tube tip and the electrode tip of the insulating synthetic resin material in advance.
The first aspect of claim 1, wherein the probe electrode is held swingably in the vertical direction, and the tip of the insulating synthetic resin material is brought into contact with the sample surface to adjust the gap. Gap control method.
誘電体膜が形成された半導体の試料に対し所定のギャップ幅を空けてプローブ電極を配置する工程において、
ジンバル機構にプローブ電極を取り付けることで傾き調整し、且つ、静電容量変位計を前記プローブ電極に隣設して、ギャップ幅の測定を行うことを特徴とする請求項1に記載されたギャップ制御方法。
In the step of arranging the probe electrodes with a predetermined gap width for the semiconductor sample on which the dielectric film is formed,
The gap control according to claim 1, wherein the inclination is adjusted by attaching a probe electrode to the gimbal mechanism, and a capacitance displacement meter is provided next to the probe electrode to measure the gap width. Method.
前記請求項1乃至請求項3のいずれかに記載されたギャップ制御方法によりギャップ容量Cgapを求め、パルス光伝導法により電気特性を測定することを特徴とする電気特性測定方法。 A method for measuring electrical characteristics, which comprises obtaining a gap capacitance C gap by the gap control method according to any one of claims 1 to 3 and measuring electrical characteristics by a pulsed photoconduction method.
JP2019056967A 2019-03-25 2019-03-25 Gap control method and electrical property measurement method Active JP7142293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056967A JP7142293B2 (en) 2019-03-25 2019-03-25 Gap control method and electrical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056967A JP7142293B2 (en) 2019-03-25 2019-03-25 Gap control method and electrical property measurement method

Publications (2)

Publication Number Publication Date
JP2020161557A true JP2020161557A (en) 2020-10-01
JP7142293B2 JP7142293B2 (en) 2022-09-27

Family

ID=72639810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056967A Active JP7142293B2 (en) 2019-03-25 2019-03-25 Gap control method and electrical property measurement method

Country Status (1)

Country Link
JP (1) JP7142293B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482541A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Method and device for measuring semiconductor surface
JPH04132236A (en) * 1990-09-22 1992-05-06 Dainippon Screen Mfg Co Ltd Electric measurement device for semiconductor wafer
JPH11126811A (en) * 1997-08-20 1999-05-11 Dainippon Screen Mfg Co Ltd Impurity measuring method and device
JP2001144154A (en) * 1999-11-11 2001-05-25 Dainippon Screen Mfg Co Ltd Method and device for measuring intra-film ion quantity measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132236B2 (en) 1998-06-23 2008-08-13 富士通テン株式会社 Travel planning device, travel information providing device, and travel information providing terminal device
DE102013211951A1 (en) 2013-06-24 2014-12-24 Younicos Ag Method and device for storing electrical energy in electrochemical energy storage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482541A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Method and device for measuring semiconductor surface
JPH04132236A (en) * 1990-09-22 1992-05-06 Dainippon Screen Mfg Co Ltd Electric measurement device for semiconductor wafer
JPH11126811A (en) * 1997-08-20 1999-05-11 Dainippon Screen Mfg Co Ltd Impurity measuring method and device
JP2001144154A (en) * 1999-11-11 2001-05-25 Dainippon Screen Mfg Co Ltd Method and device for measuring intra-film ion quantity measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAAKI FURUTA: "Noncontact evaluation for interface states by photocarrier counting", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 57, 031301, JPN6022035810, 2018, JP, pages 1 - 6, ISSN: 0004861532 *

Also Published As

Publication number Publication date
JP7142293B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
US7403023B2 (en) Apparatus and method of measuring defects in an ion implanted wafer by heating the wafer to a treatment temperature and time to substantially stabilize interstitial defect migration while leaving the vacancy defects substantially unaltered.
US4747698A (en) Scanning thermal profiler
US5065103A (en) Scanning capacitance - voltage microscopy
US20060267622A1 (en) Non-contact method for acquiring charge-voltage data on miniature test areas of semiconductor product wafers
JP5254509B2 (en) Electrostatic force detector with cantilever and shield
KR102605063B1 (en) Probe system and method of operating the probe system for optically probing the device under test
TWI676707B (en) In-situ metrology method for thickness measurement during pecvd processes
CN109738702A (en) Probe, probe and the measuring instrument of the square resistance of nondestructive measurement graphene film
US11131709B2 (en) Probe systems for optically probing a device under test and methods of operating the probe systems
WO1999021021A2 (en) Semiconductor material characterizing method and apparatus
US6915232B2 (en) Film thickness measuring method, relative dielectric constant measuring method, film thickness measuring apparatus, and relative dielectric constant measuring apparatus
CN112097626A (en) Metal film thickness measuring method based on resistance method
TW202424509A (en) Methods of establishing contact between a probe tip of a probe system and a device under test, probe systems that perform the methods, and storage media that directs probe systems to perform the methods
US7119569B2 (en) Real-time in-line testing of semiconductor wafers
JP2008537781A5 (en)
US6163163A (en) Semiconductor material characterizing method and apparatus
JP2020161557A (en) Gap control method and electrical characteristic measurement method
JP2589420B2 (en) Method and apparatus for inspecting conductive film
US6034535A (en) Method utilizing a modulated light beam for determining characteristics such as the doping concentration profile of a specimen of semiconductor material
Nesterov et al. The status of PTB’s nanonewton force facility
WO2024196595A1 (en) Semiconductor doping characterization method using photoneutralization time constant of corona surface charge
RU2515415C1 (en) Method to control defect structure of epitaxial silicon layers on dielectric substrates
US20240085470A1 (en) Method and apparatus for non-invasive, non-intrusive, and un-grounded, simultaneous corona deposition and shg measurements
Nesterov Measurement and compensation of electrostatic forces between conducting surfaces at distances in the micrometer range by means of PTB’s nanonewton force facility
Bitzer et al. A novel adaptive focusing principle for scanning light stimulation systems down to 2μm resolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7142293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150