JP2020161514A - Method of predicting characteristics of coil component - Google Patents

Method of predicting characteristics of coil component Download PDF

Info

Publication number
JP2020161514A
JP2020161514A JP2019056038A JP2019056038A JP2020161514A JP 2020161514 A JP2020161514 A JP 2020161514A JP 2019056038 A JP2019056038 A JP 2019056038A JP 2019056038 A JP2019056038 A JP 2019056038A JP 2020161514 A JP2020161514 A JP 2020161514A
Authority
JP
Japan
Prior art keywords
curve
magnetic
coil component
coil
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019056038A
Other languages
Japanese (ja)
Inventor
準 松浦
Jun Matsuura
準 松浦
直也 寺内
Naoya Terauchi
直也 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019056038A priority Critical patent/JP2020161514A/en
Publication of JP2020161514A publication Critical patent/JP2020161514A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method of predicting coil components' characteristics to facilitate the design of coil components with cores containing magnetic materials with high saturation magnetic flux density.SOLUTION: A long, thin bar-shaped sample is made of the material that makes up a core of a coil component. The sample's magnetic properties are measured by a vibrating sample magnetometer (VSM) until it is almost completely saturated with magnetism. The results are used to predict the characteristics of the coil components by simulation.SELECTED DRAWING: Figure 3

Description

本発明は、コイル部品の特性予測方法に関する。 The present invention relates to a method for predicting characteristics of coil components.

近年、大きな電流が通電される用途等のコイル部品には、小型化に加えてさらなる大電流化が求められている。大電流化のためには、電流に対して磁気飽和しにくい磁性材料を用いてコアを構成する必要があることから、磁性材料として、フェライト系に代えて鉄系の金属磁性材料が用いられるようになってきている。 In recent years, coil parts for applications where a large current is energized are required to have a larger current in addition to miniaturization. In order to increase the current, it is necessary to construct the core using a magnetic material that is not easily magnetically saturated with respect to the current. Therefore, as the magnetic material, an iron-based metal magnetic material is used instead of the ferrite-based material. Is becoming.

金属磁性材料をフェライト系の軟磁性材料と比較すると、例えば特許文献1にあるように、B−H曲線において、より高い磁界に至るまで磁束密度が飽和することなく増加し続けること、及び電流に対する自己インダクタンスの低下率が低いこと、が特徴的である。 Comparing the metallic magnetic material with the ferrite-based soft magnetic material, for example, as described in Patent Document 1, in the BH curve, the magnetic flux density continues to increase without being saturated up to a higher magnetic field, and with respect to the current. It is characterized by a low rate of decrease in self-inductance.

このような金属磁性材料の用途の広がりから、従来のフェライト系材料では注意を払う必要がなかった点が、新たな課題となる場合が増えている。
例えば、コイル部品設計時のシミュレーションにおいて、大電流を流した場合の素子の特性及び挙動が予測困難であることが挙げられる。これは、インダクタに流す電流を大きくしていくと、コアである金属磁性材料が磁気飽和する前に、電流の経路となる導体が自身の抵抗による発熱で破壊してしまい、大電流を流した際のコアの特性の測定が困難であることに起因する。特許文献2等にあるように、コイル部品(インダクタ)におけるインダクタンス等の特性値は、重畳印加される直流電流によって変化するため、正確なシミュレーション結果を得るためには、大電流を流した際のコアの特性を正確に把握する必要がある。
なお、コアとしてフェライト系の軟磁性材料を備えるコイル部品においては、抵抗発熱により導体が破壊する電流値よりも小さい電流でコアが磁気飽和し、コアの特性の実測が容易であるため、このような問題は生じなかった。
Due to the widespread use of such metallic magnetic materials, there are increasing cases where it is not necessary to pay attention to conventional ferrite-based materials, which becomes a new issue.
For example, in a simulation at the time of coil component design, it is difficult to predict the characteristics and behavior of the element when a large current is applied. This is because when the current flowing through the inductor is increased, the conductor that is the path of the current is destroyed by the heat generated by its own resistance before the metal magnetic material that is the core is magnetically saturated, and a large current is passed. This is due to the difficulty in measuring the characteristics of the core. As described in Patent Document 2 and the like, characteristic values such as inductance in coil components (inductors) change depending on the applied DC current, so in order to obtain accurate simulation results, when a large current is applied, It is necessary to accurately grasp the characteristics of the core.
In a coil component provided with a ferritic soft magnetic material as the core, the core is magnetically saturated with a current smaller than the current value at which the conductor is destroyed by resistance heat generation, and it is easy to actually measure the characteristics of the core. No problem occurred.

特開平11−214229号公報Japanese Unexamined Patent Publication No. 11-214229 国際公開第2014/185294号International Publication No. 2014/185294

従来、大電流を流した際のコアの特性データを取得するためには、発熱を抑えるために、コアを構成する材料の種類に応じてコアの寸法並びに導体の寸法及び巻数等を設計した上で、特性データ取得用のトロイダルを作製することが必要であった。このため、データの取得に手間がかかり、素子設計のためのシミュレーションが容易に行えないことが問題であった。 Conventionally, in order to acquire the characteristic data of the core when a large current is passed, in order to suppress heat generation, the dimensions of the core, the dimensions of the conductor, the number of turns, etc. are designed according to the type of the material constituting the core. Therefore, it was necessary to prepare a toroidal for acquiring characteristic data. For this reason, it takes time and effort to acquire data, and there is a problem that simulation for device design cannot be easily performed.

そこで本発明は、前述の問題点を解決し、飽和磁束密度が大きい磁性材料を含むコアを備えたコイル部品の設計を容易にする、コイル部品の特性予測方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for predicting the characteristics of a coil component, which solves the above-mentioned problems and facilitates the design of a coil component including a core containing a magnetic material having a large saturation magnetic flux density.

本発明者は、前記問題点を解決するために種々の検討を行ったところ、コイル部品のコアを構成する材料で細長い棒状の試料を作製し、該試料について振動試料型磁力計(Vibrating Sample Magnetometer:VSM)にて略完全に磁気飽和するまでの磁気特性の測定を行い、この結果を利用してシミュレーションを行うことで該問題点を解決できることを見出し、本発明を完成するに至った。 As a result of various studies to solve the above problems, the present inventor prepared an elongated rod-shaped sample from the material constituting the core of the coil component, and used the vibrating sample magnetometer for the sample. : VSM) was used to measure the magnetic properties until the magnetism was almost completely saturated, and it was found that the problem could be solved by performing a simulation using this result, and the present invention was completed.

すなわち、前記課題を解決するための本発明の実施形態は、飽和磁束密度が1.5T以上の磁性材料で形成されたコアを備えるコイル部品の特性予測方法であって、前記磁性材料で形成され、アスペクト比が3以上である測定用試料を準備すること、振動試料型磁力計(VSM)により、前記測定用試料に印加する磁場(H)と該試料の磁束密度(B)との関係を測定すること、前記測定結果から、B−H曲線及びμ−B曲線を算出すること、前記測定用試料と同組成のトロイダル状のコアを備えるコイルを別途準備して、該コイルに通電することで磁場(H)と磁束密度(B)との関係を測定し、該コイルの直流電流0Aでの透磁率に、前記VSM測定から得られた、H=0A/mにおける微分透磁率及びマイナーループの傾きがそれぞれ一致するように反磁界係数を算出し、該反磁界係数により前記B−H曲線及び前記μ−B曲線を修正すること、並びに前記B−H曲線及び前記μ−B曲線を用いて、有限要素法によりコイル部品の特性を計算すること、を含む、コイル部品の特性予測方法である。 That is, an embodiment of the present invention for solving the above problems is a method for predicting the characteristics of a coil component including a core formed of a magnetic material having a saturation magnetic flux density of 1.5 T or more, and is formed of the magnetic material. Prepare a measurement sample having an aspect ratio of 3 or more, and use a vibrating sample magnetometer (VSM) to determine the relationship between the magnetic field (H) applied to the measurement sample and the magnetic flux density (B) of the sample. To measure, to calculate the BH curve and μ-B curve from the measurement result, and to separately prepare a coil having a toroidal core having the same composition as the measurement sample and energize the coil. Measured the relationship between the magnetic field (H) and the magnetic flux density (B), and the magnetic permeability of the coil at a DC current of 0 A, the differential magnetic permeability at H = 0 A / m and the minor loop obtained from the VSM measurement. The demagnetic flux coefficient is calculated so that the slopes of the above are the same, and the BH curve and the μ-B curve are corrected by the demagnetizing magnetic flux coefficient, and the BH curve and the μB curve are used. This is a method for predicting the characteristics of a coil component, including calculating the characteristics of the coil component by the finite element method.

本発明によれば、飽和磁束密度が大きい磁性材料で形成されたコアを備えるコイル部品の設計を、精度良くかつ簡便に行うことができる。 According to the present invention, it is possible to accurately and easily design a coil component including a core made of a magnetic material having a high saturation magnetic flux density.

本発明の実施形態に係る棒状試料について得られたB−H曲線、及びトロイダルを用いた従来の測定方法で得られたB−H曲線を示すグラフA graph showing a BH curve obtained for a rod-shaped sample according to an embodiment of the present invention and a BH curve obtained by a conventional measurement method using a toroidal. 本発明の実施形態に係る棒状試料について得られたμ−B曲線、及びトロイダルを用いた従来の測定方法で得られたμ―B曲線を示すグラフA graph showing a μ-B curve obtained for a rod-shaped sample according to an embodiment of the present invention and a μ-B curve obtained by a conventional measurement method using a toroidal. 本発明の実施形態に係るシミュレーションにより得られた電流値に対するインダクタンス変化、及び従来のシミュレーションにより得られた電流値に対するインダクタンス変化を示すグラフA graph showing the change in inductance with respect to the current value obtained by the simulation according to the embodiment of the present invention and the change in inductance with respect to the current value obtained by the conventional simulation.

以下、本発明の構成及び作用効果について、技術的思想を交えて説明する。但し、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the configuration and the action and effect of the present invention will be described with technical ideas. However, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.

本発明の一実施形態(以下、単に「本実施形態」いう。)に係るコイル部品の特性予測方法は、飽和磁束密度が1.5T以上磁性材料で形成されたコアを備えるインダクタに適用されるものであり、前記磁性材料で形成され、アスペクト比が3以上である測定用試料を準備すること、振動試料型磁力計(VSM)により、前記測定用試料に印加する磁場(H)と該試料の磁束密度(B)との関係を測定すること、前記測定結果から、B−H曲線及びμ−B曲線を算出すること、前記測定用試料と同組成のトロイダル状のコアを備えるコイルを別途準備して、該コイルに通電することで磁場(H)と磁束密度(B)との関係を測定し、該コイルの直流電流0Aでの透磁率に、前記VSM測定から得られた、H=0A/mにおける微分透磁率及びマイナーループの傾きがそれぞれ一致するように反磁界係数を算出し、該反磁界係数により前記B−H曲線及び前記μ−B曲線を修正すること、並びに前記B−H曲線及び前記μ−B曲線を用いて、有限要素法によりコイル部品の特性を計算すること、を含む。 The method for predicting the characteristics of coil components according to an embodiment of the present invention (hereinafter, simply referred to as "the present embodiment") is applied to an inductor having a core formed of a magnetic material having a saturation magnetic flux density of 1.5 T or more. A magnetic flux (H) applied to the measurement sample by a vibrating sample magnetometer (VSM) and the sample are prepared, which are formed of the magnetic material and have an aspect ratio of 3 or more. To measure the relationship with the magnetic flux density (B), calculate the BH curve and μB curve from the measurement results, and separately provide a coil with a toroidal core having the same composition as the measurement sample. By preparing and energizing the coil, the relationship between the magnetic field (H) and the magnetic flux density (B) was measured, and the magnetic permeability of the coil at a DC current of 0 A was obtained from the VSM measurement. The demagnetizing magnetic flux is calculated so that the differential magnetic flux density at 0 A / m and the inclination of the minor loop match, and the BH curve and the μB curve are corrected by the demagnetizing coefficient, and the B− Includes calculating the characteristics of coil components by the finite element method using the H curve and the μ-B curve.

[磁性材料]
本実施形態で使用される磁性材料は、1.5T以上の飽和磁束密度を有する。このような磁性材料としては、Fe又はNiを主成分とする金属が挙げられる。Feを主成分とする金属は、Si、Cr、Al、Ni、Coの少なくとも1つ以上を含むものであってもよい。また、磁性材料は結晶質であっても非晶質であってもよい。結晶質の金属磁性材料の具体例としては、Fe、FeSi、FeSiCr及びFeSiAl等が挙げられ、非晶質の金属磁性材料の具体例としては、FeSiCrB及びFeSiPBC等が挙げられる。
[Magnetic material]
The magnetic material used in this embodiment has a saturation magnetic flux density of 1.5 T or more. Examples of such a magnetic material include a metal containing Fe or Ni as a main component. The metal containing Fe as a main component may contain at least one or more of Si, Cr, Al, Ni, and Co. Further, the magnetic material may be crystalline or amorphous. Specific examples of the crystalline metallic magnetic material include Fe, FeSi, FeSiCr and FeSiAl, and specific examples of the amorphous metallic magnetic material include FeSiCrB and FeSiPBC.

本実施形態は、Fe含有量が94mass%以上の金属磁性材料を使用する場合に好適である。このような磁性材料は、磁気飽和させるのに特に大きな磁場が必要であるため、大電流を流した際のコアの特性データをトロイダルから取得する従来の方法を適用することが困難なためである。また、同様の理由により、本実施形態は、初透磁率が10以下である磁性材料を使用する場合にも好適である。 This embodiment is suitable when a metallic magnetic material having an Fe content of 94 mass% or more is used. This is because such magnetic materials require a particularly large magnetic field for magnetic saturation, making it difficult to apply conventional methods for obtaining core characteristic data from toroidals when a large current is applied. .. Further, for the same reason, the present embodiment is also suitable when a magnetic material having an initial magnetic permeability of 10 or less is used.

[測定用試料]
本実施形態で使用する測定用試料は、前述した磁性材料で形成され、3以上のアスペクト比を有するものとする。測定用試料のアスペクト比が大きい方向に磁場を掛けることで、測定用試料に効率よく磁束が通るようになり、磁気飽和しやすくなる。前記アスペクト比は、5以上とすることが好ましく、7以上とすることがより好ましい。このとき、測定用試料の長軸方向の長さは、後述する磁場(H)と該試料の磁束密度(B)との関係の測定に使用する振動試料型磁力計(VSM)の測定エリアに収まるように設定する。該測定エリアは、単に測定用試料が物理的に収容できる領域ではなく、磁場分布が均一になる領域を意味する。
また、測定用試料の形状は、棒状でもよいが、後述する反磁界補正を容易にする点からは、回転楕円体形状とすることが好ましい。
[Sample for measurement]
The measurement sample used in this embodiment is made of the above-mentioned magnetic material and has an aspect ratio of 3 or more. By applying a magnetic field in the direction in which the aspect ratio of the measurement sample is large, magnetic flux can efficiently pass through the measurement sample, and magnetic saturation is likely to occur. The aspect ratio is preferably 5 or more, and more preferably 7 or more. At this time, the length of the measurement sample in the major axis direction is set in the measurement area of the vibrating sample magnetometer (VSM) used for measuring the relationship between the magnetic field (H) and the magnetic flux density (B) of the sample, which will be described later. Set to fit. The measurement area does not simply mean a region where the measurement sample can be physically accommodated, but a region where the magnetic field distribution becomes uniform.
The shape of the measurement sample may be rod-shaped, but a spheroidal shape is preferable from the viewpoint of facilitating demagnetic field correction described later.

測定用試料は、特性を予測しようとするコイル部品のコアと同一の組成及び微細構造を有するものとする。このため、測定用試料は、以下に例示する一般的なコアの製造方法に準じて製造される。 The measurement sample shall have the same composition and microstructure as the core of the coil component for which the characteristics are to be predicted. Therefore, the measurement sample is manufactured according to the general core manufacturing method exemplified below.

コイル部品のコアを製造する際には、通常、磁性材料として粉末状ないし粒状のもの(以下、「粉末」と総称し、これを構成する個々の粒を「粒子」という。)が使用される。磁性材料粉末は、単一の組成のものであってもよく、異なる組成の粉末を混合したものであってもよい。また、異なる粒度の粉末を混合したものであってもよい。単一組成の磁性材料でコアを形成した場合には、均一性の高い磁性体となる。Feを主成分とする磁性材料で、異なる組成の粉末ないし粒子を混合してコアを形成する場合には、Siを多く含む粒子の粒径を大きくし、Ni又はCoを多く含む粒子の粒径を小さくすることが好ましい。 When manufacturing the core of a coil component, a powdery or granular magnetic material (hereinafter, collectively referred to as "powder", and individual particles constituting the powder) are used as a magnetic material. .. The magnetic material powder may have a single composition or may be a mixture of powders having different compositions. Further, it may be a mixture of powders having different particle sizes. When the core is formed of a magnetic material having a single composition, it becomes a highly uniform magnetic material. When a magnetic material containing Fe as a main component and powders or particles having different compositions are mixed to form a core, the particle size of the particles containing a large amount of Si is increased, and the particle size of the particles containing a large amount of Ni or Co is increased. It is preferable to reduce the size.

磁性材料粉末は、通常、電気的絶縁のために、粒子表面に絶縁層が設けられる。絶縁層は、所期の絶縁性を付与できるものであれば有機材料でも無機材料でもよい。絶縁層を有機材料で形成した場合、高い耐衝撃性が得られる点で好ましい。他方、絶縁層を無機材料で形成した場合、高い耐熱性が得られる点で好ましい。使用可能な有機材料としては、エポキシ、フェノール、シリコーン及びポリイミド等の熱硬化性樹脂が挙げられる。使用可能な無機材料としては、リン酸系化成皮膜、クロム系化成皮膜、ガラス皮膜及び酸化物皮膜等が挙げられる。 Magnetic material powders are usually provided with an insulating layer on the particle surface for electrical insulation. The insulating layer may be an organic material or an inorganic material as long as it can impart the desired insulating property. When the insulating layer is made of an organic material, it is preferable in that high impact resistance can be obtained. On the other hand, when the insulating layer is made of an inorganic material, it is preferable in that high heat resistance can be obtained. Examples of the organic material that can be used include thermosetting resins such as epoxy, phenol, silicone and polyimide. Examples of the inorganic material that can be used include a phosphoric acid-based chemical conversion film, a chromium-based chemical conversion film, a glass film, an oxide film, and the like.

磁性材料粉末からのコアの製造は、該粉末を混合し、さらに樹脂を添加して混練し、所期の形状に成形した後、加熱して樹脂を硬化させるか、加熱により樹脂を揮発させて除去した後に熱処理して粒子同士を結合させることで行う。
使用する樹脂は、加熱により硬化させる場合には、エポキシ、フェノール、シリコーン及びポリイミド等の熱硬化性樹脂とする。機械的強度の高いコアを得る点からは、分子量の高いものが好ましい。他方、加熱により樹脂を除去する場合には、熱分解し易く炭化物が残りにくい点で、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)及びアクリル等が好ましい。樹脂の添加量は限定されないが、一例として、磁性材料粉末に対して1mass%〜5mass%程度とすることができる。
コアの成形方法は特に限定されず、磁性材料粉末と樹脂との混合物を、金型を用いて加圧成形する方法や、これに研磨を組み合わせる方法等が採用できる。また、磁性材料粉末と樹脂との混合物で形成されたシートから、レーザ加工やダイシング等により成形体を切り出す方法を採用してもよい。
成形後に樹脂を硬化させる際の加熱温度は、使用する樹脂の性質に応じて決定すればよいが、概ね150℃程度とすることができる。
成形後に樹脂を除去する場合の脱脂温度は、使用した樹脂の分解温度に応じて設定されるが、概ね200℃〜500℃程度とされる。また、脱脂雰囲気は、磁性材料粉末の酸化を防ぐため、過熱水蒸気とすることが好ましい。また、樹脂を除去した後の熱処理は、大気雰囲気で行っても良く、不活性ガス雰囲気で行ってもよい。不活性ガス雰囲気としては、窒素、ヘリウムやアルゴン等の希ガス及び真空等が挙げられる。また、熱処理温度は、400℃以上又は500℃以上で、850℃以下又は750℃以下とすることができる。熱処理時間は、熱処理温度が650℃以下の場合は60分以上、650℃を超える場合は60分未満とすることができる。磁性材料粉末として異なる組成の粉末を混合したものを用いた場合には、コア中の歪みを取る点から、不活性雰囲気中で比較的高温の熱処理を行うことが好ましい。
In the production of the core from the magnetic material powder, the powder is mixed, the resin is further added and kneaded, and after molding into the desired shape, the resin is cured by heating or the resin is volatilized by heating. After removal, heat treatment is performed to bond the particles together.
The resin used is a thermosetting resin such as epoxy, phenol, silicone and polyimide when it is cured by heating. From the viewpoint of obtaining a core having high mechanical strength, a core having a high molecular weight is preferable. On the other hand, when the resin is removed by heating, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), acrylic and the like are preferable because they are easily thermally decomposed and carbides are less likely to remain. The amount of the resin added is not limited, but as an example, it can be about 1 mass% to 5 mass% with respect to the magnetic material powder.
The method for molding the core is not particularly limited, and a method of pressure molding a mixture of magnetic material powder and resin using a mold, a method of combining this with polishing, and the like can be adopted. Further, a method of cutting out a molded product from a sheet formed of a mixture of magnetic material powder and resin by laser processing, dicing or the like may be adopted.
The heating temperature at which the resin is cured after molding may be determined according to the properties of the resin used, but can be approximately 150 ° C.
The degreasing temperature when the resin is removed after molding is set according to the decomposition temperature of the resin used, but is generally about 200 ° C. to 500 ° C. Further, the degreasing atmosphere is preferably superheated steam in order to prevent oxidation of the magnetic material powder. Further, the heat treatment after removing the resin may be performed in an air atmosphere or an inert gas atmosphere. Examples of the inert gas atmosphere include nitrogen, rare gases such as helium and argon, and vacuum. The heat treatment temperature can be 400 ° C. or higher or 500 ° C. or higher, and 850 ° C. or lower or 750 ° C. or lower. The heat treatment time can be 60 minutes or more when the heat treatment temperature is 650 ° C. or lower, and less than 60 minutes when the heat treatment temperature exceeds 650 ° C. When a mixture of powders having different compositions is used as the magnetic material powder, it is preferable to perform heat treatment at a relatively high temperature in an inert atmosphere from the viewpoint of removing strain in the core.

製造されたコアにおいては、磁性材料粒子同士が樹脂、ガラス又は酸化物等の結合剤によって結合されている。樹脂を硬化させて製造されたコアでは、磁性材料粒子が樹脂によって結合されており、耐衝撃性に優れたものとなる。他方、樹脂を除去後に熱処理して製造されたコアでは、磁性材料粒子がガラス又は酸化物で結合されており、耐熱性に優れたものとなる。 In the manufactured core, the magnetic material particles are bonded to each other by a binder such as resin, glass or oxide. In the core manufactured by curing the resin, the magnetic material particles are bonded by the resin, and the core has excellent impact resistance. On the other hand, in the core produced by heat treatment after removing the resin, the magnetic material particles are bonded with glass or oxide, and the core has excellent heat resistance.

[測定用試料の磁場(H)及び磁束密度(B)の測定]
本実施形態では、測定用試料に印加する磁場(H)と磁束密度(B)との関係を、振動試料型磁力計(VSM)により測定する。VSMは、試料外部から磁場を印加して測定を行うため、試料自体に電流を流す必要がない。したがって試料に導体を設けなくて済むため、試料が磁気飽和するまで電流を流しても導体が破壊しないように試料の構造を工夫する必要がなくなる。
[Measurement of magnetic field (H) and magnetic flux density (B) of measurement sample]
In this embodiment, the relationship between the magnetic field (H) applied to the measurement sample and the magnetic flux density (B) is measured by a vibrating sample magnetometer (VSM). Since the VSM applies a magnetic field from the outside of the sample for measurement, it is not necessary to pass a current through the sample itself. Therefore, since it is not necessary to provide a conductor in the sample, it is not necessary to devise the structure of the sample so that the conductor does not break even if a current is applied until the sample is magnetically saturated.

測定は、メジャーループ及び初磁化曲線の任意の点を起点としたマイナーループについて行う。
メジャーループの測定は、磁場の強さの変化に対する透磁率(μ)の変化が十分小さくなる最大印加磁場まで行う。最大印加磁場は、μの値が初透磁率から90%低下する(初期μの10%となる)磁場とすることが好ましい。最大印加磁場中では、試料が略磁気飽和しているとみなすことができる。測定毎の磁場の変化量は、試料の大きさなどにもよるが、5000A/m程度とするか、より細かくする場合は100A/m程度とする。シミュレーションの精度を高くするためには、測定毎の磁場の変化量を小さくする方がよいが、該変化量を小さくするほど測定点数が増加して測定に時間を要する。このため、おおよそ20点以上の測定データが得られるように測定毎の磁場変化量を設定すれば良く、該変化量を過剰に細かくする必要はない。
マイナーループの測定は、前述した最大印加磁場に至るまでの初磁化曲線から、任意の点数を選択して測定すればよい。μ−B曲線を表現するためには、測定点数を20点以上とすることが好ましく、30点以上とすることがより好ましい。測定点の間隔は均等にする必要はなく、特にμ値の大きく変化するところで細かく測定を行えばよい。また、その減磁幅は、初透磁率からの乖離がない磁場条件とする必要であり、500A/m〜2000A/mとすることが好ましい。500A/m以上とすることで、ノイズによる誤差を小さくすることができ、2000A/m以下とすることで、初透磁率からの乖離を抑えることができる。
The measurement is performed on the major loop and the minor loop starting from any point on the initial magnetization curve.
The measurement of the major loop is performed up to the maximum applied magnetic field in which the change in magnetic permeability (μ) with respect to the change in magnetic field strength becomes sufficiently small. The maximum applied magnetic field is preferably a magnetic field in which the value of μ is 90% lower than the initial magnetic permeability (10% of the initial μ). In the maximum applied magnetic field, the sample can be considered to be substantially magnetically saturated. The amount of change in the magnetic field for each measurement depends on the size of the sample and the like, but is set to about 5000 A / m, or about 100 A / m for finer measurement. In order to improve the accuracy of the simulation, it is better to reduce the amount of change in the magnetic field for each measurement, but as the amount of change is reduced, the number of measurement points increases and the measurement takes time. Therefore, the amount of change in the magnetic field for each measurement may be set so that measurement data of about 20 points or more can be obtained, and it is not necessary to make the amount of change excessively fine.
The minor loop may be measured by selecting an arbitrary score from the initial magnetization curve up to the maximum applied magnetic field described above. In order to express the μ-B curve, the number of measurement points is preferably 20 points or more, and more preferably 30 points or more. It is not necessary to make the intervals between the measurement points even, and the measurement may be performed finely especially where the μ value changes significantly. Further, the demagnetization width needs to be a magnetic field condition that does not deviate from the initial magnetic permeability, and is preferably 500 A / m to 2000 A / m. By setting the value to 500 A / m or more, the error due to noise can be reduced, and by setting the value to 2000 A / m or less, the deviation from the initial magnetic permeability can be suppressed.

[B−H曲線の算出]
VSMによって測定されたメジャーループの往復の値から、平均化されたB−H曲線を算出する。
[Calculation of BH curve]
An averaged BH curve is calculated from the round-trip value of the major loop measured by the VSM.

[μ−B曲線の算出]
VSMによって測定されたマイナーループの傾きから、各測定点における増分透磁率(ΔB/ΔH)を算出し、これと磁束密度との関係からμ−B曲線を算出する。
[Calculation of μ-B curve]
The incremental magnetic permeability (ΔB / ΔH) at each measurement point is calculated from the slope of the minor loop measured by the VSM, and the μ−B curve is calculated from the relationship between this and the magnetic flux density.

[反磁界補正]
前述した方法で算出されるB−H曲線及びμ−B曲線は、測定用試料の形状に起因する反磁界の影響(形状因子)を含むものとなる。そこで、B−H曲線及びμ−B曲線から反磁界の影響を取り除き、材料自体の特性をより多く反映したものとするために、本実施形態では反磁界補正を行う。反磁界補正は、測定用試料と同一の材料で形成された、すなわち同一組成、同一粒径、かつ同一密度とされたトロイダル状のコアを備えるコイル(以下、単に「トロイダル」と記載する。)を準備し、以下の要領で行う。なお、前述の同一粒径とは、平均粒径で±10%以内を意味し、例えば測定用試料と同一ロットの材料を用いることで、±5%以内とすることができる。また、前述の同一密度とは、±3%以内を意味し、例えば同一成形体から測定用試料及びトロイダル状のコアのそれぞれを加工して作ることで、±1%以内とすることができる。
B−H曲線の反磁界補正は、該曲線から算出されるH=0での微分透磁率(dB/dH)が、前記トロイダルについて実測した直流電流0Aでの透磁率に一致するように決定した反磁界係数を用いて行う。
また、μ−B曲線の反磁界補正は、H=0でのマイナーループの傾きが、前記トロイダルについて実測した直流電流0Aでの透磁率に一致するように反磁界係数を決定し、これを各マイナーループに反映させることで各測定点における透磁率を再計算することで行う。
[Demagnetic field correction]
The BH curve and the μB curve calculated by the method described above include the influence of the demagnetic field (shape factor) due to the shape of the sample for measurement. Therefore, in order to remove the influence of the demagnetic field from the BH curve and the μB curve and to reflect the characteristics of the material itself more, the demagnetic field correction is performed in this embodiment. The demagnetic field correction is a coil formed of the same material as the measurement sample, that is, a coil having a toroidal core having the same composition, the same particle size, and the same density (hereinafter, simply referred to as "toroidal"). Prepare and perform as follows. The above-mentioned same particle size means that the average particle size is within ± 10%, and can be within ± 5% by using, for example, the same lot of material as the measurement sample. Further, the above-mentioned same density means within ± 3%, and can be made within ± 1% by, for example, processing a measurement sample and a toroidal core from the same molded product.
The demagnetic field correction of the BH curve was determined so that the differential magnetic permeability (dB / dH) calculated from the curve at H = 0 matches the magnetic permeability at the DC current 0A actually measured for the toroidal. This is done using the demagnetic field coefficient.
Further, in the demagnetic field correction of the μ-B curve, the demagnetic field coefficient is determined so that the slope of the minor loop at H = 0 matches the magnetic permeability at the direct current 0A actually measured for the toroidal, and each of these is determined. It is performed by recalculating the magnetic permeability at each measurement point by reflecting it in the minor loop.

[有限要素法によるインダクタの特性計算]
本実施形態では、得られたB−H曲線及びμ−B曲線を基に、コイル部品のシミュレーションを行う。シミュレーションには有限要素法(FEM)を用い、コイル部品のサイズ及び導体寸法に基づいてモデルを作成した後、該モデルにB−H曲線及びμ−B曲線から得られる数値を適用することで行う。
シミュレーションにより、電流に対するインダクタンス等の各種特性の変化が得られる。シミュレーションは、単位体積当たりの電流値が20A/mm以上となるまで行うことが、コイル部品が磁気飽和した際の挙動が把握できる点で好ましい。
また、シミュレーションにより得られた結果を、実際のコイル部品について実測した結果と比較し、両者の差異が小さくなるようにB−H曲線及びμ−B曲線にフィッティングを掛けることが、シミュレーションの精度を向上することができる点で好ましい。
なお、前述した測定及び計算の一部又は全部は、専用又は汎用のコンピュータを用いて、プログラムにより実行されてもよい。
[Calculation of inductor characteristics by the finite element method]
In the present embodiment, the coil parts are simulated based on the obtained BH curve and μB curve. The simulation is performed by using the finite element method (FEM), creating a model based on the size and conductor dimensions of the coil parts, and then applying the numerical values obtained from the BH curve and μB curve to the model. ..
By simulation, changes in various characteristics such as inductance with respect to current can be obtained. It is preferable to perform the simulation until the current value per unit volume becomes 20 A / mm 3 or more, because the behavior when the coil component is magnetically saturated can be grasped.
In addition, the accuracy of the simulation can be improved by comparing the results obtained by the simulation with the results actually measured for the actual coil parts and fitting the BH curve and μB curve so that the difference between the two is small. It is preferable in that it can be improved.
In addition, a part or all of the above-mentioned measurement and calculation may be executed programmatically using a dedicated or general-purpose computer.

以下、実施例により本発明をさらに具体的に説明するが、本発明は該実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples.

[測定用試料及び反磁界補正用試料の作製]
磁性材料粉末として、平均粒径20μmのFe−Si−Al系合金(3.5質量%のSi及び1.0質量%のAlを含み、残部がFe及び不純物)を準備し、これにバインダーを加えた複合磁性材料をシート状に加工した。該シートから、棒状の測定用試料と反磁界補正用試料に用いるトロイダル状のコアとを作製した。
棒状の測定用試料は、前述のシートから、長軸4mm、短軸0.5mmとなるように切り出して作製した。
トロイダル状のコアは、前述のシートから、外径20mm、内径12mmとなるように打ち抜いて作製した。得られたコアの外周に、0.3mmφのウレタン被覆付きの導線を40回巻回して反磁界補正用試料とした。
[Preparation of measurement sample and demagnetic field correction sample]
As a magnetic material powder, a Fe-Si-Al alloy having an average particle size of 20 μm (containing 3.5% by mass of Si and 1.0% by mass of Al, and the balance is Fe and impurities) is prepared, and a binder is added thereto. The added composite magnetic material was processed into a sheet. From the sheet, a rod-shaped measurement sample and a toroidal-shaped core used for the demagnetic field correction sample were prepared.
The rod-shaped measurement sample was prepared by cutting out from the above-mentioned sheet so as to have a major axis of 4 mm and a minor axis of 0.5 mm.
The toroidal core was produced by punching from the above-mentioned sheet so that the outer diameter was 20 mm and the inner diameter was 12 mm. A 0.3 mmφ urethane-coated lead wire was wound around the outer circumference of the obtained core 40 times to prepare a sample for demagnetic field correction.

[B−H曲線及びμ−B曲線の算出]
まず、反磁界補正用試料であるトロイダルについて、LCRメータ(Keysight社製 E4980A)を用いて直流電流を0Aから10Aまでの範囲として透磁率およびその変化率を測定した。このときの交流信号は100kHz、2mAとした。得られた直流電流0Aでの透磁率の値を、以下の反磁界補正を行う際に使用した。
[Calculation of BH curve and μB curve]
First, for toroidal, which is a sample for demagnetic field correction, the magnetic permeability and the rate of change thereof were measured using an LCR meter (E4980A manufactured by Keysight) with a direct current in the range of 0A to 10A. The AC signal at this time was set to 100 kHz and 2 mA. The obtained value of magnetic permeability at a direct current of 0 A was used when performing the following demagnetic field correction.

次いで、棒状の磁性体について、VSM測定器(理研電子株式会社 BHV−35)を用いて、印加磁場±1000kA/mの範囲を1kA/m刻みでメジャーループ測定を行った。得られたメジャーループから、1000kA/mから0A/m、0A/mから−1000kA/m、−1000kA/mから0A/m及び0A/mから1000kA/mのB−H曲線を平均した。ここから0A/mから1000A/mでの微分透磁率を算出し、この値が前述したトロイダルの直流電流0Aでの透磁率と同じ値となるように反磁界係数を求め、それを用いてB−H曲線に補正を行うことで、形状因子を除去したB−H曲線を得た。得られたB−H曲線を図1に示す。図中には、トロイダルを用いた従来の測定方法で得られた結果も合わせて示す。
図1から、VSM測定器を用いた本発明では、磁性体が略磁気飽和するまでのB−H曲線が得られることが判る。
Next, for the rod-shaped magnetic material, a major loop measurement was performed in a range of an applied magnetic field of ± 1000 kA / m in 1 kA / m increments using a VSM measuring instrument (BHV-35, RIKEN Electronics Co., Ltd.). From the obtained major loops, BH curves of 1000 kA / m to 0 A / m, 0 A / m to −1000 kA / m, −1000 kA / m to 0 A / m and 0 A / m to 1000 kA / m were averaged. From this, the differential magnetic permeability from 0A / m to 1000A / m is calculated, and the demagnetic field coefficient is obtained so that this value becomes the same value as the magnetic permeability at the toroidal DC current of 0A described above, and B By correcting the −H curve, a B—H curve from which the shape factor was removed was obtained. The obtained BH curve is shown in FIG. The figure also shows the results obtained by the conventional measurement method using toroidal.
From FIG. 1, it can be seen that in the present invention using the VSM measuring instrument, a BH curve until the magnetic material is substantially magnetically saturated can be obtained.

また、棒状の磁性体について、VSM測定器を用いて、0A/mから1000kA/mまでの範囲にある30点で、磁場を印加した状態から1kA/mの減磁をしてマイナーループ測定を行った。そして、0A/mでのマイナーループの傾きが、前述したトロイダルの直流電流0Aでの透磁率と等しくなるように、各点での測定結果に対して反磁界補正を行って増分透磁率を計算し、μ−B曲線を算出した。得られたμ−B曲線を図2に示す。図中には、トロイダルを用いた従来の測定方法で得られた結果も合わせて示す。
図2から、VSM測定器を用いた本発明では、磁性体のμの値が初透磁率から90%以上低下する(初期μの10%以下となる)までのμ−B曲線が得られることが判る。
In addition, for rod-shaped magnetic materials, a VSM measuring instrument is used to demagnetize 1 kA / m from the state where a magnetic field is applied at 30 points in the range of 0 A / m to 1000 kA / m to perform minor loop measurement. went. Then, the incremental magnetic permeability is calculated by performing demagnetic correction on the measurement results at each point so that the inclination of the minor loop at 0 A / m becomes equal to the magnetic permeability of the toroidal DC current of 0 A described above. Then, the μ-B curve was calculated. The obtained μ-B curve is shown in FIG. The figure also shows the results obtained by the conventional measurement method using toroidal.
From FIG. 2, in the present invention using a VSM measuring instrument, it is possible to obtain a μ-B curve from the initial magnetic permeability to a decrease of 90% or more (10% or less of the initial μ) of the μ value of the magnetic material. I understand.

[コイル部品のシミュレーション]
得られたB−H曲線及びμ−B曲線の数値を基に、有限要素法によりコイル部品のシミュレーションを行った。シミュレーションのモデルは、外形寸法2.0mm×1.6mm×1.0mmのコアに、φ0.15mmのポリウレタン被覆銅線を6ターン巻回したコイルとした。シミュレーションの結果得られた、電流に対するインダクタンスの変化率の関係を図3に示す。図中には、トロイダルを用いた従来の測定方法で得られたB−H曲線及びμ−B曲線の数値に基づくシミュレーション結果も合わせて示す。
図3から、本発明によれば、コイル部品を流れる直流電流が小さい場合には、従来のシミュレーション結果によく一致する結果が得られること、及び従来の手法では計算が困難であった、コイル部品のインダクタンスが略低下しきってしまう大きな電流値までシミュレーションが可能となることが判る。つまり、本発明によれば、コイル部品が破壊する領域をシミュレーションにより知ることができるようになる。
[Simulation of coil parts]
Based on the obtained numerical values of the BH curve and the μB curve, the coil parts were simulated by the finite element method. The simulation model was a coil in which a polyurethane-coated copper wire having a diameter of 0.15 mm was wound around a core having external dimensions of 2.0 mm × 1.6 mm × 1.0 mm for 6 turns. FIG. 3 shows the relationship between the rate of change of inductance with respect to the current obtained as a result of the simulation. The figure also shows the simulation results based on the numerical values of the BH curve and the μB curve obtained by the conventional measurement method using toroidal.
From FIG. 3, according to the present invention, when the direct current flowing through the coil component is small, a result that is in good agreement with the conventional simulation result can be obtained, and the coil component is difficult to calculate by the conventional method. It can be seen that it is possible to simulate up to a large current value in which the inductance of the coil is almost completely reduced. That is, according to the present invention, the region where the coil component breaks can be known by simulation.

本発明によれば、飽和磁束密度が大きい磁性材料で形成されたコアを備えるコイル部品についても、磁気飽和するまでの特性ないし挙動を、簡便な方法で予測することができる。このため、大電流が流れた際のコイル部品の直流重畳特性及びこれが回路に及ぼす影響を容易に把握することができ、コイル部品の設計を効率良く行うことができる点で、本発明は有用なものである。
According to the present invention, even for a coil component having a core made of a magnetic material having a high saturation magnetic flux density, the characteristics or behavior until magnetic saturation can be predicted by a simple method. Therefore, the present invention is useful in that the DC superimposition characteristics of the coil component when a large current flows and the effect of this on the circuit can be easily grasped, and the coil component can be efficiently designed. It is a thing.

Claims (6)

飽和磁束密度が1.5T以上の磁性材料で形成されたコアを備えるコイル部品の特性予測方法であって、
前記磁性材料で形成され、アスペクト比が3以上である測定用試料を準備すること、
振動試料型磁力計(VSM)により、前記測定用試料に印加する磁場(H)と該試料の磁束密度(B)との関係を測定すること、
前記測定結果から、B−H曲線及びμ−B曲線を算出すること、
前記測定用試料と同一材料のトロイダル状のコアを備えるコイルを別途準備して、該コイルに通電することで磁場(H)と磁束密度(B)との関係を測定し、該コイルの直流電流0Aでの透磁率に、前記VSM測定から得られた、H=0A/mにおける微分透磁率及びマイナーループの傾きがそれぞれ一致するように反磁界係数を算出し、該反磁界係数により前記B−H曲線及び前記μ−B曲線を修正すること、並びに
前記B−H曲線及び前記μ−B曲線を用いて、有限要素法によりコイル部品の特性を計算すること、
を含む、コイル部品の特性予測方法。
A method for predicting the characteristics of a coil component having a core made of a magnetic material having a saturation magnetic flux density of 1.5 T or more.
To prepare a measurement sample formed of the magnetic material and having an aspect ratio of 3 or more.
To measure the relationship between the magnetic field (H) applied to the measurement sample and the magnetic flux density (B) of the sample with a vibrating sample magnetometer (VSM).
To calculate the BH curve and the μB curve from the measurement results,
A coil having a toroidal core made of the same material as the measurement sample is separately prepared, and the relationship between the magnetic field (H) and the magnetic flux density (B) is measured by energizing the coil, and the DC current of the coil is measured. The demagnetic field coefficient was calculated so that the magnetic permeability at 0A coincided with the differential magnetic permeability at H = 0A / m and the inclination of the minor loop obtained from the VSM measurement, and the demagnetic field coefficient was used to calculate the B-. Modifying the H-curve and the μ-B curve, and calculating the characteristics of the coil component by the finite element method using the B-H curve and the μ-B curve.
Methods for predicting the characteristics of coil components, including.
前記磁性材料が、Fe含有量が94mass%以上の金属磁性材料である、請求項1に記載のコイル部品の特性予測方法。 The method for predicting the characteristics of a coil component according to claim 1, wherein the magnetic material is a metallic magnetic material having an Fe content of 94 mass% or more. 前記磁性材料の初透磁率が10以下である、請求項1又は2に記載のコイル部品の特定予測方法。 The specific prediction method for a coil component according to claim 1 or 2, wherein the initial magnetic permeability of the magnetic material is 10 or less. 前記特性予測方法で得られたコイル部品の特性を、実際に作製したコイル部品の特性と比較し、両特性が一致するように前記B−H曲線及び前記μ−B曲線を修正することをさらに含む、請求項1〜3のいずれか1項に記載のインダクタの特性予測方法。 The characteristics of the coil component obtained by the characteristic prediction method are compared with the characteristics of the actually manufactured coil component, and the BH curve and the μB curve are further modified so that both characteristics match. The method for predicting characteristics of an inductor according to any one of claims 1 to 3, which includes. 前記VSMによる測定は、透磁率が初透磁率から90%低下するまでの範囲で行う、請求項1〜4のいずれか1項に記載のコイル部品の特性予測方法。 The method for predicting the characteristics of a coil component according to any one of claims 1 to 4, wherein the measurement by the VSM is performed in a range from the initial magnetic permeability to a decrease of 90%. 前記コイル部品の特性計算を、単位体積当たりの電流値が20A/mm以上の条件で行う、請求項1〜5のいずれかに記載のコイル部品の特性予測方法。
The method for predicting the characteristics of a coil component according to any one of claims 1 to 5, wherein the characteristic calculation of the coil component is performed under the condition that the current value per unit volume is 20 A / mm 3 or more.
JP2019056038A 2019-03-25 2019-03-25 Method of predicting characteristics of coil component Pending JP2020161514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056038A JP2020161514A (en) 2019-03-25 2019-03-25 Method of predicting characteristics of coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056038A JP2020161514A (en) 2019-03-25 2019-03-25 Method of predicting characteristics of coil component

Publications (1)

Publication Number Publication Date
JP2020161514A true JP2020161514A (en) 2020-10-01

Family

ID=72639797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056038A Pending JP2020161514A (en) 2019-03-25 2019-03-25 Method of predicting characteristics of coil component

Country Status (1)

Country Link
JP (1) JP2020161514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167329A (en) * 2021-11-26 2022-03-11 中国铁道科学研究院集团有限公司 Fitting extrapolation method for saturation magnetization curve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167329A (en) * 2021-11-26 2022-03-11 中国铁道科学研究院集团有限公司 Fitting extrapolation method for saturation magnetization curve
CN114167329B (en) * 2021-11-26 2023-10-20 中国铁道科学研究院集团有限公司 Fitting extrapolation method of saturated magnetization curve

Similar Documents

Publication Publication Date Title
JP4828229B2 (en) High frequency magnetic core and inductance component using the same
US7501925B2 (en) Magnetic core using amorphous soft magnetic alloy
US6507262B1 (en) Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
EP1840906A1 (en) Magnetic core for current transformer, current transformer and watthour meter
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2011171772A (en) Gapped amorphous metal-based magnetic core
US20080092366A1 (en) Current Transformer Core and Method for Producing a Current Transformer Core
JPWO2002021543A1 (en) Permanent magnet, magnetic core using it as a magnet for magnetic bias, and inductance component using the same
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP2011139075A (en) High performance bulk metal magnetic component
EP2482291A1 (en) Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
JP6245392B1 (en) Soft magnetic alloy
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP7128439B2 (en) Dust core and inductor element
JP2020161514A (en) Method of predicting characteristics of coil component
JP2005213621A (en) Soft magnetic material and powder magnetic core
JP4909312B2 (en) Soft magnetic material for dust core and dust core
KR20150038299A (en) Iron powder for powder magnetic core and process for producing powder magnetic core
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
US11651892B2 (en) Method for producing composite magnetic body, magnetic powder, composite magnetic body and coil component
JP2006294733A (en) Inductor and its manufacturing method
JP2017098482A (en) Magnetic material and method for manufacturing the same
JP2010245416A (en) Dc reactor bond magnet, method of manufacturing the same, and bond magnet source material powder
TWI382432B (en) Inductor
KR102149296B1 (en) Soft magnetic core having excellent dc bias characteristics and method for manufacturing the same