JP2020155955A - Wireless communication device - Google Patents

Wireless communication device Download PDF

Info

Publication number
JP2020155955A
JP2020155955A JP2019053276A JP2019053276A JP2020155955A JP 2020155955 A JP2020155955 A JP 2020155955A JP 2019053276 A JP2019053276 A JP 2019053276A JP 2019053276 A JP2019053276 A JP 2019053276A JP 2020155955 A JP2020155955 A JP 2020155955A
Authority
JP
Japan
Prior art keywords
wireless communication
threshold value
operation mode
data transmission
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019053276A
Other languages
Japanese (ja)
Other versions
JP7293770B2 (en
Inventor
祐治 青野
Yuji Aono
祐治 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2019053276A priority Critical patent/JP7293770B2/en
Publication of JP2020155955A publication Critical patent/JP2020155955A/en
Application granted granted Critical
Publication of JP7293770B2 publication Critical patent/JP7293770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

To provide a wireless communication device that can reduce power consumption more than before regardless of communication frequency.SOLUTION: A wireless communication device includes: a first wireless communication unit that performs wireless communication by using a frequency band that does not require a radio station license; and a control unit that controls switching between a first operation mode in which the first wireless communication unit is made to transmit data after confirming the availability of a channel to be used for data transmission in advance and a second operation mode in which the first wireless communication unit is made to transmit data without confirmation in advance.SELECTED DRAWING: Figure 2

Description

本発明は、無線通信装置に関する。 The present invention relates to a wireless communication device.

近年、IoT(Internet Of Things:モノのインターネット)やAI(Artificial Intelligence:人工知能)といった技術が注目されている。IoTは、ありとあらゆるモノ(センサ、機器・装置等のハードウェア端末全般)をインターネットに接続し、モノから得られるデータを用いてモノの状態を把握したり、モノを操作したりする技術である。AIは、一般的には、人間の知的行動をソフトウェアによって人工的に再現した技術であり、例えば人間が用いる自然言語の理解、論理的な推論等を行う技術である。 In recent years, technologies such as IoT (Internet of Things) and AI (Artificial Intelligence) have been attracting attention. IoT is a technology that connects all kinds of things (general hardware terminals such as sensors, devices and devices) to the Internet, grasps the state of things using data obtained from things, and operates things. AI is generally a technique for artificially reproducing human intellectual behavior by software, for example, a technique for understanding natural language used by humans, logical reasoning, and the like.

近年、このようなIoTやAIを用いて、工場やプラント等に設置された設備の異常の兆候を捉えて設備の故障を未然に防止するシステムを構築する取り組みが行われている。具体的に、このシステムは、対象となる設備に多数の無線センサを設置するとともに、無線センサから無線信号で送信される各種のデータを収集するサーバ装置を設け、サーバ装置に蓄積されたデータを解析して上述した異常の兆候を捉えるシステムである。 In recent years, efforts have been made to use such IoT and AI to construct a system that catches signs of abnormalities in equipment installed in factories, plants, etc. and prevents equipment failures. Specifically, in this system, a large number of wireless sensors are installed in the target equipment, and a server device that collects various data transmitted by wireless signals from the wireless sensors is provided, and the data accumulated in the server device is collected. It is a system that analyzes and catches the signs of the above-mentioned abnormality.

このようなシステムにおいて、上述した無線センサによる無線通信は、無線局免許を必要としない周波数帯(アンライセンスバンド)を用いて行われる場合が多い。また、上述の無線センサは、電源を確保することが困難な場所に設置されることもあるため、電池駆動が要求される。このような電池駆動型の無線センサは、電池寿命を延ばすために低消費電力であることが要求される。尚、以下の特許文献1には、キャリアセンス方式を用いて複数の通信システムの競合状態を制御する無線通信デバイスにおける電力消費量の増加を抑制する従来技術の一例が開示されている。 In such a system, wireless communication by the above-mentioned wireless sensor is often performed using a frequency band (unlicensed band) that does not require a wireless station license. Further, since the above-mentioned wireless sensor may be installed in a place where it is difficult to secure a power source, battery drive is required. Such a battery-powered wireless sensor is required to have low power consumption in order to extend the battery life. The following Patent Document 1 discloses an example of a conventional technique for suppressing an increase in power consumption in a wireless communication device that controls a race condition of a plurality of communication systems by using a carrier sense method.

特許第6288268号公報Japanese Patent No. 6288268

ところで、上述した異常の兆候を捉えるシステムで使用される無線通信装置は、低頻度(例えば、数時間〜1日に1回程度の頻度)で無線通信が行われるのが殆どである。この無線通信装置は、例えば上述した異常の兆候が捉えられた場合に、より詳細なデータを測定するために、一時的に高頻度(例えば、数分〜数時間に1回程度の頻度)でデータ送信を行うように設定が変更される場合がある。このような通信頻度が変更される無線通信装置において、電池寿命を延ばすためには、無線通信が低頻度で行われる場合の不要な電力の消費を抑えるとともに、無線通信が高頻度で行われる場合の不要な電力の消費を抑える必要がある。 By the way, most of the wireless communication devices used in the system for catching the above-mentioned signs of abnormality perform wireless communication at a low frequency (for example, a frequency of several hours to once a day). This wireless communication device temporarily has a high frequency (for example, once every few minutes to several hours) in order to measure more detailed data when the above-mentioned signs of abnormality are detected. The settings may be changed to send data. In a wireless communication device whose communication frequency is changed in this way, in order to extend the battery life, unnecessary power consumption when wireless communication is performed at low frequency is suppressed, and when wireless communication is performed at high frequency. It is necessary to reduce unnecessary power consumption.

本発明は上記事情に鑑みてなされたものであり、通信頻度に拘わらず従来よりも電力消費を抑えることができる無線通信装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wireless communication device capable of suppressing power consumption as compared with the conventional case regardless of the communication frequency.

上記課題を解決するために、本発明の一態様による無線通信装置(10)は、無線局免許を必要としない周波数帯を用いて無線通信を行う第1無線通信部(13)と、データの送信に使用するチャネルの空き状況の事前確認を行ってから前記第1無線通信部にデータを送信させる第1動作モードと、前記事前確認を行うことなく前記第1無線通信部にデータを送信させる第2動作モードとの切り替え制御を行う制御部(15)と、を備える。 In order to solve the above problems, the wireless communication device (10) according to one aspect of the present invention includes a first wireless communication unit (13) that performs wireless communication using a frequency band that does not require a wireless station license, and data. The first operation mode in which the availability of the channel used for transmission is confirmed in advance and then the data is transmitted to the first wireless communication unit, and the data is transmitted to the first wireless communication unit without the prior confirmation. It is provided with a control unit (15) that controls switching to the second operation mode.

また、本発明の一態様による無線通信装置は、前記制御部が、データ送信周期、通信データレート、及びエラーレートの少なくとも1つに応じて、前記第1動作モードと前記第2動作モードとの切り替え制御を行う。 Further, in the wireless communication device according to one aspect of the present invention, the control unit has the first operation mode and the second operation mode according to at least one of a data transmission cycle, a communication data rate, and an error rate. Perform switching control.

また、本発明の一態様による無線通信装置は、前記制御部が、前記データ送信周期が予め規定された第1閾値以下である場合、前記通信データレートが予め規定された第2閾値以下である場合、又は前記エラーレートが予め規定された第3閾値よりも大である場合には、前記第1動作モードにする制御を行う。 Further, in the wireless communication device according to one aspect of the present invention, when the control unit has the data transmission cycle equal to or less than the predetermined first threshold value, the communication data rate is equal to or less than the predetermined second threshold value. In this case, or when the error rate is larger than a predetermined third threshold value, control is performed to switch to the first operation mode.

また、本発明の一態様による無線通信装置は、前記第1動作モードと前記第2動作モードとの切り替え制御に用いられる設定情報(CD)を記憶する記憶部(12)を備えており、前記制御部が、前記記憶部に記憶された前記設定情報に基づいて、前記第1動作モードと前記第2動作モードとの切り替え制御を行う。 Further, the wireless communication device according to one aspect of the present invention includes a storage unit (12) for storing setting information (CD) used for switching control between the first operation mode and the second operation mode. The control unit performs switching control between the first operation mode and the second operation mode based on the setting information stored in the storage unit.

また、本発明の一態様による無線通信装置は、外部機器(TM)と近距離無線通信を行って前記設定情報を取得する第2無線通信部(14)を更に備える。 Further, the wireless communication device according to one aspect of the present invention further includes a second wireless communication unit (14) that performs short-range wireless communication with an external device (TM) to acquire the setting information.

また、本発明の一態様による無線通信装置は、前記設定情報には、前記第1動作モードを実行することが可能な第1データ送信周期と、前記第2動作モードを実行することが可能な第2データ送信周期と、が規定された第1テーブル(TB1)が含まれており、前記第1データ送信周期には、前記第1閾値以下の前記データ送信周期と、前記第1閾値よりも大である前記データ送信周期とが設定可能であり、前記第2データ送信周期には、前記第1閾値よりも大である前記データ送信周期のみが設定可能である。 Further, the wireless communication device according to one aspect of the present invention can execute the first data transmission cycle capable of executing the first operation mode and the second operation mode in the setting information. A first table (TB1) in which a second data transmission cycle is defined is included, and the first data transmission cycle includes the data transmission cycle below the first threshold value and more than the first threshold value. The large data transmission cycle can be set, and only the data transmission cycle larger than the first threshold value can be set in the second data transmission cycle.

或いは、本発明の一態様による無線通信装置は、前記設定情報には、前記第1動作モードを実行することが可能な第1通信データレートと、前記第2動作モードを実行することが可能な第2通信データレートと、が規定された第2テーブル(TB2)が含まれており、前記第1通信データレートには、前記第2閾値以下の前記通信データレートと、前記第2閾値よりも大である前記通信データレートとが設定可能であり、前記第2通信データレートには、前記第2閾値よりも大である前記通信データレートのみが設定可能である。 Alternatively, the wireless communication device according to one aspect of the present invention can execute the first communication data rate capable of executing the first operation mode and the second operation mode in the setting information. A second table (TB2) in which a second communication data rate is defined is included, and the first communication data rate includes the communication data rate equal to or lower than the second threshold value and higher than the second threshold value. The communication data rate that is large can be set, and only the communication data rate that is larger than the second threshold value can be set in the second communication data rate.

或いは、本発明の一態様による無線通信装置は、前記設定情報には、前記第1閾値、前記第2閾値、及び前記第3閾値の少なくとも1つが含まれており、前記制御部が、前記データ送信周期が前記第1閾値以下である場合、前記通信データレートが前記第2閾値以下である場合、又は前記エラーレートが前記第3閾値よりも大である場合には、前記第1動作モードにする制御を行い、前記データ送信周期が前記第1閾値よりも大である場合、前記通信データレートが前記第2閾値よりも大である場合、又は前記エラーレートが前記第3閾値以下である場合には、前記第2動作モードにする制御を行う。 Alternatively, in the wireless communication device according to one aspect of the present invention, the setting information includes at least one of the first threshold value, the second threshold value, and the third threshold value, and the control unit uses the data. When the transmission cycle is equal to or less than the first threshold value, the communication data rate is equal to or less than the second threshold value, or the error rate is larger than the third threshold value, the first operation mode is set. When the data transmission cycle is larger than the first threshold value, the communication data rate is larger than the second threshold value, or the error rate is equal to or lower than the third threshold value. Is controlled to be in the second operation mode.

また、本発明の一態様による無線通信装置は、少なくとも前記第1無線通信部及び前記制御部に電力を供給する電池(BT)を備える。 Further, the wireless communication device according to one aspect of the present invention includes at least a battery (BT) for supplying electric power to the first wireless communication unit and the control unit.

また、本発明の一態様による無線通信装置は、前記電池が、交換可能である。 Further, in the wireless communication device according to one aspect of the present invention, the battery is replaceable.

本発明によれば、通信頻度に拘わらず従来よりも電力消費を抑えることができるという効果がある。 According to the present invention, there is an effect that power consumption can be suppressed as compared with the conventional case regardless of the communication frequency.

本発明の第1実施形態による無線通信装置が用いられるデータ収集システムの全体構成を示す図である。It is a figure which shows the whole structure of the data acquisition system which uses the wireless communication apparatus by 1st Embodiment of this invention. 本発明の第1実施形態による無線通信装置の要部構成を示すブロック図である。It is a block diagram which shows the main part structure of the wireless communication apparatus by 1st Embodiment of this invention. 本発明の第1実施形態において、動作モードの切り替え制御に用いられるテーブルを示す図である。It is a figure which shows the table used for the switching control of the operation mode in 1st Embodiment of this invention. 本発明の第1実施形態による無線通信装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the wireless communication apparatus by 1st Embodiment of this invention. 本発明の第1実施形態の変形例における動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation in the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例において設定される動作モードを示す図である。It is a figure which shows the operation mode set in the modification of 1st Embodiment of this invention. 本発明の第2実施形態において、動作モードの切り替え制御に用いられるテーブルを示す図である。It is a figure which shows the table used for the switching control of the operation mode in the 2nd Embodiment of this invention. 本発明の第2実施形態の変形例において設定される動作モードを示す図である。It is a figure which shows the operation mode set in the modification of the 2nd Embodiment of this invention. 本発明の第3実施形態において設定される動作モードを示す図である。It is a figure which shows the operation mode set in the 3rd Embodiment of this invention. 本発明の第4実施形態における動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation in 4th Embodiment of this invention.

以下、図面を参照して本発明の実施形態による無線通信装置について詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の各実施形態の詳細について説明する。 Hereinafter, the wireless communication device according to the embodiment of the present invention will be described in detail with reference to the drawings. Hereinafter, the outline of the embodiment of the present invention will be described first, and then the details of each embodiment of the present invention will be described.

〔概要〕
本発明の実施形態は、通信頻度に拘わらず従来よりも電力消費を抑えることができるようにするものである。ここで、無線局免許を必要としない周波数帯(アンライセンスバンド)を用いて無線通信を行う無線通信装置がチャネル(無線チャネル)をアクセスする方法としては、以下の2つが挙げられる。
〔Overview〕
An embodiment of the present invention makes it possible to reduce power consumption as compared with the conventional case regardless of the communication frequency. Here, there are the following two methods for a wireless communication device that performs wireless communication using a frequency band (unlicensed band) that does not require a wireless station license to access a channel (radio channel).

・LBT(Listen Before Talk)
データの送信に使用するチャネルの空き状況の事前確認を行ってからデータ送信を行う方法である。具体的には、データの送信前に、使用するチャネル(例えば、送信に使用する周波数のチャネル)における受信レベルを検出する。検出された受信レベルが予め規定された閾値よりも高い場合には、そのチャネルは使用中であると判断してデータの送信を行わない。これに対し、検出された受信レベルが上記閾値以下の場合には、そのチャネルは空いていると判断してデータ送信を行う。尚、この方法は、CCA(Clear Channel Assessment)と呼ばれることもある。
・ LBT (Listen Before Talk)
This is a method of transmitting data after confirming the availability of the channel used for data transmission in advance. Specifically, the reception level in the channel to be used (for example, the channel of the frequency used for transmission) is detected before the data is transmitted. If the detected reception level is higher than a predetermined threshold, it is determined that the channel is in use and data is not transmitted. On the other hand, when the detected reception level is equal to or lower than the above threshold value, it is determined that the channel is vacant and data transmission is performed. This method is sometimes called CCA (Clear Channel Assessment).

・DC(Duty Cycle)
ある期間に占める無線通信装置の送信時間の割合に制限(法的な制限)を持たせて運用する方法である。尚、本方法では、LBTのような事前確認が行われることなくデータ送信が行われる。
・ DC (Duty Cycle)
This is a method of operating with a limit (legal limit) on the ratio of the transmission time of the wireless communication device to a certain period. In this method, data is transmitted without prior confirmation such as LBT.

アンライセンスバンドを用いて無線通信を行う無線通信装置は、使用される国又は地域の法律によって、データの送信前に上記のLBTを実施すること、又は、上記のDCの制限に従った運用をすることが求められる場合がある。 Wireless communication devices that perform wireless communication using unlicensed bands shall, according to the laws of the country or region in which they are used, carry out the above LBT before transmitting data, or operate in accordance with the above DC restrictions. You may be required to do so.

ところで、データの送信前に上記のLBTを実施する無線通信装置は、データの送信前にデータの送信に使用するチャネルが空きチャネルか否かを確認している。このため、例えば、他の無線局が高頻度(例えば、数分〜数時間に1回程度の頻度)でデータ送信を行っていて、他の無線局と干渉する可能性が高い状況においても、空きチャネルを用いて確実な無線通信が可能である。 By the way, the wireless communication device that carries out the above-mentioned LBT before transmitting the data confirms whether or not the channel used for transmitting the data is a free channel before transmitting the data. Therefore, for example, even in a situation where another radio station frequently transmits data (for example, once every few minutes to several hours) and there is a high possibility of interfering with the other radio station. Reliable wireless communication is possible using free channels.

しかしながら、データの送信前に上記のLBTを実施する無線通信装置では、例えば、他の無線局が低頻度(例えば、数時間〜1日に1回程度の頻度)でデータ送信を行っていて、他の無線局と干渉する可能性が低い状況においても、データの送信前に上記のLBTが実施される。このため、不要な電力消費が発生して、電池寿命が短くなる要因になってしまう。 However, in the wireless communication device that performs the above-mentioned LBT before transmitting data, for example, another wireless station transmits data at a low frequency (for example, a frequency of several hours to once a day). Even in situations where it is unlikely to interfere with other radio stations, the above LBT is performed before data transmission. Therefore, unnecessary power consumption is generated, which causes a shortening of battery life.

一方、上述のDCの制限に従って運用されている無線通信装置では、通信頻度に拘わらず上記のLBTは行われない。このため、低頻度で無線通信を行う状況においては、不要な電力消費が発生しないことから、データの送信前に上記のLBTを実施する無線通信装置に比べて、電池寿命を延ばすことができる。 On the other hand, in the wireless communication device operated according to the above-mentioned DC limitation, the above-mentioned LBT is not performed regardless of the communication frequency. Therefore, in a situation where wireless communication is performed at low frequency, unnecessary power consumption does not occur, so that the battery life can be extended as compared with the wireless communication device that performs the above-mentioned LBT before data transmission.

しかしながら、上述のDCの制限に従って運用されている無線通信装置では、上記のLBTが行われないことから、高頻度で無線通信を行う状況においては、他の無線局との電波干渉によるデータ通信ロスが発生しやすくなる。すると、再送処理が頻繁に行われることになり、電力が無駄に消費されて電池寿命が短くなってしまう。また、低データレートでのデータ送信を行う場合や、データサイズが大きなデータの送信を行う場合には送信時間が長くなるが、DCの規制によって、本来行いたい頻度でのデータ送信を行えないことが考えられる。また、データ送信を行うことができた場合であっても、送信時間が長いため、電力消費が増加して電池寿命が短くなる要因になってしまう。 However, in a wireless communication device operated in accordance with the above-mentioned DC limitation, the above-mentioned LBT is not performed. Therefore, in a situation where wireless communication is performed frequently, data communication loss due to radio wave interference with other wireless stations is lost. Is likely to occur. Then, the retransmission process is frequently performed, which wastes power and shortens the battery life. Also, when transmitting data at a low data rate or when transmitting data with a large data size, the transmission time will be long, but due to DC regulations, it is not possible to transmit data as often as you want. Can be considered. Further, even if the data can be transmitted, the transmission time is long, which causes an increase in power consumption and a shortening of the battery life.

本発明の実施形態では、アンライセンスバンドを用いて無線通信を行う場合において、データの送信に使用するチャネルの空き状況の事前確認を行ってからデータを送信させる第1動作モードと、事前確認を行うことなくデータを送信させる第2動作モードとの切り替え制御を行う。具体的には、データ送信周期、通信データレート、及びエラーレートの少なくとも1つに応じて、第1動作モードと第2動作モードとの切り替え制御を行う。これにより、高頻度で無線通信が行われる場合の通信ロスが抑制されるととともに、再送処理が減って(或いは、再送処理が無くなって)不要な電力消費を抑えることができる。そして、低頻度で無線通信が行われる場合の不要な電力消費を抑えることができることから、通信頻度に拘わらず従来よりも電力消費を抑えることができる。 In the embodiment of the present invention, in the case of wireless communication using the unlicensed band, the first operation mode in which the data is transmitted after confirming the availability of the channel used for data transmission in advance and the prior confirmation are performed. Switching control with the second operation mode in which data is transmitted without performing is performed. Specifically, switching control between the first operation mode and the second operation mode is performed according to at least one of a data transmission cycle, a communication data rate, and an error rate. As a result, communication loss when wireless communication is performed at high frequency can be suppressed, and unnecessary power consumption can be suppressed by reducing retransmission processing (or eliminating retransmission processing). Further, since unnecessary power consumption can be suppressed when wireless communication is performed at a low frequency, power consumption can be suppressed as compared with the conventional case regardless of the communication frequency.

〔第1実施形態〕
〈データ収集システム〉
図1は、本発明の第1実施形態による無線通信装置が用いられるデータ収集システムの全体構成を示す図である。図1に示す通り、データ収集システム1は、無線センサ10(無線通信装置)、ゲートウェイ20、及びサーバ30を備えており、無線センサ10から無線信号で送信される各種のデータを、ゲートウェイ20を介してサーバ30に収集するものである。
[First Embodiment]
<Data collection system>
FIG. 1 is a diagram showing an overall configuration of a data collection system in which the wireless communication device according to the first embodiment of the present invention is used. As shown in FIG. 1, the data collection system 1 includes a wireless sensor 10 (wireless communication device), a gateway 20, and a server 30, and various data transmitted by wireless signals from the wireless sensor 10 are transmitted to the gateway 20. It collects data on the server 30 via the server 30.

無線センサ10は、測定対象設備FCに設置され、各種物理量(例えば、温度、湿度、圧力、振動、磁気、腐食等)を測定する。無線センサ10は、無線ネットワークN1を介してゲートウェイ20に接続されている。無線センサ10は、各種物理量の測定結果を、無線ネットワークN1を介してゲートウェイ20に送信する。無線ネットワークN1は、例えば低消費電力長距離無線通信が可能な通信路(LPWAN:Low Power Wide Area Network)である。無線センサ10は、端末装置TM(外部機器)との間で近距離無線通信を行うことも可能である。無線センサ10の詳細については後述する。 The wireless sensor 10 is installed in the equipment FC to be measured and measures various physical quantities (for example, temperature, humidity, pressure, vibration, magnetism, corrosion, etc.). The wireless sensor 10 is connected to the gateway 20 via the wireless network N1. The wireless sensor 10 transmits the measurement results of various physical quantities to the gateway 20 via the wireless network N1. The wireless network N1 is, for example, a communication path (LPWAN: Low Power Wide Area Network) capable of low power consumption long-distance wireless communication. The wireless sensor 10 can also perform short-range wireless communication with the terminal device TM (external device). Details of the wireless sensor 10 will be described later.

尚、無線センサ10が設置される測定対象設備FCは、例えばプラントに設置された任意の設備(機器、装置を含む)であって良い。上記のプラントとしては、化学等の工業プラントの他、ガス田や油田等の井戸元やその周辺を管理制御するプラント、水力・火力・原子力等の発電を管理制御するプラント、太陽光や風力等の環境発電を管理制御するプラント、上下水やダム等を管理制御するプラント等であって良い。 The equipment FC to be measured in which the wireless sensor 10 is installed may be, for example, any equipment (including equipment and devices) installed in the plant. The above plants include industrial plants such as chemicals, plants that manage and control wells such as gas fields and oil fields and their surroundings, plants that manage and control power generation such as hydropower, thermal power, and nuclear power, solar power, wind power, etc. It may be a plant that manages and controls environmental power generation, a plant that manages and controls water and sewage, dams, and the like.

ゲートウェイ20は、無線ネットワークN1とネットワークN2とを接続し、無線ネットワークN1を介して送受信される各種データと、ネットワークN2を介して送受信される各種データの中継を行う。このゲートウェイ20を設けることで、セキュリティを維持しつつ、無線ネットワークN1とネットワークN2とを相互に接続することができる。ゲートウェイ20は、無線センサ10から送信される無線信号を受信することが可能な任意の場所に設置される。ゲートウェイ20の設置場所は、プラントの内部であっても良く、プラントの外部であっても良い。 The gateway 20 connects the wireless network N1 and the network N2, and relays various data transmitted / received via the wireless network N1 and various data transmitted / received via the network N2. By providing the gateway 20, the wireless network N1 and the network N2 can be connected to each other while maintaining security. The gateway 20 is installed at an arbitrary place where the wireless signal transmitted from the wireless sensor 10 can be received. The installation location of the gateway 20 may be inside the plant or outside the plant.

サーバ30は、ゲートウェイ20を介して送信されてくる無線センサ10からのデータを収集して蓄積する。サーバ30は、蓄積したデータを解析して測定対象設備FCの異常の兆候を捉えるようにしても良い。サーバ30は、ネットワークN2を介してゲートウェイ20に接続されている。ネットワークN2は、インターネット等のWAN(Wide Area Network)であっても良く、プラント等に敷設されたLAN(Local Area Network)であっても良い。 The server 30 collects and stores data from the wireless sensor 10 transmitted via the gateway 20. The server 30 may analyze the accumulated data to catch signs of abnormality in the equipment FC to be measured. The server 30 is connected to the gateway 20 via the network N2. The network N2 may be a WAN (Wide Area Network) such as the Internet, or may be a LAN (Local Area Network) laid in a plant or the like.

〈無線通信装置〉
図2は、本発明の第1実施形態による無線通信装置の要部構成を示すブロック図である。図2に示す通り、本実施形態による無線通信装置としての無線センサ10は、センサ部11、記憶部12、無線通信部13(第1無線通信部)、無線通信部14(第2無線通信部)、制御部15、電源部16、及びアンテナAT1,AT2を備える。無線センサ10は、上述した各種物理量の測定及び測定結果の送信を、予め設定された一定の周期で行う。
<Wireless communication device>
FIG. 2 is a block diagram showing a main configuration of a wireless communication device according to the first embodiment of the present invention. As shown in FIG. 2, the wireless sensor 10 as a wireless communication device according to the present embodiment includes a sensor unit 11, a storage unit 12, a wireless communication unit 13 (first wireless communication unit), and a wireless communication unit 14 (second wireless communication unit). ), A control unit 15, a power supply unit 16, and antennas AT1 and AT2. The wireless sensor 10 measures the various physical quantities described above and transmits the measurement results at a predetermined periodic cycle.

センサ部11は、上述した各種物理量を検出するセンサ(例えば、温度センサ、湿度センサ、圧力センサ、振動センサ、磁気センサ、腐食センサ等)と、センサの検出結果をサンプリングするサンプリング回路とを備える。センサ部11は、制御部15の制御の下で、各種物理量の検出及びサンプリングを行う。サンプリング回路によってサンプリングされたサンプリングデータは、センサデータとしてセンサ部11から制御部15に出力される。 The sensor unit 11 includes a sensor for detecting various physical quantities described above (for example, a temperature sensor, a humidity sensor, a pressure sensor, a vibration sensor, a magnetic sensor, a corrosion sensor, etc.) and a sampling circuit for sampling the detection result of the sensor. The sensor unit 11 detects and samples various physical quantities under the control of the control unit 15. The sampling data sampled by the sampling circuit is output from the sensor unit 11 to the control unit 15 as sensor data.

記憶部12は、無線センサ10で使用される各種データを記憶する。例えば、記憶部12は、無線センサ10の動作を規定する設定データCDを記憶する。尚、記憶部12は、センサ部11から制御部15に出力されたセンサデータを記憶しても良い。記憶部12は、例えば、揮発性又は不揮発性のメモリによって実現される。尚、設定データCDの詳細については後述する。 The storage unit 12 stores various data used by the wireless sensor 10. For example, the storage unit 12 stores a setting data CD that defines the operation of the wireless sensor 10. The storage unit 12 may store the sensor data output from the sensor unit 11 to the control unit 15. The storage unit 12 is realized, for example, by a volatile or non-volatile memory. The details of the setting data CD will be described later.

無線通信部13は、制御部15の制御の下で、無線ネットワークN1を介した無線通信を行う。無線通信部13が無線ネットワークN1を介して行う無線通信は、無線局免許を必要としない周波数帯(アンライセンスバンド)を用いた無線通信である。無線通信部13は、例えば、前述した低消費電力長距離無線通信の一種であるLoRa(登録商標)等の通信規格に準拠した無線通信を行う。アンテナAT1は、無線通信部13に接続される。このアンテナAT1としては、例えばチップアンテナ素子を用いることができる。尚、無線通信部13が、送信データの経路と受信データの経路とが異なるように設計されている場合には、無線通信部13とアンテナAT1との間に経路を切り替えるためのスイッチを備えても良い。 The wireless communication unit 13 performs wireless communication via the wireless network N1 under the control of the control unit 15. The wireless communication performed by the wireless communication unit 13 via the wireless network N1 is wireless communication using a frequency band (unlicensed band) that does not require a wireless station license. The wireless communication unit 13 performs wireless communication conforming to a communication standard such as LoRa (registered trademark), which is a kind of low power consumption long-distance wireless communication described above. The antenna AT1 is connected to the wireless communication unit 13. As the antenna AT1, for example, a chip antenna element can be used. When the wireless communication unit 13 is designed so that the transmission data path and the reception data path are different, a switch for switching the route between the wireless communication unit 13 and the antenna AT1 is provided. Is also good.

無線通信部14は、外部機器である端末装置TMと近距離無線通信を行う。無線通信部14が行う近距離無線通信は、Wi−Fi(登録商標)、ZigBee(登録商標)、Bluetooth(登録商標)、NFC(Near Field Communication)等であって良い。また、無線通信部14が行う近距離無線通信は、赤外線通信であっても良い。無線通信部14は、端末装置TMと近距離無線通信を行って、無線センサ10の動作を規定する設定データCDを取得する。アンテナAT2は、無線通信部14に接続される。このアンテナAT2としては、例えばループアンテナを用いることができる。尚、無線通信部14が、送信データの経路と受信データの経路とが異なるように設計されている場合には、無線通信部14とアンテナAT2との間に経路を切り替えるためのスイッチを備えても良い。 The wireless communication unit 14 performs short-range wireless communication with the terminal device TM, which is an external device. The short-range wireless communication performed by the wireless communication unit 14 may be Wi-Fi (registered trademark), ZigBee (registered trademark), Bluetooth (registered trademark), NFC (Near Field Communication) or the like. Further, the short-range wireless communication performed by the wireless communication unit 14 may be infrared communication. The wireless communication unit 14 performs short-range wireless communication with the terminal device TM to acquire a setting data CD that defines the operation of the wireless sensor 10. The antenna AT2 is connected to the wireless communication unit 14. As the antenna AT2, for example, a loop antenna can be used. When the wireless communication unit 14 is designed so that the transmission data path and the reception data path are different, a switch for switching the route between the wireless communication unit 14 and the antenna AT2 is provided. Is also good.

制御部15は、無線センサ10の各部(センサ部11、記憶部12、無線通信部13、無線通信部14、及び電源部16)を制御することによって、無線センサ10を統括して制御する。例えば、制御部15は、予め設定された一定の周期で、センサ部11を制御して各種物理量を検出させ、得られるセンサデータに対して所定の処理を行って各種物理量を求め、無線通信部13を制御して各種物理量を示すデータを送信させる。 The control unit 15 controls the wireless sensor 10 by controlling each unit (sensor unit 11, storage unit 12, wireless communication unit 13, wireless communication unit 14, and power supply unit 16) of the wireless sensor 10. For example, the control unit 15 controls the sensor unit 11 to detect various physical quantities at a predetermined fixed cycle, performs predetermined processing on the obtained sensor data to obtain various physical quantities, and obtains various physical quantities, and obtains various physical quantities. 13 is controlled to transmit data indicating various physical quantities.

ここで、制御部15は、無線通信部13を制御してデータを送信させる際に、データの送信に使用するチャネルの空き状況の事前確認(LBT)を行ってから無線通信部13にデータを送信させる動作モード(LBT有モード:第1動作モード)と、上記の事前確認(LBT)を行うことなく無線通信部13にデータを送信させる動作モード(LBT無モード)との切り替え制御を行う。制御部15が、このような動作モードの切り替え制御を行うのは、通信頻度に拘わらず従来よりも電力消費を抑えるためである。例えば、LBT無モードの場合には、DCによる方法で送信させる場合がある。 Here, when the control unit 15 controls the wireless communication unit 13 to transmit data, the control unit 15 performs prior confirmation (LBT) of the availability of the channel used for data transmission, and then transmits the data to the wireless communication unit 13. Switching control is performed between an operation mode for transmitting data (mode with LBT: first operation mode) and an operation mode for transmitting data to the wireless communication unit 13 (mode without LBT) without performing the above-mentioned prior confirmation (LBT). The control unit 15 performs such operation mode switching control in order to reduce power consumption as compared with the conventional case regardless of the communication frequency. For example, in the case of the LBT non-mode, the transmission may be performed by a DC method.

制御部15は、データ送信周期に応じて、上記の動作モードの切り替え制御を行う。具体的に、制御部15は、データ送信周期が、予め設定された第1閾値(例えば、180[分])以下である場合には、LBT有モードにする制御を行う。このような制御を行うのは、高頻度で無線通信が行われる場合の通信ロスを抑制することで、再送処理が頻繁に行われることによる無駄な電力消費を抑えるためである。尚、第1閾値は、前述したDCの規制を考慮して設定される。 The control unit 15 performs the above-mentioned operation mode switching control according to the data transmission cycle. Specifically, when the data transmission cycle is equal to or less than a preset first threshold value (for example, 180 [minutes]), the control unit 15 controls to set the mode with LBT. The reason for performing such control is to suppress communication loss when wireless communication is performed frequently, and to suppress wasteful power consumption due to frequent retransmission processing. The first threshold value is set in consideration of the above-mentioned DC regulation.

制御部15は、記憶部12に記憶された設定データCDに基づいて上述した動作モードの切り替え制御を行う。具体的に、制御部15は、設定データCDとして記憶部12に記憶された図3に示すテーブルTB1(第1テーブル)を用いて上述した動作モードの切り替え制御を行う。図3は、本発明の第1実施形態において、動作モードの切り替え制御に用いられるテーブルを示す図である。尚、図3に示すテーブルTB1は、端末装置TMで作成され、無線通信部14と端末装置TMとの間で近距離無線通信が行われることによって無線通信部14で取得されて記憶部12に設定データCDとして記憶される。 The control unit 15 performs the operation mode switching control described above based on the setting data CD stored in the storage unit 12. Specifically, the control unit 15 performs the above-described operation mode switching control using the table TB1 (first table) shown in FIG. 3 stored in the storage unit 12 as the setting data CD. FIG. 3 is a diagram showing a table used for operation mode switching control in the first embodiment of the present invention. The table TB1 shown in FIG. 3 is created by the terminal device TM, and is acquired by the wireless communication unit 14 and stored in the storage unit 12 by performing short-range wireless communication between the wireless communication unit 14 and the terminal device TM. It is stored as a setting data CD.

テーブルTB1は、LBT有モードを実行することが可能なデータ送信周期(第1データ送信周期)と、LBT無モードを実行することが可能なデータ送信周期(第2データ送信周期)と、が規定されたテーブルである。図3に示す例では、LBT有モードを実行することが可能(設定可能)なデータ送信周期として、1[分]〜4320[分]が規定されており、LBT無モードを実行することが可能(設定可能)なデータ送信周期として、240[分]〜4320[分]が規定されている。 The table TB1 defines a data transmission cycle (first data transmission cycle) capable of executing the mode with LBT and a data transmission cycle (second data transmission cycle) capable of executing the mode without LBT. It is a table that has been created. In the example shown in FIG. 3, 1 [minute] to 4320 [minute] are defined as the data transmission cycle in which the mode with LBT can be executed (settable), and the mode without LBT can be executed. 240 [minutes] to 4320 [minutes] are specified as the (settable) data transmission cycle.

具体的に、LBT有モードを実行することが可能(設定可能)なデータ送信周期として、1[分],10[分],30[分],60[分],120[分],180[分],240[分],300[分],360[分],720[分],1080[分],1440[分](1日),2880[分](2日),4320[分](3日)が規定されている。LBT無モードを実行することが可能(設定可能)なデータ送信周期として、240[分],300[分],360[分],720[分],1080[分],1440[分](1日),2880[分](2日),4320[分](3日)が規定されている。 Specifically, as the data transmission cycle that can execute (settable) the mode with LBT, 1 [minute], 10 [minute], 30 [minute], 60 [minute], 120 [minute], 180 [ Minutes], 240 [minutes], 300 [minutes], 360 [minutes], 720 [minutes], 1080 [minutes], 1440 [minutes] (1 day), 2880 [minutes] (2 days), 4320 [minutes] (3 days) is stipulated. The data transmission cycle that can execute (settable) the LBT non-mode is 240 [minutes], 300 [minutes], 360 [minutes], 720 [minutes], 1080 [minutes], 1440 [minutes] (1). Days), 2880 [minutes] (2 days), 4320 [minutes] (3 days) are specified.

図3に示す例では、データ送信周期が1[分]〜180[分]である場合には、LBT無モードを実行することが不可(設定不可)とされている。つまり、図3に示す例では、上述した第1閾値が180[分]に設定されている。LBT有モードを実行することが可能なデータ送信周期には、第1閾値以下のデータ送信周期(1[分]〜180[分])と、第1閾値よりも大であるデータ送信周期(240[分]〜4320[分])とが設定可能である。 In the example shown in FIG. 3, when the data transmission cycle is 1 [minute] to 180 [minute], it is impossible (cannot be set) to execute the LBT no mode. That is, in the example shown in FIG. 3, the above-mentioned first threshold value is set to 180 [minutes]. The data transmission cycle in which the LBT presence mode can be executed includes a data transmission cycle (1 [minute] to 180 [minute]) below the first threshold value and a data transmission cycle (240] that is larger than the first threshold value. [Minute] to 4320 [minute]) can be set.

これに対し、LBT無モードを実行することが可能なデータ送信周期には、第1閾値よりも大であるデータ送信周期(240[分]〜4320[分])のみが設定可能である。このようにすることで、データ送信周期が180[分]以下である場合(1[分]〜180[分]である場合)には、LBT有モードが実行されるようにしている。 On the other hand, only the data transmission cycle (240 [minutes] to 4320 [minutes]), which is larger than the first threshold value, can be set as the data transmission cycle in which the LBT non-mode can be executed. By doing so, when the data transmission cycle is 180 [minutes] or less (when it is 1 [minutes] to 180 [minutes]), the mode with LBT is executed.

ここで、データ送信周期が180[分]よりも大である場合(240[分]〜4320[分]である場合)には、LBT有モード及びLBT無モードの双方を実行することが可能である。このため、データ送信周期が180[分]よりも大である場合には、制御部15は、テーブルTB1の設定内容に応じて動作モードの切り替え制御を行うこととなる。例えば、データ送信周期が180[分]よりも大である場合にはLBT無モードのみが実行されるようにテーブルTB1を設定することが望ましい。このように設定することで、低頻度で無線通信が行われる場合には、LBTが実施されなくなり、LBTが実施されることによる不要な電力消費を抑えることができる。 Here, when the data transmission cycle is larger than 180 [minutes] (when it is 240 [minutes] to 4320 [minutes]), it is possible to execute both the mode with LBT and the mode without LBT. is there. Therefore, when the data transmission cycle is larger than 180 [minutes], the control unit 15 performs operation mode switching control according to the setting contents of the table TB1. For example, when the data transmission cycle is larger than 180 [minutes], it is desirable to set the table TB1 so that only the LBT no mode is executed. By setting in this way, when wireless communication is performed at a low frequency, LBT is not executed, and unnecessary power consumption due to the implementation of LBT can be suppressed.

電源部16は、電池BTを備えており、制御部15の制御の下で、無線センサ10の各部(センサ部11、記憶部12、無線通信部13、無線通信部14、及び制御部15)に対する電力供給を行う。電源部16は、電池BTを交換可能に構成されている。電池BTとしては、例えば、塩化チオニルリチウム電池等の自己放電が極めて少ない一次電池や二次電池、燃料電池等を用いることができる。 The power supply unit 16 includes a battery BT, and under the control of the control unit 15, each unit of the wireless sensor 10 (sensor unit 11, storage unit 12, wireless communication unit 13, wireless communication unit 14, and control unit 15). Power is supplied to. The power supply unit 16 is configured so that the battery BT can be replaced. As the battery BT, for example, a primary battery such as a lithium thionyl chloride battery, a secondary battery, a fuel cell, or the like with extremely low self-discharge can be used.

電源部16は、制御部15から省電力動作を指示する制御信号が出力された場合には、電池BTの消費を抑えるために、例えば制御部15以外(センサ部11、記憶部12、無線通信部13、及び無線通信部14)に対する電力供給を停止する。電源部16は、制御部15から省電力動作の解除を指示する制御信号が出力された場合には、例えば制御部15以外(センサ部11、記憶部12、無線通信部13、及び無線通信部14)に対する電力供給を再開する。 When the control unit 15 outputs a control signal instructing the power saving operation, the power supply unit 16 may, for example, other than the control unit 15 (sensor unit 11, storage unit 12, wireless communication) in order to suppress the consumption of the battery BT. The power supply to the unit 13 and the wireless communication unit 14) is stopped. When the control unit 15 outputs a control signal instructing the cancellation of the power saving operation, the power supply unit 16 is, for example, other than the control unit 15 (sensor unit 11, storage unit 12, wireless communication unit 13, and wireless communication unit). The power supply to 14) is restarted.

〈無線通信装置の動作〉
図4は、本発明の第1実施形態による無線通信装置の動作の一例を示すフローチャートである。尚、図4に示すフローチャートは、データ送信時の動作のみを抜き出して示したものである。図4に示すフローチャートは、予め設定された一定の周期で繰り返し行われる。
<Operation of wireless communication device>
FIG. 4 is a flowchart showing an example of the operation of the wireless communication device according to the first embodiment of the present invention. In addition, the flowchart shown in FIG. 4 shows only the operation at the time of data transmission. The flowchart shown in FIG. 4 is repeated at a preset constant cycle.

図4に示すフローチャートの処理が開始されると、まず記憶部12に設定データCDとして記憶されたテーブルTB1を読み出す処理が制御部15によって行われる(ステップS11)。次に、テーブルTB1の設定内容に従って動作モードを設定する処理が制御部15によって行われる(ステップS12)。例えば、データ送信周期が第1閾値以下である場合(1[分]〜180[分]である場合)には、図3に示すテーブルTB1の設定内容に従ってLBT有モードに設定する処理が制御部15によって行われる。 When the processing of the flowchart shown in FIG. 4 is started, the control unit 15 first reads the table TB1 stored as the setting data CD in the storage unit 12 (step S11). Next, the control unit 15 performs a process of setting the operation mode according to the setting contents of the table TB1 (step S12). For example, when the data transmission cycle is equal to or less than the first threshold value (when it is 1 [minute] to 180 [minute]), the control unit performs a process of setting the LBT present mode according to the setting contents of the table TB1 shown in FIG. It is done by 15.

尚、データ送信周期が第1閾値よりも大である場合(240[分]〜4320[分]である場合)には、テーブルTB1の設定内容に従ってLBT有モード及びLBT無モードの何れか一方に設定する処理が制御部15によって行われる。例えば、図3に示すテーブルTB1において、第1閾値よりも大であるデータ送信周期(240[分]〜4320[分])が、LBT有モードを実行することが可能なデータ送信周期として設定されておらず、LBT無モードを実行することが可能なデータ送信周期として設定されている場合には、LBT無モードに設定する処理が制御部15によって行われる。 When the data transmission cycle is larger than the first threshold value (240 [minutes] to 4320 [minutes]), the mode is set to either the LBT presence mode or the LBT non-mode according to the setting contents of the table TB1. The process of setting is performed by the control unit 15. For example, in the table TB1 shown in FIG. 3, a data transmission cycle (240 [minutes] to 4320 [minutes]) larger than the first threshold value is set as a data transmission cycle capable of executing the LBT presence mode. If the data transmission cycle is set so that the LBT-free mode can be executed, the control unit 15 performs the process of setting the LBT-free mode.

以上の設定が終了すると、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS13)。具体的に、ステップS12の処理でLBT有モードが設定された場合には、LBTを行ってからデータを送信する処理が行われる。これに対し、ステップS12の処理でLBT無モードが設定された場合には、LBTを行うことなくデータを送信する処理が行われる。 When the above setting is completed, the wireless communication unit 13 is controlled by the control unit 15 to execute the data transmission process (step S13). Specifically, when the mode with LBT is set in the process of step S12, the process of transmitting data after performing LBT is performed. On the other hand, when the LBT no mode is set in the process of step S12, the process of transmitting data is performed without performing LBT.

〈変形例〉
次に、本発明の第1実施形態の変形例について説明する。本変形例は、図3に示すテーブルTB1を設定データCDとして記憶部12に記憶する代わりに、上述した第1閾値(180[分])を設定データCDとして記憶部12に記憶したものである。そして、データ送信周期と第1閾値との比較結果に基づいて、動作モードの切り替え制御を行うようにしたものである。
<Modification example>
Next, a modified example of the first embodiment of the present invention will be described. In this modification, instead of storing the table TB1 shown in FIG. 3 as the setting data CD in the storage unit 12, the above-mentioned first threshold value (180 [minutes]) is stored in the storage unit 12 as the setting data CD. .. Then, the operation mode switching control is performed based on the comparison result between the data transmission cycle and the first threshold value.

図5は、本発明の第1実施形態の変形例における動作の一例を示すフローチャートである。図6は、本発明の第1実施形態の変形例において設定される動作モードを示す図である。尚、図5に示すフローチャートは、図4に示すフローチャートと同様に、データ送信時の動作のみを抜き出して示したものであり、予め設定された一定の周期で繰り返し行われる。 FIG. 5 is a flowchart showing an example of the operation in the modified example of the first embodiment of the present invention. FIG. 6 is a diagram showing an operation mode set in a modified example of the first embodiment of the present invention. Note that the flowchart shown in FIG. 5 is the same as the flowchart shown in FIG. 4, in which only the operation at the time of data transmission is extracted and shown, and is repeated at a preset constant cycle.

図5に示すフローチャートの処理が開始されると、まずデータ送信周期が第1閾値以下であるか否かを判断する処理が制御部15によって行われる(ステップS21)。データ送信周期が第1閾値以下であると判断した場合(判断結果が「YES」の場合)には、LBT有モードに設定する処理が制御部15によって行われる(ステップS22)。つまり、データ送信周期が1[分]〜180[分]である場合には、図6に示す通り、LBT有モードに設定される。 When the process of the flowchart shown in FIG. 5 is started, the control unit 15 first performs a process of determining whether or not the data transmission cycle is equal to or less than the first threshold value (step S21). When it is determined that the data transmission cycle is equal to or less than the first threshold value (when the determination result is "YES"), the control unit 15 performs a process of setting the LBT present mode (step S22). That is, when the data transmission cycle is 1 [minute] to 180 [minute], the mode with LBT is set as shown in FIG.

これに対し、データ送信周期が第1閾値よりも大であると判断した場合(判断結果が「NO」の場合)には、LBT無モードに設定する処理が制御部15によって行われる(ステップS23)。つまり、データ送信周期が240[分]〜4320[分]である場合には、図6に示す通り、LBT無モードに設定される。 On the other hand, when it is determined that the data transmission cycle is larger than the first threshold value (when the determination result is "NO"), the control unit 15 performs a process of setting the LBT non-mode (step S23). ). That is, when the data transmission cycle is 240 [minutes] to 4320 [minutes], the LBT non-mode is set as shown in FIG.

以上の設定が終了すると、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS24)。具体的に、ステップS22の処理でLBT有モードが設定された場合には、LBTを行ってからデータを送信する処理が行われる。これに対し、ステップS23の処理でLBT無モードが設定された場合には、LBTを行うことなくデータを送信する処理が行われる。 When the above settings are completed, the wireless communication unit 13 is controlled by the control unit 15 to perform data transmission processing (step S24). Specifically, when the mode with LBT is set in the process of step S22, the process of transmitting data after performing LBT is performed. On the other hand, when the LBT no mode is set in the process of step S23, the process of transmitting data is performed without performing LBT.

以上の通り、本実施形態では、アンライセンスバンドを用いて無線通信を行う場合において、データ送信周期とテーブルTB1の設定内容とに基づいて(或いは、データ送信周期と第1閾値との比較結果に基づいて)、LBT有モードとLBT無モードとの切り替え制御を行うようにしている。これにより、例えば、高頻度で無線通信が行われる場合にはLBTが実施されるようにして、再送処理が頻繁に行われることによる無駄な電力消費を抑えることができる。また、低頻度で無線通信が行われる場合にはLBTが実施されないようにして、LBTが実施されることによる不要な電力消費を抑えることができる。その結果として、従来よりも消費電力を抑えることができ、電池BTの寿命(電池寿命)を延ばすことができる。 As described above, in the present embodiment, when wireless communication is performed using the unlicensed band, based on the data transmission cycle and the setting contents of the table TB1 (or the comparison result between the data transmission cycle and the first threshold value) Based on this), switching control between the mode with LBT and the mode without LBT is performed. Thereby, for example, when wireless communication is performed frequently, LBT can be performed, and wasteful power consumption due to frequent retransmission processing can be suppressed. Further, when wireless communication is performed at a low frequency, it is possible to prevent the LBT from being carried out and suppress unnecessary power consumption due to the LBT being carried out. As a result, the power consumption can be suppressed as compared with the conventional case, and the life of the battery BT (battery life) can be extended.

〔第2実施形態〕
次に、本発明の第2実施形態について説明する。上述した第1実施形態の無線通信装置としての無線センサ10は、データ送信周期に応じて動作モードの切り替え制御を行うものであった。これに対し、本実施形態の無線通信装置としての無線センサは、通信データレートに応じて動作モードの切り替え制御を行うものである。
[Second Embodiment]
Next, the second embodiment of the present invention will be described. The wireless sensor 10 as the wireless communication device of the first embodiment described above performs operation mode switching control according to a data transmission cycle. On the other hand, the wireless sensor as the wireless communication device of the present embodiment controls the switching of the operation mode according to the communication data rate.

尚、本実施形態の無線センサは、第1実施形態の無線センサ10とは、通信データレートに応じて動作モードの切り替え制御を行う点において相違するのみであり、図2に示す第1実施形態の無線センサ10と同様の構成である。また、本実施形態における無線センサは、図1に示す無線センサ10と同様に、データ収集システム1で用いることが可能である。 The wireless sensor of the present embodiment is different from the wireless sensor 10 of the first embodiment only in that the operation mode switching control is performed according to the communication data rate, and the wireless sensor of the first embodiment is shown in FIG. It has the same configuration as the wireless sensor 10 of the above. Further, the wireless sensor in this embodiment can be used in the data acquisition system 1 in the same manner as the wireless sensor 10 shown in FIG.

本実施形態の無線センサが備える制御部15は、通信データレートが、予め設定された第2閾値(例えば、1760[bps])以下である場合には、LBT有モードにする制御を行う。このような制御を行うのは、高頻度で無線通信が行われる場合の通信ロスを抑制することで、再送処理が頻繁に行われることによる無駄な電力消費を抑えるためである。ここで、本実施形態では、通信データレートが小さくなる(例えば、第2閾値以下になる)と、データの送信時間が長くなり、所定時間に占める送信時間の割合が増加するため、高頻度で無線通信が行われることになる。尚、第2閾値は、第1閾値と同様に、前述したDCの規制を考慮して設定される。 When the communication data rate is equal to or less than a preset second threshold value (for example, 1760 [bps]), the control unit 15 included in the wireless sensor of the present embodiment controls the mode with LBT. The reason for performing such control is to suppress communication loss when wireless communication is performed frequently, and to suppress wasteful power consumption due to frequent retransmission processing. Here, in the present embodiment, when the communication data rate becomes small (for example, becomes equal to or less than the second threshold value), the data transmission time becomes long and the ratio of the transmission time to the predetermined time increases, so that the frequency is high. Wireless communication will be performed. As with the first threshold value, the second threshold value is set in consideration of the above-mentioned DC regulation.

図7は、本発明の第2実施形態において、動作モードの切り替え制御に用いられるテーブルを示す図である。尚、図7に示すテーブルTB2は、図3に示すテーブルTB1と同様に、端末装置TMで作成され、無線通信部14と端末装置TMとの間で近距離無線通信が行われることによって無線通信部14で取得されて記憶部12に設定データCDとして記憶される。 FIG. 7 is a diagram showing a table used for operation mode switching control in the second embodiment of the present invention. The table TB2 shown in FIG. 7 is created by the terminal device TM in the same manner as the table TB1 shown in FIG. 3, and wireless communication is performed by performing short-range wireless communication between the wireless communication unit 14 and the terminal device TM. It is acquired by the unit 14 and stored in the storage unit 12 as a setting data CD.

テーブルTB2は、LBT有モードを実行することが可能な通信データレート(第1通信データレート)と、LBT無モードを実行することが可能な通信データレート(第2通信データレート)と、が規定されたテーブルである。図7に示す例では、LBT有モードを実行することが可能(設定可能)な通信データレートとして、250[bps]〜50000[bps]が規定されており、LBT無モードを実行することが可能(設定可能)な通信データレートとして、3125[bps]〜50000[bps]が規定されている。 Table TB2 defines a communication data rate (first communication data rate) capable of executing the mode with LBT and a communication data rate (second communication data rate) capable of executing the mode without LBT. It is a table that has been created. In the example shown in FIG. 7, 250 [bps] to 50,000 [bps] are specified as the communication data rates that can execute (settable) the mode with LBT, and the mode without LBT can be executed. As a (configurable) communication data rate, 3125 [bps] to 50,000 [bps] are specified.

具体的に、LBT有モードを実行することが可能(設定可能)な通信データレートとして、250[bps],440[bps],980[bps],1760[bps],3125[bps],5470[bps],11000[bps],50000[bps]が規定されている。LBT無モードを実行することが可能(設定可能)な通信データレートとして、3125[bps],5470[bps],11000[bps],50000[bps]が規定されている。 Specifically, as communication data rates that can (settable) execute the mode with LBT, 250 [bps], 440 [bps], 980 [bps], 1760 [bps], 3125 [bps], 5470 [ bps], 11000 [bps], and 50000 [bps] are specified. 3125 [bps], 5470 [bps], 11000 [bps], and 50000 [bps] are specified as communication data rates that can (settable) execute the LBT-free mode.

図7に示す例では、通信データレートが250[bps]〜1760[bps]である場合には、LBT無モードを実行することが不可(設定不可)とされている。つまり、図7に示す例では、上述した第2閾値が1760[bps]に設定されている。LBT有モードを実行することが可能な通信データレートには、第2閾値以下の通信データレート(250[bps]〜1760[bps])と、第2閾値よりも大である通信データレート(3125[bps]〜50000[bps])とが設定可能である。 In the example shown in FIG. 7, when the communication data rate is 250 [bps] to 1760 [bps], it is impossible (cannot be set) to execute the LBT no mode. That is, in the example shown in FIG. 7, the above-mentioned second threshold value is set to 1760 [bps]. Communication data rates capable of executing the LBT presence mode include communication data rates below the second threshold (250 [bps] to 1760 [bps]) and communication data rates greater than the second threshold (3125). [Bps] to 50,000 [bps]) can be set.

これに対し、LBT無モードを実行することが可能な通信データレートには、第2閾値よりも大である通信データレート(3125[bps]〜50000[bps])のみが設定可能である。このようにすることで、通信データレートが1760[bps]以下である場合(250[bps]〜1760[bps]である場合)には、LBT有モードが実行されるようにしている。 On the other hand, as the communication data rate capable of executing the LBT no mode, only the communication data rate (3125 [bps] to 50,000 [bps]) larger than the second threshold value can be set. By doing so, when the communication data rate is 1760 [bps] or less (250 [bps] to 1760 [bps]), the mode with LBT is executed.

ここで、通信データレートが1760[bps]よりも大である場合(3125[bps]〜50000[bps]である場合)には、LBT有モード及びLBT無モードの双方を実行することが可能である。このため、通信データレートが1760[bps]よりも大である場合には、制御部15は、テーブルTB2の設定内容に応じて動作モードの切り替え制御を行うこととなる。例えば、通信データレートが1760[bps]よりも大である場合にはLBT無モードのみが実行されるようにテーブルTB2を設定することが望ましい。 Here, when the communication data rate is larger than 1760 [bps] (when it is 3125 [bps] to 50,000 [bps]), it is possible to execute both the mode with LBT and the mode without LBT. is there. Therefore, when the communication data rate is higher than 1760 [bps], the control unit 15 performs operation mode switching control according to the setting contents of the table TB2. For example, it is desirable to set the table TB2 so that only the LBT no mode is executed when the communication data rate is larger than 1760 [bps].

このように設定することで、低頻度で無線通信が行われる場合には、LBTが実施されなくなり、LBTが実施されることによる不要な電力消費を抑えることができる。ここで、本実施形態では、通信データレートが大きくなる(例えば、第2閾値よりも大になる)と、データの送信時間が短くなり、所定時間に占める送信時間の割合が減少するため、低頻度で無線通信が行われることになる。 By setting in this way, when wireless communication is performed at a low frequency, LBT is not executed, and unnecessary power consumption due to the implementation of LBT can be suppressed. Here, in the present embodiment, when the communication data rate becomes large (for example, it becomes larger than the second threshold value), the data transmission time becomes short and the ratio of the transmission time to the predetermined time decreases, so that it is low. Wireless communication will be performed frequently.

本実施形態の無線センサにおいて、データ送信時には、図4に示すフローチャートの処理と同様の処理が行われる。本実施形態における無線センサのデータ送信時の動作を示すフローチャートは、図4中の「テーブルTB1」を「テーブルTB2」と読み替えたものである。つまり、本実施形態では、まず、記憶部12に設定データCDとして記憶されたテーブルTB2を読み出す処理が制御部15によって行われる(ステップS11)。次に、テーブルTB2の設定内容に従って動作モードを設定する処理が制御部15によって行われる(ステップS12)。そして、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS13)。 In the wireless sensor of the present embodiment, at the time of data transmission, the same processing as the processing of the flowchart shown in FIG. 4 is performed. The flowchart showing the operation of the wireless sensor at the time of data transmission in the present embodiment is obtained by replacing "table TB1" in FIG. 4 with "table TB2". That is, in the present embodiment, first, the control unit 15 performs a process of reading out the table TB2 stored as the setting data CD in the storage unit 12 (step S11). Next, the control unit 15 performs a process of setting the operation mode according to the setting contents of the table TB2 (step S12). Then, the wireless communication unit 13 is controlled by the control unit 15, and the data transmission process is executed (step S13).

〈変形例〉
本実施形態においても、第1実施形態と同様の変形例が可能である。つまり、図7に示すテーブルTB2を設定データCDとして記憶部12に記憶する代わりに、上述した第2閾値(1760[bps])を設定データCDとして記憶部12に記憶することが可能である。本変形例では、図5に示すフローチャートの処理と同様の処理が行われる。本変形例における無線センサのデータ送信時の動作を示すフローチャートは、図5中のステップS21における「データ送信周期が第1閾値以下?」を、「通信データレートが第2閾値以下?」と読み替えたものである。
<Modification example>
Also in this embodiment, the same modification as in the first embodiment is possible. That is, instead of storing the table TB2 shown in FIG. 7 as the setting data CD in the storage unit 12, the above-mentioned second threshold value (1760 [bps]) can be stored in the storage unit 12 as the setting data CD. In this modification, the same processing as that of the flowchart shown in FIG. 5 is performed. In the flowchart showing the operation of the wireless sensor during data transmission in this modification, "is the data transmission cycle below the first threshold?" In step S21 in FIG. 5 is read as "is the communication data rate below the second threshold?" It is a thing.

つまり、本変形例では、まず、通信データレートが第2閾値以下であるか否かを判断する処理が制御部15によって行われる(ステップS21)。通信データレートが第2閾値以下であると判断した場合(判断結果が「YES」の場合)には、LBT有モードに設定する処理が制御部15によって行われる(ステップS22)。つまり、通信データレートが250[bps]〜1760[bps]である場合には、図8に示す通り、LBT有モードに設定される。図8は、本発明の第2実施形態の変形例において設定される動作モードを示す図である。 That is, in this modification, first, the control unit 15 performs a process of determining whether or not the communication data rate is equal to or less than the second threshold value (step S21). When it is determined that the communication data rate is equal to or less than the second threshold value (when the determination result is "YES"), the control unit 15 performs a process of setting the LBT presence mode (step S22). That is, when the communication data rate is 250 [bps] to 1760 [bps], the mode with LBT is set as shown in FIG. FIG. 8 is a diagram showing an operation mode set in a modified example of the second embodiment of the present invention.

これに対し、通信データレートが第2閾値よりも大であると判断した場合(判断結果が「NO」の場合)には、LBT無モードに設定する処理が制御部15によって行われる(ステップS23)。つまり、通信データレートが3125[bps]〜50000[bps]である場合には、図8に示す通り、LBT無モードに設定される。 On the other hand, when it is determined that the communication data rate is larger than the second threshold value (when the determination result is "NO"), the control unit 15 performs a process of setting the LBT non-mode (step S23). ). That is, when the communication data rate is 3125 [bps] to 50,000 [bps], the LBT non-mode is set as shown in FIG.

以上の設定が終了すると、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS24)。具体的に、ステップS22の処理でLBT有モードが設定された場合には、LBTを行ってからデータを送信する処理が行われる。これに対し、ステップS23の処理でLBT無モードが設定された場合には、LBTを行うことなくデータを送信する処理が行われる。 When the above settings are completed, the wireless communication unit 13 is controlled by the control unit 15 to perform data transmission processing (step S24). Specifically, when the mode with LBT is set in the process of step S22, the process of transmitting data after performing LBT is performed. On the other hand, when the LBT no mode is set in the process of step S23, the process of transmitting data is performed without performing LBT.

以上の通り、本実施形態では、アンライセンスバンドを用いて無線通信を行う場合において、通信データレートとテーブルTB2の設定内容とに基づいて(或いは、通信データレートと第2閾値との比較結果に基づいて)、LBT有モードとLBT無モードとの切り替え制御を行うようにしている。これにより、第1実施形態と同様に、従来よりも消費電力を抑えることができ、電池BTの寿命(電池寿命)を延ばすことができる。 As described above, in the present embodiment, when wireless communication is performed using the unlicensed band, based on the communication data rate and the setting contents of the table TB2 (or the comparison result between the communication data rate and the second threshold value). (Based on this), switching control between the mode with LBT and the mode without LBT is performed. As a result, as in the first embodiment, the power consumption can be suppressed as compared with the conventional case, and the life of the battery BT (battery life) can be extended.

〔第3実施形態〕
次に、本発明の第3実施形態について説明する。上述した第1実施形態の無線通信装置としての無線センサ10は、データ送信周期に応じて動作モードの切り替え制御を行うものであった。これに対し、本実施形態の無線通信装置としての無線センサは、パケットエラーレート(PER:Packet Error Rate)に応じて動作モードの切り替え制御を行うものである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. The wireless sensor 10 as the wireless communication device of the first embodiment described above performs operation mode switching control according to a data transmission cycle. On the other hand, the wireless sensor as the wireless communication device of the present embodiment controls the switching of the operation mode according to the packet error rate (PER).

尚、本実施形態の無線センサは、第1実施形態の無線センサ10とは、パケットエラーレートに応じて動作モードの切り替え制御を行う点において相違するのみであり、図2に示す第1実施形態の無線センサ10と同様の構成である。また、本実施形態における無線センサは、図1に示す無線センサ10と同様に、データ収集システム1で用いることが可能である。 The wireless sensor of the present embodiment is different from the wireless sensor 10 of the first embodiment only in that the operation mode switching control is performed according to the packet error rate, and the wireless sensor of the first embodiment is shown in FIG. It has the same configuration as the wireless sensor 10 of the above. Further, the wireless sensor in this embodiment can be used in the data acquisition system 1 in the same manner as the wireless sensor 10 shown in FIG.

本実施形態の無線センサが備える制御部15は、パケットエラーレートが、予め設定された第3閾値(例えば、10[%])よりも大である場合には、LBT有モードにする制御を行う。このような制御を行うのは、通信環境が良好とは言えず、他の無線局との電波干渉しやすい状況における通信ロスを抑制することで、再送処理が頻繁に行われることによる無駄な電力消費を抑えるためである。 When the packet error rate is larger than a preset third threshold value (for example, 10 [%]), the control unit 15 included in the wireless sensor of the present embodiment controls to set the mode with LBT. .. Performing such control does not mean that the communication environment is good, and by suppressing communication loss in a situation where radio wave interference with other radio stations is likely to occur, wasteful power due to frequent retransmission processing is performed. This is to reduce consumption.

本実施形態では、上述した第3閾値(10[%])が設定データCDとして記憶部12に記憶される。本実施形態では、パケットエラーレートを算出する処理が行われた後に、図5に示すフローチャートの処理と同様の処理が行われる。本実施形態における無線センサのデータ送信時の動作を示すフローチャートは、図5中のステップS21における「データ送信周期が第1閾値以下?」を、「パケットエラーレートが第3閾値よりも大?」と読み替えたものである。 In the present embodiment, the above-mentioned third threshold value (10 [%]) is stored in the storage unit 12 as the setting data CD. In the present embodiment, after the process of calculating the packet error rate is performed, the same process as the process of the flowchart shown in FIG. 5 is performed. The flowchart showing the operation of the wireless sensor at the time of data transmission in the present embodiment shows "is the data transmission cycle equal to or less than the first threshold value?" In step S21 in FIG. 5, and "is the packet error rate larger than the third threshold value?" It was read as.

本実施形態では、まず、制御部15によって無線通信部13が制御され、パケットエラーを算出するために必要な一定期間の間、無線通信部13とゲートウェイ20との間で通信が行われる。そして、その通信結果に基づいて、パケットエラーを算出する処理が制御部15で行われる。 In the present embodiment, first, the wireless communication unit 13 is controlled by the control unit 15, and communication is performed between the wireless communication unit 13 and the gateway 20 for a certain period of time required for calculating a packet error. Then, the control unit 15 performs a process of calculating a packet error based on the communication result.

以上の処理が終了すると、パケットエラーレートが第3閾値よりも大であるか否かを判断する処理が制御部15によって行われる(ステップS21)。パケットエラーレートが第3閾値よりも大であると判断した場合(判断結果が「YES」の場合)には、図9に示す通り、LBT有モードに設定する処理が制御部15によって行われる(ステップS22)。図9は、本発明の第3実施形態において設定される動作モードを示す図である。 When the above processing is completed, the control unit 15 performs a process of determining whether or not the packet error rate is higher than the third threshold value (step S21). When it is determined that the packet error rate is larger than the third threshold value (when the determination result is "YES"), the control unit 15 performs the process of setting the LBT present mode as shown in FIG. 9 (when the determination result is "YES"). Step S22). FIG. 9 is a diagram showing an operation mode set in the third embodiment of the present invention.

これに対し、パケットエラーレートが第3閾値以下であると判断した場合(判断結果が「NO」の場合)には、図9に示す通り、LBT無モードに設定する処理が制御部15によって行われる(ステップS23)。このような制御を行うのは、通信環境が良好であり、電波干渉が生じにくく通信ロスも少ない(或いは、殆ど無い)ため、再送処理が少ない(或いは、殆ど無い)と考えられるためである。LBT無モードでは、LBTが実施されないため、不要な電力消費を抑えることができる。 On the other hand, when it is determined that the packet error rate is equal to or less than the third threshold value (when the determination result is "NO"), as shown in FIG. 9, the control unit 15 performs a process of setting the LBT non-mode. (Step S23). Such control is performed because the communication environment is good, radio wave interference is unlikely to occur, and communication loss is small (or almost nonexistent), so that it is considered that retransmission processing is small (or almost nonexistent). In the LBT-free mode, since LBT is not performed, unnecessary power consumption can be suppressed.

以上の設定が終了すると、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS24)。具体的に、ステップS22の処理でLBT有モードが設定された場合には、LBTを行ってからデータを送信する処理が行われる。これに対し、ステップS23の処理でLBT無モードが設定された場合には、LBTを行うことなくデータを送信する処理が行われる。 When the above settings are completed, the wireless communication unit 13 is controlled by the control unit 15 to perform data transmission processing (step S24). Specifically, when the mode with LBT is set in the process of step S22, the process of transmitting data after performing LBT is performed. On the other hand, when the LBT no mode is set in the process of step S23, the process of transmitting data is performed without performing LBT.

以上の通り、本実施形態では、アンライセンスバンドを用いて無線通信を行う場合において、パケットエラーレートと第3閾値との比較結果に基づいて、LBT有モードとLBT無モードとの切り替え制御を行うようにしている。これにより、第1実施形態と同様に、従来よりも消費電力を抑えることができ、電池BTの寿命(電池寿命)を延ばすことができる。 As described above, in the present embodiment, in the case of performing wireless communication using the unlicensed band, switching control between the mode with LBT and the mode without LBT is performed based on the comparison result between the packet error rate and the third threshold value. I am trying to do it. As a result, as in the first embodiment, the power consumption can be suppressed as compared with the conventional case, and the life of the battery BT (battery life) can be extended.

〔第4実施形態〕
次に、本発明の第4実施形態について説明する。本実施形態は、前述した第1実施形態の変形例と第3実施形態とを組み合わせたものである。図10は、本発明の第4実施形態における動作の一例を示すフローチャートである。尚、図10に示すフローチャートは、図5に示すフローチャートと同様に、データ送信時の動作のみを抜き出して示したものであり、予め設定された一定の周期で繰り返し行われる。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. This embodiment is a combination of the above-described modification of the first embodiment and the third embodiment. FIG. 10 is a flowchart showing an example of the operation according to the fourth embodiment of the present invention. Note that the flowchart shown in FIG. 10 is the same as the flowchart shown in FIG. 5, in which only the operation at the time of data transmission is extracted and shown, and is repeated at a preset constant cycle.

図10に示すフローチャートの処理が開始されると、まずデータ送信周期が第1閾値以下であるか否かを判断する処理が制御部15によって行われる(ステップS21)。データ送信周期が第1閾値以下であると判断した場合(判断結果が「YES」の場合)には、LBT有モードに設定する処理が制御部15によって行われる(ステップS22)。 When the process of the flowchart shown in FIG. 10 is started, the control unit 15 first performs a process of determining whether or not the data transmission cycle is equal to or less than the first threshold value (step S21). When it is determined that the data transmission cycle is equal to or less than the first threshold value (when the determination result is "YES"), the control unit 15 performs a process of setting the LBT present mode (step S22).

これに対し、データ送信周期が第1閾値よりも大であると判断した場合(判断結果が「NO」の場合)には、パケットエラーレートが第3閾値よりも大であるか否かを判断する処理が制御部15によって行われる(ステップS31)。パケットエラーレートが第3閾値よりも大であると判断した場合(判断結果が「YES」の場合)には、LBT有モードに設定する処理が制御部15によって行われる(ステップS22)。これに対し、パケットエラーレートが第3閾値以下であると判断した場合(判断結果が「NO」の場合)には、LBT無モードに設定する処理が制御部15によって行われる(ステップS23)。 On the other hand, when it is determined that the data transmission cycle is larger than the first threshold value (when the judgment result is "NO"), it is determined whether or not the packet error rate is larger than the third threshold value. The processing to be performed is performed by the control unit 15 (step S31). When it is determined that the packet error rate is larger than the third threshold value (when the determination result is "YES"), the control unit 15 performs a process of setting the LBT present mode (step S22). On the other hand, when it is determined that the packet error rate is equal to or less than the third threshold value (when the determination result is "NO"), the control unit 15 performs a process of setting the LBT non-mode (step S23).

以上の設定が終了すると、制御部15によって無線通信部13が制御されて、データの送信処理が実施される(ステップS24)。具体的に、ステップS22の処理でLBT有モードが設定された場合には、LBTを行ってからデータを送信する処理が行われる。これに対し、ステップS23の処理でLBT無モードが設定された場合には、LBTを行うことなくデータを送信する処理が行われる。 When the above settings are completed, the wireless communication unit 13 is controlled by the control unit 15 to perform data transmission processing (step S24). Specifically, when the mode with LBT is set in the process of step S22, the process of transmitting data after performing LBT is performed. On the other hand, when the LBT no mode is set in the process of step S23, the process of transmitting data is performed without performing LBT.

以上の通り、本実施形態では、アンライセンスバンドを用いて無線通信を行う場合において、データ送信周期と第1閾値との比較結果と、パケットエラーレートと第3閾値との比較結果とに基づいて、LBT有モードとLBT無モードとの切り替え制御を行うようにしている。これにより、通信頻度及び通信環境を考慮しつつ、LBT有モードとLBT無モードとの切り替え制御が行われることから、従来よりも消費電力を抑えることができ、電池BTの寿命(電池寿命)を延ばすことができる。 As described above, in the present embodiment, when wireless communication is performed using the unlicensed band, the comparison result between the data transmission cycle and the first threshold value and the comparison result between the packet error rate and the third threshold value are used. , Switching control between the mode with LBT and the mode without LBT is performed. As a result, switching control between the mode with LBT and the mode without LBT is performed while considering the communication frequency and the communication environment, so that the power consumption can be suppressed as compared with the conventional case, and the life of the battery BT (battery life) can be shortened. Can be extended.

本実施形態において、パケットエラーレートが、第3閾値に近い値である場合には、LBT有モードとLBT無モードとの切り替えが頻繁に行われることが考えられる。このため、LBT有モードとLBT無モードとの切り替えが頻繁に行われないような対策を施すことが望ましい。例えば、パケットエラーレートが第3閾値(10[%])よりも大になった場合(ステップS31の判断結果が「YES」になった場合)には、パケットエラーレートが所定値(例えば、8[%])よりも小になるまで、LBT有モードとLBT無モードとの切り替えを行わないといった対策が考えられる。つまり、第3閾値にヒステリシス(例えば、[2%])を持たせるといった対策が考えられる。 In the present embodiment, when the packet error rate is close to the third threshold value, it is conceivable that the mode with LBT and the mode without LBT are frequently switched. Therefore, it is desirable to take measures so that the mode with LBT and the mode without LBT are not frequently switched. For example, when the packet error rate becomes larger than the third threshold value (10 [%]) (when the determination result in step S31 becomes “YES”), the packet error rate becomes a predetermined value (for example, 8). It is conceivable to take measures such as not switching between the mode with LBT and the mode without LBT until it becomes smaller than [%]). That is, a measure such as giving a hysteresis (for example, [2%]) to the third threshold value can be considered.

以上、本発明の実施形態による無線通信装置について説明したが、本発明は上記実施形態に制限される訳ではなく、本発明の範囲内で自由に変更が可能である。例えば、上述した第4実施形態は、第1実施形態の変形例と第3実施形態とを組み合わせたものであったが、第2実施形態の変形例と第3実施形態とを組み合わせることも可能である。この組み合わせにおける動作を示すフローチャートは、図10中のステップS21における「データ送信周期が第1閾値以下?」を、「通信データレートが第2閾値以下?」と読み替えたものになる。 Although the wireless communication device according to the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and can be freely changed within the scope of the present invention. For example, the above-described fourth embodiment is a combination of the modified example of the first embodiment and the third embodiment, but it is also possible to combine the modified example of the second embodiment and the third embodiment. Is. The flowchart showing the operation in this combination is obtained by replacing "data transmission cycle is equal to or less than the first threshold value?" In step S21 in FIG. 10 with "communication data rate is equal to or less than the second threshold value?".

また、第1実施形態と第2実施形態とを組み合わせることも可能である。この組み合わせにおける動作を示すフローチャートは、図10中のステップS31における「PERが第3閾値よりも大?」を、「通信データレートが第2閾値以下?」と読み替えたものになる。更に、第1〜第3実施形態を組み合わせることも可能である。この組み合わせにおける動作を示すフローチャートは、図10中のステップS21とステップS31との間に、「通信データレートが第2閾値以下?」という判断ステップを設け、この判断ステップの判断結果が「YES」の場合にはステップS22に移行し、「NO」の場合にはステップS31に移行するものとなる。 It is also possible to combine the first embodiment and the second embodiment. In the flowchart showing the operation in this combination, "PER is larger than the third threshold value?" In step S31 in FIG. 10 is read as "communication data rate is equal to or less than the second threshold value?". Furthermore, it is also possible to combine the first to third embodiments. In the flowchart showing the operation in this combination, a determination step "is the communication data rate equal to or less than the second threshold value?" Is provided between step S21 and step S31 in FIG. 10, and the determination result of this determination step is "YES". In the case of, the process proceeds to step S22, and in the case of “NO”, the process proceeds to step S31.

尚、上述した実施形態において、無線通信装置は、消費電力を抑えることができ、また、通信ロスの発生を抑えることができ、また、消費電力と通信ロスの発生とを抑えることができる。 In the above-described embodiment, the wireless communication device can suppress the power consumption, the occurrence of the communication loss, and the power consumption and the occurrence of the communication loss.

また、上述した実施形態では、無線センサ10の無線通信部13が、低消費電力長距離無線通信の一種であるLoRa(登録商標)等の通信規格に準拠した無線通信を行う例について説明した。しかしながら、無線通信部13は、例えばISA100.11aやWirelessHART(登録商標)等のアンライセンスバンドを使用した他の無線通信規格を用いて無線通信を行うものであっても良い。 Further, in the above-described embodiment, an example in which the wireless communication unit 13 of the wireless sensor 10 performs wireless communication conforming to a communication standard such as LoRa (registered trademark), which is a kind of low power consumption long-distance wireless communication, has been described. However, the wireless communication unit 13 may perform wireless communication using another wireless communication standard using an unlicensed band such as ISA100.11a or WirelessHART (registered trademark).

更に、第1実施形態で用いられるテーブルTB1に設定可能なデータ送信周期は、図3に示されるものに制限される訳ではなく、任意のデータ送信周期を設定することが可能である。また、第2実施形態で用いられるテーブルTB2に設定可能な通信データレートは、図7に示されるものに制限される訳ではなく、任意の通信データレートを設定することが可能である。 Further, the data transmission cycle that can be set in the table TB1 used in the first embodiment is not limited to that shown in FIG. 3, and any data transmission cycle can be set. Further, the communication data rate that can be set in the table TB2 used in the second embodiment is not limited to that shown in FIG. 7, and any communication data rate can be set.

10 無線センサ
12 記憶部
13 無線通信部
14 無線通信部
15 制御部
BT 電池
CD 設定情報
TB1 テーブル
TB2 テーブル
TM 端末装置
10 Wireless sensor 12 Storage unit 13 Wireless communication unit 14 Wireless communication unit 15 Control unit BT Battery CD setting information TB1 table TB2 table TM terminal device

Claims (10)

無線局免許を必要としない周波数帯を用いて無線通信を行う第1無線通信部と、
データの送信に使用するチャネルの空き状況の事前確認を行ってから前記第1無線通信部にデータを送信させる第1動作モードと、前記事前確認を行うことなく前記第1無線通信部にデータを送信させる第2動作モードとの切り替え制御を行う制御部と、
を備える無線通信装置。
The first wireless communication unit that performs wireless communication using a frequency band that does not require a wireless station license,
The first operation mode in which the availability of the channel used for data transmission is confirmed in advance and then the data is transmitted to the first wireless communication unit, and the data is sent to the first wireless communication unit without the prior confirmation. A control unit that controls switching between the second operation mode and
A wireless communication device equipped with.
前記制御部は、データ送信周期、通信データレート、及びエラーレートの少なくとも1つに応じて、前記第1動作モードと前記第2動作モードとの切り替え制御を行う、請求項1記載の無線通信装置。 The wireless communication device according to claim 1, wherein the control unit controls switching between the first operation mode and the second operation mode according to at least one of a data transmission cycle, a communication data rate, and an error rate. .. 前記制御部は、前記データ送信周期が予め規定された第1閾値以下である場合、前記通信データレートが予め規定された第2閾値以下である場合、又は前記エラーレートが予め規定された第3閾値よりも大である場合には、前記第1動作モードにする制御を行う、請求項2記載の無線通信装置。 In the control unit, the data transmission cycle is equal to or less than a predetermined first threshold value, the communication data rate is equal to or less than a predetermined second threshold value, or the error rate is a predetermined third threshold value. The wireless communication device according to claim 2, wherein when the value is larger than the threshold value, control is performed to set the first operation mode. 前記第1動作モードと前記第2動作モードとの切り替え制御に用いられる設定情報を記憶する記憶部を備えており、
前記制御部は、前記記憶部に記憶された前記設定情報に基づいて、前記第1動作モードと前記第2動作モードとの切り替え制御を行う、
請求項3記載の無線通信装置。
It is provided with a storage unit that stores setting information used for switching control between the first operation mode and the second operation mode.
The control unit controls switching between the first operation mode and the second operation mode based on the setting information stored in the storage unit.
The wireless communication device according to claim 3.
外部機器と近距離無線通信を行って前記設定情報を取得する第2無線通信部を更に備える、請求項4記載の無線通信装置。 The wireless communication device according to claim 4, further comprising a second wireless communication unit that performs short-range wireless communication with an external device to acquire the setting information. 前記設定情報には、前記第1動作モードを実行することが可能な第1データ送信周期と、前記第2動作モードを実行することが可能な第2データ送信周期と、が規定された第1テーブルが含まれており、
前記第1データ送信周期には、前記第1閾値以下の前記データ送信周期と、前記第1閾値よりも大である前記データ送信周期とが設定可能であり、
前記第2データ送信周期には、前記第1閾値よりも大である前記データ送信周期のみが設定可能である、
請求項4又は請求項5記載の無線通信装置。
The setting information defines a first data transmission cycle in which the first operation mode can be executed and a second data transmission cycle in which the second operation mode can be executed. The table is included
In the first data transmission cycle, the data transmission cycle below the first threshold value and the data transmission cycle larger than the first threshold value can be set.
Only the data transmission cycle larger than the first threshold value can be set in the second data transmission cycle.
The wireless communication device according to claim 4 or 5.
前記設定情報には、前記第1動作モードを実行することが可能な第1通信データレートと、前記第2動作モードを実行することが可能な第2通信データレートと、が規定された第2テーブルが含まれており、
前記第1通信データレートには、前記第2閾値以下の前記通信データレートと、前記第2閾値よりも大である前記通信データレートとが設定可能であり、
前記第2通信データレートには、前記第2閾値よりも大である前記通信データレートのみが設定可能である、
請求項4又は請求項5記載の無線通信装置。
The setting information defines a second communication data rate capable of executing the first operation mode and a second communication data rate capable of executing the second operation mode. Table is included
For the first communication data rate, the communication data rate below the second threshold value and the communication data rate larger than the second threshold value can be set.
Only the communication data rate, which is larger than the second threshold value, can be set as the second communication data rate.
The wireless communication device according to claim 4 or 5.
前記設定情報には、前記第1閾値、前記第2閾値、及び前記第3閾値の少なくとも1つが含まれており、
前記制御部は、前記データ送信周期が前記第1閾値以下である場合、前記通信データレートが前記第2閾値以下である場合、又は前記エラーレートが前記第3閾値よりも大である場合には、前記第1動作モードにする制御を行い、前記データ送信周期が前記第1閾値よりも大である場合、前記通信データレートが前記第2閾値よりも大である場合、又は前記エラーレートが前記第3閾値以下である場合には、前記第2動作モードにする制御を行う、
請求項4又は請求項5記載の無線通信装置。
The setting information includes at least one of the first threshold value, the second threshold value, and the third threshold value.
When the data transmission cycle is equal to or less than the first threshold value, the communication data rate is equal to or less than the second threshold value, or the error rate is larger than the third threshold value, the control unit may use the control unit. , The first operation mode is controlled, the data transmission cycle is larger than the first threshold value, the communication data rate is larger than the second threshold value, or the error rate is the said error rate. If it is equal to or less than the third threshold value, control is performed to switch to the second operation mode.
The wireless communication device according to claim 4 or 5.
少なくとも前記第1無線通信部及び前記制御部に電力を供給する電池を備える、請求項1から請求項8の何れか一項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 8, further comprising a battery that supplies electric power to the first wireless communication unit and the control unit. 前記電池は、交換可能である、請求項9記載の無線通信装置。 The wireless communication device according to claim 9, wherein the battery is replaceable.
JP2019053276A 2019-03-20 2019-03-20 wireless communication device Active JP7293770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019053276A JP7293770B2 (en) 2019-03-20 2019-03-20 wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053276A JP7293770B2 (en) 2019-03-20 2019-03-20 wireless communication device

Publications (2)

Publication Number Publication Date
JP2020155955A true JP2020155955A (en) 2020-09-24
JP7293770B2 JP7293770B2 (en) 2023-06-20

Family

ID=72559904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053276A Active JP7293770B2 (en) 2019-03-20 2019-03-20 wireless communication device

Country Status (1)

Country Link
JP (1) JP7293770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286153A1 (en) * 2021-07-13 2023-01-19 日本電信電話株式会社 Interference avoidance system, interference avoidance method, and interference avoidance device for radio communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130796A (en) * 2016-01-20 2017-07-27 株式会社Nttドコモ User terminal, radio base station, and radio communication method
JP2017184219A (en) * 2016-03-29 2017-10-05 大阪瓦斯株式会社 Network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130796A (en) * 2016-01-20 2017-07-27 株式会社Nttドコモ User terminal, radio base station, and radio communication method
JP2017184219A (en) * 2016-03-29 2017-10-05 大阪瓦斯株式会社 Network system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286153A1 (en) * 2021-07-13 2023-01-19 日本電信電話株式会社 Interference avoidance system, interference avoidance method, and interference avoidance device for radio communication

Also Published As

Publication number Publication date
JP7293770B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US11160089B2 (en) Assessment and mitigation of radio frequency interference of networked devices
CN107787601B (en) Method and apparatus for generating an indication of remaining battery life for a wireless device
US20110140909A1 (en) Apparatus And Method For Establishing Communication From Remote Sites In A Fixed Meter Reading Network
US20150256218A1 (en) Apparatus And Method For Priority Addressing And Message Handling In A Fixed Meter Reading Network
CN102823302A (en) Method and apparatus for providing machine-to-machine communication in a wireless network
JP2015088807A (en) Radio communication device and radio information collection system
JP7293770B2 (en) wireless communication device
JP5263318B2 (en) Position information recognition system and method, and portable terminal and program thereof
WO2018109047A1 (en) Method for geographic-based radiofrequency band selection
US9773352B2 (en) Work machine and work machine management system
WO2012000524A1 (en) Method using a blanking signal to reduce the leakage transmitter-receiver
JP2019022090A (en) Sensor device
EP2337415A1 (en) Wireless base station and communication method
JP2019121155A (en) Sensor network system and center device
JP2019121157A (en) Sensor network system and center device
KR20180072318A (en) IoT network system for preventing data distortion
CA3073433C (en) Cellular modem with dynamic low battery voltage threshold control
JP2008109322A (en) Communication system, base station, its cell radius setting method, and program
US20240007530A1 (en) Method for managing a communicating meter
EP4195720B1 (en) Home network
EP3008925B1 (en) Method for enhancing machine type communication between a mobile communication network on the one hand, and a plurality of machine type communication devices on the other hand
US11012509B2 (en) Cloud computing server interface
US20220116103A1 (en) Wireless radio repeater for electric power distribution system
CN111771369B (en) Information processing system
JP7189698B2 (en) Communication slave unit, communication base unit, wireless communication system, and communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230412

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7293770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150