JP2020160550A - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
JP2020160550A
JP2020160550A JP2019056468A JP2019056468A JP2020160550A JP 2020160550 A JP2020160550 A JP 2020160550A JP 2019056468 A JP2019056468 A JP 2019056468A JP 2019056468 A JP2019056468 A JP 2019056468A JP 2020160550 A JP2020160550 A JP 2020160550A
Authority
JP
Japan
Prior art keywords
control
amount
target value
waveform
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019056468A
Other languages
Japanese (ja)
Other versions
JP7213729B2 (en
Inventor
智広 桜井
Tomohiro Sakurai
智広 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2019056468A priority Critical patent/JP7213729B2/en
Publication of JP2020160550A publication Critical patent/JP2020160550A/en
Application granted granted Critical
Publication of JP7213729B2 publication Critical patent/JP7213729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

To suppress overshoot.SOLUTION: In a control device 1, step response control means 4a controls two step responses and state determining means 4b determines that a state is steady when a deviation between the two step responses and an amount of change in the deviation are less than or equal to the reference. Average value calculation means 4c calculates an average value of a control amount and an operation amount in the steady state, waste time measuring means 4d measures waste time in the steady state, and measured waveform acquisition means 4e acquires a measured waveform in the steady state. Model control means 4f simulates the transfer function G (s) as a model, gain calculation means 4 g calculates the gain from the average value of the control amount and the operation amount, and predicted waveform acquisition means 4h acquires a predicted waveform at the time of model control. Parameter calculation means 4j calculates the combination of a natural angular frequency and an attenuation ratio that minimizes the evaluation value and PID constant calculation means 4k calculates the combination of P, I, and D in which the control amount is equal to or more than a target value and the maximum value of the difference between the control amount and the target value is the smallest.SELECTED DRAWING: Figure 1

Description

本発明は、例えば電気炉などの制御対象の温度などの物理量を制御する制御装置および制御方法に関するものである。 The present invention relates to a control device and a control method for controlling a physical quantity such as a temperature of a controlled object such as an electric furnace.

例えば電気炉では、炉内温度と目標値を比較し、その偏差に応じて演算を行ってヒータなどの加熱手段を制御する制御装置として調節計が一般的に知られている。 For example, in an electric furnace, a controller is generally known as a control device that controls a heating means such as a heater by comparing the temperature inside the furnace with a target value and performing a calculation according to the deviation.

ところで、ディジタル式の調節計では、制御対象に応じたPID定数の自動算出と設定を行うオートチューニング機能を搭載している。このオートチューニング機能では、調節計を一時的にオンオフ調節計として用い、オン/オフ動作により発生するハンチングの周期と振幅の値からPID定数を算出するリミットサイクル法を採用している。 By the way, the digital controller is equipped with an auto-tuning function that automatically calculates and sets the PID constant according to the control target. In this auto-tuning function, the controller is temporarily used as an on-off controller, and a limit cycle method is adopted in which the PID constant is calculated from the values of the hunting cycle and amplitude generated by the on / off operation.

なお、本件出願人は、上述したリミットサイクル法として、下記特許文献1に開示されるように、設定値付近でのサイクリング(リミットサイクル)波形からPID定数を求め、操作量を決定する制御装置を提案している。 As the limit cycle method described above, the applicant has provided a control device for determining the operation amount by obtaining the PID constant from the cycling (limit cycle) waveform near the set value, as disclosed in Patent Document 1 below. is suggesting.

特開平7−13608号公報Japanese Unexamined Patent Publication No. 7-13608

しかしながら、上述したリミットサイクル法では、PID定数が適切に決定されていない場合、制御量が目標値を超過するオーバシュートという現象が発生する。このオーバシュートが発生すると、制御対象(例えば、製造品)に過大なストレスをかけてしまい、歩留りが悪化してしまうという問題があり、オーバシュートの抑制が望まれていた。 However, in the limit cycle method described above, if the PID constant is not properly determined, a phenomenon of overshoot in which the control amount exceeds the target value occurs. When this overshoot occurs, there is a problem that excessive stress is applied to the controlled object (for example, a manufactured product) and the yield is deteriorated, and suppression of overshoot has been desired.

そこで、本発明は上記問題点に鑑みてなされたものであって、オーバシュートを抑制することができる制御装置および制御方法を提供することを目的としている。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a control device and a control method capable of suppressing overshoot.

上記目的を達成するため、本発明の請求項1に記載された制御装置は、制御対象の制御量を変化させるための操作量を算出して前記制御量を目標値に一致させる制御装置であって、
前記制御量が前記目標値よりも小さい中途目標値、前記目標値の順に到達するように2回のステップ応答の制御を行うステップ応答制御手段と、
前記2回のステップ応答の制御によって得られる前記目標値と前記中途目標値それぞれと前記制御量との差を示す偏差と該偏差の変化量が基準以下のときに定常状態と判定する状態判定手段と、
前記2回のステップ応答の制御で前記定常状態と判定されたときの前記制御量と前記操作量の平均値を算出する平均値算出手段と、
前記制御量が前記中途目標値に到達するようにステップ応答の制御をして前記定常状態と判定されたときに該定常状態から前記制御量が所定量変化するのに要するむだ時間を計測するむだ時間計測手段と、
前記2回のステップ応答の制御で前記定常状態と判定されたときの波形を実測波形として取得する実測波形取得手段と、
ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとし、前記固有角周波数と前記減衰比を正規分布乱数により変えて前記制御量のシミュレーションを行うモデル制御手段と、
前記平均値算出手段にて算出した前記制御量と前記操作量の平均値に基づいてゲインを算出するゲイン算出手段と、
前記モデルにて制御を行ったときの波形を予測波形として取得する予測波形取得手段と、
前記実測波形と前記予測波形との波形の誤差の絶対値を加算した評価値が最も小さくなる前記固有角周波数と前記減衰比の組み合わせを算出するパラメータ算出手段と、
比例帯P、積分時間I、微分時間Dを正規分布乱数により変えて前記制御量のシミュレーションを行ったときの前記制御量が前記目標値以上かつ前記制御量と前記目標値との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせを算出するPID定数算出手段と、
を具備することを特徴とする。
In order to achieve the above object, the control device according to claim 1 of the present invention is a control device that calculates an operation amount for changing a control amount of a controlled object and makes the control amount match a target value. hand,
A step response control means that controls two step responses so that the control amount reaches the intermediate target value smaller than the target value and the target value in that order.
A state determining means for determining a steady state when the deviation indicating the difference between the target value, the intermediate target value, and the control amount obtained by controlling the two step responses and the amount of change in the deviation are equal to or less than the reference value. When,
An average value calculating means for calculating the average value of the controlled amount and the manipulated amount when the steady state is determined by the control of the two step responses, and
It is wasteful to control the step response so that the controlled amount reaches the midway target value, and to measure the dead time required for the controlled amount to change by a predetermined amount from the steady state when the steady state is determined. Time measuring means and
An actual measurement waveform acquisition means for acquiring a waveform when the steady state is determined by controlling the two step responses as an actual measurement waveform,
Model the transfer function G (s) = (Kωn 2 / s 2 + 2ζωns + ωn 2 ) · (1-Ts / 1 + Ts) when the Laplace operator s, gain K, waste time T, natural angular frequency ωn, and damping ratio ζ Then, a model control means for simulating the control amount by changing the natural angular frequency and the damping ratio with a normal distribution random number, and
A gain calculation means that calculates a gain based on the average value of the control amount and the operation amount calculated by the average value calculation means, and
Predicted waveform acquisition means for acquiring the waveform when control is performed by the model as a predicted waveform, and
A parameter calculation means for calculating the combination of the natural angular frequency and the damping ratio, which minimizes the evaluation value obtained by adding the absolute values of the waveform errors between the actually measured waveform and the predicted waveform.
The maximum value of the difference between the control amount and the target value when the control amount is simulated by changing the proportional band P, the integration time I, and the differential time D with a normal distribution random number. A PID constant calculating means for calculating the combination of the proportional band P, the integration time I, and the differential time D, which minimizes
It is characterized by having.

請求項2に記載された制御装置は、請求項1の制御装置において、
前記制御対象の特性に応じて初期時のPID定数を設定することを特徴とする。
The control device according to claim 2 is the control device according to claim 1.
It is characterized in that the initial PID constant is set according to the characteristics of the controlled object.

請求項3に記載された制御方法は、制御対象の制御量を変化させるための操作量を算出して前記制御量を目標値に一致させる制御方法であって、
前記制御量が前記目標値よりも小さい中途目標値、前記目標値の順に到達するように2回のステップ応答の制御を行うステップと、
前記2回のステップ応答の制御によって得られる前記目標値と前記中途目標値それぞれと前記制御量との差を示す偏差と該偏差の変化量が基準以下のときに定常状態と判定するステップと、
前記2回のステップ応答の制御で前記定常状態と判定されたときの前記制御量と前記操作量の平均値を算出するステップと、
前記制御量が前記中途目標値に到達するようにステップ応答の制御をして前記定常状態と判定されたときに該定常状態から前記制御量が所定量変化するのに要するむだ時間を計測するステップと、
前記2回のステップ応答の制御で前記定常状態と判定されたときの波形を実測波形として取得するステップと、
ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとし、前記固有角周波数と前記減衰比を正規分布乱数により変えて前記制御量のシミュレーションを行うステップと、
前記制御量と前記操作量の平均値に基づいてゲインを算出するステップと、
前記モデルにて制御を行ったときの波形を予測波形として取得するステップと、
前記実測波形と前記予測波形との波形の誤差の絶対値を加算した評価値が最も小さくなる前記固有角周波数と前記減衰比の組み合わせを算出するステップと、
比例帯P、積分時間I、微分時間Dを正規分布乱数により変えて前記制御量のシミュレーションを行ったときの前記制御量が前記目標値以上かつ前記制御量と前記目標値との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせを算出するステップと、
を含むことを特徴とする。
The control method according to claim 3 is a control method for calculating an operation amount for changing a control amount of a controlled object and matching the control amount with a target value.
A step of controlling the step response twice so that the control amount reaches the intermediate target value smaller than the target value and the target value in this order.
A deviation indicating the difference between the target value, the intermediate target value, and the control amount obtained by controlling the two step responses, and a step of determining a steady state when the amount of change in the deviation is equal to or less than a reference.
A step of calculating the average value of the control amount and the operation amount when the steady state is determined by the control of the two step responses, and
A step of controlling the step response so that the controlled amount reaches the midway target value and measuring the dead time required for the controlled amount to change by a predetermined amount from the steady state when the steady state is determined. When,
A step of acquiring the waveform when the steady state is determined by controlling the two step responses as an actually measured waveform, and
Model the transfer function G (s) = (Kωn 2 / s 2 + 2ζωns + ωn 2 ) · (1-Ts / 1 + Ts) when the Laplace operator s, gain K, waste time T, natural angular frequency ωn, and damping ratio ζ Then, the step of simulating the control amount by changing the natural angular frequency and the attenuation ratio with a normal distribution random number, and
A step of calculating the gain based on the average value of the control amount and the operation amount, and
The step of acquiring the waveform when the control is performed by the model as a predicted waveform, and
A step of calculating a combination of the natural angular frequency and the damping ratio in which the evaluation value obtained by adding the absolute values of the waveform errors between the actually measured waveform and the predicted waveform is the smallest.
When the proportional band P, the integration time I, and the differential time D are changed by a normal distribution random number and the simulation of the control amount is performed, the control amount is equal to or more than the target value and the maximum value of the difference between the control amount and the target value. And the step of calculating the combination of the proportional band P, the integration time I, and the differentiation time D, which minimizes
It is characterized by including.

請求項4に記載された制御方法は、請求項3の制御方法において、
前記制御対象の特性に応じて初期時のPID定数を設定するステップを含むことを特徴とする。
The control method according to claim 4 is the control method according to claim 3.
It is characterized by including a step of setting an initial PID constant according to the characteristics of the controlled object.

本発明によれば、2回のステップ応答と伝達関数G(s)のモデルによる制御量のシミュレーションによりPID定数を適切に決定して設定することができ、制御量のオーバシュートを低減することができる。 According to the present invention, the PID constant can be appropriately determined and set by simulating the control amount by the model of the transfer function G (s) and the two-step response, and the overshoot of the control amount can be reduced. it can.

本発明に係る制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the control device which concerns on this invention. 本発明に係る制御装置および制御方法によるチューニング時のタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart at the time of tuning by the control apparatus and control method which concerns on this invention.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the attached drawings.

図1に示すように、本実施の形態の制御装置1は、例えば電気炉、流量系や化学反応系などの制御対象の温度、流量、湿度、圧力などの物理量を制御量とし、この制御量を操作量により変化させて制御量を目標値に一致させる調節計であり、PID定数を決定するための構成として操作表示部2、記憶部3、制御部4を備えて概略構成される。 As shown in FIG. 1, the control device 1 of the present embodiment uses physical quantities such as temperature, flow rate, humidity, and pressure of a controlled object such as an electric furnace, a flow rate system, and a chemical reaction system as control quantities, and this control amount. It is a controller that changes the control amount according to the operation amount to match the control amount with the target value, and is roughly configured with an operation display unit 2, a storage unit 3, and a control unit 4 as a configuration for determining the PID constant.

ここでは、図1に示すように、例えばヒータなどの加熱手段11や温度センサ12が炉内に設置された電気炉13を制御対象とし、温度センサ12が検出する炉内温度(制御量PV)が目標温度(目標値SV)に一致するように操作量MVでアクチュエータ(不図示)を駆動して加熱手段11を制御する場合を例にとって説明する。 Here, as shown in FIG. 1, for example, a heating means 11 such as a heater or an electric furnace 13 in which the temperature sensor 12 is installed in the furnace is controlled, and the temperature in the furnace (controlled amount PV) detected by the temperature sensor 12. The case where the actuator (not shown) is driven by the operation amount MV to control the heating means 11 so as to match the target temperature (target value SV) will be described as an example.

操作表示部2は、装置前面に設けられる各種キー、液晶やLEDなどの表示器を備えて構成される。操作表示部2は、オートチューニングの開始の指示、オートチューニング開始時のPID定数、中途目標値SV1、目標値SV2の設定を行う。また、操作表示部2は、設定画面の表示の他、目標値や制御量の表示、プログラムパターンなどの各種データ、バーグラフ表示やトレンド表示などの各種モニタ表示を行う。 The operation display unit 2 is configured to include various keys provided on the front surface of the device and indicators such as liquid crystals and LEDs. The operation display unit 2 sets an instruction to start auto-tuning, a PID constant at the start of auto-tuning, an intermediate target value SV1 and a target value SV2. In addition to displaying the setting screen, the operation display unit 2 displays target values and control amounts, various data such as program patterns, and various monitor displays such as bar graph display and trend display.

なお、中途目標値SV1は、目標値SV2に対して例えば負荷率10〜90%で設定される。例えば目標値SV2の半分である負荷率50%を中途目標値SV1として設定する。 The midway target value SV1 is set with, for example, a load factor of 10 to 90% with respect to the target value SV2. For example, a load factor of 50%, which is half of the target value SV2, is set as the midway target value SV1.

記憶部3は、操作表示部2の操作により設定された設定値(PID定数、中途目標値SV1、目標値SV2)などを含め、電気炉13の炉内温度の制御に関わる各種情報を記憶する。 The storage unit 3 stores various information related to the control of the temperature inside the electric furnace 13 including the set values (PID constant, midway target value SV1, target value SV2) set by the operation of the operation display unit 2. ..

制御部4は、操作表示部2の操作により設定された設定値、記憶部3に記憶された各種情報、電気炉13の温度センサ12が検出する炉内温度に基づいて制御装置1を統括制御するものである。制御部4は、PID定数を決定するための構成として、ステップ応答制御手段4a、状態判定手段4b、平均値算出手段4c、むだ時間計測手段4d、実測波形取得手段4e、シミュレーションモデル制御手段4f、ゲイン算出手段4g、予測波形取得手段4h、評価値算出手段4i、パラメータ算出手段4j、PID定数算出手段4kを備える。 The control unit 4 controls the control device 1 in an integrated manner based on the set value set by the operation of the operation display unit 2, various information stored in the storage unit 3, and the temperature inside the furnace detected by the temperature sensor 12 of the electric furnace 13. To do. The control unit 4 has, as a configuration for determining the PID constant, a step response control means 4a, a state determination means 4b, an average value calculation means 4c, a waste time measuring means 4d, an actual measurement waveform acquisition means 4e, a simulation model control means 4f, and the like. It includes a gain calculation means 4g, a prediction waveform acquisition means 4h, an evaluation value calculation means 4i, a parameter calculation means 4j, and a PID constant calculation means 4k.

ステップ応答制御手段4aは、操作表示部2にて設定された中途目標値SV1によるステップ応答1と目標値SV2によるステップ応答2の2回の制御を行う。 The step response control means 4a controls the step response 1 by the intermediate target value SV1 set by the operation display unit 2 and the step response 2 by the target value SV2 twice.

具体的に、ステップ応答制御手段4aは、ステップ応答1として、操作表示部2にて設定された中途目標値SV1に制御量PVが到達するように操作量MVによりアクチュエータを駆動して加熱手段11を制御(例えばPID制御)する。 Specifically, the step response control means 4a drives the actuator by the operation amount MV so that the control amount PV reaches the intermediate target value SV1 set by the operation display unit 2 as the step response 1, and the heating means 11 (For example, PID control).

また、ステップ応答制御手段4bは、ステップ応答2として、操作表示部2にて設定された目標値SV2に制御量PVが到達するように操作量MVによりアクチュエータを駆動して加熱手段11を制御(例えばPID制御)する。 Further, the step response control means 4b controls the heating means 11 by driving the actuator by the operation amount MV so that the control amount PV reaches the target value SV2 set by the operation display unit 2 as the step response 2. For example, PID control).

状態判定手段4bは、ステップ応答制御手段4aによるステップ応答1,2の2回の制御で得られる中途目標値SV1と目標値SV2それぞれと制御量PVとの差を示す偏差Eと偏差Eの変化量ΔEに基づいて定常状態(制御量PVが時間とともに変化しない状態)か否かを判定する。 The state determination means 4b is a change in deviation E and deviation E indicating a difference between the intermediate target value SV1 and the target value SV2 obtained by two times of control of the step response 1 and 2 by the step response control means 4a and the control amount PV. Based on the amount ΔE, it is determined whether or not it is in a steady state (a state in which the controlled amount PV does not change with time).

具体的に、状態判定手段4bは、ステップ応答1において、中途目標値SV1と制御量PVとの差を示す偏差Eと偏差Eの変化量ΔEが基準以下、すなわち、偏差Eと偏差Eの変化量ΔEがほぼ0に近ければ定常状態と判定する。 Specifically, in the step response 1, the state determination means 4b has a deviation E indicating a difference between the midway target value SV1 and the control amount PV, and the change amount ΔE of the deviation E is equal to or less than the reference, that is, the change of the deviation E and the deviation E. If the amount ΔE is close to 0, it is determined to be a steady state.

また、状態判定手段4bは、ステップ応答2において、目標値SV2と制御量PVとの差を示す偏差Eと偏差Eの変化量ΔEが基準以下、すなわち、偏差Eと偏差Eの変化量ΔEがほぼ0に近ければ定常状態と判定する。 Further, in the state determination means 4b, in the step response 2, the deviation E indicating the difference between the target value SV2 and the control amount PV and the change amount ΔE of the deviation E are equal to or less than the reference, that is, the change amount ΔE of the deviation E and the deviation E is equal to or less than the reference value. If it is close to 0, it is determined to be in a steady state.

平均値算出手段4cは、ステップ応答1,2による制御で定常状態と判定されたときの制御量PVと操作量MVそれぞれの平均値を算出する。 The average value calculation means 4c calculates the average value of each of the control amount PV and the operation amount MV when the steady state is determined by the control by the step responses 1 and 2.

具体的に、平均値算出手段4cは、ステップ応答1で定常状態と判定すると、定常状態における制御量PVと操作量MVそれぞれの平均値PV1、MV1を算出する。 Specifically, when the average value calculating means 4c determines in the step response 1 that it is in a steady state, it calculates the average values PV1 and MV1 of the control amount PV and the manipulated amount MV in the steady state, respectively.

また、平均値算出手段4cは、ステップ応答2で定常状態と判定すると、定常状態における制御量PVと操作量MVそれぞれの平均値PV2、MV2を算出する。 Further, the average value calculating means 4c calculates the average values PV2 and MV2 of the control amount PV and the operation amount MV in the steady state, respectively, when it is determined in the step response 2 that the steady state is obtained.

むだ時間計測手段4dは、ステップ応答1で定常状態と判定すると、この定常状態から制御量PVが所定量変化するのに要するむだ時間Tを計測する。 When the dead time measuring means 4d determines in the step response 1 that it is in a steady state, it measures the dead time T required for the control amount PV to change by a predetermined amount from this steady state.

具体的に、むだ時間計測手段4dは、定常状態から制御量PVが温度センサ12のスケール(検出し得る温度範囲)の例えば0.1%変化するまでの時間をむだ時間Tとして計測する。 Specifically, the waste time measuring means 4d measures the time from the steady state until the control amount PV changes by, for example, 0.1% of the scale (detectable temperature range) of the temperature sensor 12, as the waste time T.

実測波形取得手段4eは、ステップ応答1,2による制御で定常状態と判定されたときの波形を実測波形W1として取得する。 The measured waveform acquisition means 4e acquires the waveform when the steady state is determined by the control by the step responses 1 and 2 as the measured waveform W1.

モデル制御手段4fは、制御対象13との間の入出力をオフし、ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとして、固有角周波数ωnと減衰比ζを正規分布乱数により変え、上述したステップ応答2と同条件で制御量PVのシミュレーションを行う。 The model control means 4f turns off the input / output to / from the control target 13, and sets the transfer function G (s) = when the Laplace operator s, the gain K, the dead time T, the natural angular frequency ωn, and the damping ratio ζ are set. Using (Kωn 2 / s 2 + 2ζωns + ωn 2 ) and (1-Ts / 1 + Ts) as a model, the natural angular frequency ωn and the damping ratio ζ are changed by a normal distribution random number, and the control amount PV is simulated under the same conditions as step response 2 described above. I do.

また、モデル制御手段4fは、PVs=G(s)・Cpidを制御系として、比例帯P、積分時間I、微分時間Dを正規分布乱数により変えて制御量PVのシミュレーションを行う。なお、PVsは制御量PVのシミュレーション結果、CpidはPID制御器である。 Further, the model control means 4f simulates the control amount PV by changing the proportional band P, the integration time I, and the differential time D with a normally distributed random number, using PVs = G (s) · Cpid as a control system. PVs is the simulation result of the control amount PV, and Cpid is the PID controller.

ゲイン算出手段4gは、平均値算出手段4cにて算出した制御量PVと操作量MVの平均値PV1,MV1,PV2,MV2に基づき、制御量PVの平均値PV1,PV2と操作量MVの平均値MV1,MV2の傾きから伝達関数G(s)のモデルにおけるゲインKを算出する。 The gain calculation means 4g is based on the average values PV1, MV1, PV2, MV2 of the control amount PV and the operation amount MV calculated by the average value calculation means 4c, and is the average of the average values PV1, PV2 and the operation amount MV of the control amount PV. The gain K in the model of the transfer function G (s) is calculated from the slopes of the values MV1 and MV2.

具体的に、ゲイン算出手段4gは、ゲインK=(PV2−PV1)/(MV2−MV1)の式に対し、平均値算出手段4cにて算出した制御量PVと操作量MVの平均値PV1,MV1,PV2,MV2を代入して伝達関数G(s)のモデルにおけるゲインKを算出する。 Specifically, the gain calculation means 4g has an average value PV1 of the control amount PV and the operation amount MV calculated by the average value calculation means 4c with respect to the equation of gain K = (PV2-PV1) / (MV2-MV1). Substituting MV1, PV2, and MV2, the gain K in the model of the transfer function G (s) is calculated.

予測波形取得手段4hは、伝達関数G(s)のモデルにて制御を行ったときの波形を予測波形W2として取得する。 The predicted waveform acquisition means 4h acquires the waveform when the control is performed by the model of the transfer function G (s) as the predicted waveform W2.

評価値算出手段4iは、実測波形取得手段4eにて取得した実測波形W1と予測波形取得手段4hにて取得した予測波形W2との波形の誤差の絶対値を加算した値を評価値Val(=Σ|W2−W1|)として算出する。 The evaluation value calculating means 4i adds the absolute value of the waveform error between the measured waveform W1 acquired by the measured waveform acquiring means 4e and the predicted waveform W2 acquired by the predicted waveform acquiring means 4h as the evaluation value Val (=). Calculated as Σ | W2-W1 |).

パラメータ算出手段4jは、評価値算出手段4iにて算出した評価値Valが最も小さくなる固有角周波数ωnと減衰比ζの組み合わせを算出する。 The parameter calculation means 4j calculates a combination of the natural angular frequency ωn and the attenuation ratio ζ, which have the smallest evaluation value Val calculated by the evaluation value calculation means 4i.

PID定数算出手段4kは、比例帯P、積分時間I、微分時間Dを正規分布乱数により変えてモデル制御手段4fにより制御量PVのシミュレーションを行ったときの制御量PVが目標値SV2以上かつ制御量PVと目標値SV2との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせをPID定数として算出する。 In the PID constant calculation means 4k, the control amount PV when the proportional band P, the integration time I, and the differential time D are changed by the normal distribution random number and the control amount PV is simulated by the model control means 4f is controlled with the target value SV2 or more. The combination of the proportional band P, the integration time I, and the differential time D at which the maximum value of the difference between the quantity PV and the target value SV2 is the smallest is calculated as the PID constant.

次に、上記のように構成される制御装置1によるオートチューニング時の制御方法について図2を参照しながら説明する。 Next, a control method at the time of auto-tuning by the control device 1 configured as described above will be described with reference to FIG.

まず、操作表示部2の操作によりPID定数を任意に設定するとともに、中途目標値SV1、目標値SV2を設定する。ここでは、目標値SV2の負荷率50%が中途目標値SV1に設定されているものとする。なお、初期時のPID定数は、制御対象13の特性に応じて設定するのが好ましい。 First, the PID constant is arbitrarily set by the operation of the operation display unit 2, and the midway target value SV1 and the target value SV2 are set. Here, it is assumed that the load factor of 50% of the target value SV2 is set to the midway target value SV1. The initial PID constant is preferably set according to the characteristics of the control target 13.

上記設定を終え、操作表示部2の操作によりオートチューニングを開始すると、制御部4のステップ応答制御手段4aは、中途目標値SV1に制御量PVが到達するように操作量MVによりアクチュエータを駆動して加熱手段11をPID制御する(図2のステップ応答1)。 When the above setting is completed and auto-tuning is started by the operation of the operation display unit 2, the step response control means 4a of the control unit 4 drives the actuator by the operation amount MV so that the control amount PV reaches the midway target value SV1. The heating means 11 is PID controlled (step response 1 in FIG. 2).

続いて、ステップ応答制御手段4bは、目標値SV2に制御量PVが到達するように操作量MVによりアクチュエータを駆動して加熱手段11をPID制御する(図2のステップ応答2)。 Subsequently, the step response control means 4b drives the actuator by the operation amount MV so that the control amount PV reaches the target value SV2, and PID controls the heating means 11 (step response 2 in FIG. 2).

そして、状態判定手段4bは、図2のステップ応答1において、中途目標値SV1と制御量PVとの差を示す偏差Eと偏差Eの変化量ΔEが基準以下であれば定常状態(図2の点線で囲むS1,S2の状態)と判定する。 Then, in the step response 1 of FIG. 2, the state determining means 4b is in a steady state if the deviation E indicating the difference between the midway target value SV1 and the control amount PV and the change amount ΔE of the deviation E are equal to or less than the reference (FIG. 2). It is determined that the state of S1 and S2 surrounded by the dotted line).

また、状態判定手段4bは、図2のステップ応答2において、目標値SV2と制御量PVとの差を示す偏差Eと偏差Eの変化量ΔEが基準以下であれば定常状態(図2の点線で囲むS3,S4の状態)と判定する。 Further, in the step response 2 of FIG. 2, the state determining means 4b is in a steady state (dotted line in FIG. 2) if the deviation E indicating the difference between the target value SV2 and the control amount PV and the change amount ΔE of the deviation E are equal to or less than the reference. It is determined that the state of S3 and S4 surrounded by is).

そして、平均値算出手段4cは、図2のステップ応答1で定常状態(図2の点線で囲むS1,S2の状態)と判定すると、この定常状態における制御量PVと操作量MVそれぞれの平均値PV1、MV1を算出する。 Then, when the average value calculating means 4c determines in the step response 1 of FIG. 2 that it is in a steady state (states of S1 and S2 surrounded by the dotted line in FIG. 2), the average value of each of the control amount PV and the operation amount MV in this steady state. PV1 and MV1 are calculated.

また、平均値算出手段4cは、図2のステップ応答2で定常状態(図2の点線で囲むS3,S4の状態)と判定すると、この定常状態における制御量PVと操作量MVそれぞれの平均値PV2、MV2を算出する。 Further, when the average value calculating means 4c determines in the step response 2 of FIG. 2 that it is in a steady state (states of S3 and S4 surrounded by the dotted line in FIG. 2), the average value of each of the control amount PV and the operation amount MV in this steady state. Calculate PV2 and MV2.

さらに、むだ時間計測手段4dは、図2のステップ応答1で定常状態と判定すると、この定常状態から制御量PVが所定量変化するのに要するむだ時間Tを計測する。 Further, when the dead time measuring means 4d determines in the step response 1 of FIG. 2 that it is in a steady state, it measures the dead time T required for the control amount PV to change by a predetermined amount from this steady state.

そして、実測波形取得手段4eは、ステップ応答1,2による制御で定常状態と判定されたときの波形を実測波形W1として取得する。 Then, the actually measured waveform acquisition means 4e acquires the waveform when the steady state is determined by the control by the step responses 1 and 2 as the actually measured waveform W1.

次に、モデル制御手段4fは、制御対象13との間の入出力をオフした状態で、ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとして、固有角周波数ωnと減衰比ζを正規分布乱数により変えて上述したステップ応答2と同条件で制御量PVのシミュレーションを行う。 Next, the model control means 4f is a transfer function when the Laplace operator s, the gain K, the dead time T, the natural angular frequency ωn, and the damping ratio ζ are set with the input / output to / from the controlled object 13 turned off. Using G (s) = (Kωn 2 / s 2 + 2ζωns + ωn 2 ) · (1-Ts / 1 + Ts) as a model, the natural angular frequency ωn and the damping ratio ζ are changed by a normally distributed random number under the same conditions as step response 2 described above. Simulate the controlled amount PV.

そして、予測波形取得手段4hは、伝達関数G(s)のモデルにて制御を行ったときの波形を予測波形W2として取得する。 Then, the predicted waveform acquisition means 4h acquires the waveform when the control is performed by the model of the transfer function G (s) as the predicted waveform W2.

ここで、ゲイン算出手段4gは、ゲインK=(PV2−PV1)/(MV2−MV1)の式に対し、平均値算出手段4cにて算出した制御量PVと操作量MVの平均値PV1,MV1,PV2,MV2を代入して伝達関数G(s)のモデルにおけるゲインKを算出する。 Here, the gain calculation means 4g is the average value PV1 and MV1 of the control amount PV and the operation amount MV calculated by the average value calculation means 4c with respect to the equation of gain K = (PV2-PV1) / (MV2-MV1). , PV2, MV2 are substituted to calculate the gain K in the model of the transfer function G (s).

また、評価値算出手段4iは、実測波形取得手段4eにて取得した実測波形W1と予測波形取得手段4hにて取得した予測波形W2との波形の誤差の絶対値を加算した値を評価値Val(=Σ|W2−W1|)として算出する。 Further, the evaluation value calculating means 4i adds the absolute value of the waveform error between the measured waveform W1 acquired by the measured waveform acquiring means 4e and the predicted waveform W2 acquired by the predicted waveform acquiring means 4h as the evaluation value Val. It is calculated as (= Σ | W2-W1 |).

そして、パラメータ算出手段4jは、評価値算出手段4iにて算出した評価値Valが最も小さくなる固有角周波数ωnと減衰比ζの組み合わせを算出する。 Then, the parameter calculation means 4j calculates a combination of the natural angular frequency ωn and the attenuation ratio ζ, which have the smallest evaluation value Val calculated by the evaluation value calculation means 4i.

次に、PID定数算出手段4kは、比例帯P、積分時間I、微分時間Dを正規分布乱数により変えてモデル制御手段4fの制御による制御量PVのシミュレーションを行う。そして、この制御量PVのシミュレーションを行ったときの制御量PVが目標値SV2以上かつ制御量PVと目標値SV2との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせをPID定数として算出する。これにより、最適な比例帯P、積分時間I、微分時間Dを求めてPID定数を設定することができる。 Next, the PID constant calculation means 4k simulates the control amount PV under the control of the model control means 4f by changing the proportional band P, the integration time I, and the differential time D with a normal distribution random number. Then, the proportional band P, the integration time I, and the differential time D in which the control amount PV when the simulation of the control amount PV is performed is equal to or more than the target value SV2 and the maximum value of the difference between the control amount PV and the target value SV2 is the smallest. Is calculated as a PID constant. As a result, the optimum proportional band P, integration time I, and differential time D can be obtained and the PID constant can be set.

ところで、上述した実施の形態では、制御対象として電気炉13の炉内温度を目標値SVに制御する制御装置を例にとって説明したが、これに限定されるものではない。例えば流量系や化学反応系などにおける流量、湿度、圧力などの物理量を目標値に制御する制御装置として用いることもできる。 By the way, in the above-described embodiment, the control device for controlling the temperature inside the electric furnace 13 to the target value SV has been described as an example, but the control device is not limited to this. For example, it can be used as a control device for controlling physical quantities such as flow rate, humidity, and pressure in a flow rate system or a chemical reaction system to target values.

このように、本実施の形態によれば、2回のステップ応答と伝達関数G(s)のモデルによる制御量のシミュレーションによりPID定数を適切に決定して設定することができ、制御量のオーバシュートを低減することができる。 As described above, according to the present embodiment, the PID constant can be appropriately determined and set by the simulation of the control amount by the model of the transfer function G (s) and the two step responses, and the control amount is exceeded. The shoot can be reduced.

以上、本発明に係る制御装置および制御方法の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。 Although the best mode of the control device and the control method according to the present invention has been described above, the present invention is not limited by the description and drawings in this form. That is, it goes without saying that all other forms, examples, operational techniques, and the like made by those skilled in the art based on this form are included in the category of the present invention.

1 制御装置
2 操作表示部
3 記憶部
4 制御部
11 加熱手段
12 温度センサ
13 電気炉(制御対象)
1 Control device 2 Operation display unit 3 Storage unit 4 Control unit 11 Heating means 12 Temperature sensor 13 Electric furnace (controlled object)

Claims (4)

制御対象の制御量を変化させるための操作量を算出して前記制御量を目標値に一致させる制御装置であって、
前記制御量が前記目標値よりも小さい中途目標値、前記目標値の順に到達するように2回のステップ応答の制御を行うステップ応答制御手段と、
前記2回のステップ応答の制御によって得られる前記目標値と前記中途目標値それぞれと前記制御量との差を示す偏差と該偏差の変化量が基準以下のときに定常状態と判定する状態判定手段と、
前記2回のステップ応答の制御で前記定常状態と判定されたときの前記制御量と前記操作量の平均値を算出する平均値算出手段と、
前記制御量が前記中途目標値に到達するようにステップ応答の制御をして前記定常状態と判定されたときに該定常状態から前記制御量が所定量変化するのに要するむだ時間を計測するむだ時間計測手段と、
前記2回のステップ応答の制御で前記定常状態と判定されたときの波形を実測波形として取得する実測波形取得手段と、
ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとし、前記固有角周波数と前記減衰比を正規分布乱数により変えて前記制御量のシミュレーションを行うモデル制御手段と、
前記平均値算出手段にて算出した前記制御量と前記操作量の平均値に基づいてゲインを算出するゲイン算出手段と、
前記モデルにて制御を行ったときの波形を予測波形として取得する予測波形取得手段と、
前記実測波形と前記予測波形との波形の誤差の絶対値を加算した評価値が最も小さくなる前記固有角周波数と前記減衰比の組み合わせを算出するパラメータ算出手段と、
比例帯P、積分時間I、微分時間Dを正規分布乱数により変えて前記制御量のシミュレーションを行ったときの前記制御量が前記目標値以上かつ前記制御量と前記目標値との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせを算出するPID定数算出手段と、
を具備することを特徴とする制御装置。
A control device that calculates an operation amount for changing the control amount of a controlled object and matches the control amount with a target value.
A step response control means that controls two step responses so that the control amount reaches the intermediate target value smaller than the target value and the target value in that order.
A state determining means for determining a steady state when the deviation indicating the difference between the target value, the intermediate target value, and the control amount obtained by controlling the two step responses and the amount of change in the deviation are equal to or less than the reference value. When,
An average value calculating means for calculating the average value of the controlled amount and the manipulated amount when the steady state is determined by the control of the two step responses, and
It is wasteful to control the step response so that the controlled amount reaches the midway target value, and to measure the dead time required for the controlled amount to change by a predetermined amount from the steady state when the steady state is determined. Time measuring means and
An actually measured waveform acquisition means that acquires the waveform when the steady state is determined by controlling the two step responses as an actually measured waveform, and
Model the transfer function G (s) = (Kωn 2 / s 2 + 2ζωns + ωn 2 ) · (1-Ts / 1 + Ts) when the Laplace operator s, gain K, waste time T, natural angular frequency ωn, and damping ratio ζ Then, a model control means for simulating the control amount by changing the natural angular frequency and the damping ratio with a normal distribution random number, and
A gain calculation means that calculates a gain based on the average value of the control amount and the operation amount calculated by the average value calculation means, and
Predicted waveform acquisition means for acquiring the waveform when control is performed by the model as a predicted waveform, and
A parameter calculation means for calculating the combination of the natural angular frequency and the damping ratio, which minimizes the evaluation value obtained by adding the absolute values of the waveform errors between the actually measured waveform and the predicted waveform.
The maximum value of the difference between the control amount and the target value when the control amount is simulated by changing the proportional band P, the integration time I, and the differential time D with a normal distribution random number. A PID constant calculating means for calculating the combination of the proportional band P, the integration time I, and the differential time D, which minimizes
A control device characterized by comprising.
前記制御対象の特性に応じて初期時のPID定数を設定することを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, wherein an initial PID constant is set according to the characteristics of the controlled object. 制御対象の制御量を変化させるための操作量を算出して前記制御量を目標値に一致させる制御方法であって、
前記制御量が前記目標値よりも小さい中途目標値、前記目標値の順に到達するように2回のステップ応答の制御を行うステップと、
前記2回のステップ応答の制御によって得られる前記目標値と前記中途目標値それぞれと前記制御量との差を示す偏差と該偏差の変化量が基準以下のときに定常状態と判定するステップと、
前記2回のステップ応答の制御で前記定常状態と判定されたときの前記制御量と前記操作量の平均値を算出するステップと、
前記制御量が前記中途目標値に到達するようにステップ応答の制御をして前記定常状態と判定されたときに該定常状態から前記制御量が所定量変化するのに要するむだ時間を計測するステップと、
前記2回のステップ応答の制御で前記定常状態と判定されたときの波形を実測波形として取得するステップと、
ラプラス演算子s、ゲインK、むだ時間T、固有角周波数ωn、減衰比ζとしたときの伝達関数G(s)=(Kωn2 /s2 +2ζωns+ωn2 )・(1−Ts/1+Ts)をモデルとし、前記固有角周波数と前記減衰比を正規分布乱数により変えて前記制御量のシミュレーションを行うステップと、
前記制御量と前記操作量の平均値に基づいてゲインを算出するステップと、
前記モデルにて制御を行ったときの波形を予測波形として取得するステップと、
前記実測波形と前記予測波形との波形の誤差の絶対値を加算した評価値が最も小さくなる前記固有角周波数と前記減衰比の組み合わせを算出するステップと、
比例帯P、積分時間I、微分時間Dを正規分布乱数により変えて前記制御量のシミュレーションを行ったときの前記制御量が前記目標値以上かつ前記制御量と前記目標値との差の最大値が最も小さくなる比例帯P、積分時間I、微分時間Dの組み合わせを算出するステップと、
を含むことを特徴とする制御方法。
It is a control method for calculating an operation amount for changing a control amount of a controlled object and matching the control amount with a target value.
A step of controlling the step response twice so that the control amount reaches the intermediate target value smaller than the target value and the target value in this order.
A deviation indicating the difference between the target value, the intermediate target value, and the control amount obtained by controlling the two step responses, and a step of determining a steady state when the amount of change in the deviation is equal to or less than a reference.
A step of calculating the average value of the control amount and the operation amount when the steady state is determined by the control of the two step responses, and
A step of controlling the step response so that the controlled amount reaches the midway target value and measuring the dead time required for the controlled amount to change by a predetermined amount from the steady state when the steady state is determined. When,
A step of acquiring the waveform when the steady state is determined by controlling the two step responses as an actually measured waveform, and
Model the transfer function G (s) = (Kωn 2 / s 2 + 2ζωns + ωn 2 ) · (1-Ts / 1 + Ts) when the Laplace operator s, gain K, waste time T, natural angular frequency ωn, and damping ratio ζ Then, the step of simulating the control amount by changing the natural angular frequency and the attenuation ratio with a normal distribution random number, and
A step of calculating the gain based on the average value of the control amount and the operation amount, and
The step of acquiring the waveform when the control is performed by the model as a predicted waveform, and
A step of calculating a combination of the natural angular frequency and the damping ratio in which the evaluation value obtained by adding the absolute values of the waveform errors between the actually measured waveform and the predicted waveform is the smallest.
When the proportional band P, the integration time I, and the differential time D are changed by a normal distribution random number and the simulation of the control amount is performed, the control amount is equal to or more than the target value and the maximum value of the difference between the control amount and the target value. And the step of calculating the combination of the proportional band P, the integration time I, and the differentiation time D, which minimizes
A control method characterized by including.
前記制御対象の特性に応じて初期時のPID定数を設定するステップを含むことを特徴とする請求項3に記載の制御方法。 The control method according to claim 3, further comprising a step of setting an initial PID constant according to the characteristics of the controlled object.
JP2019056468A 2019-03-25 2019-03-25 Control device and control method Active JP7213729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019056468A JP7213729B2 (en) 2019-03-25 2019-03-25 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056468A JP7213729B2 (en) 2019-03-25 2019-03-25 Control device and control method

Publications (2)

Publication Number Publication Date
JP2020160550A true JP2020160550A (en) 2020-10-01
JP7213729B2 JP7213729B2 (en) 2023-01-27

Family

ID=72643284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056468A Active JP7213729B2 (en) 2019-03-25 2019-03-25 Control device and control method

Country Status (1)

Country Link
JP (1) JP7213729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859585A (en) * 2021-01-12 2021-05-28 浙江中控技术股份有限公司 Method for dynamically adjusting control period of PID controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194506A (en) * 1986-02-21 1987-08-27 Yokogawa Electric Corp Controller
JPH03152601A (en) * 1989-11-08 1991-06-28 Yokogawa Electric Corp Self-tuning controller
JPH0484304A (en) * 1990-07-27 1992-03-17 Hitachi Ltd Method for adjusting controller
JPH06266408A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Adaptive control method for process and control system for process
JPH08110802A (en) * 1994-10-12 1996-04-30 Yamatake Honeywell Co Ltd Pid controller
JPH08115102A (en) * 1994-10-19 1996-05-07 Yamatake Honeywell Co Ltd Controller
JP2003167605A (en) * 2001-11-30 2003-06-13 Omron Corp Controller, temperature control unit, and heat treating equipment
JP2014041593A (en) * 2012-07-25 2014-03-06 Kelk Ltd Temperature adjustment device for semiconductor manufacturing device, pid constants calculation method in manufacturing semiconductor, and operation method of temperature adjustment device of semiconductor manufacturing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152601B2 (en) 1995-11-17 2001-04-03 株式会社精工技研 Alignment guide device for disk cavity plate on fixed side and movable side of disk injection mold
JP6266408B2 (en) 2014-03-31 2018-01-24 川崎重工業株式会社 Motorcycle tandem grip unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194506A (en) * 1986-02-21 1987-08-27 Yokogawa Electric Corp Controller
JPH03152601A (en) * 1989-11-08 1991-06-28 Yokogawa Electric Corp Self-tuning controller
JPH0484304A (en) * 1990-07-27 1992-03-17 Hitachi Ltd Method for adjusting controller
JPH06266408A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Adaptive control method for process and control system for process
JPH08110802A (en) * 1994-10-12 1996-04-30 Yamatake Honeywell Co Ltd Pid controller
JPH08115102A (en) * 1994-10-19 1996-05-07 Yamatake Honeywell Co Ltd Controller
JP2003167605A (en) * 2001-11-30 2003-06-13 Omron Corp Controller, temperature control unit, and heat treating equipment
JP2014041593A (en) * 2012-07-25 2014-03-06 Kelk Ltd Temperature adjustment device for semiconductor manufacturing device, pid constants calculation method in manufacturing semiconductor, and operation method of temperature adjustment device of semiconductor manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859585A (en) * 2021-01-12 2021-05-28 浙江中控技术股份有限公司 Method for dynamically adjusting control period of PID controller
CN112859585B (en) * 2021-01-12 2024-03-08 中控技术股份有限公司 Method for dynamically adjusting control period of PID controller

Also Published As

Publication number Publication date
JP7213729B2 (en) 2023-01-27

Similar Documents

Publication Publication Date Title
US6688532B2 (en) Controller, temperature controller and heat processor using same
US11003150B2 (en) Simulation method, recording medium wherein simulation program is stored, simulation device, and system
JP6093019B2 (en) Mass flow control system
US4893262A (en) Weigh feeding system with self-tuning stochastic control
JP6409803B2 (en) Simulation device, simulation method, control program, and recording medium
US20130204403A1 (en) Apparatus and Methods for Non-Invasive Closed Loop Step Testing Using a Tunable Trade-Off Factor
JP2006220408A (en) Temperature control method, temperature controller, heat treatment device and program
JP6515844B2 (en) Simulation apparatus, simulation method, control program, and recording medium
JP2020160550A (en) Control device and control method
Ryckaert et al. Model-based temperature control in ovens
JP4633253B2 (en) PID control device tuning method
US20200379452A1 (en) Plant operating condition setting support system, learning device, and operating condition setting support device
JP5125754B2 (en) PID controller tuning apparatus, PID controller tuning program, and PID controller tuning method
RU2629645C1 (en) Temperature control method in heating chamber
JP7159945B2 (en) processing equipment
JP6520945B2 (en) Method of controlling flow rate of fluid, mass flow control device for executing the method, and mass flow control system using the mass flow control device
JP6500976B2 (en) Temperature control system and temperature control method
JP5010717B2 (en) PID controller
JP6939649B2 (en) air conditioner
Tzouanas et al. Temperature and Level Control of a Multivariable Water Tank Process
US9582754B1 (en) Adaptive feed forward method for temperature control
JP2015103169A (en) Numerical control device
JPH07334070A (en) Process simulator
JP2020149569A (en) Control device and control method
US6594593B1 (en) Performance assessment of controllers applied to integrating processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7213729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150