JP2020160662A - Installation support apparatus and installation support program - Google Patents

Installation support apparatus and installation support program Download PDF

Info

Publication number
JP2020160662A
JP2020160662A JP2019057958A JP2019057958A JP2020160662A JP 2020160662 A JP2020160662 A JP 2020160662A JP 2019057958 A JP2019057958 A JP 2019057958A JP 2019057958 A JP2019057958 A JP 2019057958A JP 2020160662 A JP2020160662 A JP 2020160662A
Authority
JP
Japan
Prior art keywords
space
monitoring
monitored
installation
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019057958A
Other languages
Japanese (ja)
Other versions
JP7285100B2 (en
Inventor
一徳 大西
Kazunori Onishi
一徳 大西
利彦 櫻井
Toshihiko Sakurai
利彦 櫻井
昇平 國松
Shohei Kunimatsu
昇平 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secom Co Ltd
Original Assignee
Secom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secom Co Ltd filed Critical Secom Co Ltd
Priority to JP2019057958A priority Critical patent/JP7285100B2/en
Publication of JP2020160662A publication Critical patent/JP2020160662A/en
Application granted granted Critical
Publication of JP7285100B2 publication Critical patent/JP7285100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To determine an installation candidate space of a camera suitable for photographing a monitoring object surface at a proper angle.SOLUTION: An installation support apparatus 10 includes: a selection receiving section 22 which receives selection of a monitoring object surface 32 to be a monitoring object of a plurality of surfaces for forming a three-dimensional model of a monitoring object 30; a reference straight line setting section 23 which sets a reference straight line 33 extending in a recommended monitoring direction set to the monitoring object surface 32 from a monitoring point 37 on the selected monitoring object surface 32; and an installation candidate space calculation section 24 which calculates a conical space 34 formed by a half straight line forming an acute angle of an allowable angle θ or less with the reference straight line 33 by defining the monitoring point 37 as one end as an installation candidate space of a camera for photographing the monitoring object surface 32.SELECTED DRAWING: Figure 2

Description

本発明は、設置支援装置及び設置支援プログラムに関する。 The present invention relates to an installation support device and an installation support program.

監視カメラを設置する際には、所望の監視目的を達成するための監視カメラの配置条件(設置位置・姿勢・画角)を事前に計画(プランニング)する。例えば、監視目的を達成するために監視空間を死角なく撮影する必要があれば、死角が生じないよう監視カメラの配置条件を決める。配置条件は一般に多岐におよぶため、人手で行うプランニングでは、多大な労力を要し、またプランニング実施者の主観や経験に依存してしまう。 When installing a surveillance camera, the placement conditions (installation position, posture, angle of view) of the surveillance camera to achieve the desired surveillance purpose are planned (planned) in advance. For example, if it is necessary to photograph the surveillance space without blind spots in order to achieve the surveillance purpose, the arrangement conditions of the surveillance cameras are determined so that the blind spots do not occur. Since the placement conditions are generally diverse, manual planning requires a great deal of labor and depends on the subjectivity and experience of the planner.

そこで本出願人は、配置条件に基づいてカメラが撮影可能な空間範囲を求めて監視空間内の死角が少なくなるほど高くなる評価値を求め、配置条件を変更しつつ最も高い評価値となる配置条件を探索することにより、プランニング実施者の経験に依存することなく死角の少ない配置条件を容易に求める技術を提案した(下記特許文献1)。 Therefore, the applicant finds the space range in which the camera can take a picture based on the placement condition, finds the evaluation value that becomes higher as the blind spot in the monitoring space decreases, and changes the placement condition to obtain the highest evaluation value. By searching for, we proposed a technique to easily obtain an arrangement condition with few blind spots without depending on the experience of the planner (Patent Document 1 below).

特開2018−128961号公報Japanese Unexamined Patent Publication No. 2018-128961

しかしながら、特許文献1の発明では、特定の監視対象を確実に撮影できるプランニングができないことがあった。特に、特許文献1の発明で求めた配置条件では、監視対象の特定の面(監視対象面)を適切な角度から撮影できるとは限らなかった。
本発明は、上記の問題点を鑑みてなされたものであり、監視対象面を適切な角度で撮影するのに適したカメラの設置候補空間を求めることを目的とする。
However, in the invention of Patent Document 1, there are cases where it is not possible to make a plan that can reliably photograph a specific monitoring target. In particular, under the arrangement conditions obtained in the invention of Patent Document 1, it is not always possible to photograph a specific surface to be monitored (monitored surface) from an appropriate angle.
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a camera installation candidate space suitable for photographing a monitored surface at an appropriate angle.

本発明の一形態による設置支援装置は、監視対象物の3次元モデルを形成する複数の面のうち監視対象とする監視対象面の選択を受け付ける選択受付部と、選択された監視対象面上の監視点から当該監視対象面に設定された推奨監視方向に伸びる基準直線を設定する基準直線設定部と、監視点を一端とし基準直線と許容角度以下の鋭角をなす半直線の軌跡によって形成される錐状空間を、監視対象面を撮影するカメラの設置候補空間として算出する設置候補空間算出部と、を備える。 The installation support device according to one embodiment of the present invention has a selection reception unit that accepts selection of a monitoring target surface to be monitored from a plurality of surfaces forming a three-dimensional model of a monitoring object, and a selection reception unit on the selected monitoring target surface. It is formed by a reference straight line setting unit that sets a reference straight line extending from the monitoring point to the recommended monitoring direction set on the monitoring target surface, and a half-line locus that has a monitoring point as one end and forms a sharp angle equal to or less than the allowable angle. It is provided with an installation candidate space calculation unit that calculates the cone-shaped space as an installation candidate space for a camera that photographs the surface to be monitored.

選択受付部は、複数の監視対象面の選択を受け付けてよい。設置候補空間算出部は、複数の監視対象面の基準直線についてそれぞれ算出した錐状空間が重複する空間を設置候補空間として算出してよい。
選択受付部は、複数の監視対象面の選択を受け付けてよい。設置候補空間算出部は、複数の監視対象面それぞれに設定された推奨監視方向を統合した統合推奨監視方向を算出し、複数の監視対象面のそれぞれから統合推奨監視方向に伸びる基準直線についてそれぞれ算出した錐状空間が重複する空間を設置候補空間として算出してよい。
The selection reception unit may accept the selection of a plurality of monitored surfaces. The installation candidate space calculation unit may calculate as the installation candidate space a space in which the cone-shaped spaces calculated for the reference straight lines of the plurality of monitored surfaces overlap each other.
The selection reception unit may accept the selection of a plurality of monitored surfaces. The installation candidate space calculation unit calculates the integrated recommended monitoring direction that integrates the recommended monitoring directions set for each of the multiple monitoring target surfaces, and calculates each reference straight line extending from each of the multiple monitoring target surfaces in the integrated recommended monitoring direction. A space in which the formed cone-shaped spaces overlap may be calculated as an installation candidate space.

設置候補空間算出部は、監視対象物の周囲の構造物の位置と形状とを表す構造物情報と錐状空間とを用いて設置候補空間を算出してよい。
設置支援装置は、監視対象物の周囲の構造物の位置と形状とを表す構造物情報と設置候補空間とを用いてカメラの取付候補領域を算出する取付候補領域算出部を更に備えてもよい。
推奨監視方向は、監視対象面の法線であってもよい。
推奨監視方向及び許容角度の少なくとも一方を、監視対象面の材質及び監視空間内の光源の位置のうち少なくとも一方によって規定してもよい。
The installation candidate space calculation unit may calculate the installation candidate space by using the structure information indicating the position and shape of the structure around the monitored object and the conical space.
The installation support device may further include a mounting candidate area calculation unit that calculates a camera mounting candidate area using the structure information indicating the position and shape of the structure around the monitored object and the installation candidate space. ..
The recommended monitoring direction may be the normal of the surface to be monitored.
At least one of the recommended monitoring direction and the allowable angle may be specified by at least one of the material of the surface to be monitored and the position of the light source in the monitoring space.

本発明の他の形態による設置支援プログラムは、コンピュータに、監視対象物の3次元モデルを形成する複数の面のうち監視対象とする監視対象面の選択を受け付ける選択受付ステップと、選択された監視対象面上の監視点から当該監視対象面に設定された推奨監視方向に伸びる基準直線を設定する基準直線設定ステップと、監視点を一端とし基準直線と許容角度以下の鋭角をなす半直線の軌跡によって形成される錐状空間を、監視対象面を撮影するカメラの設置候補空間として算出する設置候補空間算出ステップと、を実行させる。 The installation support program according to another embodiment of the present invention includes a selection reception step for accepting the selection of the monitored surface to be monitored from the plurality of surfaces forming the three-dimensional model of the monitored object, and the selected monitoring. A reference straight line setting step for setting a reference straight line extending from a monitoring point on the target surface to the recommended monitoring direction set on the monitoring target surface, and a trajectory of a half straight line forming a sharp angle less than the allowable angle with the reference straight line with the monitoring point as one end. The installation candidate space calculation step of calculating the conical space formed by the above as the installation candidate space of the camera for photographing the monitored surface is executed.

本発明によれば、監視対象面を適切な角度で撮影するのに適したカメラの設置候補空間を求めることができる。 According to the present invention, it is possible to obtain a camera installation candidate space suitable for photographing the monitored surface at an appropriate angle.

本発明の実施形態の設置支援装置の一例の概略構成図である。It is a schematic block diagram of an example of the installation support device of the embodiment of this invention. 本発明の実施形態による設置支援方法の一例の説明図である。It is explanatory drawing of an example of the installation support method by embodiment of this invention. 基準直線の設定例の説明図である。It is explanatory drawing of the setting example of a reference straight line. (a)〜(c)は、基準直線のその他の設定例の説明図である。(A) to (c) are explanatory views of other setting examples of a reference straight line. (a)及び(b)は、許容角度のその他の設定例の説明図である。(A) and (b) are explanatory views of other setting examples of permissible angles. カメラの設置候補空間及び取付候補領域の算出方法の一例の説明図である。It is explanatory drawing of an example of the calculation method of the installation candidate space and the installation candidate area of a camera. 本発明の第1実施形態による設置支援方法の一例のフローチャートである。It is a flowchart of an example of the installation support method by 1st Embodiment of this invention. 第2実施形態における設置候補空間の算出方法の一例の説明図である。It is explanatory drawing of an example of the calculation method of the installation candidate space in 2nd Embodiment. (a)〜(c)は、第3実施形態における設置候補空間の算出方法の一例の説明図である。(A) to (c) are explanatory views of an example of the calculation method of the installation candidate space in the 3rd Embodiment.

以下において、図面を参照して本発明の実施形態を説明する。なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments of the present invention shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the structure, arrangement, etc. of components. Is not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

(第1実施形態)
(構成)
図1を参照する。実施形態の設置支援装置10は、例えばコンピュータにより構成され、記憶部11と、制御部12とを備える。
記憶部11は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶部11は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
(First Embodiment)
(Constitution)
See FIG. The installation support device 10 of the embodiment is composed of, for example, a computer, and includes a storage unit 11 and a control unit 12.
The storage unit 11 may include any of a semiconductor storage device, a magnetic storage device, and an optical storage device. The storage unit 11 may include a memory such as a register, a cache memory, a ROM (Read Only Memory) and a RAM (Random Access Memory) used as a main storage device.

制御部12は、例えば、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のプロセッサと、その周辺回路によって構成される。
以下に説明する制御部12の機能は、例えば、記憶部11に格納されたコンピュータプログラムである設置支援プログラム20を、制御部12が備えるプロセッサが実行することによって実現される。
The control unit 12 is composed of, for example, a processor such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit), and peripheral circuits thereof.
The function of the control unit 12 described below is realized, for example, by executing the installation support program 20, which is a computer program stored in the storage unit 11, by the processor included in the control unit 12.

なお、入力装置13は、設置支援装置10の動作を制御するために、カメラプランニングの実施者や、監視従事者、管理者など(以下、「プランニング実施者等」と表記する)が操作するマウスやキーボードなどである。入力装置13は設置支援装置10に接続され、入力装置13から各種情報が設置支援装置10に入力される。また、出力装置14は、設置支援装置10が算出したカメラの設置候補空間や取付候補領域の視覚情報を出力するディスプレイ、プロジェクタ、プリンタなどである。 The input device 13 is a mouse operated by a camera planning implementer, a monitoring worker, an administrator, or the like (hereinafter, referred to as “planning implementer, etc.”) in order to control the operation of the installation support device 10. And keyboards. The input device 13 is connected to the installation support device 10, and various information is input to the installation support device 10 from the input device 13. Further, the output device 14 is a display, a projector, a printer, or the like that outputs visual information of a camera installation candidate space or a mounting candidate area calculated by the installation support device 10.

設置支援装置10は、特定の監視対象物を撮影可能なカメラの設置候補空間と取付候補領域を算出する。設置候補空間は、監視対象物を撮影可能なカメラの視点(光学中心)の3次元の空間範囲である。また、取付候補領域は、監視対象物を撮影可能なカメラを監視対象物の周囲の構造物の表面に取り付ける場合の取付位置を表す2次元領域である。
図2を参照する。いま、屋外空間や、構造物によって形成される屋内空間等である監視空間31内に、監視対象物30が存在している場合を想定する。
監視対象物30を撮影するカメラを設置する場合、たとえ監視対象物30が撮影できたとしても、監視すべき面が見えづらいことがある。例えば、監視すべき面と視線がほとんど平行である場合は、面の内容を監視できない。
The installation support device 10 calculates an installation candidate space and an installation candidate area of a camera capable of photographing a specific monitoring object. The installation candidate space is a three-dimensional spatial range of the viewpoint (optical center) of the camera capable of photographing the monitored object. Further, the mounting candidate region is a two-dimensional region representing a mounting position when a camera capable of photographing the monitored object is mounted on the surface of a structure around the monitored object.
See FIG. Now, it is assumed that the monitored object 30 exists in the monitoring space 31 which is an outdoor space, an indoor space formed by a structure, or the like.
When a camera for photographing the monitored object 30 is installed, it may be difficult to see the surface to be monitored even if the monitored object 30 can be photographed. For example, if the surface to be monitored and the line of sight are almost parallel, the contents of the surface cannot be monitored.

そこで、設置支援装置10は、監視対象物30の3次元モデルを形成する複数の面のうち監視対象とする監視対象面32の選択を受け付ける。
そして、設置支援装置10は、選択された監視対象面32上の監視点37から監視対象面32に設定された推奨監視方向に伸びる基準直線33を設定する。
Therefore, the installation support device 10 accepts the selection of the monitored surface 32 to be monitored from the plurality of surfaces forming the three-dimensional model of the monitored object 30.
Then, the installation support device 10 sets a reference straight line 33 extending from the monitoring point 37 on the selected monitoring target surface 32 in the recommended monitoring direction set on the monitoring target surface 32.

設置支援装置10は、監視点37を一端とし基準直線33と許容角度θの鋭角をなす半直線の軌跡により囲まれる空間のうち基準直線33が含まれる錐状空間34を、監視対象面を撮影するカメラの設置候補空間として算出する。
設置支援装置10は、監視対象物の周囲の構造物(例えば天井35)の表面のうち、設置候補空間34と接する領域36を、カメラの取付候補領域として算出する。
これにより設置支援装置10は、監視対象面32を適切な角度で撮影するのに適したカメラの設置候補空間及び取付候補領域を算出できる。
The installation support device 10 photographs the surface to be monitored in the conical space 34 including the reference straight line 33 among the spaces surrounded by the locus of the semi-straight line forming the acute angle of the reference straight line 33 and the allowable angle θ with the monitoring point 37 as one end. Calculated as a candidate space for installing a camera.
The installation support device 10 calculates the area 36 in contact with the installation candidate space 34 on the surface of the structure (for example, the ceiling 35) around the monitored object as the camera mounting candidate area.
As a result, the installation support device 10 can calculate the installation candidate space and the installation candidate area of the camera suitable for photographing the monitored surface 32 at an appropriate angle.

以下、設置支援装置10の詳細を説明する。図1を参照する。記憶部11には、上述の設置支援プログラム20のほか、構造物情報21が格納されている。
構造物情報21は、監視空間31に存在する現実世界の構造物、地面、障害物(什器,樹木等)などの物体の位置、形状、構造などを表す3次元の幾何形状データ(すなわち3次元モデル)である。図2の例では、構造物情報21は、監視空間31内の物体である監視対象物30や構造物である天井35の幾何形状データを含んでよい。
The details of the installation support device 10 will be described below. See FIG. In addition to the above-mentioned installation support program 20, the storage unit 11 stores the structure information 21.
The structure information 21 is three-dimensional geometric shape data (that is, three-dimensional) representing the position, shape, structure, and the like of an object such as a real-world structure, the ground, and obstacles (furniture, trees, etc.) existing in the monitoring space 31. Model). In the example of FIG. 2, the structure information 21 may include the geometric shape data of the monitored object 30 which is an object in the monitoring space 31 and the ceiling 35 which is a structure.

構造物情報21を生成するための幾何形状データは、3次元CADやBIM(Building Information Modeling)で作成されたものでもよいし、3次元レーザースキャナー等により監視空間に存在する物体の3次元形状を取り込んだデータでもよい。構造物情報21を生成するための幾何形状データは、航空機からステレオ撮影やレーザ測距を行うことによって作成された高さ情報も含む立体形状をポリゴンデータによって表したデータであってもよい。 The geometric shape data for generating the structure information 21 may be created by 3D CAD or BIM (Building Information Modeling), or a 3D shape of an object existing in the monitoring space by a 3D laser scanner or the like. The captured data may be used. The geometric shape data for generating the structure information 21 may be data representing a three-dimensional shape including height information created by performing stereo imaging or laser ranging from an aircraft by polygon data.

また、構造物情報21は、監視空間31に存在する構造物、地面、物体の材質情報や、監視空間31内の光源の位置及び照射方向の情報を含んでもよい。また、構造物情報21は、監視空間31に存在する構造物、地面、物体について、上述の推奨監視方向や許容角度θなどの属性データを含んでもよい。
このような構造物情報21は、プランニング実施者等により入力装置13から設定登録されることにより記憶部11に記憶される。
Further, the structure information 21 may include material information of the structure, the ground, and an object existing in the monitoring space 31, and information on the position and irradiation direction of the light source in the monitoring space 31. Further, the structure information 21 may include attribute data such as the above-mentioned recommended monitoring direction and allowable angle θ for the structure, the ground, and the object existing in the monitoring space 31.
Such structure information 21 is stored in the storage unit 11 by being set and registered from the input device 13 by a planner or the like.

制御部12は、記憶部11に記憶された設置支援プログラム20を読み出して実行し、選択受付部22、基準直線設定部23、設置候補空間算出部24、及び取付候補領域算出部25として機能する。
選択受付部22は、監視対象物30の3次元モデルを形成する複数の面のうち監視対象とする監視対象面32の選択を受け付ける。プランニング実施者は、入力装置13を用いて監視対象面32を選択する。
The control unit 12 reads and executes the installation support program 20 stored in the storage unit 11, and functions as a selection reception unit 22, a reference straight line setting unit 23, an installation candidate space calculation unit 24, and an installation candidate area calculation unit 25. ..
The selection reception unit 22 receives the selection of the monitoring target surface 32 to be monitored from among the plurality of surfaces forming the three-dimensional model of the monitoring object 30. The planner selects the monitored surface 32 by using the input device 13.

例えばプランニング実施者は、構造物情報21に含まれる監視対象物30の3次元モデルの所定の面(例えば所定のポリゴン)を、監視対象面32として選択してよい。
なお、構造物情報21に含まれるデータ以外の面を選択してもよい。例えば、プランニング実施者は、監視対象物として通行者を想定し、入力装置13を用いて通行者の体表面を模擬した3次元データ(例えばポリゴン)を追加して、これを監視対象面として選択してもよい。
For example, the planner may select a predetermined surface (for example, a predetermined polygon) of the three-dimensional model of the monitored object 30 included in the structure information 21 as the monitored object surface 32.
A surface other than the data included in the structure information 21 may be selected. For example, the planner assumes a passerby as a monitoring target, adds three-dimensional data (for example, a polygon) simulating the body surface of the passerby using the input device 13, and selects this as the monitoring target surface. You may.

基準直線設定部23は、監視対象面32を監視すべき方向として、基準直線33を設定する。
例えば、監視対象物の3次元モデルを構成する面のそれぞれに推奨監視方向の属性データを付加しておき、選択された監視対象面32の推奨監視方向に伸びる基準直線を設定してもよい。また、プランニング実施者が入力装置13を用いて推奨監視方向を入力して、この推奨監視方向に伸びる基準直線を設定してもよい。なお、推奨監視方向は監視対象物の外側に向かう方向である。
図3を参照する。複数の方向から監視が可能な場合には、単一の監視対象面32に対して複数の基準直線33a〜33cを設定してもよい。この場合には、基準直線33a〜33cについてそれぞれ算出された錐状空間34a〜34cの和が設置候補空間となる。
The reference straight line setting unit 23 sets the reference straight line 33 as the direction in which the monitored surface 32 should be monitored.
For example, attribute data of the recommended monitoring direction may be added to each of the surfaces constituting the three-dimensional model of the monitored object, and a reference straight line extending in the recommended monitoring direction of the selected monitored object surface 32 may be set. Further, the planner may input the recommended monitoring direction using the input device 13 and set a reference straight line extending in the recommended monitoring direction. The recommended monitoring direction is the direction toward the outside of the monitored object.
See FIG. When monitoring is possible from a plurality of directions, a plurality of reference lines 33a to 33c may be set for a single monitored surface 32. In this case, the sum of the cone-shaped spaces 34a to 34c calculated for the reference straight lines 33a to 33c is the installation candidate space.

また、推奨監視方向を、監視対象面32の材質及び監視空間31内の光源の位置のうち少なくとも一方によって設定してもよい。
図4の(a)を参照する。例えば推奨監視方向は、監視対象面32の材質に応じて設定してもよい。例えばカメラ40には、光源41を備えるものがある。破線42は、光源41による光線を示す。
監視対象面32の材質が光を反射しやすい場合(例えば鏡面反射率が高い場合)、監視対象面32の反射光がカメラ40の光学系に入射し監視対象面32が見えづらくなる恐れがある。したがって、このような場合には、例えば監視対象面32の法線方向nとのなす角が角度閾値φ1(>φ)よりも大きくなるように推奨監視方向を設定する。
Further, the recommended monitoring direction may be set by at least one of the material of the monitoring target surface 32 and the position of the light source in the monitoring space 31.
See (a) in FIG. For example, the recommended monitoring direction may be set according to the material of the surface to be monitored 32. For example, some cameras 40 include a light source 41. The broken line 42 indicates a light beam from the light source 41.
When the material of the monitoring target surface 32 easily reflects light (for example, when the mirror surface reflectance is high), the reflected light of the monitoring target surface 32 may enter the optical system of the camera 40, making it difficult to see the monitoring target surface 32. .. Therefore, in such a case, for example, the recommended monitoring direction is set so that the angle formed by the monitoring target surface 32 with the normal direction n is larger than the angle threshold value φ1 (> φ).

図4の(b)を参照する。例えば監視対象面32の近くに光源43が存在し、監視対象面32の材質が光を反射しやすい場合も同様の問題が発生する恐れがある。
この場合には、例えば入射方向44から入射する光源43の光線の正反射方向45とのなす角が角度閾値φ1よりも大きくなるように推奨監視方向を設定してよい。
See (b) in FIG. For example, when the light source 43 exists near the monitored surface 32 and the material of the monitored surface 32 easily reflects light, the same problem may occur.
In this case, for example, the recommended monitoring direction may be set so that the angle formed by the light beam of the light source 43 incident from the incident direction 44 with the specular reflection direction 45 is larger than the angle threshold value φ1.

図4の(c)を参照する。例えば、監視対象面32の近くに存在する光源43の方向と監視方向が近い場合にも同様の問題が発生する恐れがある。
この場合には、例えば光源43からの光線の入射方向44とのなす角が角度閾値φ1よりも大きくなるように推奨監視方向を設定してよい。
See (c) of FIG. For example, the same problem may occur when the direction of the light source 43 existing near the surface to be monitored 32 is close to the direction of monitoring.
In this case, for example, the recommended monitoring direction may be set so that the angle formed by the light beam from the light source 43 with the incident direction 44 is larger than the angle threshold value φ1.

次に基準直線設定部23は、監視対象面32を撮影する方向が、基準直線33からどれくらいずれてよいかを定める許容角度θを設定する。
例えば、監視対象面32の構造物情報21に許容角度θ(0°≧θ>90°)の属性データが付加されていれば、この属性データに従って許容角度θを設定してよい。また、プランニング実施者が入力装置13を用いて入力すれば、この入力に従って許容角度θを設定してもよい。
Next, the reference straight line setting unit 23 sets an allowable angle θ that determines how much the direction in which the monitored surface 32 is photographed is from the reference straight line 33.
For example, if the attribute data of the permissible angle θ (0 ° ≧ θ> 90 °) is added to the structure information 21 of the monitored surface 32, the permissible angle θ may be set according to this attribute data. Further, if the planner inputs using the input device 13, the permissible angle θ may be set according to this input.

また、許容角度θを、監視対象面32の材質及び監視空間31内の光源の位置のうち少なくとも一方によって設定してもよい。
例えば、監視対象面32が液晶ディスプレイにおける液晶画面である場合、当該液晶画面の視野角を規定する材質(又は視野角自体)を属性データとして記憶しておき、当該属性データに基づいて当該視野角内にカメラ40の視線が含まれるように許容角度を設定する。これにより液晶画面の表示を適切に確認できる。
Further, the permissible angle θ may be set by at least one of the material of the monitoring target surface 32 and the position of the light source in the monitoring space 31.
For example, when the surface to be monitored 32 is a liquid crystal screen in a liquid crystal display, the material (or the viewing angle itself) that defines the viewing angle of the liquid crystal screen is stored as attribute data, and the viewing angle is based on the attribute data. The permissible angle is set so that the line of sight of the camera 40 is included in the inside. As a result, the display on the liquid crystal screen can be properly confirmed.

また、監視対象面32の近くに撮影の邪魔になる光源43が存在し、監視対象面32の材質が光を反射しやすい場合には、例えば当該光源43からの光線が監視対象面32に正反射する方向に推奨監視方向を設定しないように許容角度を小さく設定する。さらに、できるだけカメラ40の視野内に光線が入らないように許容角度を小さく設定してもよい。 Further, when there is a light source 43 that interferes with shooting near the monitoring target surface 32 and the material of the monitoring target surface 32 easily reflects light, for example, the light beam from the light source 43 is positive on the monitoring target surface 32. Set a small allowable angle so that the recommended monitoring direction is not set in the reflection direction. Further, the allowable angle may be set as small as possible so that the light rays do not enter the field of view of the camera 40 as much as possible.

また、例えば火災や侵入異常等を示す警告ランプを光源43とし、当該光源43からの光線を鏡面反射する監視対象面32越しに警告ランプを撮影して異常検知したい場合、当該光源43の反射面となる監視対象面32の材質及び光源43の位置を考慮して、光源43からの光線の正反射方向となるよう推奨監視方向を設定するとともに、許容角度が小さくなるよう設定してもよい。 Further, for example, when a warning lamp indicating a fire or an intrusion abnormality is used as a light source 43 and a warning lamp is photographed through a monitoring target surface 32 that mirror-reflects a light ray from the light source 43 to detect an abnormality, the reflecting surface of the light source 43 is used. In consideration of the material of the monitoring target surface 32 and the position of the light source 43, the recommended monitoring direction may be set so as to be the specular reflection direction of the light beam from the light source 43, and the allowable angle may be set to be small.

さらに、許容角度は単一の基準直線33に対して常に一定でなくともよい。図5の(a)及び図5の(b)を参照する。例えば、許容角度は、最大値θ1と最小値θ2との間で変化してもよい。
例えば、基準直線33をZ軸とする左手系または右手系の座標系を定め、基準直線33周りの方位角をX軸から半時計回りの角度ψで規定し、各方位角ψにおけるそれぞれの許容角度θの大きさを設定してもよい。各方位角ψにおける許容角度θは、例えば監視対象面32の材質等の属性データや、光源等の構造物情報21に基づいて設定してもよく、プランニング実施者が入力装置13を用いて設定してもよい。
Further, the permissible angle does not have to be always constant with respect to a single reference line 33. See (a) in FIG. 5 and (b) in FIG. For example, the permissible angle may vary between the maximum value θ1 and the minimum value θ2.
For example, the coordinate system of the left-handed system or the right-handed system with the reference straight line 33 as the Z axis is defined, the azimuth angle around the reference straight line 33 is defined by the angle ψ counterclockwise from the X axis, and each allowable angle ψ is defined. The magnitude of the angle θ may be set. The permissible angle θ at each azimuth angle ψ may be set based on, for example, attribute data such as the material of the surface to be monitored 32 or structure information 21 such as a light source, and is set by the planner using the input device 13. You may.

さらに、基準直線設定部23は、監視対象面32上に基準直線33の通過点となる監視点37を設定する。例えば設置候補空間算出部24は、監視対象面32の重心または中心を監視点37として設定してよい。プランニング実施者が入力装置13を用いて監視点37を設定してもよい。 Further, the reference straight line setting unit 23 sets a monitoring point 37 which is a passing point of the reference straight line 33 on the monitoring target surface 32. For example, the installation candidate space calculation unit 24 may set the center of gravity or the center of the monitored surface 32 as the monitoring point 37. The planner may set the monitoring point 37 using the input device 13.

図1を参照する。基準直線33、許容角度θ、監視点37が設定されると、設置候補空間算出部24は、監視点37から推奨監視方向へ基準直線33を伸ばし、この基準直線33を円錐の回転軸とみなして錐体を算出する。例えば、設置候補空間算出部24は、許容角度θの2倍の頂角を有する円錐を算出する。そして、算出した錐体を錐状空間34とする。 See FIG. When the reference straight line 33, the allowable angle θ, and the monitoring point 37 are set, the installation candidate space calculation unit 24 extends the reference straight line 33 from the monitoring point 37 in the recommended monitoring direction, and regards the reference straight line 33 as the rotation axis of the cone. To calculate the cone. For example, the installation candidate space calculation unit 24 calculates a cone having an apex angle twice the allowable angle θ. Then, the calculated cone is defined as the cone-shaped space 34.

すなわち、設置候補空間算出部24は、監視点37を一端として推奨監視方向へ伸びる基準直線33と許容角度θ以下の鋭角をなす半直線の軌跡によって形成される錐状空間34を算出する。推奨監視方向は監視対象物の外側に向かう方向であり、また、錘状空間34は基準直線を含む空間となる。
なお、上述の通り、許容角度θは、単一の基準直線33に対して常に一定でなくともよく、この場合は、算出される錐体は円錐でなくともよい。
That is, the installation candidate space calculation unit 24 calculates the cone-shaped space 34 formed by the reference straight line 33 extending in the recommended monitoring direction with the monitoring point 37 as one end and the locus of an acute angle formed by an acute angle θ or less. The recommended monitoring direction is a direction toward the outside of the object to be monitored, and the weight-shaped space 34 is a space including a reference straight line.
As described above, the permissible angle θ does not have to be always constant with respect to a single reference straight line 33, and in this case, the calculated cone does not have to be a cone.

設置候補空間算出部24は、算出した錐状空間34と、構造物情報21に含まれる構造物の位置及び形状と、に基づいて設置候補空間を算出する。
具体的には、算出した錐状空間34のうち、構造物情報21に含まれる構造物が占有する空間と重複していない部分空間を設置候補空間とする。この際、錐状空間34をスポットライト光源によって生成された空間とみなして、構造物の陰になる空間は設置候補空間から除外する。すなわち、監視点37から見て構造物の死角になる空間を設置候補空間から除外する。
The installation candidate space calculation unit 24 calculates the installation candidate space based on the calculated cone-shaped space 34 and the position and shape of the structure included in the structure information 21.
Specifically, of the calculated pyramidal space 34, a subspace that does not overlap with the space occupied by the structure included in the structure information 21 is set as the installation candidate space. At this time, the cone-shaped space 34 is regarded as the space generated by the spotlight light source, and the space behind the structure is excluded from the installation candidate space. That is, the space that becomes the blind spot of the structure when viewed from the monitoring point 37 is excluded from the installation candidate space.

図6を参照する。錐状空間34のうち、斜線ハッチングを施した空間61は、構造物60により占有される空間であり、横線ハッチングを施した空間63は、構造物60の影になる空間である。したがって、設置候補空間算出部24は、錐状空間34のうち、空間61及び空間63を除いた空間62(砂目ハッチングを施した空間62)を設置候補空間として算出する。 See FIG. Of the cone-shaped space 34, the space 61 with diagonal line hatching is a space occupied by the structure 60, and the space 63 with horizontal line hatching is a space behind the structure 60. Therefore, the installation candidate space calculation unit 24 calculates the space 62 (the space 62 with the grain hatching) excluding the space 61 and the space 63 from the cone-shaped space 34 as the installation candidate space.

図1を参照する。取付候補領域算出部25は、構造物情報21と設置候補空間とを用いてカメラの取付候補領域を算出する。例えば、取付候補領域算出部25は、監視対象物30の周囲の構造物の表面のうち、設置候補空間と接する領域をカメラの取付候補領域として算出する。
図6を参照する。設置候補空間62は、監視対象物30の周囲の構造物35及び60の表面の領域64a及び64bと接している。取付候補領域算出部25は、これらの領域64a及び64bをカメラの取付候補領域として算出する。
See FIG. The mounting candidate area calculation unit 25 calculates the mounting candidate area of the camera by using the structure information 21 and the installation candidate space. For example, the mounting candidate area calculation unit 25 calculates the area in contact with the installation candidate space on the surface of the structure around the monitored object 30 as the camera mounting candidate area.
See FIG. The installation candidate space 62 is in contact with the surface areas 64a and 64b of the structures 35 and 60 around the monitored object 30. The mounting candidate area calculation unit 25 calculates these areas 64a and 64b as mounting candidate areas for the camera.

(動作)
以下、図7を参照して、実施形態の設置支援方法の一例を説明する。
ステップS1では、カメラ設置位置を設計するのに先だって、監視空間31に存在する構造物、地面、物体などの構造物情報21を取得または生成して、設置支援装置10の記憶部11に設定登録する。
ステップS2において、プランニング実施者が入力装置13を用いて監視対象物30の監視対象面32を選択すると、選択受付部22は、監視対象面32の選択を受け付ける。
(motion)
Hereinafter, an example of the installation support method of the embodiment will be described with reference to FIG. 7.
In step S1, prior to designing the camera installation position, the structure information 21 such as the structure, the ground, and the object existing in the monitoring space 31 is acquired or generated, and set and registered in the storage unit 11 of the installation support device 10. To do.
In step S2, when the planner selects the monitored object surface 32 of the monitored object 30 using the input device 13, the selection receiving unit 22 accepts the selection of the monitored object surface 32.

ステップS3において基準直線設定部23は、監視対象面32を監視する方向を示す基準直線33を設定する。
ステップS4において基準直線設定部23は、監視対象面32を撮影する方向が、基準直線33からどれくらいずれてよいかを定める許容角度θを設定する。
ステップS5において設置候補空間算出部24は、監視点37を一端とし基準直線33と許容角度θをなす半直線の軌跡により囲まれる空間のうち基準直線33が含まれる錐状空間34を算出する。
In step S3, the reference straight line setting unit 23 sets the reference straight line 33 indicating the direction in which the monitored surface 32 is monitored.
In step S4, the reference straight line setting unit 23 sets an allowable angle θ that determines how much the direction in which the monitored surface 32 is photographed is from the reference straight line 33.
In step S5, the installation candidate space calculation unit 24 calculates a cone-shaped space 34 including the reference straight line 33 among the spaces surrounded by the loci of the half straight line forming the allowable angle θ with the reference straight line 33 with the monitoring point 37 as one end.

ステップS6において設置候補空間算出部24は、算出した錐状空間34から、構造物情報21に含まれる構造物が占有する空間と、構造物の陰になる空間を除いた空間を、設置候補空間として算出する。
ステップS7において取付候補領域算出部25は、監視対象物30の周囲の構造物の表面のうち、設置候補空間と接する領域をカメラの取付候補領域として算出する。
その後に処理は終了する。
In step S6, the installation candidate space calculation unit 24 sets the space occupied by the structure included in the structure information 21 and the space behind the structure from the calculated cone-shaped space 34 as the installation candidate space. Calculate as.
In step S7, the mounting candidate area calculation unit 25 calculates the area of the surface of the structure around the monitored object 30 that is in contact with the installation candidate space as the camera mounting candidate area.
After that, the process ends.

(第1実施形態の効果)
(1)選択受付部22は、監視対象物30の3次元モデルを形成する複数の面のうち監視対象とする監視対象面の選択を受け付ける。基準直線設定部23は、選択された監視対象面上の監視点から監視対象面に設定された推奨監視方向に伸びる基準直線を設定する。設置候補空間算出部24は、監視点を一端とし基準直線と許容角度以下の鋭角をなす半直線の軌跡によって形成される錐状空間(鋭角に設定された許容角度を用い、監視点を一端とし基準直線と許容角度をなす半直線の軌跡により囲まれる空間のうち基準直線が含まれる錘状空間)を、監視対象面を撮影するカメラの設置候補空間として算出する。
このように、監視対象面を監視する方向を示す基準直線に基づいて設置候補空間を算出するため、監視対象面を適切な角度で撮影するのに適したカメラの設置候補空間を求めることができる。
(Effect of the first embodiment)
(1) The selection receiving unit 22 receives the selection of the monitored surface to be monitored from the plurality of surfaces forming the three-dimensional model of the monitored object 30. The reference straight line setting unit 23 sets a reference straight line extending from the monitoring point on the selected monitoring target surface in the recommended monitoring direction set on the monitoring target surface. The installation candidate space calculation unit 24 uses a monitoring point as one end, and a cone-shaped space formed by a locus of a half straight line forming a sharp angle equal to or less than the allowable angle with the reference straight line (using the allowable angle set to the sharp angle, and using the monitoring point as one end). Of the space surrounded by the locus of the half straight line forming the allowable angle with the reference straight line, the weight-shaped space including the reference straight line) is calculated as the installation candidate space of the camera for photographing the surface to be monitored.
In this way, since the installation candidate space is calculated based on the reference straight line indicating the direction in which the monitored surface is monitored, it is possible to obtain a camera installation candidate space suitable for photographing the monitored surface at an appropriate angle. ..

(2)設置候補空間算出部24は、監視対象物の周囲の構造物の位置と形状とを表す構造物情報21と錐状空間とを用いて設置候補空間を算出してよい。これにより、監視対象物の周囲の構造物により占有される空間を、設置候補空間から除外することができる。 (2) The installation candidate space calculation unit 24 may calculate the installation candidate space by using the structure information 21 indicating the position and shape of the structure around the monitored object and the conical space. As a result, the space occupied by the structures around the monitored object can be excluded from the installation candidate space.

(3)取付候補領域算出部25は、監視対象物の周囲の構造物の位置と形状とを表す構造物情報21と設置候補空間とを用いてカメラの取付候補領域を算出してよい。これにより、監視対象物の周囲の構造物へカメラを取り付ける取付候補領域を算出することができる。 (3) The mounting candidate area calculation unit 25 may calculate the mounting candidate area of the camera by using the structure information 21 indicating the position and shape of the structure around the monitored object and the installation candidate space. This makes it possible to calculate the mounting candidate area for mounting the camera on the structure around the monitored object.

(4)基準直線設定部23は、推奨監視方向として監視対象面の法線を使用してよい。これにより、監視対象面を見易い方向にカメラを設置できるように設置候補空間や取付候補領域を算出できる。
(5)基準直線設定部23は、推奨監視方向及び許容角度の少なくとも一方を、監視対象面の材質及び監視空間内の光源位置のうち少なくとも一方によって規定してよい。これにより、監視対象面での光の反射により監視対象面が見づらくならないように設置候補空間や取付候補領域を算出できる。
(4) The reference straight line setting unit 23 may use the normal of the monitored surface as the recommended monitoring direction. As a result, the installation candidate space and the installation candidate area can be calculated so that the camera can be installed in a direction in which the monitored surface can be easily seen.
(5) The reference straight line setting unit 23 may define at least one of the recommended monitoring direction and the allowable angle by at least one of the material of the monitoring target surface and the light source position in the monitoring space. As a result, the installation candidate space and the installation candidate area can be calculated so that the monitored surface is not obscured by the reflection of light on the monitored surface.

(第2実施形態)
第1実施形態では、選択受付部22は、単一の監視対象面32の選択を受け付けた。第2実施形態及び第3実施形態では、選択受付部22は、複数の監視対象面32の選択を受け付ける。
図8を参照する。選択受付部22が、複数の監視対象面32a及び32bの選択を受け付けた場合を想定する。ただし、選択する監視対象面の数は2個に限定されず、3個以上の監視対象面を選択してもよい。
(Second Embodiment)
In the first embodiment, the selection receiving unit 22 accepts the selection of a single monitored surface 32. In the second embodiment and the third embodiment, the selection reception unit 22 accepts the selection of a plurality of monitored surface 32s.
See FIG. It is assumed that the selection receiving unit 22 receives the selection of a plurality of monitored surfaces 32a and 32b. However, the number of monitored surfaces to be selected is not limited to two, and three or more monitored surfaces may be selected.

第2実施形態において、基準直線設定部23は、複数の監視対象面32a及び32bのそれぞれについて基準直線33a及び33bを算出し、設置候補空間算出部24は、基準直線33a及び33bのそれぞれについて錐状空間34a及び34bを算出する。推奨監視方向及び許容角度θの設定方法、基準直線及び錐状空間の算出方法は、第1実施形態と同様であってよい。基準直線33a及び33bの推奨監視方向及び許容角度θは、監視対象面毎にそれぞれ異なっていてもよい。 In the second embodiment, the reference straight line setting unit 23 calculates the reference straight lines 33a and 33b for each of the plurality of monitored surfaces 32a and 32b, and the installation candidate space calculation unit 24 is a cone for each of the reference straight lines 33a and 33b. The shaped spaces 34a and 34b are calculated. The method of setting the recommended monitoring direction and the allowable angle θ, and the method of calculating the reference straight line and the conical space may be the same as those in the first embodiment. The recommended monitoring direction and the allowable angle θ of the reference straight lines 33a and 33b may be different for each surface to be monitored.

設置候補空間算出部24は、錐状空間34a及び34bが重複する重複空間70に基づいてカメラの設置候補空間を求める。具体的には、重複空間70のうち、構造物情報21に含まれる構造物が占有する空間と重複していない部分空間を設置候補空間とする。この際、錐状空間34a及び34bをスポットライト光源によって生成された空間とみなして、構造物の陰になる空間は設置候補空間から除外する。すなわち、監視点37aから見て構造物の死角になる空間と、監視点37bから見て構造物の死角になる空間を設置候補空間から除外する。 The installation candidate space calculation unit 24 obtains a camera installation candidate space based on the overlapping space 70 in which the cone-shaped spaces 34a and 34b overlap. Specifically, of the overlapping space 70, a subspace that does not overlap with the space occupied by the structure included in the structure information 21 is set as the installation candidate space. At this time, the cone-shaped spaces 34a and 34b are regarded as the spaces generated by the spotlight light source, and the space behind the structure is excluded from the installation candidate spaces. That is, the space that becomes the blind spot of the structure when viewed from the monitoring point 37a and the space that becomes the blind spot of the structure when viewed from the monitoring point 37b are excluded from the installation candidate spaces.

(第3実施形態)
図9の(a)〜図9の(c)を参照する。第3実施形態において、基準直線設定部23は、複数の監視対象面32a及び32bのそれぞれについて基準直線33a及び33bを算出する際に使用する推奨監視方向を共用する。
また、設置候補空間算出部24は、錐状空間34a及び34bの算出に使用する許容角度θを共用する。
(Third Embodiment)
9 (a) to 9 (c) are referred to. In the third embodiment, the reference straight line setting unit 23 shares the recommended monitoring direction used when calculating the reference straight lines 33a and 33b for each of the plurality of monitoring target surfaces 32a and 32b.
Further, the installation candidate space calculation unit 24 shares the permissible angle θ used for calculating the cone-shaped spaces 34a and 34b.

例えば図9の(b)に示すように、基準直線設定部23は、監視対象面32a及び32bのそれぞれについて設定された推奨監視方向71a及び71bを統合した統合推奨監視方向72を算出する。個々の推奨監視方向71a及び71bの設定方法は、第1実施形態の推奨監視方向の設定方法と同様であってよい。
例えば、基準直線設定部23は、選択された全ての監視対象面32a及び32の面積に応じて推奨監視方向71a及び71bに重み付けを行って重み付け平均ベクトルを算出し、統合推奨監視方向72として設定してよい。選択された全ての監視対象面32a及び32のうち最大面積を有する監視対象面に設定された推奨監視方向を、統合推奨監視方向72として設定してもよい。
For example, as shown in FIG. 9B, the reference straight line setting unit 23 calculates the integrated recommended monitoring direction 72 that integrates the recommended monitoring directions 71a and 71b set for each of the monitored surfaces 32a and 32b. The method of setting the individual recommended monitoring directions 71a and 71b may be the same as the method of setting the recommended monitoring direction of the first embodiment.
For example, the reference straight line setting unit 23 weights the recommended monitoring directions 71a and 71b according to the areas of all the selected monitoring target surfaces 32a and 32, calculates a weighted average vector, and sets it as the integrated recommended monitoring direction 72. You can do it. The recommended monitoring direction set for the monitored surface having the maximum area among all the selected monitored surfaces 32a and 32 may be set as the integrated recommended monitoring direction 72.

また、例えば設置候補空間算出部24は、監視対象面32a及び32bのそれぞれについて設定された許容角度を統合した統合許容角度を算出する。監視対象面32a及び32bについて個々の許容角度を設定する方法は、第1実施形態の許容角度の設定方法と同様であってよい。
例えば、設置候補空間算出部24は、選択された全ての監視対象面32a及び32bの面積に応じて許容角度に重み付けを行って重み付け平均を算出し、統合許容角度として設定してよい。選択された全ての監視対象面32a及び32bのうち最大面積を有する監視対象面に設定された許容角度を、統合許容角度として設定してもよい。
Further, for example, the installation candidate space calculation unit 24 calculates the integrated allowable angle by integrating the allowable angles set for each of the monitored surfaces 32a and 32b. The method of setting the individual permissible angles for the monitored surfaces 32a and 32b may be the same as the method of setting the permissible angles of the first embodiment.
For example, the installation candidate space calculation unit 24 may weight the allowable angles according to the areas of all the selected monitoring target surfaces 32a and 32b, calculate the weighted average, and set it as the integrated allowable angle. The allowable angle set for the monitored surface having the maximum area among all the selected monitored surfaces 32a and 32b may be set as the integrated allowable angle.

基準直線設定部23は、監視対象面32a及び32bの監視点37a及び37bのそれぞれから統合推奨監視方向72に伸びる基準直線33a及び33bを算出する。基準直線設定部23は、設置候補空間算出部24は、基準直線33a及び33bのそれぞれについて統合許容角度を用いて錐状空間34a及び34bを算出する。基準直線及び錐状空間の算出方法は、第1実施形態と同様であってよい。 The reference straight line setting unit 23 calculates the reference straight lines 33a and 33b extending in the integrated recommended monitoring direction 72 from the monitoring points 37a and 37b of the monitoring target surfaces 32a and 32b, respectively. In the reference straight line setting unit 23, the installation candidate space calculation unit 24 calculates the cone-shaped spaces 34a and 34b using the integrated allowable angle for each of the reference straight lines 33a and 33b. The method of calculating the reference straight line and the conical space may be the same as that of the first embodiment.

設置候補空間算出部24は、錐状空間34a及び34bが重複する重複空間70に基づいてカメラの設置候補空間を求める。カメラの設置候補空間の算出方法は、第2実施形態と同様である。
なお、基準直線設定部23は、監視対象面32a及び32bの監視点37a及び37bを統合した統合監視点を算出し、統合監視点から統合推奨監視方向72に伸びる単一の基準直線を算出してもよい。
The installation candidate space calculation unit 24 obtains a camera installation candidate space based on the overlapping space 70 in which the cone-shaped spaces 34a and 34b overlap. The method of calculating the camera installation candidate space is the same as that of the second embodiment.
The reference straight line setting unit 23 calculates an integrated monitoring point that integrates the monitoring points 37a and 37b of the monitoring target surfaces 32a and 32b, and calculates a single reference straight line extending from the integrated monitoring point in the integrated recommended monitoring direction 72. You may.

統合監視点は、監視対象面32a及び32bの面積に応じた監視点37a及び37bの重み付け平均で算出してもよく、最大面積の監視対象面32a及び32bの監視点を統合監視点としてもよい。
設置候補空間算出部24は、単一の基準直線に対して単一の錐状空間を算出し、単一の錐状空間と、構造物情報21に含まれる構造物の位置及び形状とに基づいて、設置候補空間を算出する。この算出方法は、第1実施形態と同様である。
The integrated monitoring point may be calculated by a weighted average of the monitoring points 37a and 37b according to the areas of the monitoring target surfaces 32a and 32b, or the monitoring points of the monitoring target surfaces 32a and 32b having the maximum area may be used as the integrated monitoring points. ..
The installation candidate space calculation unit 24 calculates a single cone-shaped space with respect to a single reference straight line, and is based on the single cone-shaped space and the position and shape of the structure included in the structure information 21. To calculate the installation candidate space. This calculation method is the same as that of the first embodiment.

(第2実施形態及び第3実施形態の効果)
第2実施形態では、選択受付部22は、複数の監視対象面の選択を受け付ける。設置候補空間算出部24は、複数の監視対象面の前記基準直線についてそれぞれ算出した錐状空間が重複する空間を設置候補空間として算出する。
第3実施形態では、選択受付部22は、複数の監視対象面の選択を受け付ける。設置候補空間算出部24は、複数の監視対象面それぞれに設定された推奨監視方向を統合した統合推奨監視方向を算出し、複数の監視対象面のそれぞれから統合推奨監視方向に伸びる基準直線についてそれぞれ算出した錐状空間が重複する空間を、設置候補空間として設定する。
これにより、凹凸を有する監視対象面を適切な角度で撮影するのに適したカメラの設置候補空間を求めることができる。
(Effects of the second embodiment and the third embodiment)
In the second embodiment, the selection reception unit 22 accepts the selection of a plurality of monitored surfaces. The installation candidate space calculation unit 24 calculates as the installation candidate space a space in which the conical spaces calculated for the reference straight lines of the plurality of monitoring target surfaces overlap.
In the third embodiment, the selection reception unit 22 accepts the selection of a plurality of monitored surfaces. The installation candidate space calculation unit 24 calculates an integrated recommended monitoring direction that integrates the recommended monitoring directions set for each of the plurality of monitoring target surfaces, and for each reference straight line extending from each of the plurality of monitoring target surfaces in the integrated recommended monitoring direction. The space where the calculated cone-shaped spaces overlap is set as the installation candidate space.
As a result, it is possible to obtain a camera installation candidate space suitable for photographing the monitored surface having irregularities at an appropriate angle.

10…設置支援装置、11…記憶部、12…制御部、13…入力装置、14…出力装置、20…設置支援プログラム、21…構造物情報、22…選択受付部、23…基準直線設定部、24…設置候補空間算出部、25…取付候補領域算出部、30…監視対象物、31…監視空間、32、32a、32b…監視対象面、33、33a、33b、33c…基準直線、34…錐状空間 10 ... installation support device, 11 ... storage unit, 12 ... control unit, 13 ... input device, 14 ... output device, 20 ... installation support program, 21 ... structure information, 22 ... selection reception unit, 23 ... reference straight line setting unit , 24 ... Installation candidate space calculation unit, 25 ... Installation candidate area calculation unit, 30 ... Monitoring object, 31 ... Monitoring space, 32, 32a, 32b ... Monitoring target surface, 33, 33a, 33b, 33c ... Reference straight line, 34 … Pyramid space

Claims (8)

監視対象物の3次元モデルを形成する複数の面のうち監視対象とする監視対象面の選択を受け付ける選択受付部と、
選択された前記監視対象面上の監視点から当該監視対象面に設定された推奨監視方向に伸びる基準直線を設定する基準直線設定部と、
前記監視点を一端とし前記基準直線と許容角度以下の鋭角をなす半直線の軌跡によって形成される錐状空間を、前記監視対象面を撮影するカメラの設置候補空間として算出する設置候補空間算出部と、
を備えることを特徴とする設置支援装置。
A selection reception unit that accepts selection of the monitored surface to be monitored from among multiple surfaces that form a three-dimensional model of the monitored object,
A reference straight line setting unit that sets a reference straight line extending from the selected monitoring point on the monitoring target surface in the recommended monitoring direction set on the monitoring target surface, and
An installation candidate space calculation unit that calculates a conical space formed by a semi-linear locus having an acute angle equal to or less than an acute angle with the reference straight line at one end of the monitoring point as an installation candidate space for a camera that photographs the monitored surface. When,
An installation support device characterized by being equipped with.
前記選択受付部は、複数の前記監視対象面の選択を受け付け、
前記設置候補空間算出部は、前記複数の監視対象面の前記基準直線についてそれぞれ算出した前記錐状空間が重複する空間を前記設置候補空間として算出することを特徴とする請求項1に記載の設置支援装置。
The selection reception unit accepts the selection of a plurality of the monitored surfaces,
The installation according to claim 1, wherein the installation candidate space calculation unit calculates as the installation candidate space a space in which the cone-shaped spaces calculated for the reference straight lines of the plurality of monitoring target surfaces overlap each other. Support device.
前記選択受付部は、複数の前記監視対象面の選択を受け付け、
前記設置候補空間算出部は、前記複数の監視対象面それぞれに設定された前記推奨監視方向を統合した統合推奨監視方向を算出し、前記複数の監視対象面のそれぞれから前記統合推奨監視方向に伸びる前記基準直線についてそれぞれ算出した前記錐状空間が重複する空間を前記設置候補空間として算出する、ことを特徴とする請求項1に記載の設置支援装置。
The selection reception unit accepts the selection of a plurality of the monitored surfaces,
The installation candidate space calculation unit calculates an integrated recommended monitoring direction that integrates the recommended monitoring directions set for each of the plurality of monitoring target surfaces, and extends from each of the plurality of monitoring target surfaces in the integrated recommended monitoring direction. The installation support device according to claim 1, wherein a space in which the cone-shaped spaces calculated for each of the reference straight lines overlap is calculated as the installation candidate space.
前記設置候補空間算出部は、前記監視対象物の周囲の構造物の位置と形状とを表す構造物情報と前記錐状空間とを用いて前記設置候補空間を算出する、ことを特徴とする請求項1〜3のいずれか一項に記載の設置支援装置。 A claim characterized in that the installation candidate space calculation unit calculates the installation candidate space by using the structure information representing the position and shape of the structure around the monitored object and the cone-shaped space. The installation support device according to any one of Items 1 to 3. 前記監視対象物の周囲の構造物の位置と形状とを表す構造物情報と前記設置候補空間とを用いて前記カメラの取付候補領域を算出する取付候補領域算出部を更に備えることを特徴とする請求項1〜4のいずれか一項に記載の設置支援装置。 It is further provided with a mounting candidate area calculation unit that calculates a mounting candidate area of the camera using the structure information representing the position and shape of the structure around the monitored object and the installation candidate space. The installation support device according to any one of claims 1 to 4. 前記推奨監視方向は、前記監視対象面の法線であることを特徴とする請求項1〜5のいずれか一項に記載の設置支援装置。 The installation support device according to any one of claims 1 to 5, wherein the recommended monitoring direction is the normal of the surface to be monitored. 前記推奨監視方向及び前記許容角度の少なくとも一方は、前記監視対象面の材質及び監視空間内の光源の位置のうち少なくとも一方によって規定されることを特徴とする請求項1〜6のいずれか一項に記載の設置支援装置。 Any one of claims 1 to 6, wherein at least one of the recommended monitoring direction and the allowable angle is defined by at least one of the material of the monitoring target surface and the position of the light source in the monitoring space. Installation support device described in. コンピュータに、
監視対象物の3次元モデルを形成する複数の面のうち監視対象とする監視対象面の選択を受け付ける選択受付ステップと、
選択された前記監視対象面上の監視点から当該監視対象面に設定された推奨監視方向に伸びる基準直線を設定する基準直線設定ステップと、
前記監視点を一端とし前記基準直線と許容角度以下の鋭角をなす半直線によって形成される錐状空間を、前記監視対象面を撮影するカメラの設置候補空間として算出する設置候補空間算出ステップと、
を実行させることを特徴とする設置支援プログラム。
On the computer
A selection acceptance step that accepts the selection of the monitored surface to be monitored from among the multiple surfaces that form the three-dimensional model of the monitored object,
A reference straight line setting step for setting a reference straight line extending from the selected monitoring point on the monitored surface in the recommended monitoring direction set on the monitored surface, and
An installation candidate space calculation step of calculating a cone-shaped space formed by a semi-straight line having an acute angle equal to or less than the allowable angle with the monitoring point as one end as an installation candidate space of a camera for photographing the monitoring target surface.
An installation support program characterized by the execution of.
JP2019057958A 2019-03-26 2019-03-26 Installation support device and installation support program Active JP7285100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057958A JP7285100B2 (en) 2019-03-26 2019-03-26 Installation support device and installation support program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057958A JP7285100B2 (en) 2019-03-26 2019-03-26 Installation support device and installation support program

Publications (2)

Publication Number Publication Date
JP2020160662A true JP2020160662A (en) 2020-10-01
JP7285100B2 JP7285100B2 (en) 2023-06-01

Family

ID=72643418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057958A Active JP7285100B2 (en) 2019-03-26 2019-03-26 Installation support device and installation support program

Country Status (1)

Country Link
JP (1) JP7285100B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042759A (en) * 1999-07-28 2001-02-16 Taisei Corp Evaluating simulating device and evaluating method for sensor mounting condition
JP2007102258A (en) * 2005-09-30 2007-04-19 Mitsubishi Electric Corp Sensor dead angle detection device, sensor installation position design support system, sensor dead angle detection method and sensor installation position design support method
JP2009239821A (en) * 2008-03-28 2009-10-15 Toa Corp Camera installation simulator program
JP2012010210A (en) * 2010-06-28 2012-01-12 Hitachi Ltd Device for supporting determination of camera arrangement
JP2016133818A (en) * 2015-01-15 2016-07-25 株式会社東芝 Spatial information visualization apparatus, program, and spatial information visualization method
JP2018128961A (en) * 2017-02-10 2018-08-16 セコム株式会社 Optimal arrangement search device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042759A (en) * 1999-07-28 2001-02-16 Taisei Corp Evaluating simulating device and evaluating method for sensor mounting condition
JP2007102258A (en) * 2005-09-30 2007-04-19 Mitsubishi Electric Corp Sensor dead angle detection device, sensor installation position design support system, sensor dead angle detection method and sensor installation position design support method
JP2009239821A (en) * 2008-03-28 2009-10-15 Toa Corp Camera installation simulator program
JP2012010210A (en) * 2010-06-28 2012-01-12 Hitachi Ltd Device for supporting determination of camera arrangement
JP2016133818A (en) * 2015-01-15 2016-07-25 株式会社東芝 Spatial information visualization apparatus, program, and spatial information visualization method
JP2018128961A (en) * 2017-02-10 2018-08-16 セコム株式会社 Optimal arrangement search device

Also Published As

Publication number Publication date
JP7285100B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP7308597B2 (en) Resolution-adaptive mesh for performing 3-D measurements of objects
US10228243B2 (en) Distance sensor with parallel projection beams
US10268906B2 (en) Distance sensor with directional projection beams
JP2018141653A (en) Image processing system, image processing method and program
JP6429914B2 (en) Optimal placement search device
Ahmadabadian et al. Stereo‐imaging network design for precise and dense 3D reconstruction
US9273954B2 (en) Method and system for analyzing geometric parameters of an object
JP5574551B2 (en) Image processing apparatus and image processing method
JP7285100B2 (en) Installation support device and installation support program
JP7319069B2 (en) Image generation device, image generation program and image generation method
JP7285101B2 (en) Installation support device and installation support program
WO2019171823A1 (en) Photographing evaluation map, photographing evaluation map generation device, photographing evaluation map generation method, and photographing evaluation map generation program
CN113674356A (en) Camera screening method and related device
JP7244801B2 (en) Object detection system and object detection program
Bianco et al. Sensor placement optimization in buildings
JP7244802B2 (en) Object detection system and object detection program
JP7311327B2 (en) Shooting simulation device, shooting simulation method and computer program
JP7291013B2 (en) Camera placement evaluation device, camera placement evaluation method, and computer program
CN111833428A (en) Visual domain determining method, device and equipment
JP7285105B2 (en) Image generation device and image generation program
KR102715101B1 (en) Automated method and device for maintaining the focal length of a 3d scanner based on the distance between the laser pointers of the 3d scanner
CN118429550B (en) Three-dimensional reconstruction method, system, electronic equipment and storage medium
KR102611481B1 (en) Method and apparatus for calculating actual distance between coordinates in iamge
JP7004873B2 (en) Coordinate value integration device, coordinate value integration system, coordinate value integration method, and coordinate value integration program
JP7303149B2 (en) Installation support device, installation support method, and installation support program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150