JP2020159851A - Differential flowmeter - Google Patents

Differential flowmeter Download PDF

Info

Publication number
JP2020159851A
JP2020159851A JP2019059221A JP2019059221A JP2020159851A JP 2020159851 A JP2020159851 A JP 2020159851A JP 2019059221 A JP2019059221 A JP 2019059221A JP 2019059221 A JP2019059221 A JP 2019059221A JP 2020159851 A JP2020159851 A JP 2020159851A
Authority
JP
Japan
Prior art keywords
differential pressure
flow path
pressure
generator
pressure gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019059221A
Other languages
Japanese (ja)
Other versions
JP2020159851A5 (en
JP7193088B2 (en
Inventor
隆司 嶋田
Takashi Shimada
隆司 嶋田
良次 土井原
Ryoji Doihara
良次 土井原
チョン・カー・ウィー
Karhooi Cheong
正訓 寺阪
Masakuni Terasaka
正訓 寺阪
憲彦 田村
Norihiko Tamura
憲彦 田村
中村 彰宏
Akihiro Nakamura
彰宏 中村
丈裕 林
Takehiro Hayashi
丈裕 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Horiba Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Horiba Ltd
Priority to JP2019059221A priority Critical patent/JP7193088B2/en
Publication of JP2020159851A publication Critical patent/JP2020159851A/en
Publication of JP2020159851A5 publication Critical patent/JP2020159851A5/ja
Application granted granted Critical
Publication of JP7193088B2 publication Critical patent/JP7193088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

To provide a differential flowmeter with which it is possible to measure a more accurate flow rate.SOLUTION: Provided is a differential flowmeter for measuring the flow rate of a fluid flowing in a flow path. The differential flowmeter comprises: a pair of pressure difference generators arranged serially to the flow path, for generating a pressure difference in the fluid; and a flow rate measurement mechanism for measuring the flow rate of a fluid flowing in the flow path on the basis of a first pressure difference which is a difference between the first pressure of a fluid flowing into the pressure difference generator on the upstream side and the second pressure of a fluid flowing out of the pressure difference generator on the upstream side and flowing into the pressure difference generator on the downstream side and a second pressure difference between the second pressure and the third pressure of a fluid flowing out of the pressure difference generator on the downstream side. The pair of pressure difference generators have an internal flow path in mutually different length, and the flow path shapes on the upstream end side in the internal flow paths of both pressure difference generators are set to approximately the same shape loss, as well as the flow path shapes on the downstream end side in the internal flow paths of both pressure difference generators are set to approximately the same shape loss.SELECTED DRAWING: Figure 1

Description

本発明は、差圧式流量計に関するものである。 The present invention relates to a differential pressure type flow meter.

半導体製造プロセスにおいては、流路を流れる流体の流量を正確に把握する必要があることから、各流路に流量計が設置される。例えば、特許文献1には、流量計の一つとして、流路に設置される差圧生成体と、差圧生成体へ流入する流体の圧力を検出する上流側圧力計と、差圧生成体から流出する圧力を検出する下流側圧力計と、を備えた差圧式流量計が開示されている。 In the semiconductor manufacturing process, since it is necessary to accurately grasp the flow rate of the fluid flowing through the flow path, a flow meter is installed in each flow path. For example, in Patent Document 1, as one of the flowmeters, a differential pressure generator installed in a flow path, an upstream pressure gauge for detecting the pressure of a fluid flowing into the differential pressure generator, and a differential pressure generator. A differential pressure type flowmeter including a downstream pressure gauge for detecting the pressure flowing out of the flow meter is disclosed.

ところで、流路に差圧生成体を設置し、この差圧生成体に生じる差圧から流体の体積流量Qv及び質量流量Qmを算出する理論式として次の式(1)がある。
By the way, there is the following formula (1) as a theoretical formula for installing a differential pressure generator in the flow path and calculating the volume flow rate Qv and the mass flow rate Qm of the fluid from the differential pressure generated in the differential pressure generator.

ここで、dは、差圧生成体の直径、μは、流体の粘度、lは、流路から差圧生成体に流入した流体が助走区間を経て層流として速度分布が完成した領域(以下、層流領域ともいう)における二点間の距離、ΔPは、前記二点間の差圧、をそれぞれ示している。すなわち、この式(1)においては、差圧生成体における層流領域の摩擦損失しか考慮されていない。 Here, d is the diameter of the differential pressure generator, μ is the viscosity of the fluid, and l is the region where the velocity distribution of the fluid flowing into the differential pressure generator from the flow path is completed as a laminar flow through the run-up section (hereinafter). , Also referred to as a laminar flow region), ΔP indicates the differential pressure between the two points, respectively. That is, in this equation (1), only the friction loss in the laminar flow region in the differential pressure generator is considered.

このため、前記従来の差圧式流量計において、両圧力計で検出された圧力から差圧ΔP´を算出し、この差圧ΔP´をΔPとして式(1)から体積流量Qvを算出しようとすると、正確な流量が得られない。 Therefore, in the conventional differential pressure type flow meter, the differential pressure ΔP'is calculated from the pressures detected by both pressure gauges, and the differential pressure ΔP'is used as ΔP to calculate the volumetric flow rate Qv from the equation (1). , Accurate flow rate cannot be obtained.

なぜなら、前記従来の差圧式流量計で得られる差圧ΔP´には、上流側圧力計の測定流路を流れる流体が差圧生成体の内部流路へ流入する場合に、その接合箇所における流路形状の縮小に伴って生じる形状損失、差圧生成体の内部流路を流れる流体が下流側圧力計の測定流路へ流入する場合に、その接合箇所における流路形状の拡大に伴って生じる形状損失、及び、各圧力計の測定流路で生じる摩擦損失が含まれるからである。 This is because, when the fluid flowing through the measurement flow path of the upstream pressure gauge flows into the internal flow path of the differential pressure generator, the differential pressure ΔP'obtained by the conventional differential pressure type flow meter flows at the joint. Shape loss caused by the reduction of the path shape, and when the fluid flowing through the internal flow path of the differential pressure generator flows into the measurement flow path of the downstream pressure gauge, it occurs due to the expansion of the flow path shape at the joint. This is because the shape loss and the friction loss generated in the measurement flow path of each pressure gauge are included.

一方、差圧生成体の層流領域に圧力取出部を設けて差圧ΔPを直接測定する方法も考えられるが、差圧生成体から静圧を取り出すためには、差圧生成体の直径よりもある程度小さい直径の圧力取出管を接続する必要があるため、圧力取出管の直径が小さくなり過ぎて正確に静圧を取り出すことができないという問題点があった。 On the other hand, a method of directly measuring the differential pressure ΔP by providing a pressure extraction portion in the laminar flow region of the differential pressure generator is also conceivable, but in order to extract the static pressure from the differential pressure generator, the diameter of the differential pressure generator is used. However, since it is necessary to connect a pressure outlet pipe having a diameter small to some extent, there is a problem that the diameter of the pressure outlet pipe becomes too small and the static pressure cannot be taken out accurately.

特開2006−153677号Japanese Unexamined Patent Publication No. 2006-153677

そこで、本発明は、理論式を用いてより正確な流量を測定できる差圧式流量計を得ることを主な課題とするものである。 Therefore, the main object of the present invention is to obtain a differential pressure type flow meter capable of measuring a more accurate flow rate by using a theoretical formula.

すなわち、本発明に係る差圧式流量計は、流路を流れる流体の流量を測定する差圧式流量計であって、前記流路に対して直列状に設置され、前記流体に差圧を生成する一対の差圧生成体と、前記上流側の差圧生成体へ流入する流体の第1圧力及び前記上流側の差圧生成体から流出して前記下流側の差圧生成体へ流入する流体の第2圧力の差である第1差圧と、前記第2圧力及び前記下流側の差圧生成体から流出した流体の第3圧力の差である第2差圧とに基づき前記流路を流れる流体の流量を測定する流量測定機構とを備え、前記一対の差圧生成体が、互いに異なる長さの内部流路を有し、かつ、当該両差圧生成体の内部流路における上流端側の流路形状が略同一の形状損失になるように設定されていると共に、当該両差圧生成体の内部流路における下流端側の流路形状が略同一の形状損失になるように設定されていることを特徴とするものである。 That is, the differential pressure type flow meter according to the present invention is a differential pressure type flow meter that measures the flow rate of a fluid flowing through a flow path, and is installed in series with the flow path to generate a differential pressure in the fluid. A pair of differential pressure generators, a first pressure of a fluid flowing into the differential pressure generator on the upstream side, and a fluid flowing out of the differential pressure generator on the upstream side and flowing into the differential pressure generator on the downstream side. It flows through the flow path based on the first differential pressure, which is the difference between the second pressures, and the second differential pressure, which is the difference between the second pressure and the third pressure of the fluid flowing out from the differential pressure generator on the downstream side. A flow rate measuring mechanism for measuring the flow rate of a fluid is provided, and the pair of differential pressure generators have internal flow paths having different lengths from each other, and the upstream end side of the internal flow paths of the two differential pressure generators. The flow path shape is set to have substantially the same shape loss, and the flow path shape on the downstream end side in the internal flow path of the two differential pressure generators is set to have substantially the same shape loss. It is characterized by being.

また、本発明に係る差圧式流量計は、流路を流れる流体の流量を測定する差圧式流量計であって、前記流路に対して直列状に設置され、前記流体に差圧を生成する一対の差圧生成体と、前記上流側の差圧生成体へ流入する流体の第1圧力及び前記上流側の差圧生成体から流出して前記下流側の差圧生成体へ流入する流体の第2圧力の差である第1差圧と、前記第2圧力及び前記下流側の差圧生成体から流出した流体の第3圧力の差である第2差圧とに基づき前記流路を流れる流体の流量を測定する流量測定機構とを備え、前記一対の差圧生成体が、互いに異なる長さの内部流路を有し、かつ、当該両差圧生成体の内部流路における上流端側に生じる形状損失が互いにキャンセルされると共に、当該両差圧生成体の内部流路における下流端側に生じる形状損失が互いにキャンセルされるように構成されていることを特徴とするものである。 Further, the differential pressure type flow meter according to the present invention is a differential pressure type flow meter that measures the flow rate of a fluid flowing through a flow path, and is installed in series with the flow path to generate a differential pressure in the fluid. A pair of differential pressure generators, a first pressure of a fluid flowing into the differential pressure generator on the upstream side, and a fluid flowing out of the differential pressure generator on the upstream side and flowing into the differential pressure generator on the downstream side. It flows through the flow path based on the first differential pressure, which is the difference between the second pressures, and the second differential pressure, which is the difference between the second pressure and the third pressure of the fluid flowing out from the differential pressure generator on the downstream side. A flow rate measuring mechanism for measuring the flow rate of a fluid is provided, and the pair of differential pressure generators have internal flow paths having different lengths from each other, and the upstream end side of the internal flow paths of the two differential pressure generators. It is characterized in that the shape loss caused in the above is canceled with each other and the shape loss generated on the downstream end side in the internal flow path of the two differential pressure generators is canceled with each other.

このようなものであれば、各差圧生成体の内部流路の上流端側及び下流端側の流路形状を略同一にしたので、第1差圧及び第2差圧に基づき、一対の差圧生成体によって生成される差圧を算出する場合に、各差圧生成体の内部流路の上流端側及び下流端側で生じる形状損失が互いにキャンセルされる。これにより、前記理論式を用いてより正確に体積流量を算出できるようになる。ここで、形状損失とは、内部流路の形状変化(具体的には、内部流路の曲がり、内部流路の内径の拡縮等)によって当該内部流路を流れる流体に発生するエネルギー損失を示している。 In such a case, since the flow path shapes on the upstream end side and the downstream end side of the internal flow path of each differential pressure generator are substantially the same, a pair based on the first differential pressure and the second differential pressure. When calculating the differential pressure generated by the differential pressure generator, the shape losses that occur on the upstream end side and the downstream end side of the internal flow path of each differential pressure generator are canceled each other. This makes it possible to calculate the volumetric flow rate more accurately using the theoretical formula. Here, the shape loss refers to the energy loss generated in the fluid flowing through the internal flow path due to the shape change of the internal flow path (specifically, bending of the internal flow path, expansion / contraction of the inner diameter of the internal flow path, etc.). ing.

なお、具体的には、前記一対の差圧生成体として、略同一の径寸法に設定された内部流路を有するキャピラリーを使用すればよい。 Specifically, as the pair of differential pressure generators, a capillary having an internal flow path set to substantially the same diameter dimension may be used.

また、本発明に係る差圧式流量計としては、三つの圧力計によって前記第1圧力、前記第2圧力及び前記第3圧力をそれぞれ検出した上で第1差圧及び第2差圧を算出する圧力検出方式と、差圧計によって直接第1差圧及び第2差圧を検出する差圧検出方式とが考えられる。 Further, as the differential pressure type flow meter according to the present invention, the first differential pressure and the second differential pressure are calculated after detecting the first pressure, the second pressure and the third pressure by three pressure gauges, respectively. A pressure detection method and a differential pressure detection method in which the first differential pressure and the second differential pressure are directly detected by a differential pressure gauge can be considered.

なお、圧力検出方式としては、前記流量測定機構が、前記上流側の差圧生成体の上流端に接続され、その内部に前記第1圧力を取り出す圧力取出部を有する第1圧力計と、前記上流側の差圧生成体の下流端及び前記下流側の差圧生成体の上流端の間に接続され、その内部に前記第2圧力を取り出す圧力取出部を有する第2圧力計と、前記下流側の差圧生成体の下流端に接続され、その内部に前記第3圧力を取り出す圧力取出部を有する第3圧力計とを備えているものであってもよい。 As a pressure detection method, a first pressure gauge in which the flow rate measuring mechanism is connected to the upstream end of the differential pressure generator on the upstream side and has a pressure extraction unit for taking out the first pressure inside the differential pressure generator, and the above. A second pressure gauge connected between the downstream end of the differential pressure generator on the upstream side and the upstream end of the differential pressure generator on the downstream side and having a pressure take-out portion inside the differential pressure generator, and the downstream side. It may be provided with a third pressure gauge connected to the downstream end of the differential pressure generator on the side and having a pressure extraction portion for taking out the third pressure inside.

そして、この場合、前記第1圧力計、前記第2圧力計及び前記第3圧力計の圧力取出部が、略同一形状に設定されていることが好ましい。 In this case, it is preferable that the pressure extraction portions of the first pressure gauge, the second pressure gauge, and the third pressure gauge are set to have substantially the same shape.

このようなものであれば、各圧力計で検出された圧力に基づき、一対の差圧生成体によって生成される差圧を算出する場合に、各圧力計の圧力取出部で生じる摩擦損失が互いにキャンセルされる。これにより、前記理論式を用いてより正確に体積流量を算出できるようになる。 In such a case, when calculating the differential pressure generated by the pair of differential pressure generators based on the pressure detected by each pressure gauge, the friction loss generated at the pressure extraction part of each pressure gauge is mutual. It will be canceled. This makes it possible to calculate the volumetric flow rate more accurately using the theoretical formula.

さらに、この場合、前記第1圧力計、前記第2圧力計及び前記第3圧力計の圧力取出部が、いずれかの差圧生成体の内部流路と連通し、当該内部流路よりも大きい径寸法を有する測定流路を有しており、前記上流側の差圧生成体の内部流路と前記第1圧力計の測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2圧力計の測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されており、前記上流側の差圧生成体の内部流路と前記第2圧力計の測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第3圧力計の測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されていることが好ましい。 Further, in this case, the pressure extraction portions of the first pressure gauge, the second pressure gauge, and the third pressure gauge communicate with the internal flow path of any of the differential pressure generators and are larger than the internal flow path. It has a measurement flow path with a radial dimension, and the difference between the flow path shape at the junction between the internal flow path of the differential pressure generator on the upstream side and the measurement flow path of the first pressure gauge and the downstream side. The shape of the flow path at the joint between the internal flow path of the pressure generator and the measurement flow path of the second pressure gauge is set to have substantially the same shape loss, and the differential pressure generator on the upstream side At the joint between the internal flow path and the measurement flow path of the second pressure gauge, and at the joint between the internal flow path of the differential pressure generator on the downstream side and the measurement flow path of the third pressure gauge. It is preferable that the shape loss is set to be substantially the same as the shape of the flow path.

このようなものであれば、各圧力計で検出された圧力に基づき、一対の差圧生成体によって生成される差圧を算出する場合に、各圧力計の測定流路と各差圧生成体の内部流路との接合箇所で生じる形状損失が互いにキャンセルされる。これにより、前記理論式を用いてより正確に体積流量を算出できるようになる。 In such a case, when calculating the differential pressure generated by the pair of differential pressure generators based on the pressure detected by each pressure gauge, the measurement flow path of each pressure gauge and each differential pressure generator are used. The shape loss that occurs at the joint with the internal flow path of the is canceled each other. This makes it possible to calculate the volumetric flow rate more accurately using the theoretical formula.

また、差圧検出方式としては、前記一対の差圧生成体が、前記流路に対して間欠的に配置されており、前記流量測定機構が、前記上流側の差圧生成体の上流端及び下流端に接続された前記各流路に連通され、その内部に前記第1差圧を取り出す差圧取出部を有する第1差圧計と、前記下流側の差圧生成体の上流側及び下流側に接続された前記各流路に連通され、その内部に前記第2差圧を取り出す差圧取出部を有する第2差圧計とを備えているものであってもよい。 Further, as a differential pressure detection method, the pair of differential pressure generators are intermittently arranged with respect to the flow path, and the flow rate measuring mechanism is provided at the upstream end of the differential pressure generator on the upstream side and A first differential pressure gauge that is communicated with each of the flow paths connected to the downstream end and has a differential pressure take-out portion that takes out the first differential pressure inside the flow path, and upstream and downstream sides of the differential pressure generator on the downstream side. It may be provided with a second differential pressure gauge which is communicated with each of the flow paths connected to the above and has a differential pressure take-out portion for taking out the second differential pressure inside.

また、この場合、前記第1差圧計及び前記第2差圧計の差圧取出部の前記流路から延びる部分の当該流路に対する高さが略同一に設定されているものであることが好ましい。 Further, in this case, it is preferable that the heights of the differential pressure extraction portions of the first differential pressure gauge and the second differential pressure gauge extending from the flow path with respect to the flow path are set to be substantially the same.

このようなものであれば、各差圧計で検出された差圧に基づき、一対の差圧生成体によって生成される差圧を算出する場合に、各差圧計の圧力取出部で生じる損失が互いにキャンセルされる。これにより、前記理論式を用いてより正確に体積流量を算出できるようになる。 In such a case, when the differential pressure generated by the pair of differential pressure generators is calculated based on the differential pressure detected by each differential pressure gauge, the losses generated in the pressure extraction section of each differential pressure gauge are mutually different. It will be canceled. This makes it possible to calculate the volumetric flow rate more accurately using the theoretical formula.

さらに、この場合、前記第1差圧計及び前記第2差圧計の差圧取出部が、いずれかの差圧生成体の内部流路の上流側と連通し、当該内部流路よりも大きい径寸法を有する第1測定流路と、当該差圧生成体の内部流路の下流側と連通し、当該内部流路よりも大きい径寸法を有する第2測定流路とを有しており、前記上流側の差圧生成体の内部流路と前記第1差圧計の第1測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2差圧計の第1測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されており、前記上流側の差圧生成体の内部流路と前記第1差圧計の第2測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2差圧計の第2測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されているものであることがより好ましい。 Further, in this case, the differential pressure extraction portion of the first differential pressure gauge and the second differential pressure gauge communicates with the upstream side of the internal flow path of any of the differential pressure generators, and has a diameter larger than that of the internal flow path. It has a first measurement flow path having the above and a second measurement flow path which communicates with the downstream side of the internal flow path of the differential pressure generator and has a diameter larger than that of the internal flow path. The shape of the flow path at the junction between the internal flow path of the differential pressure generator on the side and the first measurement flow path of the first differential pressure gauge, and the internal flow path of the differential pressure generator on the downstream side and the second differential pressure gauge. The shape of the flow path at the joint with the first measurement flow path is set to be substantially the same, and the internal flow path of the differential pressure generator on the upstream side and the first differential pressure gauge are the first. The shape of the flow path at the joint with the two measurement flow paths and the shape of the flow path at the joint between the internal flow path of the differential pressure generator on the downstream side and the second measurement flow path of the second differential pressure gauge are substantially the same. It is more preferable that the shape loss is set to be.

このようなものであれば、各差圧計で検出された差圧に基づき、一対の差圧生成体によって生成される差圧を算出する場合に、各差圧計の測定流路と各差圧生成体の内部流路との接合箇所で生じる形状損失が互いにキャンセルされる。これにより、前記理論式を用いてより正確に体積流量を算出できるようになる。この場合、第1差圧計の第2測定流路と第2差圧計の第1測定流路とを共通のものとしてもよい。 In such a case, when calculating the differential pressure generated by the pair of differential pressure generators based on the differential pressure detected by each differential pressure gauge, the measurement flow path of each differential pressure gauge and each differential pressure generation are generated. The shape losses that occur at the junction with the internal flow path of the body cancel each other out. This makes it possible to calculate the volumetric flow rate more accurately using the theoretical formula. In this case, the second measurement flow path of the first differential pressure gauge and the first measurement flow path of the second differential pressure gauge may be common.

また、差圧検出方式においては、前記流体の密度を補正するための補正用圧力計を備えているものであってもよい。 Further, in the differential pressure detection method, a correction pressure gauge for correcting the density of the fluid may be provided.

流体の質量流量を算出する場合には、流体の密度が用いられるが、このようなものであれば、補正用圧力計の検出値に基づき流体の密度を補正することができるため、より正確な流量を得ることができる。 When calculating the mass flow rate of a fluid, the density of the fluid is used, but in such a case, the density of the fluid can be corrected based on the detection value of the correction pressure gauge, so that it is more accurate. The flow rate can be obtained.

なお、本発明に係る差圧流量計においては、二つの差圧生成体を直列状に配置する必要があるため、差圧流量計の全長が長くなる。そこで、前記両差圧生成体の少なくとも一部が曲げられているものあってもよく、また、前記両差圧生成体の一部が環状に曲げられているものであってもよい。 In the differential pressure flowmeter according to the present invention, since it is necessary to arrange the two differential pressure generators in series, the total length of the differential pressure flowmeter becomes long. Therefore, at least a part of the two differential pressure generators may be bent, or a part of the two differential pressure generators may be bent in an annular shape.

このようなものであれば、差圧流量計の全長を短くすることができ、これにより、コンパクトになる。 With such a thing, the total length of the differential pressure flowmeter can be shortened, which makes it compact.

また、前記一対の差圧生成体の少なくとも一方に、その内部流路を流れる前記流体の温度を検出する温度センサが設置されているものであってもよい。 Further, at least one of the pair of differential pressure generators may be equipped with a temperature sensor that detects the temperature of the fluid flowing through the internal flow path thereof.

このようなものであれば、差圧生成体を流れる流体の粘度μを温度に基づき補正することできるため、より正確な流量を測定できる。 With such a case, the viscosity μ of the fluid flowing through the differential pressure generator can be corrected based on the temperature, so that a more accurate flow rate can be measured.

このように構成した差圧式流量計によれば、前記理論式を用いてより正確な流量を測定することができる。 According to the differential pressure type flow meter configured as described above, a more accurate flow rate can be measured by using the theoretical formula.

実施形態1に係る差圧式流量計を模式的に示す断面図である。It is sectional drawing which shows typically the differential pressure type flow meter which concerns on Embodiment 1. FIG. 実施形態2に係る差圧式流量計を模式的に示す断面図である。It is sectional drawing which shows typically the differential pressure type flow meter which concerns on Embodiment 2. その他の実施形態に係る差圧式流量計を示す模式図である。It is a schematic diagram which shows the differential pressure type flow meter which concerns on other embodiment. その他の実施形態に係る差圧式流量計を示す模式図である。It is a schematic diagram which shows the differential pressure type flow meter which concerns on other embodiment.

以下に、本発明に係る差圧式流量計を図面に基づいて説明する。 The differential pressure type flow meter according to the present invention will be described below with reference to the drawings.

本発明に係る差圧式流量計は、半導体製造プロセスに使用される各機器に接続される流路に設置されるものである。なお、本発明に係る差圧式流量計は、他の分野における流路に使用することもできる。 The differential pressure type flowmeter according to the present invention is installed in a flow path connected to each device used in the semiconductor manufacturing process. The differential pressure type flowmeter according to the present invention can also be used for flow paths in other fields.

<実施形態1> 本実施形態に係る差圧式流量計100は、図1に示すように、流路Lに対して直列状に設置され、当該流路Lを流れる流体に差圧を生成する一対の差圧生成体10,20と、各差圧生成体10,20によって生成された差圧に基づき流路Lを流れる流体の流量を測定する流量測定機構Fと、を備えている。 <Embodiment 1> As shown in FIG. 1, the differential pressure type flowmeter 100 according to the present embodiment is installed in series with the flow path L, and a pair that generates a differential pressure in the fluid flowing through the flow path L. The differential pressure generators 10 and 20 and the flow rate measuring mechanism F for measuring the flow rate of the fluid flowing through the flow path L based on the differential pressure generated by the differential pressure generators 10 and 20 are provided.

前記一対の差圧生成体10,20は、管状のものであり、具体的には、円筒状のキャピラリーである。そして、一対の差圧生成体10,20は、その内部流路10a,20aの上流端側の流路形状が互いに略同一の形状損失になるように設定さており、その内部流路の10a,20a下流端側の流路形状が互いに略同一の形状損失になるように設定されている。具体的には、一対の差圧生成体10,20は、互いに異なる長さの内部流路10a,20aを有しており、その内部流路10a,20aの径寸法が略同一になっている。すなわち、一対の差圧生成体10,20の内部流路10a,20aは、その長さ以外の形状が略同一になっている。なお、本実施形態においては、円筒状のキャピラリーを用いたが、これに限定されることなく、内部流路10a,20aの断面が矩形状や楕円状等その他の形状のキャピラリーであってもよい。 The pair of differential pressure generators 10 and 20 are tubular, and specifically, a cylindrical capillary. The pair of differential pressure generators 10 and 20 are set so that the flow path shapes on the upstream end side of the internal flow paths 10a and 20a have substantially the same shape loss as each other, and the internal flow paths 10a, The shape of the flow path on the downstream end side of 20a is set so as to have substantially the same shape loss. Specifically, the pair of differential pressure generators 10 and 20 have internal flow paths 10a and 20a having different lengths, and the diameter dimensions of the internal flow paths 10a and 20a are substantially the same. .. That is, the internal flow paths 10a and 20a of the pair of differential pressure generators 10 and 20 have substantially the same shape other than their lengths. In the present embodiment, a cylindrical capillary is used, but the capillaries are not limited to this, and the cross sections of the internal flow paths 10a and 20a may be a capillary having another shape such as a rectangular shape or an elliptical shape. ..

そして、前記一対の差圧生成体10,20は、それぞれ直線状に延びており、流路Lに対して流体の流方向に沿って並べて配置されている。より具体的には、全長が短い方の差圧生成体10aが、流路Lの上流側に配置され、全長が長い方の差圧生成体20aが、流路Lの下流側に配置されている。 The pair of differential pressure generators 10 and 20 extend linearly, respectively, and are arranged side by side with respect to the flow path L along the flow direction of the fluid. More specifically, the differential pressure generator 10a having the shorter overall length is arranged on the upstream side of the flow path L, and the differential pressure generator 20a having the longer overall length is arranged on the downstream side of the flow path L. There is.

前記流量測定機構Fは、具体的には、上流側の差圧生成体10へ流入する流体の圧力である第1圧力及び上流側の差圧生成体10から流出して下流側の差圧生成体20へ流入する流体の圧力である第2圧力の差である第1差圧と、第2圧力及び下流側の差圧生成体20から流出した流体の圧力である第3圧力の差である第2差圧と、に基づき流路Lを流れる流体の流量を測定するものである。 Specifically, the flow rate measuring mechanism F generates a differential pressure on the downstream side by flowing out of the first pressure, which is the pressure of the fluid flowing into the differential pressure generator 10 on the upstream side, and the differential pressure generator 10 on the upstream side. It is the difference between the first differential pressure, which is the difference between the second pressure, which is the pressure of the fluid flowing into the body 20, and the third pressure, which is the pressure of the fluid flowing out from the second pressure and the differential pressure generator 20 on the downstream side. The flow rate of the fluid flowing through the flow path L is measured based on the second differential pressure.

そして、前記流量測定機構Fは、上流側の差圧生成体10の上流端に接続され、その内部に前記第1圧力を取り出すための圧力取出部31を有する第1圧力計30と、上流側の差圧生成体10の下流端及び下流側の差圧生成体20の上流端の間に接続され、その内部に前記第2圧力を取り出すための圧力取出部41を有する第2圧力計40と、下流側の差圧生成体20の下流端に接続され、その内部に第3圧力を取り出すための圧力取出部51を有する第3圧力計50と、を備えている。なお、以下において、第1圧力計30、第2圧力計40及び第3圧力計50をまとめて各圧力計30,40,50ともいう。 Then, the flow rate measuring mechanism F is connected to the upstream end of the differential pressure generator 10 on the upstream side, and has a first pressure gauge 30 having a pressure extraction unit 31 for taking out the first pressure inside the first pressure gauge 30 and the upstream side. A second pressure gauge 40 which is connected between the downstream end of the differential pressure generator 10 and the upstream end of the differential pressure generator 20 on the downstream side and has a pressure take-out portion 41 for taking out the second pressure inside. A third pressure gauge 50, which is connected to the downstream end of the differential pressure generator 20 on the downstream side and has a pressure take-out portion 51 for taking out the third pressure, is provided therein. In the following, the first pressure gauge 30, the second pressure gauge 40, and the third pressure gauge 50 are collectively referred to as pressure gauges 30, 40, and 50.

前記各圧力計30,40,50の圧力取出部31,41,51は、流路Lや差圧生成体10,20の内部流路10a,20aと連通して流体が流れる測定流路31a,41a,51aと、測定流路31a,41a,51aから分岐して延びる圧力取出路31b,41b,51bと、を備えている。また、測定流路31a,41a,51aは、差圧生成体10,20の内部流路10a,20aよりも大きな径寸法(直径)を有している。また、圧力取出路31b,41b,51bは、測定流路31a,41a,51aから分岐して延びており、その先端側に圧力取出路31b,41b,51bによって取り出された圧力を検出する圧力検出部32,42,52が設けられている。なお、本実施形態の圧力取出部31b,41b,51bは、測定流路31a,41a,51aの上下流方向に対して中央に当たる位置から分岐して延びている。 The pressure extraction portions 31, 41, 51 of the pressure gauges 30, 40, 50 communicate with the flow path L and the internal flow paths 10a, 20a of the differential pressure generators 10, 20, and the measurement flow path 31a, in which the fluid flows. It includes 41a, 51a and pressure outlet paths 31b, 41b, 51b that branch off from the measurement flow paths 31a, 41a, 51a. Further, the measurement flow paths 31a, 41a, 51a have a larger diameter dimension (diameter) than the internal flow paths 10a, 20a of the differential pressure generators 10 and 20. Further, the pressure outlet paths 31b, 41b, 51b branch from the measurement flow paths 31a, 41a, 51a and extend, and pressure detection for detecting the pressure taken out by the pressure extraction paths 31b, 41b, 51b on the tip side thereof Parts 32, 42, and 52 are provided. The pressure extraction portions 31b, 41b, 51b of the present embodiment branch off from a position corresponding to the center with respect to the upstream and downstream directions of the measurement flow paths 31a, 41a, 51a.

そして、前記各圧力計30,40,50は、圧力取出部31,41,51の形状が略同一形状に設定されている。具体的には、前記各圧力計30,40,50の圧力取出部31,41,51は、測定流路31a,41a,51a及び圧力取出路31b,41b,51bの長さや径寸法が略同一に設定されており、また、測定流路31a,41a,51aに対する圧力取出路31b,41b,51bの分岐位置が略同一に設定されている。 In each of the pressure gauges 30, 40, 50, the shapes of the pressure extraction portions 31, 41, 51 are set to substantially the same shape. Specifically, the pressure extraction portions 31, 41, 51 of the pressure gauges 30, 40, 50 have substantially the same length and diameter of the measurement flow paths 31a, 41a, 51a and the pressure extraction passages 31b, 41b, 51b. In addition, the branch positions of the pressure outlet paths 31b, 41b, 51b with respect to the measurement flow paths 31a, 41a, 51a are set to be substantially the same.

そして、上流側の差圧生成体10の内部流路10aと第1圧力計30の測定流路31aとの接合箇所X1における流路形状と、下流側の差圧生成体20の内部流路20aと第2圧力計40の測定流路41aとの接合箇所X2における流路形状と、が互いに略同一の形状損失になるように設定されている。すなわち、これらの接合箇所X1,X2の流路形状が略同一になるように内部流路10a,20a及び測定流路31a,41aが接合されている。 Then, the shape of the flow path at the joint portion X1 between the internal flow path 10a of the differential pressure generator 10 on the upstream side and the measurement flow path 31a of the first pressure gauge 30, and the internal flow path 20a of the differential pressure generator 20 on the downstream side. And the shape of the flow path at the joint portion X2 between the second pressure gauge 40 and the measurement flow path 41a of the second pressure gauge 40 are set so as to have substantially the same shape loss. That is, the internal flow paths 10a and 20a and the measurement flow paths 31a and 41a are joined so that the flow path shapes of these joint points X1 and X2 are substantially the same.

また、上流側の差圧生成体10の内部流路10aと第2圧力計40の測定流路41aとの接合箇所X3における流路形状と、下流側の差圧生成体20の内部流路20aと第3圧力計50の測定流路51aとの接合箇所X4における流路形状と、が互いに略同一の形状損失になるように設定されている。すなわち、これらの接合箇所X3,X4の流路形状が略同一になるように内部流路10a,20a及び測定流路41a,51aが接合されている。 Further, the shape of the flow path at the junction X3 between the internal flow path 10a of the differential pressure generator 10 on the upstream side and the measurement flow path 41a of the second pressure gauge 40, and the internal flow path 20a of the differential pressure generator 20 on the downstream side. And the shape of the flow path at the joint portion X4 with the measurement flow path 51a of the third pressure gauge 50 are set so as to have substantially the same shape loss. That is, the internal flow paths 10a and 20a and the measurement flow paths 41a and 51a are joined so that the flow path shapes of these joint points X3 and X4 are substantially the same.

なお、流量測定機構Fは、演算部60をさらに備えている。演算部60は、各圧力計30,40,50に接続されている。なお、演算部60は、CPU、メモリ、A/D・D/Aコンバータ、入出力手段等を備えたいわゆるコンピュータによって構成してあり、前記メモリに格納されているプログラムが実行され、各種機器が協働することによってその機能が実現されるようにしてある。具体的には、各圧力計30,40,50で検出された圧力に基づき流路Lに流れる流体の流量を演算する機能を発揮する。 The flow rate measuring mechanism F further includes a calculation unit 60. The calculation unit 60 is connected to the pressure gauges 30, 40, and 50, respectively. The arithmetic unit 60 is composed of a so-called computer equipped with a CPU, a memory, an A / D / D / A converter, an input / output means, etc., and a program stored in the memory is executed to execute various devices. The function is realized by collaborating. Specifically, it exerts a function of calculating the flow rate of the fluid flowing in the flow path L based on the pressures detected by the pressure gauges 30, 40, and 50.

次に、本実施形態に係る差圧式流量計100の測定原理を説明する。 Next, the measurement principle of the differential pressure type flow meter 100 according to the present embodiment will be described.

先ず、第1圧力をP、第2圧力をP、第3圧力をP、第1圧力計30の測定流路31aにおける圧力取出路31bよりも下流側Y1で生じる摩擦損失をΔPfp1out、第2圧力計40の測定流路41aにおける圧力取出路41bよりも下流側Y2で生じる摩擦損失をΔPfp2out、第2圧力計40の測定流路41aにおける圧力取出路41bよりも上流側Y3で生じる摩擦損失をΔPfp2in、第3圧力計50の測定流路51aにおける圧力取出路51bよりも上流側Y4で生じる摩擦損失をΔPfp3in、接合箇所X1における流路形状の縮小に伴う形状損失をΔPsc1、接合箇所X3における流路形状の拡大に伴う形状損失をΔPse1、接合箇所X2における流路形状の縮小に伴う形状損失をΔPsc2、接合箇所X4における流路形状の拡大に伴う形状損失をΔPse2、上流側の差圧生成体10の層流領域における摩擦損失をΔPfc1、下流側の差圧生成体20の層流領域における摩擦損失をΔPfc2、とすると、第1差圧ΔP12及び第2差圧ΔP23は、それぞれ次の式(2)及び式(3)で表すことができる。
First, the first pressure is P 1 , the second pressure is P 2 , the third pressure is P 3 , and the friction loss generated on the downstream side Y1 of the measurement flow path 31a of the first pressure gauge 30 is ΔPf p1 out. The friction loss generated in Y2 downstream of the pressure outlet path 41b in the measurement flow path 41a of the second pressure gauge 40 is ΔP fp2out , and the friction loss occurs in Y3 upstream of the pressure outlet passage 41b in the measurement flow path 41a of the second pressure gauge 40. The generated friction loss is ΔP fp2in , the friction loss generated on the upstream side Y4 of the pressure outlet path 51b in the measurement flow path 51a of the third pressure gauge 50 is ΔP fp3in , and the shape loss due to the reduction of the flow path shape at the joint portion X1 is ΔP. sc1 , the shape loss due to the expansion of the flow path shape at the junction X3 is ΔP se1 , the shape loss due to the reduction of the flow path shape at the junction X2 is ΔP sc2 , and the shape loss due to the expansion of the flow path shape at the junction X4 is If ΔP se2 , the friction loss in the laminar flow region of the differential pressure generator 10 on the upstream side is ΔP fc1 , and the friction loss in the laminar flow region of the differential pressure generator 20 on the downstream side is ΔP fc2 , then the first differential pressure ΔP 12 And the second differential pressure ΔP 23 can be expressed by the following equations (2) and (3), respectively.

ここで、各圧力計30,40,50の圧力取出部31,41,51が略同一形状になっていることとから、第1圧力計30の測定流路31aの下流側Y1で生じる摩擦損失ΔPfp1outと、第2圧力計40の測定流路41aの下流側Y2で生じる摩擦損失ΔPfp2outとが略同一となり、第2圧力計40の測定流路41aの上流側Y3で生じる摩擦損失ΔPfp2inと、第3圧力計50の測定流路51aの上流側Y4で生じる摩擦損失ΔPfp3inとが略同一となる。さらに、接合箇所X1及び接合箇所X2の流路形状が略同一形状になっていることから、接合箇所X1に生じる形状損失ΔPsc1と接合箇所X2に生じる形状損失ΔPsc2とが略同一となる。また、接合箇所X3及び接合箇所X4の流路形状が略同一形状になっていることから、接合箇所X3に生じる形状損失ΔPse1と接合箇所X4に生じる形状損失ΔPse2とが略同一となる。 Here, since the pressure extraction portions 31, 41, 51 of the pressure gauges 30, 40, and 50 have substantially the same shape, the friction loss that occurs on the downstream side Y1 of the measurement flow path 31a of the first pressure gauge 30 and? Pf P1OUT, the friction loss [Delta] P Fp2out occurring downstream Y2 of the second pressure gauge 40 of the measuring channel 41a is substantially the same, friction loss [Delta] P occurs upstream Y3 of the second pressure gauge 40 of the measuring channel 41a Fp2in And the friction loss ΔP fp3in generated on the upstream side Y4 of the measurement flow path 51a of the third pressure gauge 50 are substantially the same. Further, since the flow path shapes of the joint portion X1 and the joint portion X2 are substantially the same, the shape loss ΔP sc1 generated at the joint portion X1 and the shape loss ΔP sc2 generated at the joint portion X2 are substantially the same. Further, since the flow channel shape of the joint X3 and joint X4 is in substantially the same shape, the shape loss [Delta] P se1 occurring joint X3 and shape loss [Delta] P se2 occurring joint X4 is substantially the same.

よって、式(2)及び式(3)に基づき、第1差圧ΔP12と第2差圧ΔP23との差を算出すると、差圧生成体10,20の層流領域に生じる摩擦損失以外の摩擦損失及び形状損失を除いた次の式(4)が得られる。
すなわち、各圧力計で検出される圧力値のみから、層流領域における摩擦損失のみを含む値が得られる。
Therefore, when the difference between the first differential pressure ΔP 12 and the second differential pressure ΔP 23 is calculated based on the equations (2) and (3), other than the friction loss generated in the laminar flow region of the differential pressure generators 10 and 20. The following equation (4) is obtained, excluding the friction loss and shape loss of.
That is, from only the pressure value detected by each pressure gauge, a value including only the friction loss in the laminar flow region can be obtained.

そして、このΔP23−ΔP12をΔPとして式(1)に代入することにより、流路Lを流れる流体のより正確な流量を算出することができる。 Then, by substituting this ΔP 23 − ΔP 12 into the equation (1) as ΔP, a more accurate flow rate of the fluid flowing through the flow path L can be calculated.

なお、演算部60は、第1圧力計30で検出された第1圧力P1、第2圧力計40で検出された第2圧力P2、及び、第3圧力計50で検出された第3圧力P3から式(4)に基づきΔPを算出し、式(1)を用いて流路Lに流れる流体の流量を算出する。 The calculation unit 60 includes a first pressure P1 detected by the first pressure gauge 30, a second pressure P2 detected by the second pressure gauge 40, and a third pressure P3 detected by the third pressure gauge 50. ΔP is calculated based on the equation (4), and the flow rate of the fluid flowing through the flow path L is calculated using the equation (1).

<実施形態2> 本実施形態に係る差圧式流量計100は、前記実施形態1における流量測定機構Fの変形例である。具体的には、本実施形態に係る流量測定機構Fは、図2に示すように、上流側の差圧生成体10の上流端及び下流端に接続され、その内部に前記第1差圧を取り出す差圧取出部71を有する第1差圧計70と、下流側の差圧生成体20の上流側及び下流側に接続され、その内部に前記第2差圧を取り出す差圧取出部81を有する第2差圧計80と、を備えている。なお、以下において、第1差圧計70及び第2差圧計80をまとめて各差圧計70,80ともいう。 <Embodiment 2> The differential pressure type flow meter 100 according to the present embodiment is a modified example of the flow rate measuring mechanism F in the first embodiment. Specifically, as shown in FIG. 2, the flow rate measuring mechanism F according to the present embodiment is connected to the upstream end and the downstream end of the differential pressure generator 10 on the upstream side, and the first differential pressure is applied to the inside thereof. It has a first differential pressure gauge 70 having a differential pressure extraction unit 71 to be taken out, and a differential pressure extraction unit 81 connected to the upstream side and the downstream side of the differential pressure generator 20 on the downstream side and taking out the second differential pressure inside. It is provided with a second differential pressure gauge 80. In the following, the first differential pressure gauge 70 and the second differential pressure gauge 80 are collectively referred to as the differential pressure gauges 70 and 80.

前記各差圧計70,80の差圧取出部71,81は、差圧生成体10,20の内部流路10a,20aの上流側と連通して流体が流れる第1測定流路71a,81aと、差圧生成体10,20の内部流路10a,20aの下流側と連通して流体が流れる第2測定流路71b,81bと、第1測定流路71a,81a及び第2測定流路71b,81bから分岐して延びる圧力取出路71c,81cと、を備えている。なお、第1測定流路71a,81a及び第2測定流路71b,81bは、差圧生成体10,20の内部流路10a,20aよりも大きな径寸法(直径)を有している。また、各圧力取出路71c,81cは、第1測定流路71a,81a及び第2測定流路71b,81bから分岐して延びており、その先端側に圧力取出路71c,81cによって取り出された圧力の差圧を検出する差圧検出部72,82が設けられている。なお、本実施形態においては、第1差圧計70の第2測定流路71bと第2差圧計80の第1測定流路81aとが共通して使用されており、この共通する測定流路から分岐する第1差圧計70の圧力取出路71cの一部と第2差圧計80の圧力取出路81cの一部とが共通して使用されている。 The differential pressure extraction portions 71 and 81 of the differential pressure gauges 70 and 80 are the first measurement flow paths 71a and 81a in which the fluid flows in communication with the upstream sides of the internal flow paths 10a and 20a of the differential pressure generators 10 and 20. The second measurement flow paths 71b and 81b, and the first measurement flow paths 71a and 81a and the second measurement flow paths 71b, in which the fluid flows in communication with the downstream sides of the internal flow paths 10a and 20a of the differential pressure generators 10 and 20. , 81b, and the pressure outlet paths 71c and 81c extending from the 81b. The first measurement flow paths 71a and 81a and the second measurement flow paths 71b and 81b have a larger diameter than the internal flow paths 10a and 20a of the differential pressure generators 10 and 20. Further, the pressure outlet passages 71c and 81c are branched from the first measurement passages 71a and 81a and the second measurement passages 71b and 81b, and are taken out by the pressure outlet passages 71c and 81c to the tip side thereof. Differential pressure detection units 72 and 82 for detecting the differential pressure of the pressure are provided. In the present embodiment, the second measurement flow path 71b of the first differential pressure gauge 70 and the first measurement flow path 81a of the second differential pressure gauge 80 are commonly used, and from this common measurement flow path. A part of the pressure take-out path 71c of the first differential pressure gauge 70 and a part of the pressure take-out path 81c of the second differential pressure gauge 80 are commonly used.

前記各差圧計70,80の差圧取出部71,81は、各差圧取出路71c、81cの流路Lからの高さh(流路Lから直交方向へ延びる部分の長さ)が略同一に設定されている。具体的には、差圧検出部72,82を挟んで両側に位置する各差圧取出路71c,81cの流路Lからの高さh(流路Lから直交方向へ延びる部分の長さ)が略同一に設定されている。また、差圧取出路71c及び差圧取出路81cの流路Lからの高さh(流路Lから直交方向へ延びる部分の長さ)が略同一に設定されている。これにより、差圧検出部72,82は、いずれも流路Lから略同一の高さに配置されている。また、第1測定流路71a,81a及び第2測定流路71b,81bに対する圧力取出路71cの分岐位置が略同一に設定されている。 The differential pressure extraction portions 71 and 81 of the differential pressure gauges 70 and 80 have a height h (the length of a portion extending in the orthogonal direction from the flow path L) of the differential pressure extraction paths 71c and 81c from the flow path L. It is set to be the same. Specifically, the height h from the flow path L of the differential pressure extraction paths 71c and 81c located on both sides of the differential pressure detection units 72 and 82 (the length of the portion extending in the orthogonal direction from the flow path L). Are set to be approximately the same. Further, the height h (the length of the portion extending in the orthogonal direction from the flow path L) from the flow path L of the differential pressure take-out path 71c and the differential pressure take-out path 81c is set to be substantially the same. As a result, the differential pressure detection units 72 and 82 are all arranged at substantially the same height from the flow path L. Further, the branch positions of the pressure outlet paths 71c with respect to the first measurement flow paths 71a and 81a and the second measurement flow paths 71b and 81b are set to be substantially the same.

そして、上流側の差圧生成体10の内部流路10aと第1差圧計70の第1測定流路71aとの接合箇所X1における流路形状と、下流側の差圧生成体20の内部流路20aと第2差圧計80の第1測定流路81aとの接合箇所X2における流路形状と、が互いに略同一の形状損失になるように設定されている。すなわち、これらの接合箇所X1,X2の流路形状が略同一になるように内部流路10a,20a及び第1測定流路71a,81aが接合されている。 Then, the shape of the flow path at the junction X1 between the internal flow path 10a of the differential pressure generator 10 on the upstream side and the first measurement flow path 71a of the first differential pressure gauge 70, and the internal flow of the differential pressure generator 20 on the downstream side. The shape of the flow path at the joint portion X2 between the path 20a and the first measurement flow path 81a of the second differential pressure gauge 80 is set so as to have substantially the same shape loss. That is, the internal flow paths 10a and 20a and the first measurement flow paths 71a and 81a are joined so that the flow path shapes of these joint points X1 and X2 are substantially the same.

また、上流側の差圧生成体10の内部流路10aと第1差圧計70の第2測定流路71bとの接合箇所X3における流路形状と、下流側の差圧生成体20の内部流路20aと第2差圧計80の第2測定流路81bとの接合箇所X4における流路形状と、が互いに略同一の形状損失になるように設定されている。すなわち、これらの接合箇所X3,X4の流路形状が略同一になるように内部流路10a,20a及び第2測定流路71b、81bが接合されている。 Further, the shape of the flow path at the junction X3 between the internal flow path 10a of the differential pressure generator 10 on the upstream side and the second measurement flow path 71b of the first differential pressure gauge 70, and the internal flow of the differential pressure generator 20 on the downstream side. The shape of the flow path at the joint portion X4 between the path 20a and the second measurement flow path 81b of the second differential pressure gauge 80 is set so as to have substantially the same shape loss. That is, the internal flow paths 10a and 20a and the second measurement flow paths 71b and 81b are joined so that the flow path shapes of these joint points X3 and X4 are substantially the same.

このようなものであっても、第1差圧計70で検出される第1差圧P12と第2差圧計80で検出される第2差圧P23との差に基づきΔPを算出することにより、接合箇所X1,X2,X3,X4に生じる形状損失、第1差圧計70の第1測定流路71a及び第2測定流路71bに生じる摩擦損失、及び、第2差圧計80の第1測定流路81a及び第2測定流路81bに生じる摩擦損失が除かれた、層流領域における摩擦損失のみを含む差圧が得られる。 Even in such a case, ΔP should be calculated based on the difference between the first differential pressure P 12 detected by the first differential pressure gauge 70 and the second differential pressure P 23 detected by the second differential pressure gauge 80. As a result, the shape loss that occurs at the joints X1, X2, X3, and X4, the friction loss that occurs in the first measurement flow path 71a and the second measurement flow path 71b of the first differential pressure gauge 70, and the first of the second differential pressure gauge 80 A differential pressure including only the friction loss in the laminar flow region is obtained, excluding the friction loss generated in the measurement flow path 81a and the second measurement flow path 81b.

<その他の実施形態> 前記各実施形態においては、一対の差圧生成体10,20として直線状のキャピラリーを使用しているが、例えば、図3(a)及び図3(b)に示すように、キャピラリー10,20の途中をU字状に曲げた形態のものや、図4に示すように、キャピラリー10,20の途中を環状に曲げた形態のものを使用してもよい。ここで、図3(a)、図3(b)及び図4に示す実施形態において、キャピラリー10(上流側の差圧生成体10)及びキャピラリー20(下流側の差圧生成体20)は、直線状の部分以外を見た場合に、互いに同一形状の曲げられた部分を備えている。例えば、図3(a)及び図3(b)に示す実施形態においては、キャピラリー10及びキャピラリー20は、互いにU字状及び一対のL字状に曲げられた部分を備えており、図4に示す実施形態においては、キャピラリー10及びキャピラリー20は、互いに円環状に曲げられた部分を備えている。また、図3(a)、図3(b)及び図4に示す実施形態において、キャピラリー10及びキャピラリー20は、互いに直線状の部分の長さが異なっており、これにより、両キャピラリー10、20の全長を相違させている。例えば、図3(a)及び図4に示す実施形態においては、キャピラリー10及びキャピラリー20は、上流端部10b、20b及び下流端部10c、20cのいずれか一方又は双方(両実施形態においては双方)の直線状の部分が互いに異なる長さになっており、図3(b)に示す実施形態においては、キャピラリー10及びキャピラリー20は、中間部10d,20dの直線状の部分が互いに異なる長さになっている。このようなものであれば、キャピラリーの全長を維持したまま、装置全体の全長を短くすることができる。なお、図3(b)に示す実施形態においては、第1圧力計30及び第2圧力計40の間の距離と第2圧力計40及び第3圧力計50の間の距離とが同一になっている。 <Other Embodiments> In each of the above embodiments, linear capillaries are used as the pair of differential pressure generators 10 and 20, but as shown in FIGS. 3 (a) and 3 (b), for example. In addition, a shape in which the middle of the capillaries 10 and 20 is bent in a U shape, or a shape in which the middle of the capillaries 10 and 20 is bent in an annular shape may be used as shown in FIG. Here, in the embodiments shown in FIGS. 3A, 3B, and 4, the capillary 10 (upstream differential pressure generator 10) and the capillary 20 (downstream differential pressure generator 20) are When looking at a portion other than the linear portion, it has bent portions having the same shape as each other. For example, in the embodiment shown in FIGS. 3 (a) and 3 (b), the capillary 10 and the capillary 20 are provided with portions that are bent in a U shape and a pair of L shapes, respectively. In the embodiments shown, the capillary 10 and the capillary 20 include portions that are bent in an annular shape with respect to each other. Further, in the embodiments shown in FIGS. 3 (a), 3 (b) and 4, the capillaries 10 and 20 have different lengths of linear portions from each other, whereby both capillaries 10 and 20 are used. The total length of is different. For example, in the embodiments shown in FIGS. 3A and 4, the capillary 10 and the capillary 20 are either one or both of the upstream end portions 10b and 20b and the downstream end portions 10c and 20c (both in both embodiments). ) Have different lengths, and in the embodiment shown in FIG. 3B, the capillary 10 and the capillary 20 have different lengths from each other in the intermediate portions 10d and 20d. It has become. With such a device, the total length of the entire device can be shortened while maintaining the total length of the capillary. In the embodiment shown in FIG. 3B, the distance between the first pressure gauge 30 and the second pressure gauge 40 and the distance between the second pressure gauge 40 and the third pressure gauge 50 are the same. ing.

また、前記各実施形態においては、一対の差圧生成体10,20としてキャピラリーを使用しているが、一対の差圧生成体として、内部流路内に層流素子を配置したリストリクタを使用してもよい。 Further, in each of the above-described embodiments, the capillary is used as the pair of differential pressure generators 10 and 20, but as the pair of differential pressure generators, a restrictor in which a laminar flow element is arranged in the internal flow path is used. You may.

また、前記実施形態2において、流路Lを流れる流体の圧力を検出する圧力計をさらに設けてもよい。この場合、当該圧力計は、差圧測定の邪魔にならないように第1差圧計70よりも上流側、或いは、第2差圧計80よりも下流側に設ければよい。これにより、圧力計で検出される圧力に基づき流体の密度を補正することができるようになる。そして、次の式(5)で質量流量Qmを算出することでより正確な値を得ることができる。
なお、ρは、流体の密度を示している。
Further, in the second embodiment, a pressure gauge for detecting the pressure of the fluid flowing through the flow path L may be further provided. In this case, the pressure gauge may be provided on the upstream side of the first differential pressure gauge 70 or on the downstream side of the second differential pressure gauge 80 so as not to interfere with the differential pressure measurement. This makes it possible to correct the density of the fluid based on the pressure detected by the pressure gauge. Then, a more accurate value can be obtained by calculating the mass flow rate Qm by the following equation (5).
Note that ρ indicates the density of the fluid.

また、前記各実施形態において、一対の差圧生成体10,20に対して温度センサを設けてもよい。この場合、温度センサで測定される温度に基づき流体の粘度μ及び密度ρを補正することができるようになる。 Further, in each of the above-described embodiments, a temperature sensor may be provided for the pair of differential pressure generators 10 and 20. In this case, the viscosity μ and the density ρ of the fluid can be corrected based on the temperature measured by the temperature sensor.

その他、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to each of the above-described embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

100 差圧式流量計
10 上流側の差圧生成体
10a 内部流路
20 下流側の差圧生成体
20a 内部流路
30 第1圧力計
31 差圧取出部
31a 測定流路
40 第2圧力計
41 差圧取出部
41a 測定流路
50 第3圧力計
51 差圧取出部
51a 測定流路
70 第1差圧計
71a 第1測定流路
71b 第2測定流路
71c 圧力取出路
80 第2差圧計
81a 第1測定流路
81b 第2測定流路
81c 圧力取出路
X1,X2,X3,X4 接続箇所
100 Differential pressure type flow meter 10 Upstream differential pressure generator 10a Internal flow path 20 Downstream differential pressure generator 20a Internal flow path 30 First pressure gauge 31 Differential pressure extraction unit 31a Measurement flow path 40 Second pressure gauge 41 Difference Pressure take-out part 41a Measurement flow path 50 Third pressure gauge 51 Differential pressure take-out part 51a Measurement flow path 70 First differential pressure gauge 71a First measurement flow path 71b Second measurement flow path 71c Pressure take-out passage 80 Second differential pressure gauge 81a First Measurement flow path 81b Second measurement flow path 81c Pressure outlet path X1, X2, X3, X4 Connection point

Claims (13)

流路を流れる流体の流量を測定する差圧式流量計であって、
前記流路に対して直列状に設置され、前記流体に差圧を生成する一対の差圧生成体と、
前記上流側の差圧生成体へ流入する流体の第1圧力及び前記上流側の差圧生成体から流出して前記下流側の差圧生成体へ流入する流体の第2圧力の差である第1差圧と、前記第2圧力及び前記下流側の差圧生成体から流出した流体の第3圧力の差である第2差圧とに基づき前記流路を流れる流体の流量を測定する流量測定機構とを備え、
前記一対の差圧生成体が、互いに異なる長さの内部流路を有し、かつ、当該両差圧生成体の内部流路における上流端側の流路形状が略同一の形状損失になるように設定されていると共に、当該両差圧生成体の内部流路における下流端側の流路形状が略同一の形状損失になるように設定されていることを特徴とする差圧式流量計。
A differential pressure type flow meter that measures the flow rate of fluid flowing through the flow path.
A pair of differential pressure generators that are installed in series with the flow path and generate a differential pressure in the fluid.
The difference between the first pressure of the fluid flowing into the differential pressure generator on the upstream side and the second pressure of the fluid flowing out of the differential pressure generator on the upstream side and flowing into the differential pressure generator on the downstream side. Flow rate measurement to measure the flow rate of the fluid flowing through the flow path based on the 1 differential pressure and the 2nd differential pressure which is the difference between the 2nd pressure and the 3rd pressure of the fluid flowing out from the differential pressure generator on the downstream side. Equipped with a mechanism
The pair of differential pressure generators have internal flow paths of different lengths, and the flow path shapes on the upstream end side of the internal flow paths of the two differential pressure generators have substantially the same shape loss. A differential pressure type flow meter characterized in that the shape of the flow path on the downstream end side in the internal flow path of the two differential pressure generators is set to have substantially the same shape loss.
流路を流れる流体の流量を測定する差圧式流量計であって、
前記流路に対して直列状に設置され、前記流体に差圧を生成する一対の差圧生成体と、
前記上流側の差圧生成体へ流入する流体の第1圧力及び前記上流側の差圧生成体から流出して前記下流側の差圧生成体へ流入する流体の第2圧力の差である第1差圧と、前記第2圧力及び前記下流側の差圧生成体から流出した流体の第3圧力の差である第2差圧とに基づき前記流路を流れる流体の流量を測定する流量測定機構とを備え、
前記一対の差圧生成体が、互いに異なる長さの内部流路を有し、かつ、当該両差圧生成体の内部流路における上流端側に生じる形状損失が互いにキャンセルされると共に、当該両差圧生成体の内部流路における下流端側に生じる形状損失が互いにキャンセルされるように構成されていることを特徴とする差圧式流量計。
A differential pressure type flow meter that measures the flow rate of fluid flowing through the flow path.
A pair of differential pressure generators that are installed in series with the flow path and generate a differential pressure in the fluid.
The difference between the first pressure of the fluid flowing into the differential pressure generator on the upstream side and the second pressure of the fluid flowing out of the differential pressure generator on the upstream side and flowing into the differential pressure generator on the downstream side. Flow rate measurement to measure the flow rate of the fluid flowing through the flow path based on the 1 differential pressure and the 2nd differential pressure which is the difference between the 2nd pressure and the 3rd pressure of the fluid flowing out from the differential pressure generator on the downstream side. Equipped with a mechanism
The pair of differential pressure generators have internal flow paths of different lengths, and the shape loss generated on the upstream end side of the internal flow paths of the two differential pressure generators is canceled by each other, and both of them. A differential pressure type flowmeter characterized in that shape losses occurring on the downstream end side in the internal flow path of the differential pressure generator are configured to cancel each other.
前記一対の差圧生成体が、略同一の径寸法に設定された内部流路を有するキャピラリーである請求項1又は2のいずれかに記載の差圧式流量計。 The differential pressure type flow meter according to claim 1 or 2, wherein the pair of differential pressure generators are capillaries having internal flow paths set to substantially the same diameter. 前記流量測定機構が、
前記上流側の差圧生成体の上流端に接続され、その内部に前記第1圧力を取り出す圧力取出部を有する第1圧力計と、
前記上流側の差圧生成体の下流端及び前記下流側の差圧生成体の上流端の間に接続され、その内部に前記第2圧力を取り出す圧力取出部を有する第2圧力計と、
前記下流側の差圧生成体の下流端に接続され、その内部に前記第3圧力を取り出す圧力取出部を有する第3圧力計とを備えている請求項1乃至3のいずれかに記載の差圧式流量計。
The flow rate measuring mechanism
A first pressure gauge connected to the upstream end of the differential pressure generator on the upstream side and having a pressure extraction unit for taking out the first pressure inside the first pressure gauge.
A second pressure gauge connected between the downstream end of the differential pressure generator on the upstream side and the upstream end of the differential pressure generator on the downstream side and having a pressure take-out portion inside the differential pressure generator.
The difference according to any one of claims 1 to 3, further comprising a third pressure gauge connected to the downstream end of the differential pressure generator on the downstream side and having a pressure extraction unit for taking out the third pressure inside. Pressure type flow meter.
前記第1圧力計、前記第2圧力計及び前記第3圧力計の圧力取出部が、略同一形状に設定されている請求項1乃至4のいずれかに記載の差圧式流量計。 The differential pressure type flow meter according to any one of claims 1 to 4, wherein the pressure extraction portions of the first pressure gauge, the second pressure gauge, and the third pressure gauge are set to substantially the same shape. 前記第1圧力計、前記第2圧力計及び前記第3圧力計の圧力取出部が、いずれかの差圧生成体の内部流路と連通し、当該内部流路よりも大きい径寸法を有する測定流路を有しており、
前記上流側の差圧生成体の内部流路と前記第1圧力計の測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2圧力計の測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されており、
前記上流側の差圧生成体の内部流路と前記第2圧力計の測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第3圧力計の測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されている請求項5記載の差圧式流量計。
A measurement in which the pressure extraction section of the first pressure gauge, the second pressure gauge, and the third pressure gauge communicates with the internal flow path of any of the differential pressure generators and has a diameter dimension larger than that of the internal flow path. It has a flow path and
The shape of the flow path at the junction between the internal flow path of the differential pressure generator on the upstream side and the measurement flow path of the first pressure gauge, and the internal flow path of the differential pressure generator on the downstream side and the second pressure gauge. The shape loss is set to be substantially the same as the shape of the flow path at the joint with the measurement flow path of.
The shape of the flow path at the junction between the internal flow path of the differential pressure generator on the upstream side and the measurement flow path of the second pressure gauge, and the internal flow path of the differential pressure generator on the downstream side and the third pressure gauge. The differential pressure type flow meter according to claim 5, wherein the shape loss of the flow path at the joint with the measurement flow path is substantially the same.
前記流量測定機構が、
前記上流側の差圧生成体の上流端及び下流端に接続され、その内部に前記第1差圧を取り出す差圧取出部を有する第1差圧計と、
前記下流側の差圧生成体の上流側及び下流側に接続され、その内部に前記第2差圧を取り出す差圧取出部を有する第2差圧計とを備えている請求項1又は2のいずれかに記載の差圧式流量計。
The flow rate measuring mechanism
A first differential pressure gauge connected to the upstream end and the downstream end of the differential pressure generator on the upstream side and having a differential pressure take-out portion inside the first differential pressure generator.
Either of claims 1 or 2, which is connected to the upstream side and the downstream side of the differential pressure generator on the downstream side, and includes a second differential pressure gauge having a differential pressure take-out portion for taking out the second differential pressure inside. Differential pressure type flow meter described in Crab.
前記第1差圧計及び前記第2差圧計の差圧取出部の前記流路から延びる部分の当該流路に対する高さが略同一に設定されている請求項7記載の差圧式流量計。 The differential pressure type flow meter according to claim 7, wherein the heights of the differential pressure extraction portions of the first differential pressure gauge and the second differential pressure gauge extending from the flow path with respect to the flow path are set to be substantially the same. 前記第1差圧計及び前記第2差圧計の差圧取出部が、いずれかの差圧生成体の内部流路の上流側と連通し、当該内部流路よりも大きい径寸法を有する第1測定流路と、当該差圧生成体の内部流路の下流側と連通し、当該内部流路よりも大きい径寸法を有する第2測定流路とを有しており、
前記上流側の差圧生成体の内部流路と前記第1差圧計の第1測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2差圧計の第1測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されており、
前記上流側の差圧生成体の内部流路と前記第1差圧計の第2測定流路との接合箇所における流路形状と、前記下流側の差圧生成体の内部流路と前記第2差圧計の第2測定流路との接合箇所における流路形状とが略同一の形状損失になるように設定されている請求項8記載の差圧式流量計。
The first measurement in which the differential pressure extraction portion of the first differential pressure gauge and the second differential pressure gauge communicates with the upstream side of the internal flow path of any of the differential pressure generators and has a diameter dimension larger than that of the internal flow path. It has a flow path and a second measurement flow path that communicates with the downstream side of the internal flow path of the differential pressure generator and has a diameter larger than that of the internal flow path.
The shape of the flow path at the junction between the internal flow path of the differential pressure generator on the upstream side and the first measurement flow path of the first differential pressure gauge, the internal flow path of the differential pressure generator on the downstream side, and the second. The shape loss is set so that the shape of the flow path at the joint with the first measurement flow path of the differential pressure gauge is substantially the same.
The shape of the flow path at the junction between the internal flow path of the differential pressure generator on the upstream side and the second measurement flow path of the first differential pressure gauge, and the internal flow path of the differential pressure generator on the downstream side and the second measurement flow path. The differential pressure type flow meter according to claim 8, wherein the shape loss of the flow path at the joint with the second measurement flow path of the differential pressure gauge is set to be substantially the same.
前記流体の密度を補正するための補正用圧力計をさらに備えている請求項7乃至9いずれかに記載の差圧式流量計。 The differential pressure type flowmeter according to any one of claims 7 to 9, further comprising a correction pressure gauge for correcting the density of the fluid. 前記両差圧生成体の少なくとも一部が曲げられている請求項1乃至10のいずれかに記載の差圧式流量計。 The differential pressure type flow meter according to any one of claims 1 to 10, wherein at least a part of the two differential pressure generators is bent. 前記両差圧生成体の一部が環状に曲げられている請求項11のいずれかに記載の差圧式流量計。 The differential pressure type flow meter according to any one of claims 11, wherein a part of both differential pressure generators is bent in an annular shape. 前記一対の差圧生成体の少なくとも一方に、その内部流路を流れる前記流体の温度を検出する温度センサが設置されている請求項1乃至12のいずれかに記載の差圧式流量計。 The differential pressure type flow meter according to any one of claims 1 to 12, wherein a temperature sensor for detecting the temperature of the fluid flowing through the internal flow path thereof is installed in at least one of the pair of differential pressure generators.
JP2019059221A 2019-03-26 2019-03-26 Differential pressure flow meter Active JP7193088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019059221A JP7193088B2 (en) 2019-03-26 2019-03-26 Differential pressure flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059221A JP7193088B2 (en) 2019-03-26 2019-03-26 Differential pressure flow meter

Publications (3)

Publication Number Publication Date
JP2020159851A true JP2020159851A (en) 2020-10-01
JP2020159851A5 JP2020159851A5 (en) 2022-02-15
JP7193088B2 JP7193088B2 (en) 2022-12-20

Family

ID=72642842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059221A Active JP7193088B2 (en) 2019-03-26 2019-03-26 Differential pressure flow meter

Country Status (1)

Country Link
JP (1) JP7193088B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208833A1 (en) * 2011-08-26 2014-07-31 Stefan Berger Flow sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140208833A1 (en) * 2011-08-26 2014-07-31 Stefan Berger Flow sensor

Also Published As

Publication number Publication date
JP7193088B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP5833475B2 (en) Gas flow measuring device and flow control valve
US9581480B2 (en) Micro flow sensor
KR100541347B1 (en) Arch-shaped tube type coriolis meter and method of determining shape of the coriolis meter
JP6124744B2 (en) Flowmeter
US20130319134A1 (en) Coriolis mass flow meter
CN109855691B (en) Differential laminar flow measuring method and device
JP2008026153A (en) Mass flowmeter
CN104813147A (en) Improvement detection of change in cross-sectional area of fluid tube in vibrating meter
JP5999725B2 (en) Mass flow meter
JP2009300403A (en) Mass flowmeter and mass flow controller
US10371554B2 (en) Coriolis mass flowmeter and method for operating a Coriolis mass flowmeter
CN118190081A (en) Vortex flowmeter with reduced process intrusion
JP2017514133A (en) Flow meter manifold with position indexing boss
CN108351239A (en) Flow measurement device based on vortex flow measuring principle
JP2017181214A (en) Adjusted gas flowmeter
JP7193088B2 (en) Differential pressure flow meter
CN208968604U (en) Sensor device and coriolis mass flowmeters including the sensor device
US7437940B2 (en) Apparatus for measuring differential pressure
US20190277682A1 (en) Coriolis mass flow meter and densimeter with little pressure dependence, and method for manufacturing the same
ATE482378T1 (en) CORIOLIS MASS FLOW METER AND METHOD FOR MANUFACTURE THEREOF
JP4936392B2 (en) Mass flow meter
JP2005017152A (en) Flowmeter, flow rate calculation method, program and recording medium
US20200064170A1 (en) Coriolis mass flow and density meter with reduced pressure dependence
KR101443793B1 (en) A differential pressure sensor
JP2010066184A (en) Mass flowmeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7193088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150