JP2020158821A - Porous plug - Google Patents

Porous plug Download PDF

Info

Publication number
JP2020158821A
JP2020158821A JP2019058010A JP2019058010A JP2020158821A JP 2020158821 A JP2020158821 A JP 2020158821A JP 2019058010 A JP2019058010 A JP 2019058010A JP 2019058010 A JP2019058010 A JP 2019058010A JP 2020158821 A JP2020158821 A JP 2020158821A
Authority
JP
Japan
Prior art keywords
porous plug
mass
grains
particle size
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019058010A
Other languages
Japanese (ja)
Other versions
JP7094238B2 (en
Inventor
将史 松尾
Masashi Matsuo
将史 松尾
孝文 今枝
Takafumi Imaeda
孝文 今枝
智宏 小嶋
Tomohiro Kojima
智宏 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2019058010A priority Critical patent/JP7094238B2/en
Publication of JP2020158821A publication Critical patent/JP2020158821A/en
Application granted granted Critical
Publication of JP7094238B2 publication Critical patent/JP7094238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a porous plug capable of improving air permeability and reducing infiltration of molten steel.SOLUTION: A porous plug is composed of 40-90 mass% of medium particles consisting of irregularly-shaped alumina having a particle diameter of 1-3 mm, 0-20 mass% of coarse particles consisting of irregularly-shaped alumina having a particle diameter of 3-5 mm, and the remainder being fine powder composed mainly of alumina having a particle diameter of less than 1 mm.SELECTED DRAWING: None

Description

本発明は、ガスを溶鋼中に吹き込むために用いられるポーラスプラグに関する。 The present invention relates to a porous plug used to blow gas into molten steel.

ポーラスプラグは、溶融金属容器の底部に装着され、溶融金属にガスを吹き込むための通気性を有する多孔質耐火物であり、溶鋼の撹拌や溶鋼介在物の浮上等の目的に使用される。 The porous plug is a porous refractory that is attached to the bottom of the molten metal container and has air permeability for blowing gas into the molten metal, and is used for purposes such as stirring molten steel and floating molten steel inclusions.

ポーラスプラグの損耗形態として、ポーラスプラグに浸潤した鋼による剥離や酸素洗浄による溶損があげられる。 As a form of wear of the porous plug, peeling due to steel infiltrated into the porous plug and melting loss due to oxygen cleaning can be mentioned.

溶鋼を受鋼後、ガスの吹き込みを開始するまでの間に、溶鋼がポーラスプラグに浸潤し、凝固して浸透層が形成される。この浸透層により十分なガスの吹き込みが行われなくなるので、ポーラスプラグ表面の浸透層をガス圧で吹き飛ばす(剥離)を行う。 After receiving the molten steel and before starting gas injection, the molten steel infiltrates the porous plug and solidifies to form an infiltration layer. Since sufficient gas is not blown by this permeation layer, the permeation layer on the surface of the porous plug is blown off (peeled) by gas pressure.

ガスの吹き込みが終了した後も同様の浸透層が形成される。この浸透層は、ガスの通気性を著しく低下させるため、酸素洗浄が行われる。酸素洗浄は、溶鋼の排出後のポーラスプラグに容器側からは酸素、反対側からは窒素やArを吹き、浸透した鋼を酸化燃焼させながら浸透し凝固した鋼を除去することにより行う。 A similar osmotic layer is formed even after the gas injection is completed. This osmotic layer is subjected to oxygen cleaning because it significantly reduces the air permeability of the gas. Oxygen cleaning is performed by blowing oxygen from the container side and nitrogen or Ar from the opposite side to the porous plug after discharging the molten steel, and removing the solidified steel by permeating the permeated steel while oxidizing and burning it.

上述の処理によりポーラスプラグの損耗が進行し耐用寿命が短くなってしまう、または、ポーラスプラグとして十分に機能しなくなるため、ポーラスプラグには溶鋼の浸潤を少なくすることが要求されている。 Due to the above-mentioned treatment, the porous plug is worn out and the service life is shortened, or the porous plug does not function sufficiently. Therefore, the porous plug is required to reduce the infiltration of molten steel.

そこで、溶鋼の浸潤を少なくするために粒径が小さな粒子を使用して気孔径を小さくし、球状粒子を骨材として適用することにより連通気孔を形成しやすくし、通気性を向上させ、その結果として、通気性を維持したまま気孔率を下げることができるという手法が採用されてきた(例えば、特許文献1)。 Therefore, in order to reduce the infiltration of molten steel, particles having a small particle size are used to reduce the pore diameter, and spherical particles are applied as an aggregate to facilitate the formation of continuous ventilation holes and improve the air permeability. As a result, a method has been adopted in which the porosity can be reduced while maintaining air permeability (for example, Patent Document 1).

特開平9−52168号公報Japanese Unexamined Patent Publication No. 9-52168

ポーラスプラグには、溶鋼の撹拌効率を向上させるために大流量を求められることが多くある。また、ポーラスプラグは、撹拌目的以外では、冶金反応の促進を目的として使用されることがある。例えば、溶鋼に窒素を吹き込み、吸収、反応させる加窒目的で用いられる場合があるが、加窒には時間がかかるため、大流量が求められる。 Porous plugs are often required to have a large flow rate in order to improve the stirring efficiency of molten steel. Further, the porous plug may be used for the purpose of promoting the metallurgical reaction other than the purpose of stirring. For example, it may be used for the purpose of nitrogen blowing, absorbing, and reacting with molten steel, but since nitrogen takes time, a large flow rate is required.

しかし、従来の球状細粒を骨材として使用したポーラスプラグは、気孔径が小さいため、大流量のガスを吹き込むことができない。大流量のガスを吹き込むためには、気孔径を大きくすることが考えられるが、球状粒子を骨材とすると連通気孔が形成されるため、受鋼後からガスの吹き込みを行うまでのわずかな時間で溶鋼が大きく浸潤し、ガスの吹き込みができなくなってしまうおそれがあった。 However, the conventional porous plug using spherical fine particles as an aggregate cannot blow a large flow rate of gas because the pore diameter is small. In order to blow a large flow rate of gas, it is conceivable to increase the pore diameter, but since continuous ventilation holes are formed when spherical particles are used as aggregate, a short time from after receiving steel to blowing gas. There was a risk that the molten steel would be greatly infiltrated and gas could not be blown.

そこで、本発明では、通気性を向上するとともに、溶鋼の浸潤を低減することができるポーラスプラグを提供することを目的とする。 Therefore, an object of the present invention is to provide a porous plug capable of improving air permeability and reducing infiltration of molten steel.

請求項1に記載の発明では、 ポーラスプラグが、粒径1−3mmの不規則形状のアルミナからなる中粒を40−90質量%と、粒径3−5mmの不規則形状のアルミナからなる粗粒を0−20質量%と、残部を粒径1mm未満のアルミナを主成分とする微粉と、から構成され、前記中粒と前記粗粒との合計が75−95質量%である、という技術的手段を用いる。 In the invention according to claim 1, the porous plug has 40-90% by mass of medium particles made of irregularly shaped alumina having a particle size of 1-3 mm and coarse particles made of irregularly shaped alumina having a particle size of 3-5 mm. A technique in which the grains are composed of 0 to 20% by mass and the balance is fine powder containing alumina as a main component having a particle size of less than 1 mm, and the total of the medium grains and the coarse grains is 75 to 95% by mass. Use the means.

請求項2に記載の発明では、請求項1に記載のポーラスプラグにおいて、前記中粒を65−85質量%と、前記粗粒を5−15質量%と、残部を前記微粉と、から構成され、前記中粒と前記粗粒との合計が75−95質量%である、という技術的手段を用いる。 In the invention according to claim 2, in the porous plug according to claim 1, the medium grain is composed of 65-85% by mass, the coarse grain is composed of 5-15% by mass, and the balance is composed of the fine powder. , The technical means that the total of the medium grain and the coarse grain is 75-95% by mass is used.

請求項3に記載の発明では、請求項1または請求項2に記載のポーラスプラグにおいて、前記中粒、前記粗粒及び前記微粉は、破砕粒である、という技術的手段を用いる。 In the invention according to claim 3, in the porous plug according to claim 1 or 2, the technical means that the medium grain, the coarse grain and the fine powder are crushed grains is used.

請求項4に記載の発明では、請求項1ないし請求項3のいずれか1つに記載のポーラスプラグにおいて、気孔率が20−35%である、という技術的手段を用いる。 The invention according to claim 4 uses the technical means that the porosity is 20-35% in the porous plug according to any one of claims 1 to 3.

請求項5に記載の発明では、請求項1ないし請求項4のいずれか1つに記載のポーラスプラグにおいて、前記微粉はクロミア、マグネシア、スピネル、ジルコン及びシリカのうち少なくとも1種以上を含有する、という技術的手段を用いる。 In the invention according to claim 5, in the porous plug according to any one of claims 1 to 4, the fine powder contains at least one of chromia, magnesia, spinel, zircon and silica. The technical means is used.

本発明のポーラスプラグによれば、粒径の大きな骨材を使用することで、通気性を向上させることができ、溶鋼に大容量のガスを導入することができる。また、球形原料を使う場合に比べて、連続気孔ができにくく、溶鋼の浸潤を低減することができる。 According to the porous plug of the present invention, by using an aggregate having a large particle size, the air permeability can be improved and a large amount of gas can be introduced into the molten steel. Further, as compared with the case of using a spherical raw material, continuous pores are less likely to be formed, and infiltration of molten steel can be reduced.

ポーラスプラグの断面形状及び気孔径の算出について説明する説明図である。図1(A)は断面写真、図1(B)は図1(A)を2値化した画像、図1(C)は気孔径を算出するために気孔を分割して示した図である。It is explanatory drawing explaining the calculation of the cross-sectional shape and the pore diameter of a porous plug. FIG. 1 (A) is a cross-sectional photograph, FIG. 1 (B) is a binarized image of FIG. 1 (A), and FIG. 1 (C) is a diagram showing the pores divided in order to calculate the pore diameter. .. 気孔径と浸透量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pore diameter and the permeation amount.

本発明者らは、前述の課題を解決すべく鋭意研究を行い、ポーラスプラグにおいて、通気性の向上と溶鋼の浸潤の低減とを両立させることができるポーラスプラグを見出した。材料設計の技術的思想を以下に示す。 The present inventors have conducted diligent research to solve the above-mentioned problems, and have found a porous plug that can achieve both improvement of air permeability and reduction of infiltration of molten steel. The technical concept of material design is shown below.

ポーラスプラグの通気性を向上させるためには気孔径を大きくする必要があるため、粒径が大きな粒子を使用する。一方、通常気孔径を大きくすると溶鋼の浸潤が増大するため、気孔の連通している長さが短く、複雑な気孔経路を有する構造を形成することができる粒子形状を採用し、溶鋼の浸潤を低減させる構成とした。 Since it is necessary to increase the pore diameter in order to improve the air permeability of the porous plug, particles having a large particle size are used. On the other hand, since the infiltration of molten steel increases when the pore diameter is increased, a particle shape is adopted in which the length of communication of the pores is short and a structure having a complicated pore path can be formed to prevent the infiltration of molten steel. It was configured to reduce.

以下に、本発明のポーラスプラグ(以下、ポーラスプラグ、という)の構成について説明する。 Hereinafter, the configuration of the porous plug of the present invention (hereinafter referred to as a porous plug) will be described.

ポーラスプラグは、粒径1−3mmの不規則形状のアルミナからなる中粒を40−90質量%と、粒径3−5mmの不規則形状のアルミナからなる粗粒を0−20質量%と、残部を粒径1mm未満のアルミナを主成分とする微粉と、から構成され、中粒と粗粒との合計が75−95質量%である。また、好ましくは、中粒を65−85質量%と、粗粒を5−15質量%と、残部を微粉と、から構成され、中粒と粗粒との合計が75−95質量%である。 The porous plug has 40-90% by mass of medium particles made of irregularly shaped alumina having a particle size of 1-3 mm and 0-20% by mass of coarse particles made of irregularly shaped alumina having a particle size of 3-5 mm. The balance is composed of fine powder containing alumina as a main component having a particle size of less than 1 mm, and the total of medium and coarse particles is 75-95% by mass. Further, it is preferably composed of 65-85% by mass of medium grains, 5-15% by mass of coarse grains, and fine powder as the balance, and the total of medium grains and coarse grains is 75-95% by mass. ..

本発明では、粒度は、粒径3mm以上5mm未満を「粗粒」、1mm以上3mm未満を「中粒」、1mm未満を「微粉」とする。ここで、上記粒度は、日本工業規格JIS Z 8801−1:2006に規定される試験用ふるいを用いて篩い分けたものである。 In the present invention, the particle size is defined as "coarse grain" when the particle size is 3 mm or more and less than 5 mm, "medium grain" when the particle size is 1 mm or more and less than 3 mm, and "fine powder" when the particle size is less than 1 mm. Here, the particle size is obtained by sieving using a test sieve specified in Japanese Industrial Standards JIS Z 8801-1: 2006.

「不規則形状」とは、主に球形以外の形状を示し、例えば、焼結体を破砕して製造した破砕粒などが不規則形状を有する粒子である。本実施形態では、中粒、粗粒及び微粉は、それぞれ破砕粒を用いた。破砕粒は、形状の不規則性が高いため、好適に用いることができる。 The "irregular shape" mainly indicates a shape other than a spherical shape, and for example, crushed particles produced by crushing a sintered body are particles having an irregular shape. In this embodiment, crushed grains were used as the medium grains, coarse grains, and fine powders. Since the crushed grains have high irregularity in shape, they can be preferably used.

ポーラスプラグは、気孔径を大きくするために、従来のポーラスプラグを構成する粒子より粒径が大きい中粒及び粗粒を主体に構成されている。ここで、中粒と粗粒との合計が少ないと微粉が多くなり気孔率が低下してしまい、多いと結合力が不足して強度が低下してしまうため、中粒と粗粒との合計は75−95質量%とした。 The porous plug is mainly composed of medium particles and coarse particles having a larger particle size than the particles constituting the conventional porous plug in order to increase the pore diameter. Here, if the total of the medium grains and the coarse grains is small, the amount of fine powder increases and the porosity decreases, and if it is large, the binding force becomes insufficient and the strength decreases, so the total of the medium grains and the coarse grains decreases. Was 75-95% by mass.

中粒の量は、少ないと微粉が多くなりマトリックスを構成する領域が増大するため、気孔径が小さくなり、通気量が低下してしまい、多いと相対的に微粉量が減少しマトリックスを構成する領域が減少し、強度が低下してしまうため、40−90質量%とし、65−85質量%であると更に好ましい。 If the amount of medium grains is small, the amount of fine powder increases and the area constituting the matrix increases, so that the pore diameter becomes small and the air flow rate decreases, and if the amount is large, the amount of fine powder decreases relatively to form the matrix. Since the region is reduced and the strength is lowered, it is set to 40-90% by mass, more preferably 65-85% by mass.

粗粒を有した構成にすることにより通気性が向上するが、多過ぎると気孔径が大きくなり過ぎて溶鋼の浸潤が増大してしまう。そこで、粗粒の量は、中粒の量が40−90質量%のときは0−20質量%とし、中粒の量が65−85質量%のときは5−15質量%とした。 The structure having coarse grains improves the air permeability, but if the amount is too large, the pore diameter becomes too large and the infiltration of molten steel increases. Therefore, the amount of coarse grains was 0-20% by mass when the amount of medium grains was 40-90% by mass, and 5-15% by mass when the amount of medium grains was 65-85% by mass.

微粉は残部を構成し、中粒及び粗粒を結合してマトリックスを構成する。微粉はアルミナ以外にクロミア、マグネシア、スピネル、ジルコン及びシリカのうち少なくとも1種以上を含有してもよい。クロミアは耐スラグ浸蝕性向上効果を有している。マグネシア及びスピネルは結合助剤であり、耐食性向上効果を有しているとともに、耐熱スポーリング性を低下させるため剥離性(通気復帰性)を向上させる効果を有している。ジルコンは結合助剤であり、耐食性向上効果を有している。シリカは結合助剤である。 The fine powder constitutes the balance, and the medium and coarse grains are combined to form a matrix. The fine powder may contain at least one or more of chromia, magnesia, spinel, zircon and silica in addition to alumina. Chromia has the effect of improving slag erosion resistance. Magnesia and spinel are binding aids and have an effect of improving corrosion resistance and also have an effect of improving peelability (breathing recovery property) in order to reduce heat-resistant spalling property. Zircon is a binding aid and has an effect of improving corrosion resistance. Silica is a binding aid.

原料として、不規則形状の粒子を用いたのは以下の理由による。 Irregularly shaped particles were used as the raw material for the following reasons.

ポーラスプラグの通気性を向上させるためには気孔径を大きくする必要があるが、気孔径を大きくすると溶鋼の浸潤が増大するという相反する性質を示す。 In order to improve the air permeability of the porous plug, it is necessary to increase the pore diameter, but increasing the pore diameter shows the contradictory property that the infiltration of molten steel increases.

従来、主骨材として非球状の粒子用いた場合には、骨材の充填が不均一になり、気孔形状が不整になり、通気性が不十分とされていた(例えば、特許文献1第3段落)。 Conventionally, when non-spherical particles are used as the main aggregate, the filling of the aggregate becomes uneven, the pore shape becomes irregular, and the air permeability is insufficient (for example, Patent Document 1 No. 3). Paragraph).

しかし、発明者は、粒径が大きな不規則形状の粒子を用いることで、通気性が担保され、粒子の充填の不均一さや気孔形状の不整により、溶鋼の浸潤を低減できることを見出し、原料の粒径、配合比などを適正化して相反する性質を両立させることができた。 However, the inventor has found that by using irregularly shaped particles having a large particle size, air permeability is ensured, and infiltration of molten steel can be reduced due to uneven packing of particles and irregular pore shape. By optimizing the particle size, compounding ratio, etc., it was possible to achieve both contradictory properties.

ポーラスプラグの気孔率は、高過ぎると溶鋼の浸潤が増大し、強度も低下してしまう。また、低過ぎると通気性が低下するため、20−35%が好ましい。本発明の中粒、粗粒及び微粉の配合割合により、気孔率を好適な範囲であるポーラスプラグとすることができる。 If the porosity of the porous plug is too high, the infiltration of molten steel will increase and the strength will also decrease. On the other hand, if it is too low, the air permeability will decrease, so 20-35% is preferable. Depending on the blending ratio of the medium grain, coarse grain and fine powder of the present invention, the porosity can be a porous plug in a suitable range.

本発明のポーラスプラグの製造方法は、以下の通りである。まず、各原料と焼結助剤(数%)を秤量・混合し、混練後に所定の形状に成形する。この成形物を、大気中で、焼成温度1500℃以上で焼成することによりポーラスプラグが得られる。 The method for manufacturing the porous plug of the present invention is as follows. First, each raw material and a sintering aid (several%) are weighed and mixed, and after kneading, they are molded into a predetermined shape. A porous plug can be obtained by firing this molded product in the air at a firing temperature of 1500 ° C. or higher.

本発明のポーラスプラグは、溶鋼に大流量のガスを吹き込むことが要求される用途に好適に用いることができる。例えば、溶鋼処理量が大きい大量精錬工程ではガスの吹込み量を大きくする必要があるため、好適に用いることができる。また、複数本のポーラスプラグを必要としている場合も同じガス吹込みを得るために、ポーラスプラグの本数を少なくすることができる。 The porous plug of the present invention can be suitably used for applications that require a large flow rate of gas to be blown into molten steel. For example, in a mass refining process in which the amount of molten steel processed is large, it is necessary to increase the amount of gas blown, so that it can be preferably used. Further, even when a plurality of porous plugs are required, the number of porous plugs can be reduced in order to obtain the same gas injection.

また、ガス導入により加窒などの冶金反応を生じさせる場合には、大流量のガスを吹き込むことが要求されるため、本発明のポーラスプラグを好適に用いることができる。 Further, when a metallurgical reaction such as nitrogenation is caused by gas introduction, it is required to blow a large flow rate of gas, so that the porous plug of the present invention can be preferably used.

(実施形態の効果)
本発明のポーラスプラグによれば、粒径の大きな骨材を使用することで、通気性を向上させることができ、溶鋼に大容量のガスを導入することができる。また、球形原料を使う場合に比べて、連続気孔ができにくく、溶鋼の浸潤を低減することができる。
(Effect of embodiment)
According to the porous plug of the present invention, by using an aggregate having a large particle size, the air permeability can be improved and a large amount of gas can be introduced into the molten steel. Further, as compared with the case of using a spherical raw material, continuous pores are less likely to be formed, and infiltration of molten steel can be reduced.

以下に本発明を実施例によって説明する。但し本発明はこれらの実施例に限定されるものではない。表1に、本発明のポーラスプラグである実施例1−3及び比較例1−4原料の配合割合、気孔率、かさ比重、気孔径、通気量及び浸透層の厚さを示す。 The present invention will be described below by way of examples. However, the present invention is not limited to these examples. Table 1 shows the blending ratio, porosity, bulk specific gravity, pore diameter, air volume, and permeation layer thickness of the raw materials of Examples 1-3 and Comparative Example 1-4, which are the porous plugs of the present invention.

ここで、比較例1、2は主に球状粒子を用いている。比較例3、4は破砕粒を用いているが配合割合が本発明の請求項の範囲外となっている。 Here, Comparative Examples 1 and 2 mainly use spherical particles. Although crushed grains are used in Comparative Examples 3 and 4, the blending ratio is outside the scope of the claims of the present invention.

全ての試料は、表1に記載した各種原料を混練し、300tフリクションプレス機で加圧成形してφ80xφ140xh330mmの円錐台形状の成形体を作製し、得られた成形体を150℃で24時間乾燥後、1500℃以上の温度で15時間焼成して作製した。 All the samples were kneaded with the various raw materials shown in Table 1 and pressure-molded with a 300t friction press to prepare a truncated cone-shaped molded product having a diameter of 80 x φ140 x h330 mm, and the obtained molded product was dried at 150 ° C. for 24 hours. After that, it was produced by firing at a temperature of 1500 ° C. or higher for 15 hours.

気孔率は以下の方法で算出した。寸法かさ比重は、直方体の試料を切り出し、研磨加工後に寸法及び重量を測定して算出した。見掛比重はアルキメデス法(真空)により測定し、真密度はガス法(日本工業規格JIS Z 8807:2012)により測定した。 The porosity was calculated by the following method. The dimensional bulk specific gravity was calculated by cutting out a rectangular parallelepiped sample and measuring the dimensions and weight after polishing. The apparent specific gravity was measured by the Archimedes method (vacuum), and the true density was measured by the gas method (Japanese Industrial Standard JIS Z 8807: 2012).

(数1)
・全気孔率:(1−寸法かさ比重/真密度)×100
・密閉気孔率:(1−見掛比重/真密度)×100
・見掛気孔率:全気孔率−密閉気孔率
(Equation 1)
-Total porosity: (1-dimension bulk specific gravity / true density) x 100
-Sealed porosity: (1-apparent specific gravity / true density) x 100
・ Apparent porosity: total porosity-sealed porosity

気孔径は、以下のように評価した。図1は実施例1の気孔径を評価した方法について示した。まず、試料の断面を70倍に拡大して顕微鏡写真を撮影した(図1(A))。次に、撮影された顕微鏡写真に対して画像処理ソフトウェアImageJ(Wayne Rasband)を用いて白黒の二値化処理を施した(図1(B))。ここで、黒い部分の占有率が気孔の占める面積比に相当する。そして、気孔径を算出するために気孔を分割し(図1(C))、その面積から相当直径を算出して気孔径とした。 The pore size was evaluated as follows. FIG. 1 shows a method for evaluating the pore diameter of Example 1. First, a micrograph was taken by magnifying the cross section of the sample 70 times (FIG. 1 (A)). Next, the photographed micrograph was subjected to black-and-white binarization processing using image processing software ImageJ (Wayne Rasband) (FIG. 1 (B)). Here, the occupancy rate of the black portion corresponds to the area ratio occupied by the pores. Then, the pores were divided in order to calculate the pore diameter (FIG. 1 (C)), and the equivalent diameter was calculated from the area to obtain the pore diameter.

図1(A)に示すように、本発明のポーラスプラグは、原料個々の形状は不規則であるため、気孔形状も複雑になり、連続気孔もできにくいことが確認された。 As shown in FIG. 1A, it was confirmed that in the porous plug of the present invention, since the shape of each raw material is irregular, the pore shape is complicated and continuous pores are difficult to be formed.

評価項目として、原料充填率、通気量、浸透層厚さを採用した。 Raw material filling rate, air volume, and permeation layer thickness were adopted as evaluation items.

原料充填率は、以下のように評価した。まず、容量500mlのメスシリンダーを用意し、500mlの目盛まで原料の粒子を充填する。次に、充填された粒子の重量を測定し、次式により原料充填率を算出した。ここで、中粒、粗粒の粒径に該当する球状原料は入手できなかったため、粒径0.5−1mmの球状原料と不規則形状の原料との充填率を比較した。 The raw material filling rate was evaluated as follows. First, a graduated cylinder having a capacity of 500 ml is prepared, and the raw material particles are filled up to a scale of 500 ml. Next, the weight of the filled particles was measured, and the raw material filling rate was calculated by the following formula. Here, since the spherical raw material corresponding to the particle size of the medium grain and the coarse grain could not be obtained, the filling rates of the spherical raw material having a particle size of 0.5-1 mm and the irregularly shaped raw material were compared.

(数2)
充填率(%)=充填重量(g)/(原料かさ密度×500(ml))×100
(Number 2)
Filling rate (%) = Filling weight (g) / (Raw material bulk density x 500 (ml)) x 100

粒径0.5−1mmの不規則形状の原料の充填率は49%、球状原料の充填率は58%であり、不規則形状の原料の充填率は球状原料の充填率より小さかった。中粒、粗粒においても、不規則形状の原料の充填率は球状原料の充填率より小さくなると考えられる。 The filling rate of the irregularly shaped raw material having a particle size of 0.5-1 mm was 49%, the filling rate of the spherical raw material was 58%, and the filling rate of the irregularly shaped raw material was smaller than the filling rate of the spherical raw material. It is considered that the filling rate of the irregularly shaped raw material is smaller than the filling rate of the spherical raw material even in the medium grain and the coarse grain.

通気量は、以下のように評価した。φ50×50mmの円柱状に成形した試料を気密性のあるホルダーに取り付けて、20℃の空気を圧力0.01MPaでホルダーを吹き込んだときに通過する流量を測定した。 The air volume was evaluated as follows. A sample formed into a cylinder having a diameter of 50 × 50 mm was attached to an airtight holder, and the flow rate of air at 20 ° C. when the holder was blown at a pressure of 0.01 MPa was measured.

浸透層の厚さは、以下のように評価した。50x85x55x115mm(上辺x下辺x高さx台形長さ)のブロック状に切り出した試料について回転浸食試験を実施し、試験後の試料断面を観察し、最大浸透層厚みを測定した。回転浸食試験は、試料を円筒状に配置し、その中に溶鋼、合成スラグ成分を入れ、加熱条件1650℃、2時間で回転保持するサイクルを10サイクル実施した。 The thickness of the permeation layer was evaluated as follows. A rotary erosion test was carried out on a sample cut out in a block shape of 50x85x55x115 mm (upper side x lower side x height x trapezoidal length), the cross section of the sample after the test was observed, and the maximum permeation layer thickness was measured. In the rotary erosion test, a sample was arranged in a cylindrical shape, molten steel and synthetic slag components were put therein, and a cycle of rotating and holding the sample at 1650 ° C. for 2 hours was carried out for 10 cycles.

実施例では、実施例1、2、3の順で粗粒の添加量が少なくなっている。粗粒の添加量が少なくなることに伴い、通気量は少なくなり、浸透量が少なくなる傾向が認められた。 In the examples, the amount of coarse particles added decreases in the order of Examples 1, 2, and 3. As the amount of coarse particles added decreased, the amount of aeration decreased and the amount of permeation tended to decrease.

原料に球状粒子を用いた比較例1、2では通気量が低く、気孔径の大きな比較例1の方が浸透量が大きかった。また、粗粒が本発明の範囲より多い比較例3では浸透量が大きかった。粒径が小さい破砕粒を用いている比較例4では、通気量が小さかった。 In Comparative Examples 1 and 2 in which spherical particles were used as a raw material, the air permeability was low, and in Comparative Example 1 having a large pore diameter, the permeation amount was larger. Further, in Comparative Example 3 in which the number of coarse particles was larger than the range of the present invention, the permeation amount was large. In Comparative Example 4 in which crushed particles having a small particle size were used, the aeration amount was small.

実施例の通気量は、比較例に比べて大きく、約70NL/minを越える大きな流量を得ることができた。この通気量により、本発明のポーラスプラグは、大流量が要求される用途にも適用することができることが確認された。 The air flow rate of the examples was larger than that of the comparative examples, and a large flow rate exceeding about 70 NL / min could be obtained. With this air volume, it was confirmed that the porous plug of the present invention can be applied to applications requiring a large flow rate.

図2に気孔径と浸透量との関係を示す。球状粒子を用いた比較例1、2では、気孔径を増大させると、浸透量が急増してしまうのに対し、実施例では気孔径の増加割合に対する浸透量の増加割合は小さくなっている。通気量を増大させるために気孔径を増大させると、球状粒子を用いた場合には浸透量が急増してしまい実機の使用には不適である。一方、実施例では、気孔径を増大させても、浸透量が急増することはないことが確認された。 FIG. 2 shows the relationship between the pore diameter and the permeation amount. In Comparative Examples 1 and 2 using the spherical particles, when the pore diameter is increased, the permeation amount rapidly increases, whereas in the examples, the increase rate of the permeation amount is small with respect to the increase rate of the pore diameter. If the pore diameter is increased in order to increase the air permeability, the permeation amount rapidly increases when spherical particles are used, which is unsuitable for use in an actual machine. On the other hand, in the examples, it was confirmed that the permeation amount did not increase sharply even if the pore diameter was increased.

以上より、本発明のポーラスプラグによれば、通気性を向上するとともに、溶鋼の浸潤を低減することができることが確認された。 From the above, it was confirmed that the porous plug of the present invention can improve the air permeability and reduce the infiltration of molten steel.

Claims (5)

粒径1−3mmの不規則形状のアルミナからなる中粒を40−90質量%と、
粒径3−5mmの不規則形状のアルミナからなる粗粒を0−20質量%と、
残部を粒径1mm未満のアルミナを主成分とする微粉と、から構成され、
前記中粒と前記粗粒との合計が75−95質量%であることを特徴とするポーラスプラグ。
Medium grains made of irregularly shaped alumina with a particle size of 1-3 mm were 40-90% by mass.
Coarse particles made of irregularly shaped alumina with a particle size of 3-5 mm were added to 0-20% by mass.
The balance is composed of fine powder containing alumina as a main component with a particle size of less than 1 mm.
A porous plug characterized in that the total of the medium grains and the coarse grains is 75-95% by mass.
前記中粒を65−85質量%と、
前記粗粒を5−15質量%と、
残部を前記微粉と、から構成され、
前記中粒と前記粗粒との合計が75−95質量%であることを特徴とするポーラスプラグ。
The medium grain was 65-85% by mass,
The coarse grains were added to 5-15% by mass.
The rest is composed of the fine powder.
A porous plug characterized in that the total of the medium grains and the coarse grains is 75-95% by mass.
前記中粒、前記粗粒及び前記微粉は、破砕粒であることを請求項1または請求項2に記載のポーラスプラグ。 The porous plug according to claim 1 or 2, wherein the medium grain, the coarse grain and the fine powder are crushed grains. 気孔率が20−35%であることを特徴とする請求項1ないし請求項3のいずれか1つに記載のポーラスプラグ。 The porous plug according to any one of claims 1 to 3, wherein the porosity is 20-35%. 前記微粉はクロミア、マグネシア、スピネル、ジルコン及びシリカのうち少なくとも1種以上を含有することを特徴とする請求項1ないし請求項4のいずれか1つに記載のポーラスプラグ。 The porous plug according to any one of claims 1 to 4, wherein the fine powder contains at least one of chromia, magnesia, spinel, zircon and silica.
JP2019058010A 2019-03-26 2019-03-26 Porous plug Active JP7094238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058010A JP7094238B2 (en) 2019-03-26 2019-03-26 Porous plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058010A JP7094238B2 (en) 2019-03-26 2019-03-26 Porous plug

Publications (2)

Publication Number Publication Date
JP2020158821A true JP2020158821A (en) 2020-10-01
JP7094238B2 JP7094238B2 (en) 2022-07-01

Family

ID=72642021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058010A Active JP7094238B2 (en) 2019-03-26 2019-03-26 Porous plug

Country Status (1)

Country Link
JP (1) JP7094238B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037402A (en) * 2017-08-23 2019-03-14 株式会社三洋物産 Game machine
JP2019072208A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072209A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072203A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072212A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072205A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072210A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072206A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072204A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072207A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072211A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136157A (en) * 1995-11-13 1997-05-27 Toshiba Ceramics Co Ltd Porous upper nozzle
JPH10251739A (en) * 1997-03-07 1998-09-22 Harima Ceramic Co Ltd Porous plug for gas blowing
JPH10280029A (en) * 1997-04-01 1998-10-20 Toshiba Ceramics Co Ltd Refractory for blowing gas and manufacture thereof
JPH11263663A (en) * 1998-03-16 1999-09-28 Toshiba Ceramics Co Ltd Production of refractory for gas blowing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136157A (en) * 1995-11-13 1997-05-27 Toshiba Ceramics Co Ltd Porous upper nozzle
JPH10251739A (en) * 1997-03-07 1998-09-22 Harima Ceramic Co Ltd Porous plug for gas blowing
JPH10280029A (en) * 1997-04-01 1998-10-20 Toshiba Ceramics Co Ltd Refractory for blowing gas and manufacture thereof
JPH11263663A (en) * 1998-03-16 1999-09-28 Toshiba Ceramics Co Ltd Production of refractory for gas blowing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037402A (en) * 2017-08-23 2019-03-14 株式会社三洋物産 Game machine
JP2019072208A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072209A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072203A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072212A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072205A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072210A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072206A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072204A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072207A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine
JP2019072211A (en) * 2017-10-16 2019-05-16 株式会社三洋物産 Game machine

Also Published As

Publication number Publication date
JP7094238B2 (en) 2022-07-01

Similar Documents

Publication Publication Date Title
JP7094238B2 (en) Porous plug
KR101856265B1 (en) Chromium oxide powder
TWI640615B (en) Electrofused alumina grains, production method for electrofused alumina grains, grinding stone, and coated abrasive
JP7132673B2 (en) Ceramic component and method of forming same
CN107434404B (en) Zirconium composite high-performance fused magnesia calcium zirconium brick and manufacturing method thereof
JP5199151B2 (en) Ceramic fired body and manufacturing method thereof
JPH09169558A (en) Molded or fired porous refractory
US3625721A (en) Permeable refractories
JP4796689B2 (en) Alkaline refractory ceramic hollow
JPH02255570A (en) Zirconia ceramics material and production thereof
CN112778006B (en) Light mullite sagger and preparation method and application thereof
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JP3622545B2 (en) Magnesia-chrome regular refractories
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JPH0952755A (en) Magnesia-chrome refractory
JP2022065673A (en) Porous brick for porous plug, and porous plug
CN113474070B (en) Fire-resistant filter
Siriphaisarntavee et al. Effects of sodium silicate as liquid phase sintering additives on properties of alumina ceramics
JP2023086544A (en) Method for producing magnesia-chrome brick
JP2017030988A (en) Silicon nitride ceramic and impact wear resistant member using the same
JP3828622B2 (en) Method for producing metal-ceramic composite material
JPH11292624A (en) Porous refractory
JPH11263663A (en) Production of refractory for gas blowing
RU2182568C2 (en) Mixture for production of porous ceramic material
AU639072B2 (en) Improved chromia-magnesia refractory body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220621

R150 Certificate of patent or registration of utility model

Ref document number: 7094238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150