JP2020157431A - Polishing pad, method for producing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad - Google Patents

Polishing pad, method for producing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad Download PDF

Info

Publication number
JP2020157431A
JP2020157431A JP2019060225A JP2019060225A JP2020157431A JP 2020157431 A JP2020157431 A JP 2020157431A JP 2019060225 A JP2019060225 A JP 2019060225A JP 2019060225 A JP2019060225 A JP 2019060225A JP 2020157431 A JP2020157431 A JP 2020157431A
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
component
content ratio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060225A
Other languages
Japanese (ja)
Other versions
JP7137504B2 (en
Inventor
哲平 立野
Teppei Tateno
哲平 立野
田中 啓介
Keisuke Tanaka
啓介 田中
翔馬 望月
Shoma Mochizuki
翔馬 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72641006&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020157431(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP2019060225A priority Critical patent/JP7137504B2/en
Publication of JP2020157431A publication Critical patent/JP2020157431A/en
Application granted granted Critical
Publication of JP7137504B2 publication Critical patent/JP7137504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide a polishing pad which suppresses polishing scratches, is less in fluctuation of a polishing rate during polishing, and is excellent in polishing stability.SOLUTION: A polishing pad has a polishing layer containing a polyurethane resin, in which when a free induction decay signal (FID) obtained by pulse NMR is deducted in order from a long component of a spin-spin relaxation time T2 by a least square method, is subjected to waveform separation and thereby is divided into three components of an amorphous phase, an interface phase and a crystal phase in order from the long spin-spin relaxation time T2, the polishing layer has a content ratio ((Ac20) of the component of the crystal phase at 20°C of 10-20%, and a content ratio (Ai20) of the component of the interface phase at 20°C of 40-50%.SELECTED DRAWING: Figure 5

Description

本発明は、研磨パッド、研磨パッドの製造方法、光学材料又は半導体材料の表面を研磨する方法、及び研磨パッドの評価方法に関する。本発明の研磨パッドは、光学材料、半導体ウエハ、半導体デバイス、ハードディスク用基板等の研磨に用いられ、特に半導体ウエハの上に酸化物層、金属層等が形成されたデバイスを研磨するのに好適に用いられる。 The present invention relates to a polishing pad, a method for manufacturing a polishing pad, a method for polishing the surface of an optical material or a semiconductor material, and a method for evaluating a polishing pad. The polishing pad of the present invention is used for polishing optical materials, semiconductor wafers, semiconductor devices, substrates for hard disks, etc., and is particularly suitable for polishing devices in which an oxide layer, a metal layer, etc. are formed on a semiconductor wafer. Used for.

近年、半導体基板表面の多層配線化に伴い、デバイスを製造する際に、半導体基板を研磨して平坦化する、いわゆる、化学的機械的研磨(Chemical Mechanical Polishing;CMP)技術が利用されている。CMPは、シリカ等の砥粒、防食剤、界面活性剤などを含む研磨用組成物(スラリー)を用いて、半導体基板等の研磨対象物(被研磨物)の表面を平坦化する方法であり、研磨対象物(被研磨物)は、シリコン、ポリシリコン、シリコン酸化膜、シリコン窒化物や、金属等からなる配線、プラグなどである。 In recent years, with the use of multi-layer wiring on the surface of a semiconductor substrate, a so-called chemical mechanical polishing (CMP) technique, in which a semiconductor substrate is polished and flattened when manufacturing a device, has been used. CMP is a method of flattening the surface of an object to be polished (object to be polished) such as a semiconductor substrate by using a polishing composition (slurry) containing abrasive grains such as silica, an anticorrosive agent, and a surfactant. The object to be polished (object to be polished) is silicon, polysilicon, silicon oxide film, silicon nitride, wiring made of metal or the like, a plug, or the like.

CMP工程において半導体基板表面上には、不純物が多量に発生する。不純物としては、CMPで使用された研磨用組成物由来の砥粒、金属、防食剤、界面活性剤等の有機物、研磨対象物であるシリコン含有材料、金属配線やプラグ等を研磨することによって生じたシリコン含有材料や金属、更には各種パッド等から生じるパッド屑等の有機物などが含まれ、無機物パーティクルや有機残渣として残存する。半導体基板表面がこれらの不純物により汚染されると、半導体の電気特性に悪影響を与え、デバイスの信頼性が低下する可能性がある。特に、研磨対象である低誘電率の層間絶縁膜は疎水性が高く、疎水性相互作用により不純物が吸着されやすい。したがって、CMPで使用される研磨パッドは、半導体基板表面に残存する無機物パーティクルや有機残渣を研磨により低減させることが求められている。 In the CMP process, a large amount of impurities are generated on the surface of the semiconductor substrate. Impurities are generated by polishing abrasive grains, metals, anticorrosive agents, organic substances such as surfactants, silicon-containing materials to be polished, metal wiring, plugs, etc., which are derived from the polishing composition used in CMP. It also contains silicon-containing materials and metals, as well as organic substances such as pad scraps generated from various pads and the like, and remains as inorganic particles and organic residues. If the surface of the semiconductor substrate is contaminated with these impurities, the electrical characteristics of the semiconductor may be adversely affected and the reliability of the device may be reduced. In particular, the low dielectric constant interlayer insulating film to be polished is highly hydrophobic, and impurities are easily adsorbed by the hydrophobic interaction. Therefore, the polishing pad used in CMP is required to reduce the inorganic particles and organic residues remaining on the surface of the semiconductor substrate by polishing.

また、上記CMP工程は、平坦度の調整を目的とする粗研磨と、表面粗さを改善することを目的とする仕上げ研磨とからなる。 Further, the CMP step includes rough polishing for the purpose of adjusting the flatness and finish polishing for the purpose of improving the surface roughness.

特許文献1には、デバイス表面の仕上げ用研磨パッドとして、スクラッチ等の研磨傷を与えにくい軟質なスウェードパッドが好適に使用されることが開示されている。 Patent Document 1 discloses that as a polishing pad for finishing the surface of a device, a soft suede pad that is less likely to cause polishing scratches such as scratches is preferably used.

特開2010−149259号公報JP-A-2010-149259

特許文献1に開示されているような仕上げ用研磨パッドによる仕上げ研磨においては、被研磨物に研磨傷をつけないこと、及び研磨中の研磨レートの変動が小さいパッドが求められている。特に、研磨初期から研磨レートの変動が小さいパッドのニーズが大きく、研磨開始からすぐに、安定な研磨が可能な仕上げ用研磨パッドが求められている。 In finish polishing with a finishing polishing pad as disclosed in Patent Document 1, there is a demand for a pad that does not damage the object to be polished and has a small fluctuation in the polishing rate during polishing. In particular, there is a great need for a pad that has a small fluctuation in the polishing rate from the initial stage of polishing, and there is a demand for a polishing pad for finishing that enables stable polishing immediately after the start of polishing.

本発明は、研磨傷を抑制し、研磨中の研磨レートの変動が少なく、研磨安定性に優れた研磨パッドを提供することを目的とする。 An object of the present invention is to provide a polishing pad that suppresses polishing scratches, has little fluctuation in the polishing rate during polishing, and has excellent polishing stability.

本発明者らは、上記課題を解決するべく鋭意研究した結果、20℃における結晶相の成分の含有割合(Ac20)及び界面相の成分の含有割合(Ai20)が特定の範囲にある研磨層を用いることで上記課題を解決できることを知見し、本発明を完成するに至った。本発明の具体的態様は以下のとおりである。 As a result of diligent research to solve the above problems, the present inventors have performed polishing in which the content ratio of the component of the crystal phase (Ac 20 ) and the content ratio of the component of the interface phase (Ai 20 ) at 20 ° C. are within a specific range. It has been found that the above problems can be solved by using layers, and the present invention has been completed. Specific embodiments of the present invention are as follows.

[1] ポリウレタン樹脂を含む研磨層を有する研磨パッドであって、
前記研磨層は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合において、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である、前記研磨パッド。
[2] 20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50である、[1]に記載の研磨パッド。
[3] 前記研磨層のA硬度が5〜15である、[1]又は[2]に記載の研磨パッド。
[4] 前記研磨層の圧縮率が35〜65%である、[1]〜[3]のいずれか1つに記載の研磨パッド。
[5] [1]〜[4]のいずれか1つに記載の研磨パッドの製造方法であって、湿式成膜法を使用する工程を含む、前記方法。
[6] 光学材料又は半導体材料の表面を研磨する方法であって、[1]〜[4]のいずれか1つに記載の研磨パッドを使用する工程を含む、前記方法。
[7] ポリウレタン樹脂を含む研磨層を有する研磨パッドの評価方法であって、
前記研磨層について、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合に、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%であるか否かを確認する工程を含む、前記評価方法。
[8] 20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50であるか否かを確認する工程を更に含む、[7]に記載の評価方法。
[1] A polishing pad having a polishing layer containing a polyurethane resin.
In the polishing layer, the free induction decay signal (FID) obtained by pulse NMR is subtracted in order from the component having the longest spin-spin relaxation time T2 by the minimum square method, and the waveform is separated to obtain the longer spin-spin relaxation time T2. When divided into three components, an amorphous phase, an interfacial phase, and a crystalline phase, the content ratio (Ac 20 ) of the crystalline phase component at 20 ° C. is 10 to 20%, and the interfacial phase component at 20 ° C. The polishing pad having a content ratio (Ai 20 ) of 40 to 50%.
[2] The absolute value (| Ai 20- Ai 40 |) of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ) is 35 to 5. The polishing pad according to [1], which is 50.
[3] The polishing pad according to [1] or [2], wherein the polishing layer has an A hardness of 5 to 15.
[4] The polishing pad according to any one of [1] to [3], wherein the polishing layer has a compressibility of 35 to 65%.
[5] The method for manufacturing a polishing pad according to any one of [1] to [4], which comprises a step of using a wet film forming method.
[6] The method for polishing the surface of an optical material or a semiconductor material, which comprises a step of using the polishing pad according to any one of [1] to [4].
[7] A method for evaluating a polishing pad having a polishing layer containing a polyurethane resin.
For the polishing layer, the free induction decay signal (FID) obtained by pulse NMR is subtracted in order from the component having the longest spin-spin relaxation time T2 by the minimum square method, and the waveform is separated to obtain the longer spin-spin relaxation time T2. When divided into three components, an amorphous phase, an interface phase, and a crystalline phase, the content ratio (Ac 20 ) of the component of the crystal phase at 20 ° C. is 10 to 20%, and the component of the interface phase at 20 ° C. The evaluation method including a step of confirming whether or not the content ratio (Ai 20 ) is 40 to 50%.
[8] The absolute value (| Ai 20- Ai 40 |) of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ) is 35 to 5. The evaluation method according to [7], further comprising a step of confirming whether or not the value is 50.

本発明の研磨パッドは、研磨傷を抑制でき、研磨中の研磨レートの変動が少なく、研磨安定性に優れる。 The polishing pad of the present invention can suppress polishing scratches, has little fluctuation in the polishing rate during polishing, and is excellent in polishing stability.

パルスNMRによる研磨パッドの構造解析方法を説明する図である。It is a figure explaining the structure analysis method of the polishing pad by pulse NMR. 本発明の研磨パッドの製造工程における塗布、凝固再生、洗浄・乾燥の工程を行う装置の一例を示す概略図である。It is a schematic diagram which shows an example of the apparatus which performs the steps of coating, solidification regeneration, cleaning / drying in the manufacturing process of the polishing pad of this invention. 本発明の研磨パッドの一例の断面図を示す図である。It is a figure which shows the cross-sectional view of an example of the polishing pad of this invention. 本発明の研磨パッドを用いた被研磨物の研磨方法を説明する図である。It is a figure explaining the polishing method of the object to be polished using the polishing pad of this invention. 実施例1及び比較例1〜3で得られた研磨パッドのパルスNMRによる構造解析の結果(各成分の緩和時間)を示すグラフである。It is a graph which shows the result (relaxation time of each component) of the structural analysis by the pulse NMR of the polishing pad obtained in Example 1 and Comparative Examples 1-3. 実施例1及び比較例1で得られた研磨パッドのパルスNMRによる構造解析の結果(各成分の含有割合)を示すグラフである。It is a graph which shows the result (content ratio of each component) of the structural analysis by the pulse NMR of the polishing pad obtained in Example 1 and Comparative Example 1. 比較例2及び3で得られた研磨パッドのパルスNMRによる構造解析の結果(各成分の含有割合)を示すグラフである。It is a graph which shows the result (content ratio of each component) of the structural analysis by the pulse NMR of the polishing pad obtained in Comparative Examples 2 and 3. 実施例1及び比較例1で得られた研磨パッドの断面を示す写真である。It is a photograph which shows the cross section of the polishing pad obtained in Example 1 and Comparative Example 1. 比較例2及び3で得られた研磨パッドの断面を示す写真である。It is a photograph which shows the cross section of the polishing pad obtained in Comparative Examples 2 and 3.

(作用)
本発明では、研磨層として、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%であるものを使用する。
(Action)
In the present invention, as the polishing layer, the content ratio of the crystal phase component (Ac 20 ) at 20 ° C. is 10 to 20%, and the content ratio of the interface phase component (Ai 20 ) at 20 ° C. is 40 to 50%. Use something.

本発明者らは、予想外にも20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である研磨層を用いることにより、研磨傷を抑制し、研磨中の研磨レートの変動が少なく、研磨安定性に優れた研磨パッドが得られることを見出した。これらの特性が得られる理由の詳細は明らかではないが、以下のように推察される。 Unexpectedly, the present inventors have a crystal phase component content ratio (Ac 20 ) at 20 ° C. of 10 to 20%, and an interface phase component content ratio (Ai 20 ) at 20 ° C. of 40 to 50. It has been found that by using the polishing layer of%, polishing scratches are suppressed, the fluctuation of the polishing rate during polishing is small, and a polishing pad having excellent polishing stability can be obtained. The details of the reason why these characteristics are obtained are not clear, but it is inferred as follows.

20℃における結晶相の成分の含有割合(Ac20)は、室温(約20℃)における研磨開始初期の結晶相の成分の含有割合に対応しており、結晶相の成分の含有割合はポリウレタン樹脂におけるハードセグメント成分の割合を意味していると考えられる。また、20℃における界面相の成分の含有割合(Ai20)は、室温(約20℃)における研磨開始初期の界面相の成分の含有割合に対応しており、界面相の含有割合はポリウレタン樹脂内において動きがある程度拘束された分子鎖を意味していると考えられる。本発明の研磨パッドにおけるポリウレタン樹脂は、ハードセグメント成分の含有割合が比較的少なく、動きがある程度拘束された分子鎖の割合が比較的高いので、適度なハリ(弾性)を有しセルフドレッシング性(自己崩壊性)に優れ、結果として研磨中の研磨レートの変動が少なく、研磨安定性に優れ、かつ、研磨傷を抑制できると思われる。 The content ratio of the crystal phase component at 20 ° C. (Ac 20 ) corresponds to the content ratio of the crystal phase component at the initial stage of polishing at room temperature (about 20 ° C.), and the content ratio of the crystal phase component is the polyurethane resin. It is considered to mean the ratio of the hard segment component in. Further, the content ratio of the interface phase component (Ai 20 ) at 20 ° C. corresponds to the content ratio of the interface phase component at the initial stage of polishing at room temperature (about 20 ° C.), and the interface phase content ratio is the polyurethane resin. It is considered to mean a molecular chain whose movement is restricted to some extent within. The polyurethane resin in the polishing pad of the present invention has a relatively low content of hard segment components and a relatively high proportion of molecular chains whose movement is restricted to some extent, so that it has appropriate elasticity and self-dressing property (self-dressing property). (Self-disintegrating property) is excellent, and as a result, the polishing rate does not fluctuate during polishing, the polishing stability is excellent, and polishing scratches can be suppressed.

(パルスNMRによる構造解析)
パルスNMRでは、パルスに対する応答信号を検出することで定量性に優れるFID信号を得ることができる。このため、ポリウレタン樹脂の相分離構造を解析することができる。FID信号の初期値は測定試料中のプロトンの数に比例しており、測定試料に複数の成分があれば、FID信号は各成分の応答信号の和となる。各成分の運動性に差があると、応答信号の減衰の速さが異なりスピン−スピン緩和時間T2が異なるため、これらを分離して各成分の緩和時間T2と成分割合Rとを求めることができる。成分の運動性が小さくなるほど緩和時間T2が短くなり、運動性が大きくなるほど緩和時間T2が長くなる。換言すれば、緩和時間T2が短くなるほど結晶性が大きくなり、緩和時間T2が長くなるほど非晶性が大きくなる。
(Structural analysis by pulse NMR)
In pulse NMR, a FID signal having excellent quantification can be obtained by detecting a response signal to a pulse. Therefore, the phase-separated structure of the polyurethane resin can be analyzed. The initial value of the FID signal is proportional to the number of protons in the measurement sample, and if the measurement sample has a plurality of components, the FID signal is the sum of the response signals of each component. If there is a difference in the motility of each component, the speed of attenuation of the response signal is different and the spin-spin relaxation time T2 is different. Therefore, it is necessary to separate these and obtain the relaxation time T2 and the component ratio R of each component. it can. The smaller the motility of the component, the shorter the relaxation time T2, and the larger the motility, the longer the relaxation time T2. In other words, the shorter the relaxation time T2, the greater the crystallinity, and the longer the relaxation time T2, the greater the amorphousness.

図1に示すように、ポリウレタン樹脂のパルスNMRで得られるFID信号は、曲線Dで示される。曲線Dから、最小二乗法により緩和時間T2の長い成分から順に差し引き、波形分離することで、曲線H、曲線S、曲線Iで示される3つの成分に分けることができる。曲線Sで示される緩和時間T2の長い成分が非晶相に相当し、曲線Hで示される緩和時間T2の短い成分が結晶相に相当する。曲線Sと曲線Hとの間の曲線Iで示される成分が界面相に相当する。ポリウレタン樹脂では、運動性の大きなソフトセグメントで形成される非晶相の成分割合が圧縮弾性率と相関し、運動性の小さなハードセグメントで形成される結晶相の成分割合がA硬度と相関する。このため、非晶相の成分割合を大きくすれば圧縮弾性率を大きくすることができ、結晶相の成分割合を大きくすればA硬度を大きくすることができる。 As shown in FIG. 1, the FID signal obtained by pulse NMR of the polyurethane resin is shown by the curve D. By subtracting from the curve D in order from the component having the longest relaxation time T2 by the least squares method and separating the waveforms, it can be divided into the three components shown by the curve H, the curve S, and the curve I. The component having a long relaxation time T2 shown by the curve S corresponds to the amorphous phase, and the component having a short relaxation time T2 shown by the curve H corresponds to the crystalline phase. The component represented by the curve I between the curve S and the curve H corresponds to the interface phase. In the polyurethane resin, the component ratio of the amorphous phase formed by the soft segment having high motility correlates with the compressive elastic modulus, and the component ratio of the crystalline phase formed by the hard segment having low motility correlates with the A hardness. Therefore, the compressive elastic modulus can be increased by increasing the component ratio of the amorphous phase, and the A hardness can be increased by increasing the component ratio of the crystalline phase.

以下、本発明の研磨パッド、研磨パッドの製造方法、光学材料又は半導体材料の表面を研磨する方法、及び研磨パッドの評価方法について、説明する。
なお、本明細書及び特許請求の範囲において、「A〜B」を用いて数値範囲を表す際は、その範囲は両端の数値であるA及びBを含むものとする。
Hereinafter, the polishing pad of the present invention, a method for manufacturing the polishing pad, a method for polishing the surface of an optical material or a semiconductor material, and a method for evaluating the polishing pad will be described.
In the present specification and the claims, when the numerical range is expressed by using "A to B", the range shall include A and B which are the numerical values at both ends.

(研磨パッド)
本発明の研磨パッドは、ポリウレタン樹脂を含む研磨層を有する研磨パッドであって、前記研磨層は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合において、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である。
Ac20は、10〜20%であり、10〜18%が好ましく、10〜17%がより好ましい。Ai20は、40〜50%であり、41〜49%が好ましく、42〜48%がより好ましい。Ac20及びAi20が上記数値範囲内にあると、研磨傷を抑制でき、研磨中の研磨レートの変動が少なく、研磨安定性に優れる研磨パッドが得られる。
(Polishing pad)
The polishing pad of the present invention is a polishing pad having a polishing layer containing a polyurethane resin, and the polishing layer obtains a free induction decay signal (FID) obtained by pulse NMR by a minimum square method and has a spin-spin relaxation time T2. By subtracting the components in order from the longest component and separating the waveforms, the components of the crystalline phase at 20 ° C. are contained when the spin-spin relaxation time T2 is divided into three components in order from the longest component: amorphous phase, interface phase, and crystalline phase. The ratio (Ac 20 ) is 10 to 20%, and the content ratio (Ai 20 ) of the interface phase component at 20 ° C. is 40 to 50%.
Ac 20 is 10 to 20%, preferably 10 to 18%, more preferably 10 to 17%. Ai 20 is 40 to 50%, preferably 41 to 49%, more preferably 42 to 48%. When Ac 20 and Ai 20 are within the above numerical range, polishing scratches can be suppressed, the fluctuation of the polishing rate during polishing is small, and a polishing pad having excellent polishing stability can be obtained.

Ac20が10〜20%であるポリウレタン樹脂(研磨層)は、研磨層に使用するポリウレタン樹脂の100%樹脂モジュラス(MPa)を小さくすることにより得られる。研磨層に含まれるポリウレタン樹脂の100%樹脂モジュラスは、1.0〜5.0MPaが好ましく、1.5〜4.0MPaがより好ましく、1.8〜3.5MPaが最も好ましい。ポリウレタン樹脂の100%樹脂モジュラスは、樹脂の硬さを表す指標であり、無発泡の樹脂シートを100%伸ばしたとき(元の長さの2倍に伸ばしたとき)に掛かる荷重を断面積で割った値である。100%樹脂モジュラスは、樹脂溶液を薄く引き延ばし熱風乾燥し、200μm程度の厚みの乾式フィルムを作製後、しばらく養生したのち、全長90mm、両端部幅20mm、つかみ具間距離50mm、平行部幅10mm、厚さ200μmのダンベル状に試料を打ち抜き、測定試料を万能材料試験機テンシロン(株式会社エイ・アンド・デイ製テンシロン万能試験機「RTC−1210」)の上下エアチャックにはさみ、20℃(±2℃)、湿度65%(±5%)の雰囲気下で、引っ張り速度100mm/分で引っ張り、100%伸長時(2倍延伸時)の張力を試料の初期断面積で割ることにより求める。なお、樹脂モジュラスの測定は、ポリウレタン発泡シートをN,N−ジメチルホルムアミド(DMF)で溶解し、低濃度のポリウレタン樹脂DMF溶液を得たのち、キャスト法によりDMFを気化させ無発泡の樹脂シートを形成することで測定することもできる。
研磨層に含まれるポリウレタン樹脂の重量平均分子量は、100000〜200000が好ましく、110000〜160000がより好ましく、120000〜140000が最も好ましい。ポリウレタン樹脂の重量平均分子量は、後述するゲル浸透クロマトグラフィー(GPC)により測定することができる。
The polyurethane resin (polishing layer) in which Ac 20 is 10 to 20% can be obtained by reducing the 100% resin modulus (MPa) of the polyurethane resin used for the polishing layer. The 100% resin modulus of the polyurethane resin contained in the polishing layer is preferably 1.0 to 5.0 MPa, more preferably 1.5 to 4.0 MPa, and most preferably 1.8 to 3.5 MPa. The 100% resin modulus of polyurethane resin is an index showing the hardness of the resin, and the load applied when the non-foamed resin sheet is stretched 100% (when stretched to twice the original length) is the cross-sectional area. It is the divided value. For 100% resin modulus, a resin solution is thinly stretched and dried with hot air to prepare a dry film having a thickness of about 200 μm, and after curing for a while, the total length is 90 mm, the width at both ends is 20 mm, the distance between grippers is 50 mm, and the width of parallel parts is 10 mm. The sample is punched into a dumbbell shape with a thickness of 200 μm, and the measurement sample is sandwiched between the upper and lower air chucks of the universal material tester Tencilon (Tencilon universal tester "RTC-1210" manufactured by A & D Co., Ltd.) and 20 ° C (± 2). ℃), humidity 65% (± 5%), pulling at a pulling speed of 100 mm / min, and dividing the tension at 100% elongation (double stretching) by the initial cross-sectional area of the sample. To measure the resin modulus, a polyurethane foam sheet is dissolved in N, N-dimethylformamide (DMF) to obtain a low-concentration polyurethane resin DMF solution, and then the DMF is vaporized by a casting method to obtain a non-foamed resin sheet. It can also be measured by forming.
The weight average molecular weight of the polyurethane resin contained in the polishing layer is preferably 100,000 to 200,000, more preferably 11,000 to 160,000, and most preferably 12,000 to 14,000. The weight average molecular weight of the polyurethane resin can be measured by gel permeation chromatography (GPC) described later.

界面相の成分の含有割合の調整は、熱可塑性ポリウレタン樹脂の組成、即ち、ポリマージオールの種類や分子量、ジイソシアネートの種類、鎖延長剤や末端封止剤の量を調整したり、あるいはこれら高分子ジオール、ポリイソシアネート、鎖延長剤の配合モル比を調整することにより適切な範囲にしたりして製造することができる。例えば、ハードセグメントとソフトセグメントの極性を近づけることにより、相分離が進行しにくくなり界面相を増やすことができる。 The content ratio of the components of the interface phase can be adjusted by adjusting the composition of the thermoplastic polyurethane resin, that is, the type and molecular weight of the polymer diol, the type of diisocyanate, the amount of the chain extender and the terminal encapsulant, or these polymers. By adjusting the compounding molar ratio of the diol, the polyisocyanate, and the chain extender, it can be produced in an appropriate range. For example, by bringing the polarities of the hard segment and the soft segment closer to each other, phase separation is less likely to proceed and the number of interface phases can be increased.

本発明の研磨パッドは、20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50であることが好ましく、36〜48がより好ましく、37〜46が最も好ましい。
|Ai20−Ai40|が上記数値範囲内にあると、以下のような効果を有する研磨パッドが得られると考えられる。
研磨パッドによる研磨について、研磨開始初期の研磨パッドの研磨面の温度は室温(約20℃)付近であるが、研磨中期から後期の研磨面の温度は摩擦熱等に起因して40℃付近にまで上昇する。研磨の進行に伴って研磨パッドの研磨面の温度が上昇すると、界面相として拘束されていた分子鎖の一部が解放されて自由な運動をする非晶相成分となると考えられる。本発明においては、|Ai20−Ai40|が比較的大きく、20℃から40℃へ温度上昇に伴い、界面相の多くが非晶相成分となると考えられる。そのため、研磨加工により研磨熱が発生している状態(約40℃)では、研磨パッドのソフト性が増し、研磨屑やパッド屑、スラリー成分等からなる研磨凝集物を被研磨物に押し付ける力を弱くできるため、傷つきやすい面に対し研磨傷抑制効果が大きいと考えられる。また、本発明においては、20℃における界面相の含有割合が比較的高いため、通常、室温(約20℃)において行われるドレス時には、研磨層のドレス性が向上し、研磨レートの経時変化が抑制されると考えられる。
The polishing pad of the present invention has an absolute value (| Ai 20- Ai 40 |) of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ). ) Is preferably 35 to 50, more preferably 36 to 48, and most preferably 37 to 46.
When | Ai 20 −Ai 40 | is within the above numerical range, it is considered that a polishing pad having the following effects can be obtained.
Regarding polishing with a polishing pad, the temperature of the polishing surface of the polishing pad at the beginning of polishing is around room temperature (about 20 ° C), but the temperature of the polishing surface from the middle to the latter stage of polishing is around 40 ° C due to frictional heat and the like. Ascend to. When the temperature of the polished surface of the polishing pad rises as the polishing progresses, it is considered that a part of the molecular chain constrained as the interface phase is released and becomes an amorphous phase component that freely moves. In the present invention, | Ai 20 −Ai 40 | is relatively large, and it is considered that most of the interface phase becomes an amorphous phase component as the temperature rises from 20 ° C. to 40 ° C. Therefore, in a state where polishing heat is generated by the polishing process (about 40 ° C.), the softness of the polishing pad is increased, and the force of pressing the polishing agglomerates composed of polishing scraps, pad scraps, slurry components, etc. against the object to be polished is exerted. Since it can be weakened, it is considered that the polishing scratch suppressing effect is large on the easily scratched surface. Further, in the present invention, since the content ratio of the interface phase at 20 ° C. is relatively high, the dressing property of the polishing layer is improved and the polishing rate changes with time when dressing is usually performed at room temperature (about 20 ° C.). It is thought to be suppressed.

Ai40は、1〜10%が好ましく、2〜8%がより好ましく、3〜7%が最も好ましい。 Ai 40 is preferably 1 to 10%, more preferably 2 to 8%, and most preferably 3 to 7%.

20℃における非晶相の成分の含有割合は、25〜60%が好ましく、30〜50%がより好ましく、35〜45%が最も好ましい。
20℃における非晶相の成分の緩和時間は、800〜1300μsが好ましく、900〜1250μsがより好ましく、1000〜1200μsが最も好ましい。20℃における界面相の成分の緩和時間は、100〜300μsが好ましく、150〜280μsがより好ましく、180〜250μsが最も好ましい。20℃における結晶相の成分の緩和時間は、10〜30μsが好ましく、15〜28μsがより好ましく、18〜25μsが最も好ましい。
40℃における非晶相の成分の含有割合は、70〜95%が好ましく、75〜95%がより好ましく、80〜95%が最も好ましい。40℃における結晶相の成分の含有割合は、1〜10%が好ましく、2〜8%がより好ましく、3〜7%が最も好ましい。
40℃における非晶相の成分の緩和時間は、500〜800μsが好ましく、620〜780μsがより好ましく、650〜750μsが最も好ましい。40℃における界面相の成分の緩和時間は、10〜50μsが好ましく、15〜40μsがより好ましく、20〜35μsが最も好ましい。40℃における結晶相の成分の緩和時間は、5〜30μsが好ましく、10〜25μsがより好ましく、15〜20μsが最も好ましい。
The content ratio of the amorphous phase component at 20 ° C. is preferably 25 to 60%, more preferably 30 to 50%, and most preferably 35 to 45%.
The relaxation time of the amorphous phase component at 20 ° C. is preferably 800 to 1300 μs, more preferably 900 to 1250 μs, and most preferably 1000 to 1200 μs. The relaxation time of the components of the interface phase at 20 ° C. is preferably 100 to 300 μs, more preferably 150 to 280 μs, and most preferably 180 to 250 μs. The relaxation time of the crystal phase components at 20 ° C. is preferably 10 to 30 μs, more preferably 15 to 28 μs, and most preferably 18 to 25 μs.
The content ratio of the amorphous phase component at 40 ° C. is preferably 70 to 95%, more preferably 75 to 95%, and most preferably 80 to 95%. The content ratio of the components of the crystal phase at 40 ° C. is preferably 1 to 10%, more preferably 2 to 8%, and most preferably 3 to 7%.
The relaxation time of the amorphous phase component at 40 ° C. is preferably 500 to 800 μs, more preferably 620 to 780 μs, and most preferably 650 to 750 μs. The relaxation time of the components of the interface phase at 40 ° C. is preferably 10 to 50 μs, more preferably 15 to 40 μs, and most preferably 20 to 35 μs. The relaxation time of the crystal phase components at 40 ° C. is preferably 5 to 30 μs, more preferably 10 to 25 μs, and most preferably 15 to 20 μs.

研磨層のA硬度は、5〜15であることが好ましく、6〜14がより好ましく、7〜13が最も好ましい。A硬度が上記数値範囲内にあると、研磨傷の抑制と研磨レートとのバランスが良い研磨パッドが得られる。 The A hardness of the polishing layer is preferably 5 to 15, more preferably 6 to 14, and most preferably 7 to 13. When the A hardness is within the above numerical range, a polishing pad having a good balance between the suppression of polishing scratches and the polishing rate can be obtained.

研磨層の圧縮率は、35〜65%であることが好ましく、35〜60%がより好ましく、35〜55%が最も好ましい。圧縮率が上記数値範囲内にあると、被研磨物への研磨パッドの接触が安定し、良好な研磨特性が得られる。 The compressibility of the polishing layer is preferably 35 to 65%, more preferably 35 to 60%, and most preferably 35 to 55%. When the compressibility is within the above numerical range, the contact of the polishing pad with the object to be polished is stable, and good polishing characteristics can be obtained.

(ポリウレタン樹脂組成物)
本発明の研磨パッドのポリウレタン樹脂は、ポリイソシアネート化合物とポリオール、ポリアミンなどの硬化剤を反応させて得られ、鎖延長剤を使用することもできる。結晶相(ハードセグメント)はイソシアネート化合物及び鎖延長剤に由来する構造単位から構成され、非晶相(ソフトセグメント)は比較的自由度が高い脂肪族有機基を有するポリオールやジアミンに由来する構造単位から構成される。
(Polyurethane resin composition)
The polyurethane resin of the polishing pad of the present invention is obtained by reacting a polyisocyanate compound with a curing agent such as polyol or polyamine, and a chain extender can also be used. The crystalline phase (hard segment) is composed of structural units derived from an isocyanate compound and a chain extender, and the amorphous phase (soft segment) is a structural unit derived from a polyol or diamine having an aliphatic organic group having a relatively high degree of freedom. Consists of.

ポリイソシアネート化合物は、ポリイソシアネート化合物とポリオールをあらかじめ反応させて高分子量化したプレポリマーの形で使用することができる。 The polyisocyanate compound can be used in the form of a prepolymer obtained by reacting the polyisocyanate compound with a polyol in advance to increase the molecular weight.

ポリイソシアネート化合物としては、例えば、4,4'-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート:ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、水添トリレンジイソシアネート、水添キシリレンジイソシアネート等の脂肪族または脂環族ジイソシアネートなどが挙げられる。 Examples of the polyisocyanate compound include aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, phenylenedi isocyanate, and xylylene diisocyanate: hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and hydrogenated. Examples thereof include aliphatic or alicyclic diisocyanates such as tolylene diisocyanate and hydrogenated xylylene diisocyanate.

ポリオール(高分子ジオール)としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオールなどが挙げられる。これらの高分子ジオールは単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、研磨傷低減の観点から、ポリエーテルジオールを使用することが好ましい。
ポリエーテルジオールとしては、例えば、ポリ(エチレングリコール)、ポリ(プロピレングリコール)、ポリ(テトラメチレングリコール)、ポリ(メチルテトラメチレングリコール)などが挙げられる。これらのポリエーテルジオールは、単独で使用してもよいし、2種以上を併用してもよい。
ポリエステルジオールとしては、例えば、ジカルボン酸またはそのエステル、無水物等のエステル形成性誘導体と低分子ジオールとを直接エステル化反応またはエステル交換反応させることにより製造できる。
ポリエステルジオールを構成するジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、2−メチルコハク酸、2−メチルアジピン酸、3−メチルアジピン酸、3−メチルペンタン二酸、2−メチルオクタン二酸、3,8−ジメチルデカン二酸、3,7−ジメチルデカン二酸等の炭素数4〜12の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸等の芳香族ジカルボン酸;等が挙げられる。これらのジカルボン酸は、単独で使用してもよいし、2種以上を併用してもよい。
ポリエステルジオールを構成する低分子ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等の脂肪族ジオール;シクロヘキサンジメタノール、シクロヘキサンジオール等の脂環式ジオール;等が挙げられる。これらの低分子ジオールは、単独で使用してもよいし、2種以上を併用してもよい。低分子ジオールの炭素数としては、例えば、6以上12以下が挙げられる。
Examples of the polyol (polymer diol) include polyether diols, polyester diols, polycarbonate diols and the like. These polymer diols may be used alone or in combination of two or more. Among these, it is preferable to use a polyether diol from the viewpoint of reducing polishing scratches.
Examples of the polyether diol include poly (ethylene glycol), poly (propylene glycol), poly (tetramethylene glycol), poly (methyltetramethylene glycol) and the like. These polyether diols may be used alone or in combination of two or more.
The polyester diol can be produced, for example, by directly subjecting an ester-forming derivative such as a dicarboxylic acid or an ester thereof or an anhydride to a low molecular weight diol by a transesterification reaction or a transesterification reaction.
Examples of the dicarboxylic acid constituting the polyesterdiol include succinic acid, glutaric acid, adipic acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3-. An aliphatic dicarboxylic acid having 4 to 12 carbon atoms such as methyl adipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, and 3,7-dimethyldecanedioic acid; terephthalic acid. , Aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid; and the like. These dicarboxylic acids may be used alone or in combination of two or more.
Examples of the low molecular weight diol constituting the polyester diol include ethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, and 1,5-pentane. Diol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decane An aliphatic diol such as a diol; an alicyclic diol such as cyclohexanedimethanol and a cyclohexanediol; and the like can be mentioned. These low molecular weight diols may be used alone or in combination of two or more. Examples of the carbon number of the low molecular weight diol include 6 or more and 12 or less.

鎖延長剤としては、例えば、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール等の脂肪族ポリオール化合物;ビスフェノールA、4,4’−ジヒドロキシジフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン等の芳香族ポリオール化合物、水などを用いることができる。これらの鎖延長剤は単独で用いても2種以上を併用してもよい。 Examples of the chain extender include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, saccharose, and methylene glycol. , Glycerin, sorbitol and other aliphatic polyol compounds; bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfone, hydrogenated bisphenol A, hydroquinone and other aromatic polyols. Compounds, water and the like can be used. These chain extenders may be used alone or in combination of two or more.

(その他の成分)
本発明のポリウレタン樹脂組成物は、添加剤を含むことができる。添加剤は、好ましくは、成膜助剤、発泡抑制助剤からなる群より選択される。
成膜助剤としては、疎水性活性剤等が挙げられる。疎水性活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、パーフルオロアルキルエチレンオキサイド付加物、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリエーテル変性シリコーンなどのノニオン系界面活性剤や、アルキルカルボン酸などのアニオン系界面活性剤が挙げられる。
発泡抑制助剤としては、親水性活性剤等が挙げられる。親水性活性剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、燐酸エステル塩等のアニオン界面活性剤やセルロースエステルが挙げられる。
成膜助剤を添加剤として添加する場合には、0.2〜10質量%であることが好ましい。発泡抑制助剤を添加剤として添加する場合には、0.2〜10質量%であることが好ましい。
(Other ingredients)
The polyurethane resin composition of the present invention can contain additives. The additive is preferably selected from the group consisting of a film forming aid and a foaming inhibitor.
Examples of the film forming aid include hydrophobic activators and the like. Examples of the hydrophobic activator include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, perfluoroalkylethylene oxide adduct, glycerin fatty acid ester, propylene glycol fatty acid ester, and polyether modification. Examples thereof include nonionic surfactants such as silicone and anionic surfactants such as alkylcarboxylic acids.
Examples of the foaming inhibitor include hydrophilic activators and the like. Examples of the hydrophilic activator include anionic surfactants such as carboxylates, sulfonates, sulfates and phosphates, and cellulose esters.
When the film forming aid is added as an additive, it is preferably 0.2 to 10% by mass. When the foaming inhibitor is added as an additive, it is preferably 0.2 to 10% by mass.

(ポリウレタン樹脂組成物の重合反応)
ポリウレタン樹脂は、上述したポリウレタン樹脂組成物を重合させることにより製造できる。すなわち、必要に応じて触媒の存在下で有機溶剤中で重合反応を行う方法等が挙げられる。
(Polymerization reaction of polyurethane resin composition)
The polyurethane resin can be produced by polymerizing the above-mentioned polyurethane resin composition. That is, if necessary, a method of carrying out a polymerization reaction in an organic solvent in the presence of a catalyst can be mentioned.

(研磨パッドの製造方法)
本発明の研磨パッドの製造方法は、上述の研磨パッドの製造方法であって、湿式成膜法を使用する工程を含む。
(Manufacturing method of polishing pad)
The method for manufacturing a polishing pad of the present invention is the above-mentioned method for manufacturing a polishing pad, and includes a step of using a wet film forming method.

以下、図面を参照して、本発明の研磨パッドの製造方法について説明する。
図3に本発明の研磨パッドの一例の断面図を示す。本発明の研磨パッド1は湿式成膜法により製造された軟質プラスチックフォームとしてのポリウレタンシート2を有している。ポリウレタンシート2は、研磨面P側が、ポリウレタンシート2の厚さ(図3の縦方向の長さ)がほぼ一様となるようにバフ処理されている(詳細後述)。
Hereinafter, the method for manufacturing the polishing pad of the present invention will be described with reference to the drawings.
FIG. 3 shows a cross-sectional view of an example of the polishing pad of the present invention. The polishing pad 1 of the present invention has a polyurethane sheet 2 as a soft plastic foam manufactured by a wet film forming method. The polyurethane sheet 2 is buffed on the polished surface P side so that the thickness of the polyurethane sheet 2 (length in the vertical direction in FIG. 3) becomes substantially uniform (details will be described later).

ポリウレタンシート2は、湿式成膜法で表面側に形成されたスキン層がバフ処理により除去されている。バフ処理により、被研磨物を研磨加工するための研磨面Pが構成されている。ポリウレタンシート2の内部には、ポリウレタンシート2の厚さ方向に沿って丸みを帯びた断面略三角状の発泡3が形成されている。発泡3の空間体積は、研磨面P側の大きさが、研磨面Pの裏面側より小さく形成されている。発泡3同士の間のポリウレタン樹脂中には、発泡3より小さな空間体積を有する微発泡が形成されている。発泡3及び微発泡は、連通孔で立体網目状につながっている。 In the polyurethane sheet 2, the skin layer formed on the surface side by the wet film forming method is removed by buffing. The buffing process constitutes a polished surface P for polishing the object to be polished. Inside the polyurethane sheet 2, foams 3 having a substantially triangular cross section and rounded along the thickness direction of the polyurethane sheet 2 are formed. The space volume of the foam 3 is formed so that the size of the polished surface P side is smaller than that of the back surface side of the polished surface P. In the polyurethane resin between the foams 3, microfoams having a space volume smaller than that of the foams 3 are formed. Foam 3 and microfoam are connected in a three-dimensional network through communication holes.

また、研磨パッド1は、アクリル系接着剤を用いて基材8(厚み188μmのポリエチレンテレフタレート樹脂シート)と、バフ処理済のポリウレタンシート2のバフ処理した面とは反対側の面とが貼り合わされている。基材8のポリウレタン樹脂シートと貼り合わされている面とは反対側の面に、研磨機に研磨パッド1を装着するための両面テープが貼り合わされている。両面テープは、他面側(基材8と反対側)の接着剤層が剥離紙で覆われている。 Further, in the polishing pad 1, the base material 8 (polyethylene terephthalate resin sheet having a thickness of 188 μm) and the surface of the buffed polyurethane sheet 2 opposite to the buffed surface are bonded to each other using an acrylic adhesive. ing. A double-sided tape for mounting the polishing pad 1 on the polishing machine is attached to the surface of the base material 8 opposite to the surface attached to the polyurethane resin sheet. In the double-sided tape, the adhesive layer on the other side (opposite side to the base material 8) is covered with a release paper.

湿式成膜法によりポリウレタンシート2を作製し、基材8を貼り合わせる。すなわち、湿式成膜法では、ポリウレタン樹脂を有機溶媒に溶解させたポリウレタン樹脂溶液を成膜基材に連続的に塗布し、水系凝固液に浸漬することでポリウレタン樹脂をフィルム状に凝固再生させ、洗浄後乾燥させて帯状(長尺状)のポリウレタンシート2を作製する。以下、工程順に説明する。 A polyurethane sheet 2 is produced by a wet film forming method, and a base material 8 is attached to the polyurethane sheet 2. That is, in the wet film-forming method, a polyurethane resin solution in which a polyurethane resin is dissolved in an organic solvent is continuously applied to a film-forming substrate and immersed in an aqueous coagulation liquid to coagulate and regenerate the polyurethane resin into a film. After washing, it is dried to prepare a strip-shaped (long-shaped) polyurethane sheet 2. Hereinafter, the steps will be described in order.

準備工程では、ポリウレタン樹脂、ポリウレタン樹脂を溶解可能な水混和性の有機溶媒のN,N−ジメチルホルムアミド(以下、DMFと略記する。)及び添加剤を混合してポリウレタン樹脂を溶解させる。例えば、ポリウレタン樹脂が30質量%の濃度となるようにDMFに溶解させる。添加剤としては、発泡3の大きさや量(個数)を制御するため、発泡を促進させる親水性活性剤及びポリウレタン樹脂の凝固再生を安定化させる疎水性活性剤等を用いることができる。得られた溶液を濾過することで凝集塊等を除去した後、真空下で脱泡してポリウレタン樹脂溶液を得る。 In the preparatory step, the polyurethane resin, N, N-dimethylformamide (hereinafter abbreviated as DMF), which is a water-miscible organic solvent capable of dissolving the polyurethane resin, and an additive are mixed to dissolve the polyurethane resin. For example, the polyurethane resin is dissolved in DMF so as to have a concentration of 30% by mass. As the additive, a hydrophilic activator that promotes foaming, a hydrophobic activator that stabilizes the solidification and regeneration of the polyurethane resin, and the like can be used in order to control the size and amount (number) of the foaming 3. After removing agglomerates and the like by filtering the obtained solution, defoaming is performed under vacuum to obtain a polyurethane resin solution.

塗布工程、凝固再生工程及び洗浄・乾燥工程では、準備工程で得られたポリウレタン樹脂溶液を成膜基材に連続的に塗布し、水系凝固液に浸漬することでポリウレタン樹脂を凝固再生させ、洗浄後乾燥させてポリウレタンシート2を得る。塗布工程、凝固再生工程及び洗浄・乾燥工程は、例えば、図2に示す成膜装置で連続して実行される。 In the coating step, coagulation / regeneration step, and cleaning / drying step, the polyurethane resin solution obtained in the preparation step is continuously applied to the film-forming substrate and immersed in an aqueous coagulation liquid to coagulate and regenerate the polyurethane resin for cleaning. After that, it is dried to obtain a polyurethane sheet 2. The coating step, the solidification regeneration step, and the cleaning / drying step are continuously executed by, for example, the film forming apparatus shown in FIG.

図2に示すように、成膜装置60は、成膜基材の不織布や織布を前処理する、水又はDMF水溶液(DMFと水との混合液)等の前処理液15が満たされた前処理槽10、ポリウレタン樹脂を凝固再生させるための、ポリウレタン樹脂に対して貧溶媒である水を主成分とする凝固液25が満たされた凝固槽20、凝固再生後のポリウレタン樹脂を洗浄する水等の洗浄液35が満たされた洗浄槽30及びポリウレタン樹脂を乾燥させるためのシリンダ乾燥機50を連続して備えている。 As shown in FIG. 2, the film forming apparatus 60 is filled with a pretreatment liquid 15 such as water or a DMF aqueous solution (mixed solution of DMF and water) for pretreating the non-woven fabric or woven fabric of the film forming base material. Pretreatment tank 10, coagulation tank 20 filled with coagulation liquid 25 containing water, which is a poor solvent for polyurethane resin, for coagulation and regeneration of polyurethane resin, water for cleaning polyurethane resin after coagulation and regeneration A cleaning tank 30 filled with a cleaning liquid 35 such as the above and a cylinder dryer 50 for drying the polyurethane resin are continuously provided.

前処理槽10の上流側には、成膜基材43を供給する基材供給ローラ41が配置されている。前処理槽10は、成膜基材43の搬送方向と同じ長手方向の略中央部の内側下部に一対のガイドローラ13を有している。前処理槽10の上方で、基材供給ローラ41側にはガイドローラ11、12が配設されており、凝固槽20側には前処理した成膜基材43に含まれる過剰な前処理液15を除去するマングルローラ18が配置されている。マングルローラ18の下流側には、成膜基材43にポリウレタン樹脂溶液45を略均一に塗布するナイフコータ46が配置されている。ナイフコータ46の下流側で凝固槽20の上方にはガイドローラ21が配置されている。 A base material supply roller 41 for supplying the film-forming base material 43 is arranged on the upstream side of the pretreatment tank 10. The pretreatment tank 10 has a pair of guide rollers 13 at the lower inside of a substantially central portion in the same longitudinal direction as the transport direction of the film-forming base material 43. Guide rollers 11 and 12 are arranged on the base material supply roller 41 side above the pretreatment tank 10, and an excess pretreatment liquid contained in the pretreated film-forming base material 43 is arranged on the solidification tank 20 side. A mangle roller 18 for removing 15 is arranged. On the downstream side of the mangle roller 18, a knife coater 46 for substantially uniformly applying the polyurethane resin solution 45 to the film-forming base material 43 is arranged. A guide roller 21 is arranged above the coagulation tank 20 on the downstream side of the knife coater 46.

凝固槽20には、洗浄槽30側の内側下部にガイドローラ23が配置されている。凝固槽20の上方で洗浄槽30側には凝固再生後のポリウレタン樹脂を脱水処理するマングルローラ28が配置されている。マングルローラ28の下流側で洗浄槽30の上方にはガイドローラ31が配置されている。洗浄槽30には、成膜基材43の搬送方向と同じ長手方向で上部に4本、下部に5本のガイドローラ33が上下交互となるように配設されている。洗浄槽30の上方でシリンダ乾燥機50側には、洗浄後のポリウレタン樹脂を脱水処理するマングルローラ38が配置されている。シリンダ乾燥機50には、内部に熱源を有する4本のシリンダが上下4段に配設されている。シリンダ乾燥機50の下流側には、乾燥後のポリウレタン樹脂を(成膜基材43と共に)巻き取る巻取ローラ42が配置されている。なお、マングルローラ18、28、38、シリンダ乾燥機50及び巻取ローラ42は、図示を省略した回転駆動モータに接続されており、これらの回転駆動力により成膜基材43が基材供給ローラ41から巻取ローラ42まで搬送される。成膜基材43の搬送速度は、例えば、2.5m/minに設定されており、1.0〜5.0m/minの範囲で設定されることが好ましい。 In the coagulation tank 20, a guide roller 23 is arranged at the lower inside on the cleaning tank 30 side. A mangle roller 28 for dehydrating the polyurethane resin after solidification and regeneration is arranged above the solidification tank 20 and on the cleaning tank 30 side. A guide roller 31 is arranged above the washing tank 30 on the downstream side of the mangle roller 28. In the cleaning tank 30, four guide rollers 33 at the top and five guide rollers 33 at the bottom are arranged alternately in the vertical direction, which is the same as the transport direction of the film-forming base material 43. A mangle roller 38 for dehydrating the polyurethane resin after cleaning is arranged above the cleaning tank 30 and on the cylinder dryer 50 side. In the cylinder dryer 50, four cylinders having a heat source inside are arranged in four upper and lower stages. On the downstream side of the cylinder dryer 50, a take-up roller 42 for winding the dried polyurethane resin (along with the film-forming base material 43) is arranged. The mangle rollers 18, 28, 38, the cylinder dryer 50, and the take-up roller 42 are connected to a rotary drive motor (not shown), and the film-forming base material 43 is a base material supply roller by these rotational drive forces. It is conveyed from 41 to the take-up roller 42. The transport speed of the film-forming substrate 43 is set to, for example, 2.5 m / min, and is preferably set in the range of 1.0 to 5.0 m / min.

成膜基材43に不織布又は織布を用いる場合は、成膜基材43が基材供給ローラ41から引き出され、ガイドローラ11、12を介して前処理液15中に連続的に導入される。前処理液15中で一対のガイドローラ13間に成膜基材43を通過させて前処理(目止め)を行うことにより、ポリウレタン樹脂溶液45を塗布するときに、成膜基材43内部へのポリウレタン樹脂溶液45の浸透が抑制される。成膜基材43は、前処理液15から引き上げられた後、マングルローラ18で加圧されて余分な前処理液15が絞り落とされる。前処理後の成膜基材43は、凝固槽20方向に搬送される。なお、成膜基材43としてPET製等の可撓性フィルムを用いる場合は、前処理が不要のため、ガイドローラ12から直接マングルローラ18に送り込むようにするか、又は、前処理槽10に前処理液15を入れないようにしてもよい。以下、本例では、成膜基材43をPET製フィルムとして説明する。 When a non-woven fabric or a woven fabric is used as the film-forming base material 43, the film-forming base material 43 is pulled out from the base material supply roller 41 and continuously introduced into the pretreatment liquid 15 via the guide rollers 11 and 12. .. By passing the film-forming base material 43 between the pair of guide rollers 13 in the pretreatment liquid 15 to perform pretreatment (sealing), when the polyurethane resin solution 45 is applied, the film-forming base material 43 is inside. The penetration of the polyurethane resin solution 45 of the above is suppressed. After the film-forming base material 43 is pulled up from the pretreatment liquid 15, the film-forming base material 43 is pressed by the mangle roller 18 to draw down the excess pretreatment liquid 15. The film-forming base material 43 after the pretreatment is conveyed in the direction of the solidification tank 20. When a flexible film made of PET or the like is used as the film-forming base material 43, pretreatment is not required, so that the film is fed directly from the guide roller 12 to the mangle roller 18 or into the pretreatment tank 10. The pretreatment liquid 15 may not be added. Hereinafter, in this example, the film-forming base material 43 will be described as a PET film.

塗布工程では、準備工程で調製したポリウレタン樹脂溶液45が常温下でナイフコータ46により成膜基材43に略均一に塗布される。このとき、ナイフコータ46と成膜基材43の上面との間隙(クリアランス)を調整することで、ポリウレタン樹脂溶液45の塗布厚さ(塗布量)を調整する。 In the coating step, the polyurethane resin solution 45 prepared in the preparatory step is substantially uniformly coated on the film-forming substrate 43 by the knife coater 46 at room temperature. At this time, the coating thickness (coating amount) of the polyurethane resin solution 45 is adjusted by adjusting the gap (clearance) between the knife coater 46 and the upper surface of the film-forming base material 43.

凝固再生工程では、ナイフコータ46でポリウレタン樹脂溶液45が塗布された成膜基材43が、ガイドローラ21からガイドローラ23へ向けて凝固液25中に導入される。凝固液25中では、まず、塗布されたポリウレタン樹脂溶液45の表面に厚さ数μmのスキン層4が形成される。その後、ポリウレタン樹脂溶液45中のDMFと凝固液25との置換の進行によりポリウレタン樹脂が成膜基材43の片面に凝固再生する。このポリウレタン樹脂の凝固再生は、ポリウレタン樹脂溶液45が塗布された成膜基材43が凝固液25中に進入してからガイドローラ23に到る間に完了する。DMFがポリウレタン樹脂溶液45から脱溶媒するときに、ポリウレタン樹脂中に発泡3が形成される。このとき、PET製フィルムの成膜基材43が水を浸透させないため、ポリウレタン樹脂溶液45の表面側で脱溶媒が生じて成膜基材43側が表面側より大きな発泡3が形成される。凝固再生したポリウレタン樹脂は、凝固液25から引き上げられ、マングルローラ28で余分な凝固液25が絞り落とされた後、ガイドローラ31を介して洗浄槽30に搬送され洗浄液35中に導入される。 In the solidification / regeneration step, the film-forming base material 43 coated with the polyurethane resin solution 45 by the knife coater 46 is introduced into the coagulation liquid 25 from the guide roller 21 toward the guide roller 23. In the coagulation liquid 25, first, a skin layer 4 having a thickness of several μm is formed on the surface of the applied polyurethane resin solution 45. After that, as the replacement of DMF in the polyurethane resin solution 45 with the coagulating liquid 25 progresses, the polyurethane resin is solidified and regenerated on one side of the film-forming base material 43. The solidification / regeneration of the polyurethane resin is completed between the time when the film-forming base material 43 coated with the polyurethane resin solution 45 enters the coagulation liquid 25 and the time it reaches the guide roller 23. When the DMF is desolvated from the polyurethane resin solution 45, foam 3 is formed in the polyurethane resin. At this time, since the film-forming base material 43 of the PET film does not allow water to permeate, desolvation occurs on the surface side of the polyurethane resin solution 45, and foam 3 having a film-forming base material 43 side larger than the surface side is formed. The coagulated and regenerated polyurethane resin is pulled up from the coagulating liquid 25, the excess coagulating liquid 25 is squeezed out by the mangle roller 28, and then transported to the cleaning tank 30 via the guide roller 31 and introduced into the cleaning liquid 35.

洗浄・乾燥工程では、洗浄液35中に導入されたポリウレタン樹脂をガイドローラ33に上下交互に通過させることによりポリウレタン樹脂が洗浄される。洗浄後、ポリウレタン樹脂は洗浄液35から引き上げられ、マングルローラ38で余分な洗浄液35が絞り落とされる。その後、ポリウレタン樹脂を、シリンダ乾燥機50の4本のシリンダ間を交互(図2の矢印方向)に、シリンダの周面に沿って通過させることで乾燥させる。乾燥後のポリウレタン樹脂(ポリウレタンシート2)は、成膜基材43と共に巻取ローラ42に巻き取られる。 In the washing / drying step, the polyurethane resin is washed by passing the polyurethane resin introduced into the cleaning liquid 35 through the guide rollers 33 alternately up and down. After cleaning, the polyurethane resin is pulled up from the cleaning liquid 35, and the excess cleaning liquid 35 is squeezed out by the mangle roller 38. Then, the polyurethane resin is dried by passing it alternately between the four cylinders of the cylinder dryer 50 (in the direction of the arrow in FIG. 2) along the peripheral surface of the cylinders. The dried polyurethane resin (polyurethane sheet 2) is wound around the winding roller 42 together with the film-forming base material 43.

バフ処理工程では、厚みが一様となるよう成膜樹脂のスキン層側にバフ処理が施される。巻取ローラ42に巻き取られたポリウレタンシート2は成膜基材43のPET製フィルム上に形成されている。成膜時にはポリウレタンシート2の厚さにバラツキが生じるため、研磨面Pには凹凸が形成されている。成膜基材43を剥離した後、成膜樹脂のスキン層と反対側の面に、表面が略平坦な圧接用治具の表面を圧接することで、スキン層側に凹凸が出現する。スキン層側に出現した凹凸をバフ処理で除去される。本例では、連続的に製造されたポリウレタンシート2が帯状のため、研磨面Pに圧接用治具を圧接しながら、スキン層側を連続的にバフ処理する。これにより、スキン層が除去されて平坦な研磨面が形成されたポリウレタンシート2は、厚さのバラツキが解消され、開口が形成される。 In the buffing step, the skin layer side of the film-forming resin is buffed so that the thickness becomes uniform. The polyurethane sheet 2 wound around the winding roller 42 is formed on a PET film of the film-forming base material 43. Since the thickness of the polyurethane sheet 2 varies during film formation, irregularities are formed on the polished surface P. After the film-forming base material 43 is peeled off, the surface of the pressure-welding jig having a substantially flat surface is pressed against the surface of the film-forming resin on the side opposite to the skin layer, so that irregularities appear on the skin layer side. The unevenness that appears on the skin layer side is removed by buffing. In this example, since the continuously produced polyurethane sheet 2 is strip-shaped, the skin layer side is continuously buffed while the pressure welding jig is pressed against the polished surface P. As a result, the thickness of the polyurethane sheet 2 from which the skin layer has been removed and the flat polished surface has been formed is eliminated, and openings are formed.

貼り合わせ工程では、アクリル系接着剤を用いて基材8(厚み188μmのポリエチレンテレフタレート樹脂シート)と、バフ処理済みのポリウレタンシート2のバフ処理した面とは反対側の面とを貼り合わせる。 In the bonding step, the base material 8 (polyethylene terephthalate resin sheet having a thickness of 188 μm) and the surface of the buffed polyurethane sheet 2 opposite to the buffed surface are bonded using an acrylic adhesive.

ラミネート加工工程では、基材8のポリウレタン樹脂シートと貼り合わされている面とは反対側の面に両面テープを貼り合わせる。研磨面Pにエンボス加工を施した後、裁断・検査工程で円形等の所望の形状に裁断する。エンボス加工のパターンには特に制限はなく、研磨加工時のスラリーの移動が円滑になればよい。そして、汚れや異物等の付着がないことを確認する等の検査を行い、研磨パッド1を完成させる。 In the laminating process, the double-sided tape is attached to the surface of the base material 8 opposite to the surface to which the polyurethane resin sheet is attached. After embossing the polished surface P, it is cut into a desired shape such as a circle in a cutting / inspection process. The embossing pattern is not particularly limited, and it is sufficient that the slurry moves smoothly during the polishing process. Then, an inspection such as confirming that there is no dirt or foreign matter adhered is performed to complete the polishing pad 1.

(光学材料又は半導体材料の表面を研磨する方法)
本発明の光学材料又は半導体材料の表面を研磨する方法は、上述の研磨パッドを使用する工程を含む。
(Method of polishing the surface of optical material or semiconductor material)
The method of polishing the surface of an optical material or a semiconductor material of the present invention includes the step of using the above-mentioned polishing pad.

以下、図面を参照して、本発明の研磨パッドによる研磨方法について説明する。
被研磨物の研磨加工を行うときは、例えば、図4に示すように、片面研磨機70を使用する。片面研磨機70は、上側に被研磨物を押圧する加圧定盤72、下側に回転可能な回転定盤71を有している。加圧定盤72の下面及び回転定盤71の上面は、いずれも平坦に形成されている。加圧定盤72の下面にはバックパッド75が貼付されており、回転定盤71の上面には被研磨物を研磨する研磨パッド1が貼付されている。バックパッド75に適量の水を含ませて被研磨物78を押し付けることで、被研磨物78が水の表面張力及びポリウレタン樹脂の粘着性でバックパッド75に保持される。加圧定盤72で被研磨物78を加圧しながら回転定盤71を回転させることで、被研磨物78の下面(加工表面)が研磨パッド1で研磨加工される。
Hereinafter, the polishing method using the polishing pad of the present invention will be described with reference to the drawings.
When polishing the object to be polished, for example, as shown in FIG. 4, a single-sided polishing machine 70 is used. The single-sided polishing machine 70 has a pressure surface plate 72 for pressing an object to be polished on the upper side and a rotatable rotary surface plate 71 on the lower side. Both the lower surface of the pressure surface plate 72 and the upper surface of the rotary surface plate 71 are formed flat. A back pad 75 is attached to the lower surface of the pressure surface plate 72, and a polishing pad 1 for polishing an object to be polished is attached to the upper surface of the rotary surface plate 71. By impregnating the back pad 75 with an appropriate amount of water and pressing the object to be polished 78, the object to be polished 78 is held by the back pad 75 by the surface tension of water and the adhesiveness of the polyurethane resin. By rotating the rotary surface plate 71 while pressurizing the object to be polished 78 with the pressure surface plate 72, the lower surface (processed surface) of the object to be polished 78 is polished by the polishing pad 1.

(研磨パッドの評価方法)
本発明の研磨パッドの評価方法は、ポリウレタン樹脂を含む研磨層を有する研磨パッドの評価方法であって、前記研磨層について、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合において、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%であるか否かを確認する工程を含む。
(Evaluation method of polishing pad)
The method for evaluating a polishing pad of the present invention is a method for evaluating a polishing pad having a polishing layer containing a polyurethane resin, and spins a free induction decay signal (FID) obtained by pulse NMR on the polishing layer by a minimum square method. By subtracting the components with the longest spin-spin relaxation time T2 in order and separating the waveforms, the three components of the amorphous phase, the interface phase, and the crystalline phase are divided in order from the longest spin-spin relaxation time T2, and at 20 ° C. It includes a step of confirming whether or not the content ratio of the component of the crystal phase (Ac 20 ) is 10 to 20% and the content ratio of the component of the interface phase (Ai 20 ) at 20 ° C. is 40 to 50%.

本発明の研磨パッドの評価方法は、20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50であるか否かを確認する工程を更に含むことができる。 In the method for evaluating a polishing pad of the present invention, the absolute value of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ) (| Ai 20 −) A step of confirming whether or not Ai 40 |) is 35 to 50 can be further included.

本発明の研磨パッドの評価方法において、Ac20、Ai20、|Ai20−Ai40|、Ai40の数値範囲は、上記研磨パッドにおいて記載したものを用いることができる。 In the method for evaluating a polishing pad of the present invention, the numerical ranges of Ac 20 , Ai 20 , | Ai 20- Ai 40 |, and Ai 40 can be those described in the above polishing pad.

本発明を以下の例により実験的に説明するが、以下の説明は、本発明の範囲が以下の例に限定して解釈されることを意図するものではない。 The present invention will be described experimentally with the following examples, but the following description is not intended to be construed as limiting the scope of the invention to the following examples.

(実施例1)
100%樹脂モジュラスが4.0MPa、重量平均分子量132800のポリエステル系ポリウレタン樹脂の濃度が30質量%であるポリウレタンDMF溶液100質量部に、DMF50質量部、添加剤としてポリエーテル変性シリコーン5質量部、アセチルブチルセルロース1質量部、ノニオン系界面活性剤1質量部、及びセルロースエステル1質量部を添加して混合することにより、樹脂含有溶液を得た。ポリエステル系ポリウレタン樹脂としては、アジピン酸と1,4−ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールと、1,4−ブタンジオール/エチレングリコール=9/1モル比の鎖延長剤と、4,4’−ジフェニルメタンジイソシアネート(MDI)とを縮合して得られたものを用いた。
なお、本実施例において、100%樹脂モジュラスは、無発泡の樹脂シートを100%伸ばしたとき(元の長さの2倍に伸ばしたとき)に掛かる荷重を断面積で割った値を意味する。100%樹脂モジュラスは、樹脂溶液を薄く引き延ばし熱風乾燥し、200μm程度の厚みの乾式フィルムを作製後、しばらく養生したのち、全長90mm、両端部幅20mm、つかみ具間距離50mm、平行部幅10mm、厚さ200μmのダンベル状に試料を打ち抜き、測定試料を万能材料試験機テンシロン(株式会社エイ・アンド・デイ製テンシロン万能試験機「RTC−1210」)の上下エアチャックにはさみ、20℃(±2℃)、湿度65%(±5%)の雰囲気下で、引っ張り速度100mm/分で引っ張り、100%伸長時(2倍延伸時)の張力を試料の初期断面積で割ることにより求めた。
また、本実施例において、重量平均分子量は後述する測定条件でGPCにより測定されたものを意味する。
(Example 1)
100 parts by mass of polyurethane DMF solution having a 100% resin modulus of 4.0 MPa and a concentration of polyester polyurethane resin having a weight average molecular weight of 132800 of 30% by mass, 50 parts by mass of DMF, 5 parts by mass of polyether-modified silicone as an additive, and acetyl. A resin-containing solution was obtained by adding 1 part by mass of butyl cellulose, 1 part by mass of a nonionic surfactant, and 1 part by mass of a cellulose ester and mixing them. The polyester-based polyurethane resin is a chain of 1,4-butanediol / ethylene glycol = 9/1 molar ratio of polyester diol obtained by reacting adipic acid with a polyol having 1,4-butanediol as a constituent unit. The extender obtained by condensing 4,4'-diphenylmethane diisocyanate (MDI) was used.
In this embodiment, the 100% resin modulus means a value obtained by dividing the load applied when the non-foamed resin sheet is stretched 100% (when stretched to twice the original length) by the cross section. .. For 100% resin modulus, a resin solution is thinly stretched and dried with hot air to prepare a dry film having a thickness of about 200 μm, and after curing for a while, the total length is 90 mm, the width at both ends is 20 mm, the distance between grippers is 50 mm, and the width of parallel parts is 10 mm. The sample is punched into a dumbbell shape with a thickness of 200 μm, and the measurement sample is sandwiched between the upper and lower air chucks of the universal material tester Tencilon (Tencilon universal tester "RTC-1210" manufactured by A & D Co., Ltd.) and 20 ° C. (± 2). It was determined by pulling at a tensile speed of 100 mm / min in an atmosphere of 65% (± 5%) humidity (° C.) and dividing the tension at 100% elongation (double stretching) by the initial cross-sectional area of the sample.
Further, in this embodiment, the weight average molecular weight means that measured by GPC under the measurement conditions described later.

次に、成膜用基材として、PETフィルムを用意し、そこに、上記樹脂含有溶液を、ナイフコータを用いて1.0mmの厚みで塗布し、凝固浴(凝固液:水)に浸漬し、上記樹脂含有溶液を凝固させた後、洗浄・乾燥させた後にPETフィルムから剥離して樹脂フィルム(厚み1.0mm)を得た。得られた樹脂フィルムの表面に形成されたスキン層側に研削処理を施した(研削量:200μm)。その後、樹脂フィルムの一部を格子状の金型でエンボス加工を行い研磨パッドを得た。 Next, a PET film is prepared as a base material for film formation, and the above resin-containing solution is applied thereto with a knife coater to a thickness of 1.0 mm and immersed in a coagulation bath (coagulation liquid: water). The resin-containing solution was coagulated, washed and dried, and then peeled off from the PET film to obtain a resin film (thickness 1.0 mm). The skin layer side formed on the surface of the obtained resin film was ground (grinding amount: 200 μm). Then, a part of the resin film was embossed with a grid-like mold to obtain a polishing pad.

(比較例1)
実施例1のポリウレタンDMF溶液に代えて、100%樹脂モジュラスが7.0MPa、重量平均分子量104300のポリエステル系ポリウレタン樹脂の濃度を30質量%とするポリウレタンDMF溶液を準備した。このポリウレタンDMF溶液100質量部に、DMF32部、水5部を混合することにより、樹脂含有溶液を得た。ポリエステル系ポリウレタン樹脂としては、アジピン酸と1,4−ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールと、1,4−ブタンジオール/1,6−ヘキサンジオール=9/1モル比の鎖延長剤と、4,4’−ジフェニルメタンジイソシアネート(MDI)とを縮合して得られたものを用いた。
以降、実施例1と同様にして樹脂フィルムを作成し、研磨パッドを得た。
(Comparative Example 1)
Instead of the polyurethane DMF solution of Example 1, a polyurethane DMF solution having a 100% resin modulus of 7.0 MPa and a polyester-based polyurethane resin having a weight average molecular weight of 104300 of 30% by mass was prepared. A resin-containing solution was obtained by mixing 32 parts of DMF and 5 parts of water with 100 parts by mass of this polyurethane DMF solution. As the polyester-based polyurethane resin, a polyester diol obtained by reacting adipic acid with a polyol having 1,4-butanediol as a constituent unit and 1,4-butanediol / 1,6-hexanediol = 9/1. The one obtained by condensing a chain extender having a molar ratio and 4,4'-diphenylmethane diisocyanate (MDI) was used.
After that, a resin film was prepared in the same manner as in Example 1 to obtain a polishing pad.

(比較例2)
実施例1のポリウレタンDMF溶液に代えて、100%樹脂モジュラスが8.5MPa、重量平均分子量137700のポリエステル系ポリウレタン樹脂の濃度を30質量%とするポリウレタンDMF溶液を準備した。このポリウレタンDMF溶液100質量部に、DMF56部、ポリエーテル変性シリコーン2部、セルロースエステル3部を混合することにより、樹脂含有溶液を得た。ポリエステル系ポリウレタン樹脂としては、アジピン酸と1,4−ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールと、1,4−ブタンジオール/1,6−ヘキサンジオール=9/1モル比の鎖延長剤と、4,4’−ジフェニルメタンジイソシアネート(MDI)とを縮合して得られたものを用いた。
以降、実施例1と同様にして樹脂フィルムを作成し、研磨パッドを得た。
(Comparative Example 2)
Instead of the polyurethane DMF solution of Example 1, a polyurethane DMF solution having a 100% resin modulus of 8.5 MPa and a weight average molecular weight of 137700 polyester-based polyurethane resin having a concentration of 30% by mass was prepared. A resin-containing solution was obtained by mixing 56 parts of DMF, 2 parts of polyether-modified silicone, and 3 parts of cellulose ester with 100 parts by mass of this polyurethane DMF solution. As the polyester-based polyurethane resin, a polyester diol obtained by reacting adipic acid with a polyol having 1,4-butanediol as a constituent unit and 1,4-butanediol / 1,6-hexanediol = 9/1. The one obtained by condensing a chain extender having a molar ratio and 4,4'-diphenylmethane diisocyanate (MDI) was used.
After that, a resin film was prepared in the same manner as in Example 1 to obtain a polishing pad.

(比較例3)
実施例1のポリウレタンDMF溶液に代えて100%樹脂モジュラスが7.5MPa、重量平均分子量120000のポリエステル系ポリウレタン樹脂の濃度を30質量%とするポリウレタンDMF溶液を準備した。このポリウレタンDMF溶液100質量部に、DMF31.8部、ポリエーテル変性シリコーン1部、セルロースエステル1部を混合することにより、樹脂含有溶液を得た。ポリエステル系ポリウレタン樹脂としては、アジピン酸と1,4−ブタンジオールを構成単位とするポリオールとを反応させて得られるポリエステルジオールと、1,4−ブタンジオール/3−メチル−1,5−ペンタンジオール=9/1モル比の鎖延長剤と、4,4’−ジフェニルメタンジイソシアネート(MDI)とを縮合して得られたものを用いた。
以降、実施例1と同様にして樹脂フィルムを作成し、研磨パッドを得た。
(Comparative Example 3)
Instead of the polyurethane DMF solution of Example 1, a polyurethane DMF solution having a 100% resin modulus of 7.5 MPa and a polyester-based polyurethane resin having a weight average molecular weight of 120,000 and a concentration of 30% by mass was prepared. A resin-containing solution was obtained by mixing 31.8 parts of DMF, 1 part of polyether-modified silicone, and 1 part of cellulose ester with 100 parts by mass of this polyurethane DMF solution. As the polyester-based polyurethane resin, polyester diol obtained by reacting adipic acid with a polyol having 1,4-butanediol as a constituent unit and 1,4-butanediol / 3-methyl-1,5-pentanediol The one obtained by condensing a chain extender having a ratio of 9/1 mol and 4,4'-diphenylmethane diisocyanate (MDI) was used.
After that, a resin film was prepared in the same manner as in Example 1 to obtain a polishing pad.

(評価方法)
実施例1及び比較例1〜3それぞれの研磨パッドについて、以下のGPC測定、パルスNMR、A硬度、及びD硬度の測定を行った。また、実施例1及び比較例1〜3それぞれの研磨パッドについて、研磨試験を行い、研磨レート変動性、研磨安定性、及び研磨傷による評価を行った。
(Evaluation method)
The following GPC measurement, pulse NMR, A hardness, and D hardness were measured for each of the polishing pads of Example 1 and Comparative Examples 1 to 3. Further, each polishing pad of Example 1 and Comparative Examples 1 to 3 was subjected to a polishing test, and evaluation was performed based on polishing rate variability, polishing stability, and polishing scratches.

(GPC測定)
実施例1及び比較例1〜3それぞれで得られた研磨パッドから、研磨層のポリウレタン樹脂を0.05g切り取り、DMF4.95gに溶解し1%ポリウレタンDMF溶液を調整し、静置後、試験管ミキサーにより50℃で14時間振とうした。振とう後、上澄み0.5gを測り取りDMF2gと混合し、0.2%ポリウレタンDMF溶液とした後、0.45μmフィルターにて濾過し、測定試料とした。得られた測定試料を以下の条件でゲルパーミエーションクロマトグラフィー(GPC)測定し、重量平均分子量を求めた。標準試料にポリエチレングリコールオキシド(アジレント・テクノロジー株式会社製 EasiVial PEG/PEO)を用いて検量線を作成した。
(測定条件)
カラム:Ohpak KB-805HQ(排除限界2000000)
移動相:5mM LiBr/DMF
流速:0.75ml/min(21kg/cm2)
オーブン:60℃
検出器:RI
試料量:30μl
(GPC measurement)
From the polishing pads obtained in Example 1 and Comparative Examples 1 to 3, 0.05 g of the polyurethane resin of the polishing layer was cut out, dissolved in 4.95 g of DMF to prepare a 1% polyurethane DMF solution, and after standing in a test tube. It was shaken with a mixer at 50 ° C. for 14 hours. After shaking, 0.5 g of the supernatant was measured and mixed with 2 g of DMF to prepare a 0.2% polyurethane DMF solution, which was then filtered through a 0.45 μm filter to prepare a measurement sample. The obtained measurement sample was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight was determined. A calibration curve was prepared using polyethylene glycol oxide (EasiVial PEG / PEO manufactured by Agilent Technologies, Inc.) as a standard sample.
(Measurement condition)
Column: Ohpak KB-805HQ (exclusion limit 2000000)
Mobile phase: 5 mM LiBr / DMF
Flow velocity: 0.75 ml / min (21 kg / cm 2 )
Oven: 60 ° C
Detector: RI
Sample volume: 30 μl

(パルスNMR)
実施例1及び比較例1〜3それぞれの研磨パッドは、以下の条件でパルスNMRにより構造解析を行った。
(Pulse NMR)
The polishing pads of Example 1 and Comparative Examples 1 to 3 were structurally analyzed by pulse NMR under the following conditions.

上記の装置、条件にて、得られたエンボス加工済みの研磨パッドのランド部をカッターで切り出し、1〜3mm角程度のサンプル片を10mmφの試料管に1〜2cmの高さまで充填し、パルスNMRの測定を行うことにより、減衰曲線を得た。得られた減衰曲線とフィッティング曲線が一致するよう、ローレンツ関数(直線部分)、ガウス関数(曲線部分)を用いて最小二乗法により解析し、研磨層中の結晶相、界面相及び非結晶相の割合(存在比(%))、並びに、緩和時間(T2)を得た。なお、フィッティング及び解析は、上記測定装置に付属のソフトウェアを用いた。 Under the above equipment and conditions, the land portion of the obtained embossed polishing pad is cut out with a cutter, and a sample piece of about 1 to 3 mm square is filled in a 10 mmφ sample tube to a height of 1 to 2 cm, and pulse NMR is performed. The attenuation curve was obtained by performing the measurement of. Analysis was performed by the least squares method using the Lorenz function (straight line part) and Gaussian function (curve part) so that the obtained decay curve and fitting curve match, and the crystalline phase, interfacial phase, and non-crystalline phase in the polishing layer were analyzed. The ratio (absence ratio (%)) and relaxation time (T2) were obtained. For fitting and analysis, software attached to the above measuring device was used.

(A硬度)
研磨層のA硬度は、JIS K7311準拠して、研磨パッドから発泡ウレタンシート試料片(10cm×10cm)を切り出し、複数枚の該試料片を厚さが4.5mm以上となるように重ね、A硬度計を用いて測定した。
(A hardness)
The A hardness of the polishing layer is based on JIS K7311. A urethane foam sheet sample piece (10 cm x 10 cm) is cut out from the polishing pad, and a plurality of the sample pieces are stacked so as to have a thickness of 4.5 mm or more. It was measured using a hardness tester.

(圧縮率)
研磨層の圧縮率は、JIS L 1021に準拠して、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めた。具体的には、室温(約20℃)において、無荷重の状態から初荷重を30秒間かけて加圧した後の厚さt0を測定し、次に厚さt0の状態から最終圧力をかけて、そのままの荷重のもとで1分間放置後の厚さt1を測定した。これらから下記式により、圧縮率を算出した。なお、初荷重は300g/cm2、最終圧力は1800g/cm2とした。
(Compression rate)
The compressibility of the polishing layer was determined using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with JIS L 1021. Specifically, at room temperature (about 20 ° C.), the thickness t 0 after the initial load is applied for 30 seconds from the unloaded state is measured, and then the final pressure is measured from the state of the thickness t 0. The thickness t 1 was measured after being left for 1 minute under the same load. From these, the compression ratio was calculated by the following formula. The initial load was 300 g / cm 2 and the final pressure was 1800 g / cm 2 .

(研磨レート変動性、研磨安定性)
実施例1及び比較例1〜3それぞれの研磨パッドを用い、TEOS(Tetro Ethyl Ortho Silicate)膜付きシリコンウェハ及びCu膜付きシリコンウェハそれぞれ50枚に対して、以下の条件にて研磨加工を繰り返し行った。
<研磨条件>
使用研磨機:(株)荏原製作所製、商品名「F−REX300」
研磨速度(定盤回転数):70rpm
ドレッサ:3M社製ダイヤモンドドレッサー、型番「A188」
パッドブレーク:30N 30min
コンディショニング:Ex−situ、30N,4スキャン
加工圧力:176g/cm
スラリー:コロイダルシリカスラリー(pH:11.5)
スラリー流量:200mL/min
研磨時間:60秒
被研磨物:TEOS付きシリコンウェハ又はCu膜付きシリコンウェハ
(Polishing rate variability, polishing stability)
Using the polishing pads of Examples 1 and Comparative Examples 1 to 3, 50 silicon wafers with TEOS (Tetro Ethyl Orthosilicate) film and 50 silicon wafers with Cu film were repeatedly polished under the following conditions. It was.
<Polishing conditions>
Polishing machine used: Ebara Corporation, product name "F-REX300"
Polishing speed (surface plate rotation speed): 70 rpm
Dresser: 3M diamond dresser, model number "A188"
Pad break: 30N 30min
Conditioning: Ex-situ, 30N, 4 scans Processing pressure: 176 g / cm 2
Slurry: Colloidal silica slurry (pH: 11.5)
Slurry flow rate: 200 mL / min
Polishing time: 60 seconds Object to be polished: Silicon wafer with TEOS or silicon wafer with Cu film

そして、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハそれぞれについて、研磨処理枚数1〜50枚における各研磨レートを以下のようにして求めた。
まず、研磨試験前後のウエハ上のTEOS膜、或いはCu膜について、ウエハ上の全体にわたってランダムに121箇所を選定し、それらの箇所における研磨試験前後の厚さを測定した。測定した厚さに基づいて、研磨試験前の厚さの平均値及び研磨試験後の厚さの平均値を算出し、これらの平均値の差をとることにより研磨された厚みの平均値を算出した。そして、得られた研磨された厚みの平均値を研磨時間で除することにより研磨レート(Å/分)を求めた。なお、厚さ測定は、光学式膜厚膜質測定器(KLAテンコール社製、型番「ASET−F5x」)のDBSモードにて測定した。50個の研磨レートにおける最大値、最小値、平均値、及び研磨レートの標準偏差を求め、下記式により研磨レート変動性及び研磨安定性を算出した。
当該研磨レート変動性及び研磨安定性の評価においては、研磨レートが変動しやすい研磨初期に相当する1〜4枚分の研磨処理を含めて評価を行っているので、5〜50枚分の研磨処理を対象とした評価に比べて、より厳密に研磨レート変動性及び研磨安定性を評価していることになる。
Then, for each of the silicon wafer with TEOS film and the silicon wafer with Cu film, each polishing rate in the number of polishing treatments of 1 to 50 was determined as follows.
First, with respect to the TEOS film or Cu film on the wafer before and after the polishing test, 121 places were randomly selected over the entire wafer, and the thickness before and after the polishing test was measured at those places. Based on the measured thickness, the average value of the thickness before the polishing test and the average value of the thickness after the polishing test are calculated, and the average value of the polished thickness is calculated by taking the difference between these average values. did. Then, the polishing rate (Å / min) was obtained by dividing the average value of the obtained polished thickness by the polishing time. The thickness was measured in the DBS mode of an optical film thickness film quality measuring device (manufactured by KLA Tencor, model number "ASET-F5x"). The maximum value, minimum value, average value, and standard deviation of the polishing rate at 50 polishing rates were obtained, and the polishing rate variability and polishing stability were calculated by the following formulas.
In the evaluation of the polishing rate variability and the polishing stability, since the evaluation includes the polishing treatment for 1 to 4 sheets corresponding to the initial stage of polishing in which the polishing rate is likely to fluctuate, the polishing for 5 to 50 sheets is performed. This means that the polishing rate variability and polishing stability are evaluated more strictly than the evaluation for the treatment.

研磨レート変動性(%)の数値が低いほど研摩初期の研磨レート変動が小さいことを示す。研磨レート変動性(%)が、TEOS膜付きシリコンウェハに関しては25%以下、Cu膜付きシリコンウェハに関しては5%以下であると研磨レートの変動が十分小さいといえる。
また、研磨安定性(%)の数値が低いほど研磨レートの値のバラつきが小さくなることから研磨レートが安定することを示す。研磨安定性(%)がTEOS膜付きシリコンウェハに関しては10%以下、Cu膜付きシリコンウェハに関しては2.0%以下であると研磨レートが十分に安定しているといえる。
The lower the value of polishing rate variability (%), the smaller the polishing rate fluctuation at the initial stage of polishing. It can be said that the fluctuation of the polishing rate is sufficiently small when the polishing rate variability (%) is 25% or less for the silicon wafer with the TEOS film and 5% or less for the silicon wafer with the Cu film.
Further, the lower the value of polishing stability (%), the smaller the variation in the polishing rate value, which indicates that the polishing rate is stable. It can be said that the polishing rate is sufficiently stable when the polishing stability (%) is 10% or less for the silicon wafer with the TEOS film and 2.0% or less for the silicon wafer with the Cu film.

(研磨傷)
研磨傷については、上記(研磨レート変動性、研磨安定性)における研磨による得られた、研磨処理枚数が10枚目、25枚目、50枚目のTEOS膜付きシリコンウェハ、及びCu膜付きシリコンウェハを表面検査装置(KLAテンコール社製、Surfscan SP2XP)の高感度測定モードにて測定し、基板表面における研磨傷の数(個)を観察し、合計を求めた。
研磨傷の数がTEOS膜付きシリコンウェハに関しては5個以下、Cu膜付きシリコンウェハに関しては30個以下であると研磨傷が少なく良好であるといえる。
(Abrasive scratch)
Regarding polishing scratches, the 10th, 25th, and 50th TEOS film-coated silicon wafers and Cu film-coated silicon obtained by polishing in the above (polishing rate variability, polishing stability) The wafer was measured in a high-sensitivity measurement mode of a surface inspection device (Surfscan SP2XP manufactured by KLA Tencor), and the number (pieces) of polishing scratches on the surface of the substrate was observed to obtain the total.
When the number of polishing scratches is 5 or less for the silicon wafer with TEOS film and 30 or less for the silicon wafer with Cu film, it can be said that there are few polishing scratches and it is good.

結果を以下の表2、並びに図5〜6Bに示す。また、実施例1及び比較例1〜3で得られた研磨パッドの断面写真を図7A及び7Bに示す。 The results are shown in Table 2 below and FIGS. 5-6B. Further, cross-sectional photographs of the polishing pads obtained in Example 1 and Comparative Examples 1 to 3 are shown in FIGS. 7A and 7B.

表2の結果より、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である実施例1の研磨パッドは、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても研磨中の研磨レートの変動が少なく、研磨安定性に優れ、また、研磨傷の発生を抑制することができることがわかった。 From the results in Table 2, the content ratio of the component of the crystal phase (Ac 20 ) at 20 ° C. is 10 to 20%, and the content ratio of the component of the interface phase (Ai 20 ) at 20 ° C. is 40 to 50%. The polishing pad of Example 1 has little fluctuation in the polishing rate during polishing for both the silicon wafer with TEOS film and the silicon wafer with Cu film, has excellent polishing stability, and can suppress the occurrence of polishing scratches. I understood.

一方、Ac20が20%を超えておりAi20が40%未満である比較例1の研磨パッドは、実施例1の研磨パッドに比べ、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても、研磨中の研磨レートの変動が大きく、研磨安定性に劣っていた。これは、比較例1の研磨パッドにおいて、Ai20が小さかったことが原因と考えられる。
また、比較例1の研磨パッドは、実施例1の研磨パッドに比べ、Cu膜付きシリコンウェハについて研磨傷の発生が多かった。
On the other hand, the polishing pad of Comparative Example 1 in which Ac 20 is more than 20% and Ai 20 is less than 40% is for either a silicon wafer with a TEOS film or a silicon wafer with a Cu film, as compared with the polishing pad of Example 1. However, the polishing rate fluctuated greatly during polishing, and the polishing stability was inferior. It is considered that this is because the Ai 20 was small in the polishing pad of Comparative Example 1.
Further, the polishing pad of Comparative Example 1 had more polishing scratches on the silicon wafer with a Cu film than the polishing pad of Example 1.

Ac20が20%を大きく超えておりAi20が40%未満である比較例2の研磨パッドは、実施例1の研磨パッドに比べ、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても研磨中の研磨レートの変動が大きく、また、TEOS膜付きシリコンウェハについて研磨安定性に劣っていた。
また、比較例2の研磨パッドは、実施例1の研磨パッドに比べ、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても研磨傷の発生が極めて多かった。研磨傷の発生が多かった理由としては、比較例2の研磨パッドにおいて、Ac20がかなり大きかったことが考えられる。
The polishing pad of Comparative Example 2 in which Ac 20 greatly exceeds 20% and Ai 20 is less than 40% is different from the polishing pad of Example 1 in both the silicon wafer with TEOS film and the silicon wafer with Cu film. The polishing rate fluctuated greatly during polishing, and the polishing stability of the silicon wafer with a TEOS film was inferior.
Further, in the polishing pad of Comparative Example 2, polishing scratches were extremely generated in both the silicon wafer with the TEOS film and the silicon wafer with the Cu film as compared with the polishing pad of Example 1. It is considered that the reason why many polishing scratches were generated was that Ac 20 was considerably large in the polishing pad of Comparative Example 2.

Ai20が40〜50%であるものの、Ac20が20%を超えており、また、20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35未満である比較例3の研磨パッドは、実施例1の研磨パッドに比べ、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても、研磨中の研磨レートの変動が大きく、研磨安定性に劣っていた。これは、比較例3の研磨パッドにおいて、20℃における界面相の成分の含有割合が高いものの、40℃になってもその値が大きく下がらないため、研磨後期において、セルフドレッシング性(自己崩壊性)が高過ぎてパッド摩耗量が過多となり、研磨表面の開口拡大が進み、研磨面面積の変動が大きくなったことが原因と考えられる。
また、比較例3の研磨パッドは、実施例1の研磨パッドに比べ、TEOS膜付きシリコンウェハ及びCu膜付きシリコンウェハのいずれについても研磨傷の発生が極めて多かった。
Although Ai 20 is 40 to 50%, Ac 20 exceeds 20%, and the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai). the absolute value of the difference between the 40) (| Ai 20 -Ai 40 |) polishing pad of Comparative example 3 is less than 35, compared with the polishing pad of example 1, TEOS film-coated silicon wafer and a Cu film with a silicon wafer In each of the above, the polishing rate fluctuated greatly during polishing, and the polishing stability was inferior. This is because, in the polishing pad of Comparative Example 3, although the content ratio of the interface phase component at 20 ° C. is high, the value does not decrease significantly even at 40 ° C., so that the self-dressing property (self-disintegrating property) is achieved in the latter stage of polishing. ) Is too high, the amount of pad wear becomes excessive, the opening of the polished surface is enlarged, and the fluctuation of the polished surface area is increased.
Further, in the polishing pad of Comparative Example 3, polishing scratches were extremely generated in both the silicon wafer with the TEOS film and the silicon wafer with the Cu film as compared with the polishing pad of Example 1.

以上の結果より、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である研磨パッドが、研磨傷を抑制し、研磨中の研磨レートの変動が少なく、研磨安定性に優れることが確認できた。 From the above results, the polishing pad has a crystal phase component content ratio (Ac 20 ) at 20 ° C. of 10 to 20% and an interface phase component content ratio (Ai 20 ) of 40 to 50% at 20 ° C. However, it was confirmed that polishing scratches were suppressed, the polishing rate did not fluctuate during polishing, and the polishing stability was excellent.

また、本発明によれば、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%であるか否かを確認することにより、研磨傷の抑制、研磨中の研磨レートの変動の抑制、優れた研磨安定性といった研磨パッドの性能を評価できることがわかった。 Further, according to the present invention, the content ratio (Ac 20 ) of the component of the crystal phase at 20 ° C. is 10 to 20%, and the content ratio (Ai 20 ) of the component of the interface phase at 20 ° C. is 40 to 50%. It was found that the performance of the polishing pad such as suppression of polishing scratches, suppression of fluctuations in polishing rate during polishing, and excellent polishing stability can be evaluated by confirming the presence or absence.

Claims (8)

ポリウレタン樹脂を含む研磨層を有する研磨パッドであって、
前記研磨層は、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合において、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%である、前記研磨パッド。
A polishing pad having a polishing layer containing a polyurethane resin.
In the polishing layer, the free induction decay signal (FID) obtained by pulse NMR is subtracted in order from the component having the longest spin-spin relaxation time T2 by the minimum square method, and the waveform is separated to obtain the longer spin-spin relaxation time T2. When divided into three components, an amorphous phase, an interface phase, and a crystalline phase, the content ratio (Ac 20 ) of the component of the crystal phase at 20 ° C. is 10 to 20%, and the component of the interface phase at 20 ° C. The polishing pad having a content ratio (Ai 20 ) of 40 to 50%.
20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50である、請求項1に記載の研磨パッド。 The absolute value (| Ai 20- Ai 40 |) of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ) is 35 to 50. , The polishing pad according to claim 1. 前記研磨層のA硬度が5〜15である、請求項1又は2に記載の研磨パッド。 The polishing pad according to claim 1 or 2, wherein the polishing layer has an A hardness of 5 to 15. 前記研磨層の圧縮率が35〜65%である、請求項1〜3のいずれか1つに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 3, wherein the polishing layer has a compressibility of 35 to 65%. 請求項1〜4のいずれか1つに記載の研磨パッドの製造方法であって、湿式成膜法を使用する工程を含む、前記方法。 The method for manufacturing a polishing pad according to any one of claims 1 to 4, wherein the method includes a step of using a wet film forming method. 光学材料又は半導体材料の表面を研磨する方法であって、請求項1〜4のいずれか1つに記載の研磨パッドを使用する工程を含む、前記方法。 The method for polishing the surface of an optical material or a semiconductor material, which comprises the step of using the polishing pad according to any one of claims 1 to 4. ポリウレタン樹脂を含む研磨層を有する研磨パッドの評価方法であって、
前記研磨層について、パルスNMRで得られる自由誘導減衰信号(FID)を最小二乗法によってスピン−スピン緩和時間T2の長い成分から順に差し引き、波形分離することにより、スピン−スピン緩和時間T2の長い方から順に非晶相、界面相、結晶相の3成分に分けた場合に、20℃における結晶相の成分の含有割合(Ac20)が10〜20%であり、20℃における界面相の成分の含有割合(Ai20)が40〜50%であるか否かを確認する工程を含む、前記評価方法。
A method for evaluating a polishing pad having a polishing layer containing a polyurethane resin.
For the polishing layer, the free induction decay signal (FID) obtained by pulse NMR is subtracted in order from the component having the longest spin-spin relaxation time T2 by the minimum square method, and the waveform is separated to obtain the longer spin-spin relaxation time T2. When divided into three components, an amorphous phase, an interface phase, and a crystalline phase, the content ratio (Ac 20 ) of the component of the crystal phase at 20 ° C. is 10 to 20%, and the component of the interface phase at 20 ° C. The evaluation method including a step of confirming whether or not the content ratio (Ai 20 ) is 40 to 50%.
20℃における界面相の成分の含有割合(Ai20)と40℃における界面相の成分の含有割合(Ai40)との差の絶対値(|Ai20−Ai40|)が35〜50であるか否かを確認する工程を更に含む、請求項7に記載の評価方法。 The absolute value (| Ai 20- Ai 40 |) of the difference between the content ratio of the interface phase component at 20 ° C. (Ai 20 ) and the content ratio of the interface phase component at 40 ° C. (Ai 40 ) is 35 to 50. The evaluation method according to claim 7, further comprising a step of confirming whether or not.
JP2019060225A 2019-03-27 2019-03-27 Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad Active JP7137504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060225A JP7137504B2 (en) 2019-03-27 2019-03-27 Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060225A JP7137504B2 (en) 2019-03-27 2019-03-27 Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad

Publications (2)

Publication Number Publication Date
JP2020157431A true JP2020157431A (en) 2020-10-01
JP7137504B2 JP7137504B2 (en) 2022-09-14

Family

ID=72641006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060225A Active JP7137504B2 (en) 2019-03-27 2019-03-27 Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad

Country Status (1)

Country Link
JP (1) JP7137504B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237391A (en) * 2005-02-25 2006-09-07 Tokyo Seimitsu Co Ltd Evaluation method of surface condition of polishing pad
JP2010082719A (en) * 2008-09-30 2010-04-15 Fujibo Holdings Inc Polishing pad and method of manufacturing the same
JP2010240777A (en) * 2009-04-06 2010-10-28 Nitta Haas Inc Polishing pad
JP2013089767A (en) * 2011-10-18 2013-05-13 Fujibo Holdings Inc Abrasive pad and manufacturing method therefor
WO2017115416A1 (en) * 2015-12-28 2017-07-06 株式会社アシックス Impact-mitigating material, shoe sole member, shoe, and protective sports gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237391A (en) * 2005-02-25 2006-09-07 Tokyo Seimitsu Co Ltd Evaluation method of surface condition of polishing pad
JP2010082719A (en) * 2008-09-30 2010-04-15 Fujibo Holdings Inc Polishing pad and method of manufacturing the same
JP2010240777A (en) * 2009-04-06 2010-10-28 Nitta Haas Inc Polishing pad
JP2013089767A (en) * 2011-10-18 2013-05-13 Fujibo Holdings Inc Abrasive pad and manufacturing method therefor
WO2017115416A1 (en) * 2015-12-28 2017-07-06 株式会社アシックス Impact-mitigating material, shoe sole member, shoe, and protective sports gear

Also Published As

Publication number Publication date
JP7137504B2 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
US6623337B2 (en) Base-pad for a polishing pad
EP3213868B1 (en) Nonporous molded article for polishing layer, polishing pad, and polishing method
JP2011073112A (en) Polishing pad and method of manufacturing polishing pad
WO2012077592A1 (en) Chemical mechanical polishing pad and chemical mechanical polishing method using same
JP6567420B2 (en) Polishing pad and manufacturing method thereof
JP6494375B2 (en) Polishing pad
JP6311186B2 (en) Polishing pad and manufacturing method thereof
JP7137505B2 (en) Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad
JP2006062058A (en) Abrasive cloth for finish polishing and manufacturing method of the abrasive cloth
JP7137504B2 (en) Polishing pad, method for manufacturing polishing pad, method for polishing surface of optical material or semiconductor material, and method for evaluating polishing pad
JP2010069551A (en) Polishing pad
JP7137503B2 (en) polishing pad
JP7236898B2 (en) polishing pad
TWI827778B (en) Polishing pad and method of manufacturing same
EP2899226B1 (en) Method for preparing polyurethane support pad
JP6434174B2 (en) Polishing pad and manufacturing method thereof
JP2014097554A (en) Holding pad and method for manufacturing the same
JP5549111B2 (en) Composition for forming polishing layer of chemical mechanical polishing pad, chemical mechanical polishing pad, and chemical mechanical polishing method
JP7186340B2 (en) polishing sheet
JP2018051645A (en) Polishing pad and manufacturing method for the same
JP6987584B2 (en) Laminated body for use in manufacturing of holding pad and its manufacturing method
JP2022155896A (en) polishing pad
JP2024049004A (en) Polishing pad and method of manufacturing same
JPH1199480A (en) Polishing pad
JP2022057657A (en) Polishing pad and polished product manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150