JP2020157294A - Catalyst precursor, catalyst using the same, and production method of the same - Google Patents

Catalyst precursor, catalyst using the same, and production method of the same Download PDF

Info

Publication number
JP2020157294A
JP2020157294A JP2020042591A JP2020042591A JP2020157294A JP 2020157294 A JP2020157294 A JP 2020157294A JP 2020042591 A JP2020042591 A JP 2020042591A JP 2020042591 A JP2020042591 A JP 2020042591A JP 2020157294 A JP2020157294 A JP 2020157294A
Authority
JP
Japan
Prior art keywords
catalyst
mass
parts
catalyst precursor
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020042591A
Other languages
Japanese (ja)
Other versions
JP7418252B2 (en
Inventor
元彦 杉山
Motohiko Sugiyama
元彦 杉山
秀臣 酒井
Hideomi Sakai
秀臣 酒井
成喜 奥村
Shigeki Okumura
成喜 奥村
誠一郎 福永
Seiichiro Fukunaga
誠一郎 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2020157294A publication Critical patent/JP2020157294A/en
Application granted granted Critical
Publication of JP7418252B2 publication Critical patent/JP7418252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a catalyst used for a method for producing unsaturated aldehydes and unsaturated carboxylic acids using propylene, isobutylene, t-butyl alcohol, and the like as a raw material, or a catalyst precursor thereof, the catalyst having high catalytic activity, selectivity, and a high yield of a target product, and enabling a long-term operation of a safe, stable, and low-cost gas phase oxidation method by using the catalyst of the present invention.SOLUTION: Provided is a catalyst precursor represented by the following formula (1), having an average particle diameter of 30 μm to 70 μm and a maximum pore diameter obtained by a mercury penetration method of 0.01 μm to 20 μm. Moa1Bib1 Nic1Cod1Fee1Xf1Yg1Zh1Oi1 (1)SELECTED DRAWING: None

Description

本発明は、高活性であり、高収率で目的物を得られる新規触媒に関するものであり、特に不飽和アルデヒド、不飽和カルボン酸、又は共役ジエンを酸化的に製造する際に、触媒活性が高い領域においても安定して高収率な製造を可能とする触媒に関する。 The present invention relates to a novel catalyst having high activity and a high yield to obtain the desired product, and the catalytic activity is particularly high in the oxidative production of unsaturated aldehydes, unsaturated carboxylic acids, or conjugated diene. The present invention relates to a catalyst that enables stable and high-yield production even in a high region.

プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3-ブタジエンを製造する気相接触酸化方法は工業的に広く実施されている。
特に、プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法に関しては、その収率を向上する手段として多くの報告がなされている(例えば特許文献1、2等)。
The method for producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid from propylene, isobutylene, t-butyl alcohol, etc., and the vapor-phase catalytic oxidation method for producing 1,3-butadiene from butenes are industrially widespread. It has been implemented.
In particular, many reports have been made on a method for producing a corresponding unsaturated aldehyde or unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol or the like as a raw material as a means for improving the yield (for example, patent). Documents 1, 2 etc.).

上記のような手段をもって改良をはかっても、プロピレン、イソブチレン、t−ブチルアルコール等の部分酸化反応により対応する不飽和アルデヒド及び/又は不飽和カルボン酸の製造において、さらなる収率の改善が求められている。例えば、目的生成物の収率は、製造に要するプロピレン、イソブチレン、t−ブチルアルコール等の使用量を左右し製造コストに多大な影響を与える。また、低い収率で運転を継続することによって副生成物を大量に生成するため精製工程に大きな負荷を与え、精製工程にかかる時間および運転コストが上がる問題が生じる。さらには副生成物の種類によっては、それらは触媒表面や触媒付近のガス流路に堆積する場合もある。これらは触媒表面の必要な反応活性点を被覆してしまうことで触媒の活性を低下させるため、強制的に活性を上げる必要が生じ反応浴温度を上げざるを得ない。すると、触媒が熱的ストレスを受けることとなり、寿命の低下やさらなる選択率の低下を引き起こし、収率の低下を招くことにもなる。また、系内に堆積した副生成物により系内圧力の上昇を引き起こすことでも選択率が低下し、収率低下につながることも考えられ、最悪の場合は内部圧力の急上昇によって温度異常をきたし反応が暴走することも考えられる。そうなると長期にわたり運転を停止し、系内清掃や触媒交換が必要になることも想定される。 Even if improvements are made by means as described above, further improvement in yield is required in the production of corresponding unsaturated aldehydes and / or unsaturated carboxylic acids by partial oxidation reaction of propylene, isobutylene, t-butyl alcohol and the like. ing. For example, the yield of the target product affects the amount of propylene, isobutylene, t-butyl alcohol, etc. required for production and has a great influence on the production cost. Further, by continuing the operation with a low yield, a large amount of by-products are produced, which imposes a heavy load on the purification process, and causes a problem that the time required for the purification process and the operation cost increase. Furthermore, depending on the type of by-products, they may deposit on the surface of the catalyst or in the gas flow path near the catalyst. Since these reduce the activity of the catalyst by covering the necessary reaction active sites on the surface of the catalyst, it is necessary to forcibly increase the activity and the reaction bath temperature must be increased. Then, the catalyst is subjected to thermal stress, which causes a decrease in life and a further decrease in selectivity, which also leads to a decrease in yield. In addition, by-products deposited in the system may cause an increase in the internal pressure, which may lead to a decrease in selectivity and a decrease in yield. In the worst case, a sudden increase in internal pressure causes a temperature abnormality and reacts. May run out of control. In that case, it is expected that the operation will be stopped for a long period of time, and it will be necessary to clean the inside of the system and replace the catalyst.

また、特にイソブチレンやt−ブチルアルコ−ルを原料として気相接触酸化反応する場合に関しては、主生成物のメタクロレインのほかに、マレイン酸やテレフタル酸等の比較的高沸点の化合物が副生し、同時に重合物やタール状物質が反応生成ガス中に含まれてくるという特有の課題を内包している。このような物質を含む反応生成ガスをそのまま後段反応に供すると、これらの物質は配管内や後段触媒充填層での閉塞を引き起し、圧力損失の増大や、触媒活性の低下、メタクリル酸への選択率の低下などの原因となる。また、閉塞を除去するために工業生産を停止しなければならなくなり、多大な生産低下を引き起こしてしまう。このようなトラブルは、メタクリル酸の生産性を高めるためにイソブチレンおよび/またはt−ブチルアルコールの供給量を増やしたり、イソブチレンおよび/またはt−ブチルアルコール濃度を上げたりすると多く発生する。 Further, particularly in the case of a gas-phase catalytic oxidation reaction using isobutylene or t-butyl alcohol as a raw material, in addition to the main product methacrolein, compounds having a relatively high boiling point such as maleic acid and terephthalic acid are by-produced. At the same time, it has a unique problem that polymers and tar-like substances are contained in the reaction-producing gas. When the reaction-producing gas containing such substances is directly subjected to the subsequent reaction, these substances cause blockage in the piping or in the latter-stage catalyst packed bed, resulting in an increase in pressure loss, a decrease in catalytic activity, and methacrylic acid. It may cause a decrease in the selectivity of. In addition, industrial production must be stopped in order to remove the blockage, which causes a great decrease in production. Such troubles often occur when the supply amount of isobutylene and / or t-butyl alcohol is increased in order to increase the productivity of methacrylic acid, or the concentration of isobutylene and / or t-butyl alcohol is increased.

このようなトラブルを防止するため一般に採用される方法としては、定期的に反応を停止して、後段触媒のガス入口側に触媒層での閉塞や触媒の活性低下を防止するために充填した不活性物質を抜き出して入れ替えたり、あるいは前段反応生成ガスからメタクロレインをいったん分離し、あらためてこの分離メタクロレインを後段反応に供給することで酸化反応の最適化プロセスを採用したり、さらには原料ガス濃度を必要以上に希釈して、副生成物濃度を下げて反応を行う方法が提案されている。特許文献3には前段および後段の反応の中間部での配管などの閉塞防止のために、その部分を無水マレイン酸の沸点以上の温度に保温する方法、ガス線速度を極めて大きくとるように工夫する方法、特許文献4には、後段反応に用いられる触媒の形状を特定して触媒間の空隙率を上げて前段反応器からの固形物の閉塞を押える方法等が提案されている。しかしながら、これらの方法もまた、工業的方法としては充分満足できるものではなく、更なる収率の向上を実現できる触媒の開発が望まれている。 As a method generally adopted to prevent such troubles, the reaction is periodically stopped, and the gas inlet side of the post-stage catalyst is filled to prevent clogging in the catalyst layer and reduction of the activity of the catalyst. The active substance can be extracted and replaced, or the metachlorine is once separated from the gas produced in the first stage reaction, and this separated metachlorine is supplied to the second stage reaction to adopt the optimization process of the oxidation reaction, or the concentration of the raw material gas. A method has been proposed in which the reaction is carried out by diluting the gas more than necessary to reduce the concentration of by-products. Patent Document 3 describes a method of keeping the temperature above the boiling point of maleic anhydride and devising a method of keeping the gas ray velocity extremely high in order to prevent blockage of pipes and the like in the intermediate part of the reaction of the first stage and the second stage. Patent Document 4 proposes a method of specifying the shape of the catalyst used in the subsequent reaction, increasing the porosity between the catalysts, and suppressing the clogging of the solid matter from the first-stage reactor. However, these methods are also not sufficiently satisfactory as industrial methods, and it is desired to develop a catalyst capable of further improving the yield.

イソブチレンやt−ブチルアルコ−ルを原料とした二段階の気相接触酸化反応によりメタクロレイン、メタクリル酸を順に製造し、さらにメタクリル酸からエステル化反応によりメタクリル酸メチルを製造するプロセスは直酸法と呼ばれており、他のメタクリル酸メチル製造プロセスと比較して安全かつ環境負荷が少なく、反応熱を有効に活用でき触媒価格も抑えられることから、競争力の高いプロセスであると期待される。この直酸法の一段目反応、すなわちイソブチレンやt−ブチルアルコ−ルからメタクロレインを製造する反応においては、後段の二段目反応においてイソブチレンが被毒物質となるため、触媒活性を上げてなるべく残イソブチレンを少なくする必要がある。触媒活性を上げるには反応浴温度を上昇させイソブチレン転化率を上昇させるが、非特許文献1に挙げられるように一般に高いイソブチレン転化率領域では急激にメタクロレインおよび/またはメタクリル酸収率または選択率が低下することが分かっている。すなわち、触媒活性の高い領域においてもメタクロレインおよび/またはメタクリル酸の収率が高い触媒の開発が望まれている。 The process of producing methacrolein and methacrylic acid in order by a two-step vapor-phase catalytic oxidation reaction using isobutylene or t-butyl alcohol as raw materials, and further producing methyl methacrylate by an esterification reaction from methacrylic acid is a direct acid method. It is called, and is expected to be a highly competitive process because it is safer and has less environmental load than other methyl methacrylate production processes, can effectively utilize the reaction heat, and can reduce the catalyst price. In the first-stage reaction of this direct acid method, that is, the reaction for producing methacrolein from isobutylene or t-butyl alcohol, isobutylene becomes a toxic substance in the second-stage reaction in the latter stage, so that the catalytic activity is increased to remain as much as possible. Isobutylene needs to be reduced. In order to increase the catalytic activity, the reaction bath temperature is increased to increase the isobutylene conversion rate, but as mentioned in Non-Patent Document 1, in a generally high isobutylene conversion rate region, the yield or selectivity of methacrolein and / or methacrylic acid is rapidly increased. Is known to decrease. That is, it is desired to develop a catalyst having a high yield of methacrolein and / or methacrylic acid even in a region having high catalytic activity.

国際公開2016/136882号International Publication 2016/136882 特開2017−024009号公報Japanese Unexamined Patent Publication No. 2017-024009 特開昭50−126605号公報Japanese Unexamined Patent Publication No. 50-126605 特開昭61−221149号公報Japanese Unexamined Patent Publication No. 61-22149

Journal of Catalysis 236号 282−291 (2005)Journal of Catalysis 236 No. 282-291 (2005)

本発明は、プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3-ブタジエンを製造する気相接触酸化方法に使用される触媒であって、特に触媒活性が高い領域においても選択性および目的生成物の収率が高い触媒を提案するものである。そして、本発明の触媒を使用することで、安全に、安定して、低コストで気相接触酸化方法の長期運転が可能となるものである。 The present invention provides a method for producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol, etc. as raw materials, and a vapor-phase catalytic oxidation method for producing 1,3-butadiene from butenes. It proposes a catalyst to be used, which has high selectivity and a high yield of a target product even in a region where the catalytic activity is particularly high. Then, by using the catalyst of the present invention, long-term operation of the vapor-phase catalytic oxidation method is possible safely, stably, and at low cost.

本発明者らの研究によれば、触媒活性成分原料の混合溶液またはスラリーを乾燥した触媒前駆体の平均粒径及び極大細孔直径が、特定の範囲にある場合に最終的な触媒の性能、特に触媒活性が大幅に向上することを見出し、本発明を完成させるに行ったものである。 According to the studies of the present inventors, the final catalyst performance when the average particle size and the maximum pore diameter of the catalyst precursor obtained by drying the mixed solution of the catalyst active ingredient raw materials or the slurry are in a specific range, In particular, they have found that the catalytic activity is significantly improved, and have completed the present invention.

即ち、本発明は、以下1)〜11)に関する。
1)
平均粒子径が30μm以上70μm以下であり、かつ水銀圧入法により求められる極大細孔直径が0.01μm以上20μm以下である下記式(1)で表される触媒前駆体。
Moa1Bib1Nic1Cod1Fee1f1g1h1i1・・・(1)
(式中、Mo、Bi、Ni、CoおよびFeはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表し、Xはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、ケイ素、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはナトリウム、カリウム、セシウム、ルビジウム、およびタリウムから選ばれる少なくとも一種の元素、Zは周期表の第1族から第16族に属し、上記Mo、Bi、Ni、Co、Fe、X、およびY以外の元素から選ばれる少なくとも一種の元素を意味するものであり、a1、b1、c1、d1、e1、f1、g1、h1、及びi1はそれぞれモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Y、Zおよび酸素の原子数を表し、a1=12としたとき、0<b1≦7、0≦c1≦10、0≦d1≦10、0≦c+d≦20、0≦e≦5、0≦f≦2、0≦g≦3、0≦h≦5、およびi=各元素の酸化状態によって決まる値である)
2)
更に、累積細孔容積が1.05cc/g以上10cc/g以下である上記1)に記載の触媒前駆体。
3)
上記1)又は2)に記載の触媒前駆体を成型して得られる触媒。
4)
上記1)又は2)に記載の触媒前駆体が不活性担体に担持された触媒。
5)
上記不活性担体がシリカ及び/又はアルミナである上記4)に記載の触媒。
6)
触媒が不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物製造用である上記1)乃至5)のいずれか一項に記載の触媒。
7)
上記1)乃至6)のいずれか一項に記載の触媒を用いた不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物の製造方法。
8)
上記7)において原料転化率が98.5%以上である、不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物の製造方法。
9)
上記7)乃至8)において不飽和アルデヒド化合物がメタクロレインであり、不飽和カルボン酸化合物がメタクリル酸である製造方法。
10)
上記1)または2)に記載の触媒前駆体を使用する触媒の製造方法。
11)
上記触媒前駆体が、触媒活性成分原料の混合溶液またはスラリーを乾燥した後に200〜600℃の温度で予備焼成した予備焼成粉体である上記3)乃至6)に記載の触媒。
That is, the present invention relates to the following 1) to 11).
1)
A catalyst precursor represented by the following formula (1), which has an average particle diameter of 30 μm or more and 70 μm or less, and a maximum pore diameter obtained by a mercury intrusion method of 0.01 μm or more and 20 μm or less.
Mo a1 Bi b1 Ni c1 Co d1 Fe e1 X f1 Y g1 Z h1 O i1 ... (1)
(In the formula, Mo, Bi, Ni, Co and Fe represent molybdenum, bismuth, nickel, cobalt and iron, respectively, and X represents tungsten, antimony, tin, zinc, chromium, manganese, magnesium, silicon, aluminum, cerium and titanium. At least one element selected from, Y is at least one element selected from sodium, potassium, cesmuth, rubidium, and tarium, Z belongs to groups 1 to 16 of the periodic table, and Mo, Bi, Ni, It means at least one element selected from elements other than Co, Fe, X, and Y, and a1, b1, c1, d1, e1, f1, g1, h1, and i1 are molybdenum, bismuth, and nickel, respectively. , Cobalt, iron, X, Y, Z and oxygen, and when a1 = 12, 0 <b1 ≦ 7, 0 ≦ c1 ≦ 10, 0 ≦ d1 ≦ 10, 0 ≦ c + d ≦ 20, 0 ≦ e ≦ 5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, 0 ≦ h ≦ 5, and i = values determined by the oxidation state of each element)
2)
Further, the catalyst precursor according to 1) above, wherein the cumulative pore volume is 1.05 cc / g or more and 10 cc / g or less.
3)
A catalyst obtained by molding the catalyst precursor according to 1) or 2) above.
4)
A catalyst in which the catalyst precursor according to 1) or 2) above is supported on an inert carrier.
5)
The catalyst according to 4) above, wherein the inert carrier is silica and / or alumina.
6)
The catalyst according to any one of 1) to 5) above, wherein the catalyst is for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound.
7)
A method for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound using the catalyst according to any one of 1) to 6) above.
8)
The method for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound having a raw material conversion rate of 98.5% or more in 7) above.
9)
The production method in which the unsaturated aldehyde compound is methacrolein and the unsaturated carboxylic acid compound is methacrylic acid in the above 7) to 8).
10)
A method for producing a catalyst using the catalyst precursor according to 1) or 2) above.
11)
The catalyst according to 3) to 6) above, wherein the catalyst precursor is a pre-baked powder obtained by pre-baking a mixed solution or slurry of a catalyst active ingredient raw material at a temperature of 200 to 600 ° C.

本発明の触媒は、気相接触酸化反応における触媒活性の向上、及び収率向上に非常に有効であり、プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する場合や、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造する場合の酸化触媒、酸化脱水素触媒として特に有用である。
特にプロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒドを製造する場合に有効に用いられる。また、本発明の触媒は触媒活性が高くない領域においても収率向上に有効なほか、たとえばΔT(ホットスポット温度と反応浴温度の差)低減のような発熱を伴う部分酸化反応のプロセス安定性にも向上効果が見られる。
The catalyst of the present invention is very effective in improving the catalytic activity and yield in the gas-phase catalytic oxidation reaction, and the corresponding unsaturated aldehyde and unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol and the like as raw materials. It is particularly useful as an oxidation catalyst and an oxidation dehydrogenation catalyst for producing an acid or for producing a conjugated diolefin by a catalytic redox reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen. ..
In particular, it is effectively used when producing the corresponding unsaturated aldehyde from propylene, isobutylene, t-butyl alcohol or the like as a raw material. In addition, the catalyst of the present invention is effective in improving the yield even in a region where the catalytic activity is not high, and the process stability of a partial oxidation reaction accompanied by heat generation such as reduction of ΔT (difference between hot spot temperature and reaction bath temperature). The improvement effect is also seen in.

本発明は、特に触媒活性の高い触媒及びその製造方法に関するが、前記触媒前駆体を経由して製造され、または当該触媒前駆体はそのまま酸化触媒として使用することもできる為、触媒前駆体そのものも本発明として記載する。
[平均粒子径が30μm以上70μm以下]
本発明の触媒前駆体は、平均粒子径が30μm以上70μm以下である。
平均粒子径は、レーザー回折散乱粒度分布測定装置(セイシン企業社製、商品名「LMS−2000e」)より粒子径分布を測定し、その体積平均(メジアン径)として求める。
平均粒子径が、30μm以上70μmの範囲外である場合、触媒とした際の性能が安定せず、結果として触媒活性の低下を引き起こす可能性がある。
この平均粒子径の好ましい範囲の下限は35μmであり、さらに好ましくは38μmである。また好ましい上限は60μmであり、さらに好ましくは50μmである。すなわち、平均粒子径として最も好ましい範囲は、38μm以上50μ以下である。
一般に、上記触媒前駆体に関する上記パラメーターを変化させるためには、調合工程におけるpHの調製や、乾燥工程における温度等の設定によって実現可能であるが、特に有効な方法は噴霧乾燥による場合の噴霧器(アトマイザー)の回転数の最適化である。アトマイザーの回転は触媒前駆体の組成によっても異なるが、好ましくは12,000rpm以上17,000rpm以下である。更に好ましいアトマイザー回転数の上限は、16500pmであり、特に好ましくは16000rpmであり、最も好ましくは15500rpmである。また更に好ましい下限は、12500rpmであり、特に好ましい下限は13000rpmであり、最も好ましい下限は13500rpmである。すなわち最も好ましいアトマイザー回転数の範囲は13500rpm以上15500rpm以下である。また、この回転数は相対遠心加速度によっても表され、2000G以上30000G以下であることが好ましい。
The present invention relates to a catalyst having particularly high catalytic activity and a method for producing the same, but the catalyst precursor itself can also be produced because the catalyst precursor can be produced via the catalyst precursor or the catalyst precursor can be used as it is as an oxidation catalyst. Described as the present invention.
[Average particle size is 30 μm or more and 70 μm or less]
The catalyst precursor of the present invention has an average particle size of 30 μm or more and 70 μm or less.
The average particle size is obtained by measuring the particle size distribution from a laser diffraction / scattering particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd., trade name "LMS-2000e") and calculating the volume average (median size).
When the average particle size is out of the range of 30 μm or more and 70 μm, the performance when used as a catalyst is not stable, and as a result, the catalytic activity may be lowered.
The lower limit of the preferable range of the average particle size is 35 μm, more preferably 38 μm. The upper limit is preferably 60 μm, more preferably 50 μm. That is, the most preferable range for the average particle size is 38 μm or more and 50 μm or less.
Generally, in order to change the above parameters regarding the catalyst precursor, it can be realized by adjusting the pH in the compounding step and setting the temperature in the drying step, but a particularly effective method is a sprayer in the case of spray drying (a sprayer ( It is the optimization of the number of rotations of the atomizer). The rotation of the atomizer varies depending on the composition of the catalyst precursor, but is preferably 12,000 rpm or more and 17,000 rpm or less. A more preferable upper limit of the atomizer rotation speed is 16500 pm, particularly preferably 16000 rpm, and most preferably 15500 rpm. A further preferable lower limit is 12500 rpm, a particularly preferable lower limit is 13000 rpm, and the most preferable lower limit is 13500 rpm. That is, the most preferable range of atomizer rotation speed is 13500 rpm or more and 15500 rpm or less. This rotation speed is also represented by the relative centrifugal acceleration, and is preferably 2000 G or more and 30,000 G or less.

[水銀圧入法により求められる極大細孔直径が0.01μm以上20μm以下]
本発明の触媒前駆体は、水銀圧入法により求められる極大細孔直径が0.01μm以上20μm以下である。
ここで、水銀圧入法とは、表面張力の高い水銀に圧力を加え、固体表面の細孔もしくは隙間の中に圧入し、その時に加えた圧力と押し込まれた水銀容積との関係から細孔分布を求める方法である。本明細書において、水銀圧入法という場合、一般的な方法であれば特に詳細は限定されないが、例えば、前処理を行わずに、全自動細孔分布測定装置(Pore Master 60−GT(Quanta Chrome Co.))を用いて、試料重量約0.5gをセル容積0.5ccのスモールセル(10mmΦ×3cm)に入れ、水銀表面張力を480dyn/cm、水銀接触角を140°と設定し、測定温度20℃、測定細孔直径範囲0.0036μm〜400μmの条件のもと測定し、測定結果をすべての細孔が円筒型であるとみなし、測定時に加えた圧力とWashburnの式を用いて解析を行い、触媒前駆体の各細孔直径の細孔分布を得る方法がある。
なおWashburnの式とは、測定時に加えた圧力とその圧力で水銀が侵入可能な細孔径の関係を示した下記式(I)である。

R=−4×γ×cosθ÷p÷6.9・・・(I)

(上記式(I)中、Rは細孔直径(単位:μm)、γは水銀表面張力(単位:dyn/cm)、θは水銀接触角(単位:°)、pは測定時に加えた圧力(単位:psi)を示す。)
得られた細孔分布から、極大細孔直径(D1)を求めることができる。極大細孔直径(D1)は、細孔分布の頻度分布から、出現比率の最も大きい細孔直径、すなわち分布の極大値の細孔直径として求めることができる。
なお、本発明の効果をより顕著なものとする為には、極大細孔直径(D1)の上限が18μmである場合が好ましく、15μmである場合が更に好ましく、14μmである場合が特に好ましい。また好ましい下限は0.1μmであり、1μmである場合が更に好ましく、5μmである場合が特に好ましい。すなわち、最も好ましい範囲は、5μm以上14μm以下である。
[Maximum pore diameter obtained by mercury injection method is 0.01 μm or more and 20 μm or less]
The catalyst precursor of the present invention has a maximum pore diameter of 0.01 μm or more and 20 μm or less, which is obtained by the mercury intrusion method.
Here, the mercury press-fitting method applies pressure to mercury having a high surface tension and press-fits it into the pores or gaps on the solid surface, and the pore distribution is based on the relationship between the pressure applied at that time and the pushed mercury volume. Is a method of finding. In the present specification, the mercury press-fitting method is not particularly limited as long as it is a general method, but for example, a fully automatic pore distribution measuring device (Pore Master 60-GT (Quanta Chrome)) without pretreatment is performed. Using Co.)), a sample weight of about 0.5 g was placed in a small cell (10 mmΦ × 3 cm) having a cell volume of 0.5 cc, the mercury surface tension was set to 480 dyn / cm, and the mercury contact angle was set to 140 ° for measurement. Measurement was performed under the conditions of a temperature of 20 ° C. and a measurement pore diameter range of 0.0036 μm to 400 μm, and the measurement results were analyzed using the pressure applied at the time of measurement and the Washburn formula, assuming that all pores were cylindrical. There is a method of obtaining the pore distribution of each pore diameter of the catalyst precursor.
The Washburn formula is the following formula (I) showing the relationship between the pressure applied at the time of measurement and the pore diameter at which mercury can penetrate at that pressure.

R = -4 × γ × cos θ ÷ p ÷ 6.9 ... (I)

(In the above formula (I), R is the pore diameter (unit: μm), γ is the mercury surface tension (unit: dyn / cm), θ is the mercury contact angle (unit: °), and p is the pressure applied during measurement. (Unit: psi) is shown.)
From the obtained pore distribution, the maximum pore diameter (D1) can be obtained. The maximum pore diameter (D1) can be obtained from the frequency distribution of the pore distribution as the pore diameter having the largest appearance ratio, that is, the pore diameter having the maximum value of the distribution.
In order to make the effect of the present invention more remarkable, the upper limit of the maximum pore diameter (D1) is preferably 18 μm, more preferably 15 μm, and particularly preferably 14 μm. The lower limit is preferably 0.1 μm, more preferably 1 μm, and particularly preferably 5 μm. That is, the most preferable range is 5 μm or more and 14 μm or less.

[組成]
本発明の触媒前駆体は、下記式(1)で表される組成を有する。

Moa1Bib1Nic1Cod1Fee1f1g1h1i1・・・(1)

(式中、Mo、Bi、Ni、CoおよびFeはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表し、Xはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、ケイ素、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはナトリウム、カリウム、セシウム、ルビジウム、およびタリウムから選ばれる少なくとも一種の元素、Zは周期表の第1族から第16族に属し、上記Mo、Bi、Ni、Co、Fe、X、およびY以外の元素から選ばれる少なくとも一種の元素を意味するものであり、a1、b1、c1、d1、e1、f1、g1、h1、及びi1はそれぞれモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Y、Zおよび酸素の原子数を表し、a1=12としたとき、0<b1≦7、0≦c1≦10、0≦d1≦10、0≦c1+d1≦20、0≦e1≦5、0≦f1≦2、0≦g1≦3、0≦h1≦5、およびi=各元素の酸化状態によって決まる値である)
[composition]
The catalyst precursor of the present invention has a composition represented by the following formula (1).

Mo a1 Bi b1 Ni c1 Co d1 Fe e1 X f1 Y g1 Z h1 O i1 ... (1)

(In the formula, Mo, Bi, Ni, Co and Fe represent molybdenum, bismuth, nickel, cobalt and iron, respectively, and X represents tungsten, antimony, tin, zinc, chromium, manganese, magnesium, silicon, aluminum, cerium and titanium. At least one element selected from, Y is at least one element selected from sodium, potassium, cesmuth, rubidium, and tarium, Z belongs to groups 1 to 16 of the periodic table, and Mo, Bi, Ni, It means at least one element selected from elements other than Co, Fe, X, and Y, and a1, b1, c1, d1, e1, f1, g1, h1, and i1 are molybdenum, bismuth, and nickel, respectively. , Cobalt, iron, X, Y, Z and oxygen, and when a1 = 12, 0 <b1 ≦ 7, 0 ≦ c1 ≦ 10, 0 ≦ d1 ≦ 10, 0 ≦ c1 + d1 ≦ 20, 0 ≦ e1 ≦ 5, 0 ≦ f1 ≦ 2, 0 ≦ g1 ≦ 3, 0 ≦ h1 ≦ 5, and i = values determined by the oxidation state of each element)

上記式(1)において、b1〜h1の好ましい範囲は以下である。
0<b1≦7、0≦c1≦10、0≦d1≦10、0≦c1+d1≦20、0≦e1≦5、0≦f1≦2、0≦g1≦3、0≦h1≦5。
またさらに好ましい範囲は以下である。
0<b1≦7、0≦c1≦10、0≦d1≦10、0≦c1+d1≦20、0≦e1≦5、0≦f1≦2、0≦g1≦3、0≦h1≦5。
In the above formula (1), the preferable range of b1 to h1 is as follows.
0 <b1 ≦ 7, 0 ≦ c1 ≦ 10, 0 ≦ d1 ≦ 10, 0 ≦ c1 + d1 ≦ 20, 0 ≦ e1 ≦ 5, 0 ≦ f1 ≦ 2, 0 ≦ g1 ≦ 3, 0 ≦ h1 ≦ 5.
Further preferable ranges are as follows.
0 <b1 ≦ 7, 0 ≦ c1 ≦ 10, 0 ≦ d1 ≦ 10, 0 ≦ c1 + d1 ≦ 20, 0 ≦ e1 ≦ 5, 0 ≦ f1 ≦ 2, 0 ≦ g1 ≦ 3, 0 ≦ h1 ≦ 5.

[累積細孔容積が1.05cc/g以上10cc/g以下]
本発明の触媒前駆体は、累積細孔容積は1.05cc/g以上10cc/g以下である場合が好ましい。累積細孔容積とは、微細な細孔性状を示すパラメーターの一つであり、その測定方法は特に制限されないが、上記水銀圧入法によって測定するのが好ましい。また、測定値を細孔径が0.0036μm以上400μm以下までの細孔分布データから算出することが好ましい。
上記累積細孔容積として、好ましい範囲は1.08cc/g以上8cc/g以下であり、さらに好ましい範囲は1.10cc/g以上5cc/g以下である。
[Cumulative pore volume is 1.05 cc / g or more and 10 cc / g or less]
The catalyst precursor of the present invention preferably has a cumulative pore volume of 1.05 cc / g or more and 10 cc / g or less. The cumulative pore volume is one of the parameters indicating fine pore properties, and the measuring method thereof is not particularly limited, but it is preferably measured by the above-mentioned mercury intrusion method. Further, it is preferable to calculate the measured value from the pore distribution data having a pore diameter of 0.0036 μm or more and 400 μm or less.
The preferable range of the cumulative pore volume is 1.08 cc / g or more and 8 cc / g or less, and the more preferable range is 1.10 cc / g or more and 5 cc / g or less.

本発明の触媒前駆体とは、触媒を成型する工程前の顆粒であり、触媒を構成する各元素を含有する原料を混合して得られるスラリーを、例えばドラム乾燥、噴霧乾燥、蒸発乾固等を用いて顆粒状にしたものである。乾燥方法としては、スラリーから短時間に顆粒に乾燥することができる噴霧乾燥が特に好ましい。
乾燥温度としては、水分を除去できるものであれば特に制限はなく、圧力や時間を調整する場合には、常温(25℃)であっても良い、しかし、より確実に、短時間で水分を除去する為には、80℃以上が好ましく、更に好ましくは90℃以上である。また圧力を調整しない場合には100℃以上が好ましく、更に好ましくは150℃以上である。
製造工程に関する記載において詳しく説明するが、触媒前駆体を更に予備焼成することも可能であり、この場合200℃〜600℃程度の温度で1〜12時間程度の焼成を行う。この予備焼成を経た後の粉体も、本願においては触媒前駆体と定義するが、特に予備焼成を経たことを表現するため、予備焼成粉体と記載する場合もある。
The catalyst precursor of the present invention is granules before the step of molding the catalyst, and a slurry obtained by mixing raw materials containing each element constituting the catalyst is produced by, for example, drum drying, spray drying, evaporation drying, etc. It is made into granules using. As a drying method, spray drying, which allows the slurry to be dried into granules in a short time, is particularly preferable.
The drying temperature is not particularly limited as long as it can remove water, and when adjusting the pressure and time, it may be at room temperature (25 ° C), but more reliably and in a short time. In order to remove it, it is preferably 80 ° C. or higher, and more preferably 90 ° C. or higher. When the pressure is not adjusted, the temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher.
As will be described in detail in the description of the manufacturing process, the catalyst precursor can be further pre-baked, and in this case, firing is performed at a temperature of about 200 ° C to 600 ° C for about 1 to 12 hours. The powder after the pre-baking is also defined as a catalyst precursor in the present application, but may be described as a pre-firing powder in order to express that the pre-baking has been performed.

[担持について]
上記触媒前駆体を不活性担体に担持させた触媒は、本発明の触媒として高い活性を有するものである。
不活性担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。担体と触媒前駆体の混合の割合は、各原料の仕込み質量により、下記式より担持率として算出される。
担持率(質量%)=(成形に使用した触媒前駆体の質量)/{(成形に使用した触媒前駆体の質量)+(成形に使用した担体の質量)}×100
上記担持率としての好ましい上限は、90%であり、さらに好ましくは80%である。
また好ましい下限は、20%であり、さらに好ましくは30%である。
[About support]
The catalyst in which the catalyst precursor is supported on an inert carrier has high activity as the catalyst of the present invention.
As the material of the inert carrier, known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbides, and mixtures thereof can be used, and further, the particle size, water absorption rate, mechanical strength, and the like. The degree of crystallization and mixing ratio of the crystal phase are not particularly limited, and an appropriate range should be selected in consideration of the final catalyst performance, moldability, production efficiency, and the like. The mixing ratio of the carrier and the catalyst precursor is calculated as the loading ratio from the following formula based on the charged mass of each raw material.
Support rate (mass%) = (mass of catalyst precursor used for molding) / {(mass of catalyst precursor used for molding) + (mass of carrier used for molding)} × 100
The preferred upper limit of the loading ratio is 90%, more preferably 80%.
The lower limit is preferably 20%, more preferably 30%.

[触媒の製造方法等について]
本発明の触媒前駆体や触媒を構成する各元素の出発原料としては特に制限されるものではないが、例えばモリブデン成分の原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウムのようなモリブデン酸またはその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸またはその塩などを用いることができる。
[Catalyst manufacturing method, etc.]
The starting material for the catalyst precursor of the present invention and each element constituting the catalyst is not particularly limited, but for example, the raw material for the molybdate component is molybdate oxide such as molybdenum trioxide, molybdic acid, or paramolybdic acid. Molybdic acids such as ammonium and ammonium metamolybdate or salts thereof, heteropolyacids containing molybdenum such as phosphomolybdic acid and silicate molybdate or salts thereof can be used.

ビスマス成分の原料としては硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマスのようなビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができる。これらの原料は固体のままあるいは水溶液や硝酸溶液、それらの水溶液から生じるビスマス化合物のスラリーとして用いることができるが、硝酸塩、あるいはその溶液、またはその溶液から生じるスラリーを用いることが好ましい。 As the raw material of the bismuth component, bismuth nitrate, bismuth carbonate, bismuth sulfate, bismuth salt such as bismuth acetate, bismuth trioxide, metal bismuth and the like can be used. These raw materials can be used as a solid or as a slurry of an aqueous solution, a nitric acid solution, or a bismuth compound produced from the aqueous solution, but it is preferable to use nitrate, a solution thereof, or a slurry produced from the solution.

上記一般式(1)で表されるY成分であるアルカリ金属の原料としては、これらに限定されないが、成分元素(リチウム、ナトリウム、カリウム、ルビジウム、セシウム)の水酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましくは、セシウムを含有する化合物であり、例えば、水酸化セシウム、塩化セシウム、炭酸セシウム、硫酸セシウム、酸化セシウム等が挙げられるが、特に硝酸セシウムを用いることが好ましく、その原子比g1は0≦g1≦3、好ましくは0.1≦g1≦2、より好ましくは0.3≦g1≦1である。 The raw material of the alkali metal which is the Y component represented by the general formula (1) is not limited to these, but the hydroxides, chlorides and carbonates of the component elements (lithium, sodium, potassium, rubidium, cesium). , Sulfates, nitrates, oxides, acetates and the like. A compound containing cesium is preferable, and examples thereof include cesium hydroxide, cesium chloride, cesium carbonate, cesium sulfate, and cesium oxide. In particular, cesium nitrate is preferably used, and its atomic ratio g1 is 0 ≦. It is g1 ≦ 3, preferably 0.1 ≦ g1 ≦ 2, and more preferably 0.3 ≦ g1 ≦ 1.

その他の成分元素の出発原料としては、一般にこの種の触媒に使用される金属元素のアンモニウム塩、硝酸塩、亜硝酸塩、炭酸塩、次炭酸塩、酢酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、硫酸塩、水酸化物、有機酸塩、酸化物またはこれらの混合物を組み合わせて用いればよいが、アンモニウム塩および硝酸塩が好適に用いられる。 As starting materials for other constituent elements, ammonium salts, nitrates, nitrites, carbonates, hypocarbonates, acetates, chlorides, inorganic acids, and salts of inorganic acids, which are metal elements generally used in this type of catalyst. , Heteropolyacids, heteropolyacid salts, sulfates, hydroxides, organic acid salts, oxides or mixtures thereof may be used in combination, but ammonium salts and nitrates are preferably used.

これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。スラリー液は、各活性成分含有化合物と水とを均一に混合して得ることができる。スラリー液における水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。乾燥方法や乾燥条件を勘案して、水の使用量を適宜決定すれば良い。通常、スラリー調製用化合物の合計質量100質量部に対して、200質量部以上2000質量部以下である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどデメリットが多い。さらに、最終的に乾燥を行う直前のスラリー液における硝酸イオン濃度として、8.0質量%以上50質量%以下、好ましくは9.0質量%以上45質量%以下、さらに好ましくは10.0質量%以上40質量%以下、最も好ましくは11.0質量%以上30質量%以下となり、同様に乾燥を行う直前のスラリー液におけるアンモニウムイオン濃度としては、1.0質量%以上10質量%以下、好ましくは1.2質量%以上8質量%以下、さらに好ましくは1.5質量%以上6質量%以下、最も好ましくは1.7質量%以上4質量%以下となる。 The compound containing these active ingredients may be used alone or in combination of two or more. The slurry liquid can be obtained by uniformly mixing each active ingredient-containing compound and water. The amount of water used in the slurry liquid is not particularly limited as long as the total amount of the compound used can be completely dissolved or uniformly mixed. The amount of water used may be appropriately determined in consideration of the drying method and drying conditions. Usually, it is 200 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the total mass of the compound for slurry preparation. The amount of water may be large, but if it is too large, the energy cost of the drying process becomes high, and there are many disadvantages such as the case where the water cannot be completely dried. Further, the nitrate ion concentration in the slurry liquid immediately before the final drying is 8.0% by mass or more and 50% by mass or less, preferably 9.0% by mass or more and 45% by mass or less, more preferably 10.0% by mass. It is 40% by mass or more, most preferably 11.0% by mass or more and 30% by mass or less, and similarly, the ammonium ion concentration in the slurry liquid immediately before drying is 1.0% by mass or more and 10% by mass or less, preferably 10% by mass or less. It is 1.2% by mass or more and 8% by mass or less, more preferably 1.5% by mass or more and 6% by mass or less, and most preferably 1.7% by mass or more and 4% by mass or less.

上記各成分元素の供給源化合物のスラリー液は上記の各供給源化合物を、(イ)一括して混合する方法、(ロ)一括して混合後、熟成処理する方法、(ハ)段階的に混合する方法、(ニ)段階的に混合・熟成処理を繰り返す方法、および(イ)〜(ニ)を組み合わせた方法により調製することが好ましい。ここで、上記熟成とは、「工業原料もしくは半製品を、一定時間、一定温度などの特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行などをはかる操作」のことをいう。なお、本発明において、上記の一定時間とは、5分以上24時間以下の範囲をいい、上記の一定温度とは室温以上の水溶液ないし水分散液の沸点以下の範囲をいう。このうち最終的に得られる触媒の活性及び収率の面で好ましいのは(ハ)段階的に混合する方法であり、更に好ましいのは段階的に母液に混合する各原料は全溶した溶液とする方法であり、最も好ましいのはモリブデン原料を調合液またはスラリーとした母液に、アルカリ金属溶液、硝酸塩の各種混合液を混合する方法である。 The slurry liquid of the source compound of each component element is a method of (a) mixing the above source compounds collectively, (b) a method of collectively mixing and then aging treatment, and (c) stepwise. It is preferable to prepare by a method of mixing, (d) a method of repeating the mixing and aging treatment stepwise, and a method of combining (a) to (d). Here, the above-mentioned aging means "processing an industrial raw material or a semi-finished product under specific conditions such as a certain period of time and a certain temperature to acquire, increase, or increase a predetermined physical property or a predetermined reaction. It means "operation to measure such things". In the present invention, the above-mentioned constant time means a range of 5 minutes or more and 24 hours or less, and the above-mentioned constant temperature means a range of an aqueous solution or an aqueous dispersion above room temperature and below the boiling point. Of these, the method of (c) stepwise mixing is preferable in terms of the activity and yield of the catalyst finally obtained, and more preferably, each raw material to be mixed stepwise with the mother liquor is a completely dissolved solution. The most preferable method is to mix various mixed solutions of alkali metal solution and nitrate with a mother liquor containing a molybdenum raw material as a mixed solution or a slurry.

本発明において、必須活性成分を混合する際に用いられる攪拌機の攪拌翼の形状は特に制約はなく、プロペラ翼、タービン翼、パドル翼、傾斜パドル翼、スクリュー翼、アンカー翼、リボン翼、大型格子翼などの任意の攪拌翼を1段あるいは上下方向に同一翼または異種翼を2段以上で使用することができる。また、反応槽内には必要に応じてバッフル(邪魔板)を設置しても良い。 In the present invention, the shape of the stirring blade of the stirrer used when mixing the essential active ingredients is not particularly limited, and the propeller blade, the turbine blade, the paddle blade, the inclined paddle blade, the screw blade, the anchor blade, the ribbon blade, and the large lattice are not particularly limited. Any stirring blade such as a blade can be used in one stage, or the same blade or different types of blades can be used in two or more stages in the vertical direction. In addition, a baffle (obstruction plate) may be installed in the reaction tank as needed.

次いで、このようにして得られたスラリー液を乾燥する。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられる。これらのうち本発明においては、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70℃以上150℃以下である。 Then, the slurry liquid thus obtained is dried. The drying method is not particularly limited as long as the slurry liquid can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation drying. Of these, in the present invention, spray drying, which can dry the slurry liquid into powder or granules in a short time, is particularly preferable. The drying temperature of spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, and the like, but the temperature at the outlet of the dryer is generally 70 ° C. or higher and 150 ° C. or lower.

上記のようにして得られた触媒前駆体は予備焼成し、成形を経て、本焼成することで、成形形状を制御、保持することが可能となり、工業用途として特に機械的強度が優れた触媒が得られ、安定した触媒性能を発現できる。 The catalyst precursor obtained as described above can be pre-fired, molded, and then main-fired to control and retain the molded shape, resulting in a catalyst having particularly excellent mechanical strength for industrial use. It can be obtained and stable catalytic performance can be exhibited.

成形は、シリカ等の担体に担持する担持成形と、担体を使用しない非担持成形のいずれの成形方法も採用できる。具体的な成形方法としては、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状としては、例えば、円柱状、リング状、球状等が運転条件を考慮して適宜選択可能であるが、球状担体、特にシリカやアルミナ等の不活性担体に触媒活性成分を担持した、平均粒径3.0mm以上10.0mm以下、好ましくは平均粒径3.0mm以上8.0mm以下の担持触媒を使用する。なお、成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を少量添加してもよい。なお、成形において添加される成形助剤、細孔形成剤、担体はいずれも、原料を何らかの別の生成物に転換する意味での活性の有無にかかわらず、本発明における活性成分の構成元素として考慮しないものとする。 As the molding, either a supported molding method of supporting on a carrier such as silica or a non-supported molding method using no carrier can be adopted. Specific molding methods include, for example, tableting molding, press molding, extrusion molding, granulation molding and the like. As the shape of the molded product, for example, a columnar shape, a ring shape, a spherical shape, or the like can be appropriately selected in consideration of operating conditions, and the catalytically active component is supported on a spherical carrier, particularly an inert carrier such as silica or alumina. A supported catalyst having an average particle size of 3.0 mm or more and 10.0 mm or less, preferably an average particle size of 3.0 mm or more and 8.0 mm or less is used. At the time of molding, a small amount of known additives such as graphite and talc may be added. The molding aid, pore-forming agent, and carrier added in molding are all constituent elements of the active ingredient in the present invention, regardless of whether or not they are active in the sense of converting the raw material into some other product. It shall not be considered.

予備焼成方法や予備焼成条件または本焼成方法や本焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。予備焼成や本焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で、200℃以上600℃以下、好ましくは300℃以上550℃以下で、0.5時間以上、好ましくは1時間以上40時間以下で行う。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。特に本焼成は本発明において触媒の活性を決定するうえで重要な工程であるが、触媒の活性が低いあるいは高い場合に、本焼成工程の工程パラメーターすなわち雰囲気中の酸素含有率、最高到達温度や焼成時間等の変更により活性を調整して、当該組成の持つ最も高い収率を引き出すことは当業者にとって公知であり、本発明の範疇に入るものとする。また、本焼成工程は前述の予備焼成工程よりも後に実施されるものとし、本焼成工程における最高到達温度(本焼温度)は、前述の予備焼成工程における最高到達温度(予備焼成温度)よりも高いものとする。 The pre-firing method, pre-firing conditions, main firing method, and main firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimal conditions for pre-baking and main firing differ depending on the catalyst raw material used, catalyst composition, preparation method, etc., but are usually 200 ° C. or higher and 600 ° C. or lower, preferably under the flow of an oxygen-containing gas such as air or the flow of an inert gas. Is performed at 300 ° C. or higher and 550 ° C. or lower for 0.5 hours or longer, preferably 1 hour or longer and 40 hours or shorter. Here, the inert gas refers to a gas that does not reduce the reaction activity of the catalyst, and specific examples thereof include nitrogen, carbon dioxide, helium, and argon. In particular, the present firing is an important step in determining the activity of the catalyst in the present invention, but when the activity of the catalyst is low or high, the process parameters of the main firing step, that is, the oxygen content in the atmosphere, the maximum temperature reached, and the like. It is known to those skilled in the art that the activity is adjusted by changing the firing time or the like to bring out the highest yield of the composition, and it falls within the scope of the present invention. Further, the main firing step shall be performed after the above-mentioned pre-baking step, and the maximum reached temperature (main firing temperature) in the main firing step is higher than the maximum reached temperature (pre-baking temperature) in the above-mentioned pre-baking step. It shall be expensive.

本発明の触媒は、不飽和アルデヒド化合物、不飽和カルボン酸化合物を製造する為の触媒として使用される場合が好ましく、第一段目すなわち、不飽和アルデヒド化合物を製造する為の触媒として用いることが更に好ましく、イソブチレンからメタクロレインを製造する為の触媒として用いることが特に好ましい。 The catalyst of the present invention is preferably used as a catalyst for producing an unsaturated aldehyde compound and an unsaturated carboxylic acid compound, and is preferably used as a catalyst for producing an unsaturated aldehyde compound in the first stage. More preferably, it is particularly preferable to use it as a catalyst for producing methacrolein from isobutylene.

[第二段目触媒について]
本発明の触媒を不飽和アルデヒド化合物を製造する為の触媒として用いた場合、第二段目の酸化反応を行い、不飽和カルボン酸化合物を得ることができる。
この場合、第二段目の触媒としては、本願発明の触媒を用いることもできるが、好ましくは下記式(2)で表される触媒である。
Mo10a2b2Cuc2Csd2(NHe2f2g2 (2)
(式中Moはモリブデン、Vはバナジウム、Pはリン、Cuは銅、Csはセシウム、(NH4)はアンモニウム基を、XはSb、As、Ag、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Cr、Re、Bi、W、Fe、Co、Ni、Ce、Th、K及びRbからなる群から選ばれた1種以上の元素をそれぞれ表し、a2〜g2は、それぞれの元素の原子比を表し、a2は0.1≦a2≦6.0の正数、b2は0.5≦b2≦6.0の正数、c2は0≦c2≦3.0の正数、d2は0≦d2≦3.0の正数、e2は0≦e2≦3.0の正数、f2は0≦f2≦3.0の正数をそれぞれ表す。g2は各元素の価数によって定まる値である。)
[About the second stage catalyst]
When the catalyst of the present invention is used as a catalyst for producing an unsaturated aldehyde compound, an unsaturated carboxylic acid compound can be obtained by performing a second-stage oxidation reaction.
In this case, the catalyst of the present invention can be used as the catalyst of the second stage, but it is preferably the catalyst represented by the following formula (2).
Mo 10 V a2 P b2 Cu c2 Cs d2 (NH 4 ) e2 X f2 O g2 (2)
(In the formula, Mo is molybdenum, V is vanadium, P is phosphorus, Cu is copper, Cs is cesium, (NH4) is an ammonium group, and X is Sb, As, Ag, Mg, Zn, Al, B, Ge, Sn. , Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, Th, K and Rb, respectively, representing one or more elements selected from the group, and a2 to g2, respectively. A2 is a positive number of 0.1 ≦ a2 ≦ 6.0, b2 is a positive number of 0.5 ≦ b2 ≦ 6.0, and c2 is a positive number of 0 ≦ c2 ≦ 3.0. , D2 is a positive number of 0 ≦ d2 ≦ 3.0, e2 is a positive number of 0 ≦ e2 ≦ 3.0, and f2 is a positive number of 0 ≦ f2 ≦ 3.0. G2 is the valence of each element. It is a value determined by.)

本発明の触媒や上記式(2)で表される触媒の製造にあたっては、この種の触媒、例えば酸化物触媒、ヘテロポリ酸又はその塩構造を有する触媒を調製する方法として一般に知られている方法が採用できる。触媒を製造する際に使用できる原料は特に限定されず、種々のものが使用できる。例えば、モリブデン化合物としては、モリブデン酸アンモニウム、モリブデン酸、酸化モリブデン等が使用でき、バナジウム化合物としては、メタバナジン酸アンモニウム、五酸化バナジウム等が使用でき、リン化合物としては、リン酸もしくはその塩、重合リン酸もしくはその塩が使用でき、銅化合物としては、酸化銅、リン酸銅、硫酸銅、硝酸銅、モリブデン酸銅、銅金属等が使用でき、アンチモン、砒素、銀、マグネシウム、亜鉛、アルミニウム、ホウ素、ゲルマニウム、錫、鉛、チタン、ジルコニウム、クロム、レニウム、ビスマス、タングステン、鉄、コバルト、ニッケル、セリウム、トリウム、カリウム及びルビジウム化合物としては、それぞれの硝酸塩、硫酸塩、炭酸塩、リン酸塩、有機酸塩、ハロゲン化物、水酸化物、酸化物、金属等が使用できる。 In the production of the catalyst of the present invention and the catalyst represented by the above formula (2), a method generally known as a method for preparing a catalyst of this type, for example, an oxide catalyst, a heteropolyacid or a catalyst having a salt structure thereof. Can be adopted. The raw materials that can be used in producing the catalyst are not particularly limited, and various materials can be used. For example, ammonium molybdate, molybdic acid, molybdenum oxide and the like can be used as the molybdate compound, ammonium metavanadate, vanadium pentoxide and the like can be used as the vanadium compound, and phosphoric acid or a salt thereof and polymerization can be used as the phosphorus compound. Phosphate or a salt thereof can be used, and as the copper compound, copper oxide, copper phosphate, copper sulfate, copper nitrate, copper molybdate, copper metal, etc. can be used, and antimony, arsenic, silver, magnesium, zinc, aluminum, etc. Boron, germanium, tin, lead, titanium, zirconium, chromium, renium, bismuth, tungsten, iron, cobalt, nickel, cerium, thorium, potassium and rubidium compounds include nitrates, sulfates, carbonates and phosphates, respectively. , Organic acid salts, halides, hydroxides, oxides, metals and the like can be used.

これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。 The compound containing these active ingredients may be used alone or in combination of two or more.

次いで前記で得られたスラリー液を乾燥し、触媒活性成分固体とする。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられるが、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70〜150℃である。また、この際得られるスラリー液乾燥体の平均粒径が1〜700μmとなるように乾燥するのが好ましく、5〜500μmとなるように乾燥するのが更に好ましい。 Next, the slurry liquid obtained above is dried to obtain a solid catalytically active component. The drying method is not particularly limited as long as the slurry liquid can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporative drying, and the slurry liquid can be made into powder or granules in a short time. Spray drying, which can be dried, is preferred. The drying temperature of spray drying varies depending on the concentration of the slurry liquid, the liquid feeding speed, and the like, but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, the dried slurry liquid obtained at this time is preferably dried so that the average particle size is 1 to 700 μm, and more preferably 5 to 500 μm.

本発明の第二段目の触媒活性成分固体のうち特に好ましいものは、ヘテロポリ酸構造を有する触媒である。このヘテロポリ酸構造を有する触媒は、リンバナドモリブデン酸を基本骨格とし、他の構成元素はこのヘテロポリ酸構造の中に組み込まれ、触媒活性及び選択性の向上に寄与すると共に、構造の熱的安定性の向上にも寄与していると考えられる。このヘテロポリ酸構造を有する触媒は、特に寿命の長い触媒である。ヘテロポリ酸構造を有する触媒は通常のヘテロポリ酸の一般的な調製法によって容易に調製できる。 Among the catalytically active component solids in the second stage of the present invention, particularly preferable ones are catalysts having a heteropolyacid structure. The catalyst having this heteropolyacid structure has limbanado molybdic acid as the basic skeleton, and other constituent elements are incorporated into the heteropolyacid structure, which contributes to the improvement of catalytic activity and selectivity, and the thermal stability of the structure. It is thought that it also contributes to the improvement of sex. The catalyst having this heteropolyacid structure is a catalyst having a particularly long life. A catalyst having a heteropolyacid structure can be easily prepared by a general method for preparing a heteropolyacid.

前記のようにして得られた第二段目の触媒活性成分固体は、そのまま被覆用混合物に供することができるが、焼成すると成形性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100〜350℃、好ましくは150〜300℃、焼成時間は1〜20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。 The catalyst-active component solid of the second stage obtained as described above can be used as it is in the coating mixture, but it is preferable because the moldability may be improved by firing. The firing method and firing conditions are not particularly limited, and known processing methods and conditions can be applied. The optimum conditions for firing differ depending on the catalyst raw material used, the catalyst composition, the preparation method, and the like, but the firing temperature is usually 100 to 350 ° C., preferably 150 to 300 ° C., and the firing time is 1 to 20 hours. The firing is usually carried out in an air atmosphere, but may be carried out in an inert gas atmosphere such as nitrogen, carbon dioxide, helium or argon, or further after firing in an inert gas atmosphere, if necessary. The firing may be performed in an air atmosphere.

また、本発明において、前記第二段目のスラリーを調製する際の活性成分を含有する化合物は、必ずしも全ての活性成分を含んでいる必要はなく、一部の成分を下記被覆工程前に使用してもよい。 Further, in the present invention, the compound containing the active ingredient when preparing the slurry of the second stage does not necessarily have to contain all the active ingredients, and some of the ingredients are used before the following coating step. You may.

本発明の第二段目の触媒の形状は特に制約はなく、酸化反応において反応ガスの圧力損失を小さくするために、柱状物、錠剤、リング状、球状等に成型し使用する。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体に触媒活性成分固体を被覆し、被覆触媒とするのが特に好ましい。この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく攪拌させ、ここにバインダーと触媒活性成分固体並びに、必要により、これらに他の添加剤例えば成型助剤、強度向上剤を添加した被覆用混合物を担体に被覆する方法である。バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)〜4)を適宜組み合わせて全量添加する等の方法が任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。バインダーは水及び1気圧以下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種であれば特に制約はない。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1〜4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0〜0/10(質量比)、好ましくは水と混合し9/1〜1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2〜60質量部、好ましくは10〜50質量部である。 The shape of the catalyst in the second stage of the present invention is not particularly limited, and in order to reduce the pressure loss of the reaction gas in the oxidation reaction, it is molded into a columnar shape, a tablet, a ring shape, a spherical shape or the like and used. Of these, since improvement in selectivity and removal of heat of reaction can be expected, it is particularly preferable to coat the inert carrier with the catalytically active component solid to serve as a coating catalyst. The rolling granulation method described below is preferable for this coating step. In this method, for example, in a device having a flat or uneven disk at the bottom of a fixed container, the carrier in the container is vigorously agitated by repeating rotation and revolution by rotating the disk at high speed. This is a method of coating a carrier with a binder, a catalyst active ingredient solid, and, if necessary, a coating mixture to which other additives such as a molding aid and a strength improver are added. The method of adding the binder is as follows: 1) it is mixed in advance with the coating mixture, 2) it is added at the same time as the coating mixture is added into the fixed container, and 3) it is added after the coating mixture is added into the fixed container. 4) Addition before adding the coating mixture into the fixed container, 5) Dividing the coating mixture and the binder, and adding 2) to 4) in appropriate combination can be arbitrarily adopted. .. Of these, in 5), for example, the addition rate is adjusted by using an auto feeder or the like so that the coating mixture does not adhere to the fixed container wall and the coating mixture does not aggregate with each other and a predetermined amount is supported on the carrier. Is preferable. The binder is not particularly limited as long as it is at least one selected from the group consisting of water and an organic compound having a boiling point of 150 ° C. or less at 1 atm or less. Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate. , Acetone, ketones such as methyl ethyl ketone, and aqueous solutions thereof, and ethanol is particularly preferable. When ethanol is used as the binder, ethanol / water = 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) mixed with water. The amount of these binders used is usually 2 to 60 parts by mass, preferably 10 to 50 parts by mass with respect to 100 parts by mass of the coating mixture.

上記被覆における担体の具体例としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等の直径1〜15mm、好ましくは2.5〜10mmの球形担体等が挙げられる。これら担体は通常は10〜70%の空孔率を有するものが用いられる。担体と被覆用混合物の割合は通常、被覆用混合物/(被覆用混合物+担体)=10〜75質量%、好ましくは15〜60質量%となる量を使用する。被覆用混合物の割合が大きい場合、被覆触媒の反応活性は大きくなるが、機械的強度が小さくなる傾向にある。逆に、被覆用混合物の割合が小さい場合、機械的強度は大きいが、反応活性は小さくなる傾向がある。なお、前記において、必要により使用する成型助剤としては、シリカゲル、珪藻土、アルミナ粉末等が挙げられる。成型助剤の使用量は、触媒活性成分固体100質量部に対して通常1〜60質量部である。また、更に必要により触媒活性成分固体及び反応ガスに対して不活性な無機繊維(例えば、セラミックス繊維又はウィスカー等)を強度向上剤として用いることは、触媒の機械的強度の向上に有用であり、ガラス繊維が好ましい。これら繊維の使用量は、触媒活性成分固体100質量部に対して通常1〜30質量部である。なお、第一段目の触媒の成形においては、添加される成形助剤、細孔形成剤、担体はいずれも、原料を何らかの別の生成物に転換する意味での活性の有無にかかわらず、本発明における活性成分の構成元素として考慮しないものとする。 Specific examples of the carrier in the coating include spherical carriers having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm, such as silicon carbide, alumina, silica-alumina, mullite, and arundum. As these carriers, those having a porosity of 10 to 70% are usually used. The ratio of the carrier to the coating mixture is usually such that the coating mixture / (coating mixture + carrier) = 10 to 75% by mass, preferably 15 to 60% by mass. When the proportion of the coating mixture is large, the reaction activity of the coating catalyst is large, but the mechanical strength tends to be small. On the contrary, when the ratio of the coating mixture is small, the mechanical strength tends to be large, but the reaction activity tends to be small. In the above, examples of the molding aid used as necessary include silica gel, diatomaceous earth, and alumina powder. The amount of the molding aid used is usually 1 to 60 parts by mass with respect to 100 parts by mass of the catalytically active component solid. Further, if necessary, the use of the catalytically active component solid and the inorganic fiber (for example, ceramic fiber or whiskers) inactive with respect to the reaction gas as the strength improver is useful for improving the mechanical strength of the catalyst. Glass fiber is preferred. The amount of these fibers used is usually 1 to 30 parts by mass with respect to 100 parts by mass of the catalytically active component solid. In the molding of the catalyst in the first stage, the molding aid, the pore forming agent, and the carrier added may or may not be active in the sense of converting the raw material into some other product. It shall not be considered as a constituent element of the active ingredient in the present invention.

前記のようにして得られた被覆触媒はそのまま触媒として気相接触酸化反応に供することができるが、焼成すると触媒活性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100〜450℃、好ましくは270〜420℃、焼成時間は1〜20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。本発明に用いられる触媒は担体に担持させることによって、耐熱性、寿命の向上、反応収率の増大等好ましい効果が期待できる。担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。 The coating catalyst obtained as described above can be directly used as a catalyst for the vapor phase catalytic oxidation reaction, but it is preferable that the catalyst activity may be improved by firing. The firing method and firing conditions are not particularly limited, and known processing methods and conditions can be applied. The optimum conditions for firing differ depending on the catalyst raw material used, the catalyst composition, the preparation method, and the like, but the firing temperature is usually 100 to 450 ° C., preferably 270 to 420 ° C., and the firing time is 1 to 20 hours. The firing is usually carried out in an air atmosphere, but may be carried out in an inert gas atmosphere such as nitrogen, carbon dioxide, helium or argon, or further after firing in an inert gas atmosphere, if necessary. The firing may be performed in an air atmosphere. By supporting the catalyst used in the present invention on a carrier, favorable effects such as heat resistance, improvement in life, and increase in reaction yield can be expected. As the material of the carrier, known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbides, and mixtures thereof can be used, and further, the particle size, water absorption rate, mechanical strength, and each crystal phase thereof. There are no particular restrictions on the degree of crystallization and mixing ratio of the material, and an appropriate range should be selected in consideration of the final catalyst performance, moldability, production efficiency, and the like.

本発明の触媒を、プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する反応、特にイソブチレン、t−ブチルアルコールを分子状酸素又は分子状酸素含有ガスにより気相接触酸化してメタクロレイン、メタアクリル酸を製造する反応において、芳香族化合物(特にテレフタル酸)の副生を有効に抑制し、またホットスポットの温度を抑制し触媒活性が高い領域において高収率に目的物を製造することができ、これらの結果として公知の方法と比較して、触媒活性が高い領域において高収率を実現し、製品の価格競争力の向上が期待できる。また、本発明の触媒は触媒活性が高くない領域においても収率向上に有効なほか、たとえばΔT(ホットスポット温度と反応浴温度の差)低減のような発熱を伴う部分酸化反応のプロセス安定性にも向上効果が見られる。更に、本発明の触媒は、環境や最終製品のメタクリル酸メチルの品質に悪影響の生じる副生成物、たとえば一酸化炭素(CO)や二酸化炭素(CO)、アセトアルデヒドや酢酸、アクロレイン、ホルムアルデヒドの低減にも有効である。 A reaction for producing a corresponding unsaturated aldehyde or unsaturated carboxylic acid using the catalyst of the present invention as a raw material of propylene, isobutylene, t-butyl alcohol or the like, particularly isobutylene or t-butyl alcohol containing molecular oxygen or molecular oxygen. In the reaction for producing methacrolein and methacrolein by vapor-phase catalytic oxidation with gas, the by-product of aromatic compounds (particularly terephthalic acid) is effectively suppressed, and the temperature of hot spots is suppressed to have high catalytic activity. As a result, the target product can be produced in a high yield, and as a result, a high yield can be realized in a region where the catalytic activity is high as compared with the known methods, and the price competitiveness of the product can be expected to be improved. In addition, the catalyst of the present invention is effective in improving the yield even in a region where the catalytic activity is not high, and the process stability of a partial oxidation reaction accompanied by heat generation such as reduction of ΔT (difference between hot spot temperature and reaction bath temperature). The improvement effect is also seen in. In addition, the catalyst of the present invention reduces by-products that adversely affect the environment and the quality of the final product methyl methacrylate, such as carbon monoxide (CO) and carbon dioxide (CO 2 ), acetaldehyde and acetic acid, acrolein and formaldehyde. It is also effective for.

こうして得られた本発明の触媒は、例えばイソブチレンおよびt−ブチルアルコ−ルから選ばれる少なくとも1種の原料を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて気相接触酸化して、メタクロレインおよび/またはメタクリル酸を製造する際に使用できる。本発明の製造方法において原料ガスの流通方法は、通常の単流通法でもあるいはリサイクル法でもよく、一般に用いられている条件下で実施することができ特に限定されない。たとえば出発原料物質としてのイソブチレンが常温で1〜10容量%、好ましくは4〜9容量%、さらに好ましくは4〜7.5容量%、最も好ましくは4〜6容量%、分子状酸素が3〜20容量%、好ましくは4〜18容量%、水蒸気が0〜60容量%、好ましくは4〜50容量%、二酸化炭素、窒素等の不活性ガスが20〜80容量%、好ましくは30〜60容量%からなる混合ガスを反応管中に充填した本発明の触媒上に250〜450℃で、常圧〜10気圧の圧力下で、空間速度300〜5000h−1で導入し反応を行う。本発明のように触媒活性が高い領域で反応させる場合、一般に原料ガス中のイソブチレン濃度は低く、酸素濃度は高く、水蒸気濃度は高く、空間速度は低く、反応浴温度は高く、さらに反応管出口圧力は高く制御することが好ましいが、これらは工業触媒としての生産性および/または触媒性能ともトレードオフの関係であることが多く、最適な範囲で供されるべきである。 The catalyst of the present invention thus obtained is obtained by vapor-phase catalytic oxidation of at least one raw material selected from, for example, isobutylene and t-butyl alcohol in the presence of an oxidation catalyst composition using a molecular oxygen-containing gas. It can be used in the production of methacrolein and / or methacrylic acid. In the production method of the present invention, the distribution method of the raw material gas may be an ordinary single distribution method or a recycling method, and can be carried out under generally used conditions, and is not particularly limited. For example, isobutylene as a starting material is 1 to 10% by volume, preferably 4 to 9% by volume, more preferably 4 to 7.5% by volume, most preferably 4 to 6% by volume, and molecular oxygen is 3 to 3 to 10% by volume at room temperature. 20% by volume, preferably 4 to 18% by volume, water vapor 0 to 60% by volume, preferably 4 to 50% by volume, 20 to 80% by volume of inert gas such as carbon dioxide and nitrogen, preferably 30 to 60% by volume. The reaction is carried out by introducing a mixed gas composed of% in a reaction tube on the catalyst of the present invention at 250 to 450 ° C. under a pressure of normal pressure to 10 atm and a space velocity of 300 to 5000 h- 1 . When the reaction is carried out in a region having high catalytic activity as in the present invention, the isobutylene concentration in the raw material gas is generally low, the oxygen concentration is high, the water vapor concentration is high, the space velocity is low, the reaction bath temperature is high, and the reaction tube outlet. It is preferable to control the pressure to a high level, but these are often in a trade-off relationship with productivity and / or catalytic performance as an industrial catalyst, and should be provided in an optimum range.

本発明において触媒活性が高い領域とは、特に断りがない限り原料転化率が高い反応浴温度領域を指し、高い原料転化率領域と同義である。より具体的には、触媒活性が高い領域とは、原料転化率が98.5%以上の領域を指す。反応浴温度を上昇させることで原料転化率は上昇するが、例えば直酸法の第一段目の反応においては、急激にメタクロレインおよび/またはメタクリル酸収率または選択率が低下することが分かっていた。しかし、本願発明の触媒前駆体や担持触媒を用いた場合には、反応浴温度を低く設定しても高い転化率を実現することができる。触媒の活性が高いからである。
本発明において収率が高いとは、特に断りがない限り、メタクロレインおよび/またはメタクリル酸収率の合計収率が、触媒活性が高い領域において高いことを指す。
本発明において触媒活性成分の構成元素とは、特に断りがない限り、上記触媒製造工程において乾燥工程以前にモリブデンを主成分とする触媒原料溶液および触媒原料スラリー液に含まれるすべての元素を指す。ただし、200℃以下にて消失、昇華、揮発、燃焼する原料およびその構成元素は、触媒の活性成分の構成元素に含めないものとする。たとえば、原料スラリー液の調合時に添加するヒュームドシリカ等のケイ素原料は触媒活性成分の構成元素として含まれるが、成形工程における成形助剤や担体に含まれるケイ素およびその他の無機材料を構成する元素は、触媒の活性成分の構成元素として含まれないものとする。
本発明のおいてΔTとは、触媒ホットスポット温度(PT)から反応浴温度(BT)を引いた数値であり、発熱を伴う部分酸化型触媒反応において最も発熱している箇所の発熱量の目安を示す。PTとは、多管式反応管内の長軸方向に熱電対を設置し、測定される触媒充填層内の温度分布の最高温度であり、BTとは反応管の発熱を冷却する目的で使用される熱媒の設定温度である。上記温度分布の測定の点数には特に制限はないが、例えば触媒充填長を均等に10から1000に分割する。
本発明において不飽和アルデヒドおよび不飽和アルデヒド化合物とは、分子内に少なくとも一つの二重結合と少なくとも一つのアルデヒドを有する有機化合物であり、たとえばアクロレイン、メタクロレインである。本発明において不飽和カルボン酸および不飽和カルボン酸化合物とは、分子内に少なくとも一つの二重結合と少なくとも一つのカルボキシ基、またはそのエステル基を有する有機化合物であり、たとえばアクリル酸、メタクリル酸、メタクリル酸メチルである。本発明において共役ジエン化合物とは、分子内に少なくとも二つの二重結合を有する有機化合物であり、例えば1,3−ブタジエン、1,3−ペンタジエンである。
In the present invention, the region having high catalytic activity refers to a reaction bath temperature region having a high raw material conversion rate unless otherwise specified, and is synonymous with a high raw material conversion rate region. More specifically, the region having high catalytic activity refers to a region having a raw material conversion rate of 98.5% or more. It was found that increasing the reaction bath temperature increases the raw material conversion rate, but for example, in the first-stage reaction of the direct acid method, the methacrolein and / or methacrylic acid yield or selectivity decreases sharply. Was there. However, when the catalyst precursor or the supported catalyst of the present invention is used, a high conversion rate can be realized even if the reaction bath temperature is set low. This is because the activity of the catalyst is high.
In the present invention, the high yield means that the total yield of methacrolein and / or methacrylic acid is high in the region where the catalytic activity is high, unless otherwise specified.
In the present invention, the constituent elements of the catalytically active component refer to all the elements contained in the catalyst raw material solution containing molybdenum as the main component and the catalyst raw material slurry liquid in the catalyst manufacturing step before the drying step, unless otherwise specified. However, raw materials that disappear, sublimate, volatilize, and burn at 200 ° C. or lower and their constituent elements are not included in the constituent elements of the active component of the catalyst. For example, a silicon raw material such as fumed silica added at the time of preparation of a raw material slurry liquid is contained as a constituent element of a catalytically active component, but is an element constituting silicon and other inorganic materials contained in a molding aid and a carrier in a molding process. Is not included as a constituent element of the active component of the catalyst.
In the present invention, ΔT is a value obtained by subtracting the reaction bath temperature (BT) from the catalyst hotspot temperature (PT), and is a guideline for the amount of heat generated at the most heat-generating portion in the partially oxidized catalytic reaction accompanied by heat generation. Is shown. PT is the maximum temperature of the temperature distribution in the catalyst packed bed to be measured by installing a thermocouple in the long axis direction in the multi-tube reaction tube, and BT is used for the purpose of cooling the heat generation of the reaction tube. This is the set temperature of the heat medium. The number of points for measuring the temperature distribution is not particularly limited, but for example, the catalyst filling length is evenly divided from 10 to 1000.
In the present invention, the unsaturated aldehyde and the unsaturated aldehyde compound are organic compounds having at least one double bond and at least one aldehyde in the molecule, and are, for example, acrolein and methacrolein. In the present invention, the unsaturated carboxylic acid and the unsaturated carboxylic acid compound are organic compounds having at least one double bond and at least one carboxy group in the molecule, or an ester group thereof, for example, acrylic acid, methacrylic acid, and the like. It is methyl methacrylate. In the present invention, the conjugated diene compound is an organic compound having at least two double bonds in the molecule, for example, 1,3-butadiene and 1,3-pentadiene.

以下に、実施例により本発明を更に具体的に説明する。なお、実施例において、転化率、収率、選択率、担持率は以下の式に従って算出した。
原料転化率(%)=(反応したt−ブチルアルコールまたはイソブチレンのモル数)/(供給したt−ブチルアルコールまたはイソブチレンのモル数)×100
有効収率(%)=(生成したメタクロレインおよびメタクリル酸の合算モル数)/(供給したt−ブチルアルコールまたはイソブチレンのモル数)×100
担持率(質量%)=(成形に使用した触媒前駆体の質量)/{(成形に使用した触媒前駆体の質量)+(成形に使用した担体の質量)}×100
Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples, the conversion rate, yield, selectivity, and loading rate were calculated according to the following formulas.
Raw material conversion rate (%) = (number of moles of reacted t-butyl alcohol or isobutylene) / (number of moles of supplied t-butyl alcohol or isobutylene) x 100
Effective yield (%) = (total number of moles of methacrolein and methacrylic acid produced) / (number of moles of supplied t-butyl alcohol or isobutylene) x 100
Support rate (mass%) = (mass of catalyst precursor used for molding) / {(mass of catalyst precursor used for molding) + (mass of carrier used for molding)} × 100

また、以下表2における触媒前駆体の性状評価は以下の通り行った。

触媒前駆体の平均粒子径L1:
レーザー回折散乱粒度分布測定装置(セイシン企業社製、商品名「LMS−2000e」)により粒子径分布を測定し、その体積平均(メジアン径)として求めた。

触媒前駆体の極大最高直径D1:
全自動細孔分布測定装置(Pore Master 60−GT(Quanta Chrome Co.))を用いて、試料重量約0.5gをセル容積0.5ccのスモールセル(10mmΦ×3cm)に入れ、水銀表面張力を480dyn/cm、水銀接触角を140°と設定し、測定温度20℃、測定細孔直径範囲0.0036μm〜400μmの条件のもと測定し、測定結果をすべての細孔が円筒型であるとみなし、測定時に加えた圧力とWashburnの式を用いて解析を行い、触媒前駆体の各細孔直径の細孔分布を求めた。

触媒前駆体の累積細孔容積V1:
全自動細孔分布測定装置(Pore Master 60−GT(Quanta Chrome Co.))を用いて、試料重量約0.5gをセル容積0.5ccのスモールセル(10mmΦ×3cm)に入れ、水銀表面張力を480dyn/cm、水銀接触角を140°と設定し、測定温度20℃、測定細孔直径範囲0.0036μm〜400μmの条件のもと測定し、測定時に固体表面の細孔もしくは間隙の中に押し込まれた水銀容積の総和を試料重量で除して累積細孔容積を求めた。
The properties of the catalyst precursor in Table 2 below were evaluated as follows.

Average particle size of catalyst precursor L1:
The particle size distribution was measured by a laser diffraction / scattering particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd., trade name "LMS-2000e"), and the particle size distribution was determined as the volume average (median diameter).

Maximum maximum diameter of catalyst precursor D1:
Using a fully automatic pore distribution measuring device (Pore Master 60-GT (Quanta Chrome Co.)), a sample weight of about 0.5 g is placed in a small cell (10 mmΦ × 3 cm) having a cell volume of 0.5 cc, and the mercury surface tension Is set to 480 dyn / cm, the mercury contact angle is set to 140 °, the measurement is performed under the conditions of a measurement temperature of 20 ° C. and a measurement pore diameter range of 0.0036 μm to 400 μm, and the measurement result is that all pores are cylindrical. The pressure applied at the time of measurement and the Washburn formula were used for analysis, and the pore distribution of each pore diameter of the catalyst precursor was determined.

Cumulative pore volume of catalyst precursor V1:
Using a fully automatic pore distribution measuring device (Pore Master 60-GT (Quanta Chrome Co.)), a sample weight of about 0.5 g is placed in a small cell (10 mmΦ × 3 cm) having a cell volume of 0.5 cc, and the surface tension of mercury. Is set to 480 dyn / cm, the mercury contact angle is set to 140 °, the measurement is performed under the conditions of a measurement temperature of 20 ° C. and a measurement pore diameter range of 0.0036 μm to 400 μm, and during measurement, inside the pores or gaps on the solid surface. The cumulative pore volume was determined by dividing the total volume of the indented mercury by the sample weight.

また、表2におけるCO収率は、以下の式に従って算出した。
CO収率(%)=(生成したCOのモル数)/(供給したt−ブチルアルコールまたはイソブチレンのモル数)×100
The CO 2 yield in Table 2 was calculated according to the following formula.
CO 2 yield (%) = (number of moles of CO 2 produced) / (number of moles of supplied t-butyl alcohol or isobutylene) x 100

[実施例1](触媒1の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数15000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、550℃、5時間の条件で焼成し、本発明の触媒1を得た。
[Example 1] (Preparation of catalyst 1)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 15,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 550 ° C. for 5 hours to obtain the catalyst 1 of the present invention.

[実施例2](触媒2の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数15000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒2を得た。
[Example 2] (Preparation of catalyst 2)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 15,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 2 of the present invention.

[実施例3](触媒3の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数15000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、555℃、5時間の条件で焼成し、本発明の触媒3を得た。
[Example 3] (Preparation of catalyst 3)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 15,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 555 ° C. for 5 hours to obtain the catalyst 3 of the present invention.

[実施例4](触媒4の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数15000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、540℃、5時間の条件で焼成し、本発明の触媒4を得た。
[Example 4] (Preparation of catalyst 4)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 15,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 50% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 540 ° C. for 5 hours to obtain the catalyst 4 of the present invention.

[実施例5](触媒5の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数13000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒5を得た。
[Example 5] (Preparation of catalyst 5)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 13000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, a 25% by mass glycerin solution was used as a binder by the rolling granulation method in an inert manner using 40% by mass with respect to the catalyst precursor. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 5 of the present invention.

[実施例6](触媒6の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数13000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、535℃、5時間の条件で焼成し、本発明の触媒6を得た。
[Example 6] (Preparation of catalyst 6)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 13000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 535 ° C. for 5 hours to obtain the catalyst 6 of the present invention.

[比較例1](触媒7の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数11000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒7を得た。
[Comparative Example 1] (Preparation of catalyst 7)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 11000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 7 of the present invention.

[比較例2](触媒8の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数11000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、550℃、5時間の条件で焼成し、本発明の触媒8を得た。
[Comparative Example 2] (Preparation of catalyst 8)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 11000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 550 ° C. for 5 hours to obtain the catalyst 8 of the present invention.

[比較例3](触媒9の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数11000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、540℃、5時間の条件で焼成し、本発明の触媒9を得た。
[Comparative Example 3] (Preparation of catalyst 9)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 11000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 540 ° C. for 5 hours to obtain the catalyst 9 of the present invention.

[比較例4](触媒10の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数11000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、535℃、5時間の条件で焼成し、本発明の触媒10を得た。
[Comparative Example 4] (Preparation of catalyst 10)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 11000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 535 ° C. for 5 hours to obtain the catalyst 10 of the present invention.

[実施例7](触媒11の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数17000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、540℃、5時間の条件で焼成し、本発明の触媒11を得た。
[Example 7] (Preparation of catalyst 11)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 17,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 540 ° C. for 5 hours to obtain the catalyst 11 of the present invention.

[実施例8](触媒12の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数17000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒12を得た。
[Example 8] (Preparation of catalyst 12)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 17,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 12 of the present invention.

[実施例9](触媒13の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数16000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、535℃、5時間の条件で焼成し、本発明の触媒13を得た。
[Example 9] (Preparation of catalyst 13)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 16000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 535 ° C. for 5 hours to obtain the catalyst 13 of the present invention.

[実施例10](触媒14の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数16000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒14を得た。
[Example 10] (Preparation of catalyst 14)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 16000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 14 of the present invention.

[実施例11](触媒15の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数15500rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒15を得た。
[Example 11] (Preparation of catalyst 15)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 15500 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ), 5% by mass of crystalline cellulose was added, and the mixture was sufficiently mixed. Then, 40% by mass of a 25% by mass glycerin solution was used as a binder by the rolling granulation method with respect to the catalyst precursor, and the mixture was inert. The carrier was supported and molded into a spherical shape so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 15 of the present invention.

[比較例5](触媒16の調製)
ヘプタモリブデン酸アンモニウム100質量部を80℃に加温した純水380質量部に完全溶解させた(母液1)。次に、硝酸セシウム3.7質量部を純水42mlに溶解させて、母液1に加えた。次に、硝酸第二鉄37質量部、硝酸コバルト90質量部及び硝酸ニッケル33質量部を60℃に加温した純水85mlに溶解させ、母液1に加えた。続いて硝酸ビスマス21質量部を60℃に加温した純水23mlに硝酸(60質量%)5.4質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にてアトマイザー回転数17000rpmとして乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた触媒前駆体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.4)を目開き45μmのふるいにかけ、ふるいを通過した触媒前駆体に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして25質量%グリセリン溶液を触媒前駆体に対して40質量%用い、不活性の担体に担持率が40質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、545℃、5時間の条件で焼成し、本発明の触媒16を得た。
[Comparative Example 5] (Preparation of catalyst 16)
100 parts by mass of ammonium heptamolybdate was completely dissolved in 380 parts by mass of pure water heated to 80 ° C. (mother solution 1). Next, 3.7 parts by mass of cesium nitrate was dissolved in 42 ml of pure water and added to the mother liquor 1. Next, 37 parts by mass of ferric nitrate, 90 parts by mass of cobalt nitrate and 33 parts by mass of nickel nitrate were dissolved in 85 ml of pure water heated to 60 ° C. and added to the mother liquor 1. Subsequently, 21 parts by mass of bismuth nitrate was dissolved in an aqueous nitric acid solution prepared by adding 5.4 parts by mass of nitric acid (60% by mass) to 23 ml of pure water heated to 60 ° C. and added to the mother liquor 1. The mother liquor 1 was dried by a spray-drying method at an atomizer rotation speed of 17,000 rpm, and the obtained dry powder was pre-baked at 440 ° C. for 5 hours. The catalyst precursor thus obtained (the atomic ratio calculated from the charged raw material is Mo: Bi: Fe: Co: Ni: Cs = 12: 0.9: 2.0: 6.5: 2.4: 0.4. ) Is sieved with an opening of 45 μm, 5% by mass of crystalline cellulose is added to the catalyst precursor that has passed through the sieve, and after sufficient mixing, a 25% by mass glycerin solution is used as a binder by the rolling granulation method. Was used in an amount of 40% by mass based on the catalyst precursor, and was supported and molded into an inert carrier so that the carrying ratio was 40% by mass. The spherical molded product having a particle size of 4.4 mm thus obtained was fired at 545 ° C. for 5 hours to obtain the catalyst 16 of the present invention.

上記実施例および比較例で得られた触媒を、以下の方法により反応評価した。各触媒34mlをステンレス鋼反応管に充填し、ガス体積比率がイソブチレン:酸素:窒素:水蒸気=1:2.2:12.5:1.0の混合ガスを用い、出口圧力50kPaG下、GHSV1200hr−1の条件で、反応浴温度350℃にてTOS20時間以上のエージング反応後、反応管出口で、コンデンサーにより凝縮液成分とガス成分を分離し、ガスおよび凝縮液中の各成分を各々水素炎イオン化検出器と熱伝導検出器が装着されたガスクロマトグラフで定量分析した。ガスクロマトグラフにより得られた各データはファクター補正し原料転化率、有効収率を算出した。 The catalysts obtained in the above Examples and Comparative Examples were evaluated for reaction by the following methods. 34 ml of each catalyst is filled in a stainless steel reaction tube, and a mixed gas having a gas volume ratio of isobutylene: oxygen: nitrogen: water vapor = 1: 2.2: 12.5: 1.0 is used, and under an outlet pressure of 50 kPaG, GHSV1200 hr − Under the condition of 1 , after the aging reaction of TOS 20 hours or more at the reaction bath temperature of 350 ° C., the condensate component and the gas component are separated by a condenser at the outlet of the reaction tube, and the gas and each component in the condensate are ionized by hydrogen flame. Quantitative analysis was performed with a gas chromatograph equipped with a detector and a thermal conductivity detector. Each data obtained by gas chromatography was factor-corrected to calculate the raw material conversion rate and effective yield.

表1に実施例、比較例、および対応する試験例と比較試験例による原料転化率98.5%以上における反応浴温度、有効収率等の結果を示す。表1より明らかなように、本発明により触媒活性が高い領域においても有効収率をロスすることなく、特に直酸法において競争力の高い触媒を得ることができることが分かる。さらに、本発明の触媒によりΔTおよびCO収率が低減されており、プロセス安定性の向上及び副生成物の低減に有効であることが分かる。 Table 1 shows the results of the reaction bath temperature, effective yield, etc. at a raw material conversion rate of 98.5% or more according to Examples, Comparative Examples, and the corresponding Test Examples and Comparative Test Examples. As is clear from Table 1, it can be seen that according to the present invention, a highly competitive catalyst can be obtained particularly in the direct acid method without losing the effective yield even in the region where the catalytic activity is high. Furthermore, it can be seen that the catalyst of the present invention reduces the yields of ΔT and CO 2 , which is effective in improving process stability and reducing by-products.

Figure 2020157294
Figure 2020157294

実施例1〜11、比較例1〜5の結果より本発明の触媒は、特に触媒活性が高い領域においても従来の触媒より高収率で目的化合物であるメタクロレインおよびメタクリル酸を得ることができることが確認された。特に実施例1〜4、7〜11ではCO収率も低く、また反応浴温度を下げても高い原料転化率を実現できることも明らかとなった。 From the results of Examples 1 to 11 and Comparative Examples 1 to 5, the catalyst of the present invention can obtain the target compounds methacrolein and methacrylic acid in a higher yield than the conventional catalyst even in a region where the catalytic activity is particularly high. Was confirmed. In particular, in Examples 1 to 4 and 7 to 11, it was clarified that the CO 2 yield was low and that a high raw material conversion rate could be realized even if the reaction bath temperature was lowered.

本発明の触媒を使用することにより、不飽和アルデヒド化合物、不飽和カルボン酸化合物、又は共役ジエン化合物を酸化的に製造する場合に、触媒活性が高い領域において高収率で得ることが可能である。 By using the catalyst of the present invention, when an unsaturated aldehyde compound, an unsaturated carboxylic acid compound, or a conjugated diene compound is oxidatively produced, it is possible to obtain a high yield in a region having high catalytic activity. ..

Claims (11)

平均粒子径が30μm以上70μm以下であり、かつ水銀圧入法により求められる極大細孔直径が0.01μm以上20μm以下である下記式(1)で表される触媒前駆体。
Moa1Bib1Nic1Cod1Fee1f1g1h1i1・・・(1)
(式中、Mo、Bi、Ni、CoおよびFeはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表し、Xはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、ケイ素、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはナトリウム、カリウム、セシウム、ルビジウム、およびタリウムから選ばれる少なくとも一種の元素、Zは周期表の第1族から第16族に属し、上記Mo、Bi、Ni、Co、Fe、X、およびY以外の元素から選ばれる少なくとも一種の元素を意味するものであり、a1、b1、c1、d1、e1、f1、g1、h1、及びi1はそれぞれモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Y、Zおよび酸素の原子数を表し、a1=12としたとき、0<b1≦7、0≦c1≦10、0≦d1≦10、0≦c+d≦20、0≦e≦5、0≦f≦2、0≦g≦3、0≦h≦5、およびi=各元素の酸化状態によって決まる値である)
A catalyst precursor represented by the following formula (1), which has an average particle diameter of 30 μm or more and 70 μm or less, and a maximum pore diameter obtained by a mercury intrusion method of 0.01 μm or more and 20 μm or less.
Mo a1 Bi b1 Ni c1 Co d1 Fe e1 X f1 Y g1 Z h1 O i1 ... (1)
(In the formula, Mo, Bi, Ni, Co and Fe represent molybdenum, bismuth, nickel, cobalt and iron, respectively, and X represents tungsten, antimony, tin, zinc, chromium, manganese, magnesium, silicon, aluminum, cerium and titanium. At least one element selected from, Y is at least one element selected from sodium, potassium, cesmuth, rubidium, and tarium, Z belongs to groups 1 to 16 of the periodic table, and Mo, Bi, Ni, It means at least one element selected from elements other than Co, Fe, X, and Y, and a1, b1, c1, d1, e1, f1, g1, h1, and i1 are molybdenum, bismuth, and nickel, respectively. , Cobalt, iron, X, Y, Z and oxygen, and when a1 = 12, 0 <b1 ≦ 7, 0 ≦ c1 ≦ 10, 0 ≦ d1 ≦ 10, 0 ≦ c + d ≦ 20, 0 ≦ e ≦ 5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, 0 ≦ h ≦ 5, and i = values determined by the oxidation state of each element)
更に、累積細孔容積が1.05cc/g以上10cc/g以下である請求項1に記載の触媒前駆体。 The catalyst precursor according to claim 1, wherein the cumulative pore volume is 1.05 cc / g or more and 10 cc / g or less. 請求項1又は2に記載の触媒前駆体を成型して得られる触媒。 A catalyst obtained by molding the catalyst precursor according to claim 1 or 2. 請求項1又は2に記載の触媒前駆体が不活性担体に担持された触媒。 A catalyst in which the catalyst precursor according to claim 1 or 2 is supported on an inert carrier. 前記不活性担体がシリカ及び/又はアルミナである請求項4に記載の触媒。 The catalyst according to claim 4, wherein the inert carrier is silica and / or alumina. 触媒が不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物製造用である請求項1乃至5のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 5, wherein the catalyst is for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound. 請求項1乃至6のいずれか一項に記載の触媒を用いた不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物の製造方法。 A method for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound using the catalyst according to any one of claims 1 to 6. 請求項7において原料転化率が98.5%以上である、不飽和アルデヒド化合物、及び/又は不飽和カルボン酸化合物の製造方法。 The method for producing an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound, wherein the raw material conversion rate is 98.5% or more according to claim 7. 請求項7乃至8において不飽和アルデヒド化合物がメタクロレインであり、不飽和カルボン酸化合物がメタクリル酸である製造方法。 The production method in which the unsaturated aldehyde compound is methacrolein and the unsaturated carboxylic acid compound is methacrylic acid in claims 7 to 8. 請求項1または2に記載の触媒前駆体を使用する触媒の製造方法。 A method for producing a catalyst using the catalyst precursor according to claim 1 or 2. 前記触媒前駆体が、触媒活性成分原料の混合溶液またはスラリーを乾燥した後に200〜600℃の温度で予備焼成した予備焼成粉体である請求項3乃至6に記載の触媒。 The catalyst according to claim 3 to 6, wherein the catalyst precursor is a pre-baked powder obtained by pre-baking a mixed solution or slurry of a catalyst active ingredient raw material at a temperature of 200 to 600 ° C.
JP2020042591A 2019-03-25 2020-03-12 Catalyst precursor, catalyst using the same, and manufacturing method thereof Active JP7418252B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019055824 2019-03-25
JP2019055824 2019-03-25

Publications (2)

Publication Number Publication Date
JP2020157294A true JP2020157294A (en) 2020-10-01
JP7418252B2 JP7418252B2 (en) 2024-01-19

Family

ID=72640926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042591A Active JP7418252B2 (en) 2019-03-25 2020-03-12 Catalyst precursor, catalyst using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7418252B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065116A1 (en) * 2020-09-24 2022-03-31 日本化薬株式会社 Catalyst precursor, catalyst using same, production method for compound and production method for catalyst
JP7105398B1 (en) * 2021-01-27 2022-07-22 日本化薬株式会社 Catalyst and method for producing unsaturated carboxylic acid using the same
WO2022163726A1 (en) * 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carobxylic acid using same
JP7237268B1 (en) * 2021-10-14 2023-03-10 日本化薬株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated carboxylic acid
WO2023063349A1 (en) * 2021-10-14 2023-04-20 日本化薬株式会社 Catalyst for production of unsaturated carboxylic acid, method for producing same, and method for producing unsaturated carboxylic acid
WO2023100855A1 (en) * 2021-11-30 2023-06-08 日本化薬株式会社 Catalyst, and method for producing compound using same
WO2024048703A1 (en) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 CATALYST PRECURSOR AND METHOD FOR MANUFACTURING SAME, CATALYST MOLDED ARTICLE AND METHOD FOR MANUFACTURING SAME, METHOD FOR MANUFACTURING CATALYST, METHOD FOR MANUFACTURING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR MANUFACTURING α,β-UNSATURATED CARBOXYLIC ACID ESTER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070369A1 (en) 2002-02-19 2003-08-28 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and process for producing the same
JP4895265B2 (en) 2005-09-16 2012-03-14 三菱レイヨン株式会社 Process for producing methacrolein and / or methacrylic acid synthesis catalyst
EP2700447B1 (en) 2011-04-21 2021-06-16 Asahi Kasei Kabushiki Kaisha Silica-supported catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065116A1 (en) * 2020-09-24 2022-03-31 日本化薬株式会社 Catalyst precursor, catalyst using same, production method for compound and production method for catalyst
JP7105395B1 (en) * 2020-09-24 2022-07-22 日本化薬株式会社 Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst
JP7105398B1 (en) * 2021-01-27 2022-07-22 日本化薬株式会社 Catalyst and method for producing unsaturated carboxylic acid using the same
WO2022163726A1 (en) * 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carobxylic acid using same
JP7237268B1 (en) * 2021-10-14 2023-03-10 日本化薬株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated carboxylic acid
WO2023063349A1 (en) * 2021-10-14 2023-04-20 日本化薬株式会社 Catalyst for production of unsaturated carboxylic acid, method for producing same, and method for producing unsaturated carboxylic acid
WO2023100855A1 (en) * 2021-11-30 2023-06-08 日本化薬株式会社 Catalyst, and method for producing compound using same
JP7325688B1 (en) 2021-11-30 2023-08-14 日本化薬株式会社 Catalyst and method for producing compound using the same
WO2024048703A1 (en) * 2022-08-31 2024-03-07 三菱ケミカル株式会社 CATALYST PRECURSOR AND METHOD FOR MANUFACTURING SAME, CATALYST MOLDED ARTICLE AND METHOD FOR MANUFACTURING SAME, METHOD FOR MANUFACTURING CATALYST, METHOD FOR MANUFACTURING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR MANUFACTURING α,β-UNSATURATED CARBOXYLIC ACID ESTER

Also Published As

Publication number Publication date
JP7418252B2 (en) 2024-01-19

Similar Documents

Publication Publication Date Title
JP2020157294A (en) Catalyst precursor, catalyst using the same, and production method of the same
JP6598419B1 (en) Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same
JP5973999B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP2012115825A (en) Catalyst for producing methacrolein and methacrylic acid, and method for producing the same
JPWO2020203606A1 (en) Method for producing dry granules for catalyst production, catalysts, and compounds
JP6932292B1 (en) Catalysts, catalyst filling methods, and methods for producing compounds using catalysts.
JP2020015043A (en) Method fop producing catalyst for producing methacrylic acid
JP6932293B1 (en) A catalyst, a method for producing a compound using the catalyst, and a compound
JP7224351B2 (en) Catalyst and method for producing compound using the same
JP6067013B2 (en) Catalyst for producing acrylic acid and process for producing acrylic acid by using this catalyst
WO2022065116A1 (en) Catalyst precursor, catalyst using same, production method for compound and production method for catalyst
JP2023141551A (en) Catalyst and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
JP7105398B1 (en) Catalyst and method for producing unsaturated carboxylic acid using the same
JP7383202B2 (en) Catalyst and method for producing compounds using the same
JP7325688B1 (en) Catalyst and method for producing compound using the same
JP2023141552A (en) Manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP5269046B2 (en) Method for producing a catalyst for methacrylic acid production
JP2020151612A (en) Catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same
JP2018043196A (en) Catalyst for producing acrylic acid and method for producing acrylic acid
WO2022163726A1 (en) Catalyst, and method for producing unsaturated carobxylic acid using same
JP2022082836A (en) Catalyst production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150