JP2020159222A - diesel engine - Google Patents

diesel engine Download PDF

Info

Publication number
JP2020159222A
JP2020159222A JP2019056684A JP2019056684A JP2020159222A JP 2020159222 A JP2020159222 A JP 2020159222A JP 2019056684 A JP2019056684 A JP 2019056684A JP 2019056684 A JP2019056684 A JP 2019056684A JP 2020159222 A JP2020159222 A JP 2020159222A
Authority
JP
Japan
Prior art keywords
fuel injection
piston
top surface
diesel engine
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019056684A
Other languages
Japanese (ja)
Inventor
和之 甲田
Kazuyuki Koda
和之 甲田
真幹 栗林
Masaki Kuribayashi
真幹 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Power Technology Co Ltd
Original Assignee
Yanmar Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Power Technology Co Ltd filed Critical Yanmar Power Technology Co Ltd
Priority to JP2019056684A priority Critical patent/JP2020159222A/en
Priority to PCT/JP2020/011731 priority patent/WO2020196098A1/en
Publication of JP2020159222A publication Critical patent/JP2020159222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

To provide a diesel engine capable of effectively reducing a heat loss.SOLUTION: In a diesel engine 1 including a piston 5 and a fuel injection valve 6, a cavity 51 which is opened to a lower surface side of a cylinder head 3 and has a bottom surface 51b and an inner side surface 51c is formed on a piston top surface 50 of the piston 5, the fuel injection valve 6 injects fuel toward a part of the inner side surface 51c of the cavity 51, and on the piston top surface 50, a dimple 52 is formed only in an area 50a corresponding to a fuel injection direction 60 of the fuel injection valve 6 in a plan view.SELECTED DRAWING: Figure 1

Description

本発明は、建設機械、農業機械および船舶等に搭載されるディーゼルエンジンに関する。 The present invention relates to a diesel engine mounted on a construction machine, an agricultural machine, a ship and the like.

下記特許文献1には、燃焼室に向けて燃料を噴射する燃料噴射弁を備える内燃機関の燃焼室構造であって、燃焼室内壁面に、燃料噴射弁からの燃料噴霧が直接当たらない領域にディンプルが形成された燃焼室構造が開示されている。この構成によれば、ディンプル内に空気が留まって断熱層が形成されることにより断熱性を高め、ピストンへの熱損失を低減できる。 The following Patent Document 1 describes a combustion chamber structure of an internal combustion engine including a fuel injection valve for injecting fuel toward the combustion chamber, and dimples in a region where the fuel spray from the fuel injection valve does not directly hit the wall surface of the combustion chamber. The combustion chamber structure in which the is formed is disclosed. According to this configuration, air stays in the dimples to form a heat insulating layer, so that the heat insulating property can be improved and the heat loss to the piston can be reduced.

特開2011−94496号公報Japanese Unexamined Patent Publication No. 2011-94496

しかしながら、研究の結果、燃焼室内壁面よりもピストン頂面における熱損失のほうが大きく、特許文献1の構成では、熱損失が比較的小さい燃焼室内壁面にディンプルを形成しているため、断熱による熱損失の低減効果が小さい。 However, as a result of research, the heat loss on the top surface of the piston is larger than that on the wall surface of the combustion chamber, and in the configuration of Patent Document 1, dimples are formed on the wall surface of the combustion chamber where the heat loss is relatively small. The reduction effect of is small.

そこで、本発明は上記課題に鑑み、熱損失を効果的に低減できるディーゼルエンジンを提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide a diesel engine capable of effectively reducing heat loss.

本発明のディーゼルエンジンは、シリンダライナと、
前記シリンダライナの頂面と対向するように配置されたシリンダヘッドと、
前記シリンダライナの内部に摺動自在に嵌合されたピストンと、
燃料噴射装置とを有するディーゼルエンジンにおいて、
前記ピストンの頂面に、前記シリンダヘッドの前記シリンダライナとの対向面側に向かって開口し、底面と内側面とを含むキャビティが形成されており、
前記燃料噴射装置は、前記キャビティの内側面の一部に向かって燃料を噴射し、
前記ピストンの頂面には、平面視において前記燃料噴射装置の燃料噴射方向と対応する領域にのみ、凹部が形成されている。
The diesel engine of the present invention has a cylinder liner and
A cylinder head arranged so as to face the top surface of the cylinder liner,
A piston slidably fitted inside the cylinder liner,
In a diesel engine with a fuel injection device
A cavity is formed on the top surface of the piston so as to open toward the side of the cylinder head facing the cylinder liner and include a bottom surface and an inner surface surface.
The fuel injection device injects fuel toward a part of the inner surface of the cavity.
A recess is formed on the top surface of the piston only in a region corresponding to the fuel injection direction of the fuel injection device in a plan view.

本発明によれば、ピストンの頂面のうち燃料噴射方向と対応する領域にのみ凹部を形成することで、凹部内の空気が断熱層を構成するため、熱損失が最も大きい燃料噴射方向のピストンの頂面への熱損失を効果的に低減できる。 According to the present invention, by forming the recess only in the region corresponding to the fuel injection direction on the top surface of the piston, the air in the recess forms a heat insulating layer, so that the piston in the fuel injection direction having the largest heat loss The heat loss to the top surface of the piston can be effectively reduced.

第1実施形態に係るディーゼルエンジンを示す断面図である。It is sectional drawing which shows the diesel engine which concerns on 1st Embodiment. ピストンの平面図である。It is a top view of a piston. 別実施形態に係るピストンの断面図である。It is sectional drawing of the piston which concerns on another embodiment. 別実施形態に係るピストンの断面図である。It is sectional drawing of the piston which concerns on another embodiment. 第2実施形態に係るピストン頂面の断面図である。It is sectional drawing of the piston top surface which concerns on 2nd Embodiment.

以下に、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
ディーゼルエンジン1は、シリンダブロック2と、シリンダブロック2の上部に配置されたシリンダヘッド3と、シリンダブロック2の内部に配置されたシリンダライナ4に摺動自在に嵌合されたピストン5と、を備えている。
(First Embodiment)
The diesel engine 1 includes a cylinder block 2, a cylinder head 3 arranged above the cylinder block 2, and a piston 5 slidably fitted to a cylinder liner 4 arranged inside the cylinder block 2. I have.

ピストン5のピストン頂面50には、キャビティ51が形成されている。キャビティ51は、シリンダヘッド3の下面側に向かって開口する開口部51aを備えている。開口部51aは略円形である。また、キャビティ51は、底面51bと内側面51cを備えている。底面51bは、平面視で略円形であり、内側面51cは底面51bと開口部51aとの間の領域である。 A cavity 51 is formed on the piston top surface 50 of the piston 5. The cavity 51 includes an opening 51a that opens toward the lower surface side of the cylinder head 3. The opening 51a is substantially circular. Further, the cavity 51 includes a bottom surface 51b and an inner side surface 51c. The bottom surface 51b is substantially circular in plan view, and the inner side surface 51c is a region between the bottom surface 51b and the opening 51a.

ピストン5が下降する際、燃焼室は、シリンダヘッド3、シリンダライナ4、ピストン頂面50、及びキャビティ51で構成される空間である。燃焼室内では、高温ガス(燃焼ガス)からシリンダヘッド3、シリンダライナ4、ピストン5を伝わって冷却水や潤滑油へ熱が移動して熱損失(冷却損失)が起こる。本発明者は、鋭意研究の結果、燃焼室内での熱損失は、ピストン頂面50への熱損失の割合が最も大きくなっており、ピストン頂面50への熱損失を低減することで熱効率を向上できることを見出した。 When the piston 5 descends, the combustion chamber is a space composed of a cylinder head 3, a cylinder liner 4, a piston top surface 50, and a cavity 51. In the combustion chamber, heat is transferred from the high temperature gas (combustion gas) to the cooling water and the lubricating oil through the cylinder head 3, the cylinder liner 4, and the piston 5, and heat loss (cooling loss) occurs. As a result of diligent research, the present inventor has the largest ratio of heat loss to the piston top surface 50 in the heat loss in the combustion chamber, and improves thermal efficiency by reducing the heat loss to the piston top surface 50. I found that it could be improved.

シリンダヘッド3の下面には、燃料噴射装置としての燃料噴射弁6が設けられている。本実施形態の燃料噴射弁6は、噴射口が平面視でキャビティ51の開口部51aの略中心に位置するように配置されているが、これに限定されず、中心から外れた位置に配置されてもよい。燃料噴射弁6は、不図示の燃料噴射ポンプによって加圧された燃料、又は不図示のコモンレールに蓄えられた高圧の燃料を燃焼室に噴射する。より具体的には、燃料噴射弁6は、ピストン5が上死点付近に位置するときにキャビティ51の内側面51cの一部に向かって燃料を噴射する。 A fuel injection valve 6 as a fuel injection device is provided on the lower surface of the cylinder head 3. The fuel injection valve 6 of the present embodiment is arranged so that the injection port is located substantially at the center of the opening 51a of the cavity 51 in a plan view, but is not limited to this, and is arranged at a position off the center. You may. The fuel injection valve 6 injects fuel pressurized by a fuel injection pump (not shown) or high-pressure fuel stored in a common rail (not shown) into the combustion chamber. More specifically, the fuel injection valve 6 injects fuel toward a part of the inner surface 51c of the cavity 51 when the piston 5 is located near the top dead center.

燃料噴射弁6による燃料噴射方向60は、平面視において、図2に示すように燃料噴射弁6を中心として放射状に延びている。燃料噴射方向60は、燃料噴射弁6に設けられた噴射口の中心軸方向となる。本実施形態では、燃料噴射弁6には4つの噴射口が周方向に等間隔で設けられており、4つの燃料噴射方向60a,60b,60c,60dは周方向に等間隔となっている。噴射口からの噴流は、燃料噴射方向60a,60b,60c,60dの±α°の領域に形成される。なお、本実施形態では、燃料噴射弁6に4つの噴射口を設けているが、これに限定されず、3つ以下又は5つ以上の噴射口を設けてもよい。 The fuel injection direction 60 by the fuel injection valve 6 extends radially around the fuel injection valve 6 as shown in FIG. 2 in a plan view. The fuel injection direction 60 is the central axis direction of the injection port provided in the fuel injection valve 6. In the present embodiment, the fuel injection valve 6 is provided with four injection ports at equal intervals in the circumferential direction, and the four fuel injection directions 60a, 60b, 60c, and 60d are at equal intervals in the circumferential direction. The jet flow from the injection port is formed in a region of ± α ° in the fuel injection directions 60a, 60b, 60c, 60d. In the present embodiment, the fuel injection valve 6 is provided with four injection ports, but the present invention is not limited to this, and three or less or five or more injection ports may be provided.

ピストン5のピストン頂面50には、複数のディンプル52(凹部の一例)が形成されている。複数のディンプル52は、ピストン頂面50のうち、平面視において燃料噴射弁6の燃料噴射方向60と対応する領域50aにのみ形成されている。燃料噴射弁6の燃料噴射方向60と対応する領域50aとは、燃料噴射方向60の±β°の領域である。好ましくは、βは22.5以下である。また、β>αである。 A plurality of dimples 52 (an example of a recess) are formed on the piston top surface 50 of the piston 5. The plurality of dimples 52 are formed only in the region 50a of the piston top surface 50 corresponding to the fuel injection direction 60 of the fuel injection valve 6 in a plan view. The region 50a corresponding to the fuel injection direction 60 of the fuel injection valve 6 is a region of ± β ° of the fuel injection direction 60. Preferably, β is 22.5 or less. Also, β> α.

ピストン頂面50のうち燃料噴射方向60と対応する領域50aにのみ複数のディンプル52を形成することで、ディンプル52内の空気が断熱層を構成するため、熱損失が最も大きい燃料噴射方向60のピストン頂面50への熱損失を効果的に低減できる。なお、ピストン頂面50の全面にディンプル52を形成した場合、燃焼室の壁面温度が上がり過ぎて吸気加熱が起こったり、体積効率が低減したりして燃焼効率が悪化するが、ピストン頂面50のうち燃料噴射方向60と対応する領域50aにのみディンプル52を形成することで、吸気加熱や体積効率低減を抑制することができる。 By forming a plurality of dimples 52 only in the region 50a of the piston top surface 50 corresponding to the fuel injection direction 60, the air in the dimples 52 forms a heat insulating layer, so that the fuel injection direction 60 having the largest heat loss The heat loss to the piston top surface 50 can be effectively reduced. When the dimples 52 are formed on the entire surface of the piston top surface 50, the wall surface temperature of the combustion chamber rises too much and intake air heating occurs, or the volumetric efficiency decreases, resulting in deterioration of combustion efficiency. By forming the dimples 52 only in the region 50a corresponding to the fuel injection direction 60, intake air heating and volumetric efficiency reduction can be suppressed.

複数のディンプル52は、ディンプル加工により形成される。ディンプル加工には、レーザ光線を用いる方法、ショットブラストを用いる方法等がある。本実施形態のディンプル52は、半球状に形成されている。半球状のディンプル52の半径は、0.5〜100μmであり、好ましくは1〜20μmである。なお、本実施形態のディンプル52は半球状であるが、他の形状であってもよい。また、複数のディンプル52の形状は、すべて同じであっても異なっていてもよい。 The plurality of dimples 52 are formed by dimple processing. Dimple processing includes a method using a laser beam, a method using shot blasting, and the like. The dimple 52 of the present embodiment is formed in a hemispherical shape. The radius of the hemispherical dimple 52 is 0.5 to 100 μm, preferably 1 to 20 μm. Although the dimple 52 of the present embodiment is hemispherical, it may have another shape. Further, the shapes of the plurality of dimples 52 may be the same or different.

以上のように、本実施形態のディーゼルエンジン1は、ピストン5と、燃料噴射弁6とを有するディーゼルエンジン1において、ピストン5は、ピストン頂面50に、シリンダヘッド3下面側に向かって開口し、底面51bと内側面51cとを含むキャビティ51が形成されており、燃料噴射弁6は、キャビティ51の内側面51cの一部に向かって燃料を噴射し、ピストン頂面50には、平面視において燃料噴射弁6の燃料噴射方向60と対応する領域50aにのみ、ディンプル52が形成されている。 As described above, the diesel engine 1 of the present embodiment is the diesel engine 1 having the piston 5 and the fuel injection valve 6, and the piston 5 opens to the piston top surface 50 toward the lower surface side of the cylinder head 3. A cavity 51 including a bottom surface 51b and an inner surface 51c is formed, the fuel injection valve 6 injects fuel toward a part of the inner surface 51c of the cavity 51, and the piston top surface 50 is viewed in plan view. The dimple 52 is formed only in the region 50a corresponding to the fuel injection direction 60 of the fuel injection valve 6.

この構成によれば、ピストン頂面50のうち燃料噴射方向60と対応する領域50aにのみディンプル52を形成することで、ディンプル52内の空気が断熱層を構成するため、熱損失が最も大きい燃料噴射方向60のピストン頂面50への熱損失を効果的に低減できる。 According to this configuration, by forming the dimples 52 only in the region 50a corresponding to the fuel injection direction 60 of the piston top surface 50, the air in the dimples 52 forms a heat insulating layer, so that the fuel having the largest heat loss. The heat loss to the piston top surface 50 in the injection direction 60 can be effectively reduced.

また、本実施形態において、図3に示すように、ディンプル52の容積は、キャビティ51から離れるにつれて大きくなることが好ましい。ディンプル52の容積は、ディンプル52の開口面積や深さによって定まる。本実施形態のディンプル52においては、半径をキャビティ51から離れるにつれて大きくしている。 Further, in the present embodiment, as shown in FIG. 3, it is preferable that the volume of the dimple 52 increases as the distance from the cavity 51 increases. The volume of the dimple 52 is determined by the opening area and depth of the dimple 52. In the dimple 52 of the present embodiment, the radius is increased as the distance from the cavity 51 increases.

噴流後期は乱流渦の大きさが大きくなるため、ディンプル52を大きくしても燃焼ガスが流れ込みにくく、ディンプル52内の空気が留まって断熱層を保持することできる。そのため、ディンプル52の容積を大きくして空気の断熱層を大きくすることで、より効率的に断熱することができる。 Since the size of the turbulent vortex becomes large in the latter stage of the jet, it is difficult for the combustion gas to flow even if the dimple 52 is made large, and the air in the dimple 52 stays and the heat insulating layer can be maintained. Therefore, by increasing the volume of the dimples 52 and increasing the heat insulating layer of air, heat insulation can be performed more efficiently.

また、本実施形態において、図4に示すように、ピストン頂面50のうち少なくともディンプル52が形成された領域50aは、キャビティ51に向かって下がるように傾斜していることが好ましい。 Further, in the present embodiment, as shown in FIG. 4, it is preferable that the region 50a in which at least the dimples 52 are formed in the piston top surface 50 is inclined so as to be lowered toward the cavity 51.

領域50aを傾斜させることで、キャビティ51からシリンダライナ4に向かう逆スキッシュ流れを緩和することができる。これにより、逆スキッシュ流れによる乱流渦が小さくならず、ディンプル52に燃料ガスが流れ込むことを抑制できる。その結果、ディンプル52の空気が留まって断熱層を保持できるため、効果的に断熱することができる。 By inclining the region 50a, the reverse squish flow from the cavity 51 to the cylinder liner 4 can be relaxed. As a result, the turbulent vortex due to the reverse squish flow is not reduced, and the fuel gas can be suppressed from flowing into the dimple 52. As a result, the air in the dimples 52 stays and the heat insulating layer can be held, so that heat insulation can be effectively performed.

(第2実施形態)
前述の実施形態では、凹部をディンプル加工により形成しているが、凹部は、撥油加工により形成されてもよい。撥油加工には、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂でピストン頂面50をコーティングする方法、アルミ合金製のピストン5に熱水処理を施してピストン頂面50にべーマイトを形成する方法等がある。フッ素樹脂をコーティングする方法は、凹部の加工が容易である。熱水処理を施す方法は、凹部の耐久性に優れる。撥油加工を行うと、図5に示すように、ピストン頂面50に針状構造が形成され、隣接する針状部53の間に凹部が形成される。すなわち、本発明における凹部は、予め形成されたピストン頂面50を基準面として、基準面から突出するように形成した凸部(この例では針状部53)の間に結果的に構成される凹部も含む概念である。針状部53によりピストン頂面50に凹部が形成されるため、前述のディンプル52と同様の作用効果が得られる。また、撥油加工を行うことで、燃料のほか、ディーゼルエンジン1内の潤滑油がピストン頂面50の領域50aに付着するのも防止できる。
(Second Embodiment)
In the above-described embodiment, the recess is formed by dimple processing, but the recess may be formed by oil repellent processing. For oil repellent treatment, a method of coating the piston top surface 50 with a fluororesin such as PTFE (polytetrafluoroethylene), or a method of applying hot water treatment to the aluminum alloy piston 5 to form bemite on the piston top surface 50. There are methods and so on. The method of coating with a fluororesin makes it easy to process recesses. The method of applying hot water treatment is excellent in the durability of the recesses. When the oil repellent treatment is performed, as shown in FIG. 5, a needle-shaped structure is formed on the piston top surface 50, and a recess is formed between the adjacent needle-shaped portions 53. That is, the concave portion in the present invention is consequently formed between the convex portions (needle-shaped portion 53 in this example) formed so as to project from the reference surface with the piston top surface 50 formed in advance as the reference surface. It is a concept that includes recesses. Since the needle-shaped portion 53 forms a recess on the top surface 50 of the piston, the same effect as that of the dimple 52 described above can be obtained. Further, by performing the oil repellent treatment, it is possible to prevent the lubricating oil in the diesel engine 1 from adhering to the region 50a of the piston top surface 50 in addition to the fuel.

[他の実施形態]
スワールが発生するディーゼルエンジン1の場合、燃料噴射弁6から噴射された燃料はスワールの影響を受けて周方向に移動しながらキャビティ51の内側面51cに到達する。そのため、凹部を形成する領域50aはスワールの流速等に応じて適宜設定される。
[Other Embodiments]
In the case of the diesel engine 1 in which swirl is generated, the fuel injected from the fuel injection valve 6 reaches the inner surface 51c of the cavity 51 while moving in the circumferential direction under the influence of the swirl. Therefore, the region 50a forming the recess is appropriately set according to the flow velocity of the swirl and the like.

本発明のエンジンは、前述の実施形態のようにピストンが上下方向に往復動する直列型に限定されず、ピストンが水平方向に往復動する水平対向型や、V型などでもよい。 The engine of the present invention is not limited to the series type in which the piston reciprocates in the vertical direction as in the above-described embodiment, and may be a horizontally opposed type in which the piston reciprocates in the horizontal direction, a V type or the like.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present invention is shown not only by the description of the above-described embodiment but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

1 ディーゼルエンジン
3 シリンダヘッド
5 ピストン
50 ピストン頂面
51 キャビティ
51c 内側面
52 ディンプル
53 針状部
6 燃料噴射弁
60 燃料噴射方向


1 Diesel engine 3 Cylinder head 5 Piston 50 Piston top surface 51 Cavity 51c Inner surface 52 Dimple 53 Needle-shaped part 6 Fuel injection valve 60 Fuel injection direction


Claims (5)

シリンダライナと、
前記シリンダライナの頂面と対向するように配置されたシリンダヘッドと、
前記シリンダライナの内部に摺動自在に嵌合されたピストンと、
燃料噴射装置とを有するディーゼルエンジンにおいて、
前記ピストンの頂面に、前記シリンダヘッドの前記シリンダライナとの対向面側に向かって開口し、底面と内側面とを含むキャビティが形成されており、
前記燃料噴射装置は、前記キャビティの内側面の一部に向かって燃料を噴射し、
前記ピストンの頂面には、平面視において前記燃料噴射装置の燃料噴射方向と対応する領域にのみ、凹部が形成されている、ディーゼルエンジン。
With a cylinder liner
A cylinder head arranged so as to face the top surface of the cylinder liner,
A piston slidably fitted inside the cylinder liner,
In a diesel engine with a fuel injection device
A cavity is formed on the top surface of the piston so as to open toward the side of the cylinder head facing the cylinder liner and include a bottom surface and an inner surface surface.
The fuel injection device injects fuel toward a part of the inner surface of the cavity.
A diesel engine in which a recess is formed on the top surface of the piston only in a region corresponding to the fuel injection direction of the fuel injection device in a plan view.
前記凹部は、前記頂面にディンプル加工することにより形成されている、請求項1に記載のディーゼルエンジン。 The diesel engine according to claim 1, wherein the recess is formed by dimple processing on the top surface. 前記凹部は、前記頂面に撥油加工することにより形成されている、請求項1に記載のディーゼルエンジン。 The diesel engine according to claim 1, wherein the recess is formed by oil-repellent processing on the top surface. 前記ピストンの頂面のうち少なくとも前記凹部が形成された領域は、前記キャビティに向かって下がるように傾斜している、請求項1〜3のいずれか1項に記載のディーゼルエンジン。 The diesel engine according to any one of claims 1 to 3, wherein at least a region of the top surface of the piston in which the recess is formed is inclined so as to descend toward the cavity. 前記凹部の容積は、前記キャビティから離れるにつれて大きくなる、請求項2に記載のディーゼルエンジン。



The diesel engine according to claim 2, wherein the volume of the recess increases as the distance from the cavity increases.



JP2019056684A 2019-03-25 2019-03-25 diesel engine Pending JP2020159222A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019056684A JP2020159222A (en) 2019-03-25 2019-03-25 diesel engine
PCT/JP2020/011731 WO2020196098A1 (en) 2019-03-25 2020-03-17 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019056684A JP2020159222A (en) 2019-03-25 2019-03-25 diesel engine

Publications (1)

Publication Number Publication Date
JP2020159222A true JP2020159222A (en) 2020-10-01

Family

ID=72608712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019056684A Pending JP2020159222A (en) 2019-03-25 2019-03-25 diesel engine

Country Status (2)

Country Link
JP (1) JP2020159222A (en)
WO (1) WO2020196098A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112347A (en) * 2008-11-10 2010-05-20 Mitsubishi Fuso Truck & Bus Corp Piston for direct injection type diesel internal combustion engine
JP2010112350A (en) * 2008-11-10 2010-05-20 Mitsubishi Fuso Truck & Bus Corp Piston of direct injection type diesel internal combustion engine
JP2010203334A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Piston for internal combustion engine
JP2011026965A (en) * 2009-07-21 2011-02-10 Isuzu Motors Ltd Internal combustion engine
JP2019007446A (en) * 2017-06-27 2019-01-17 いすゞ自動車株式会社 Combustion chamber structure for direct-injection type internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112347A (en) * 2008-11-10 2010-05-20 Mitsubishi Fuso Truck & Bus Corp Piston for direct injection type diesel internal combustion engine
JP2010112350A (en) * 2008-11-10 2010-05-20 Mitsubishi Fuso Truck & Bus Corp Piston of direct injection type diesel internal combustion engine
JP2010203334A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Piston for internal combustion engine
JP2011026965A (en) * 2009-07-21 2011-02-10 Isuzu Motors Ltd Internal combustion engine
JP2019007446A (en) * 2017-06-27 2019-01-17 いすゞ自動車株式会社 Combustion chamber structure for direct-injection type internal combustion engine

Also Published As

Publication number Publication date
WO2020196098A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US8327822B2 (en) Diesel engine
US9482145B2 (en) Toroidal combustion chamber with side injection
US20090039605A1 (en) Large-bore, medium-speed diesel engine having piston crown bowl with acute re-entrant angle
JP5062071B2 (en) Internal combustion engine cylinder block
JP6241479B2 (en) Diesel engine combustion chamber structure
US10738682B2 (en) Piston crown for an internal combustion engine
US20150101560A1 (en) Piston of an internal combustion engine
CN107208527A (en) Piston for opposed-piston engine is cooled down
JP2011220207A (en) Internal combustion engine, and method for manufacturing piston
KR101663345B1 (en) Internal combustion piston engine assembly
JP2016205236A (en) Engine piston
KR101934941B1 (en) Piston for internal combustion engine and cooling channel core
WO2020196098A1 (en) Diesel engine
JP2009293611A (en) Engine piston
CN116378814B (en) Combustion chamber, engine and design method of combustion chamber
US6318311B1 (en) Cylinder-injection type two cycle combustion engine
JP5997246B2 (en) Piston of internal combustion engine
JP2020067045A (en) Cylinder block
JP2015175245A (en) Piston cooling structure of engine
JP4869121B2 (en) Piston for internal combustion engine
JP6344455B2 (en) Engine combustion chamber structure
JP6344456B2 (en) Engine combustion chamber structure
JP3210638U (en) Piston of internal combustion engine
JP2012017654A (en) Internal combustion engine
JP6526456B2 (en) diesel engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510