JP2020154991A - Information management device and information management method - Google Patents
Information management device and information management method Download PDFInfo
- Publication number
- JP2020154991A JP2020154991A JP2019054851A JP2019054851A JP2020154991A JP 2020154991 A JP2020154991 A JP 2020154991A JP 2019054851 A JP2019054851 A JP 2019054851A JP 2019054851 A JP2019054851 A JP 2019054851A JP 2020154991 A JP2020154991 A JP 2020154991A
- Authority
- JP
- Japan
- Prior art keywords
- node
- item
- predetermined
- information management
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/35—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/36—Creation of semantic tools, e.g. ontology or thesauri
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
- G06F40/35—Discourse or dialogue representation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Machine Translation (AREA)
Abstract
Description
本発明は、情報を階層化して管理可能な情報管理装置および情報管理方法に関する。 The present invention relates to an information management device and an information management method capable of managing information in a hierarchical manner.
利用者が必要な情報を取得し易くするために、情報を階層的に分類する技術が提案されている。 In order to make it easier for users to obtain necessary information, a technique for classifying information hierarchically has been proposed.
例えば、特許文献1には、経路パタン抽出部は、比較概念選択部で選択された概念を含むカテゴリを含む経路を情報分類階層において特定し、当該経路に含まれる各カテゴリの概念に対し、上位のカテゴリの概念とどのような関係にあるかの情報を設定し、当該各カテゴリの概念を、入力受付部で入力されたユーザ指定概念を除き、抽象化することにより経路パタンを生成し、カテゴリ生成部は、経路パタンに含まれるカテゴリの概念を、上記設定した情報を満たすように置換することで、候補カテゴリを生成し、制御部は候補カテゴリを情報分類階層に追加し、出力部は情報分類階層を出力する技術が開示されている。
For example, in
しかしながら、従来の情報分類階層は、ドキュメントの表記の揺れのみを考慮して構築され、項目の使われ方は考慮されていなかった。このため、同じ項目であっても、ドキュメントによっては記載内容が異なることがあり、必要な情報の取得に手間がかかることがあった。 However, the conventional information classification hierarchy is constructed by considering only the fluctuation of the document notation, and the usage of items is not considered. For this reason, even if the items are the same, the description contents may differ depending on the document, and it may take time and effort to acquire the necessary information.
本発明は、上記事情に鑑みなされたものであり、その目的は、使われ方が反映された情報を階層的に管理可能な情報管理装置および情報管理方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an information management device and an information management method capable of hierarchically managing information reflecting how it is used.
上記目的を達成するため、第1の観点に係る情報管理装置は、概念化された情報に割り当てられたノードの階層構造から所定ノードを抽出する抽出部と、前記抽出部にて抽出された前記所定ノードに紐付けられた下位ノードの情報に基づいて、前記抽出部で抽出された前記所定ノードを分類する分類部とを備える。 In order to achieve the above object, the information management device according to the first aspect includes an extraction unit that extracts a predetermined node from the hierarchical structure of the nodes assigned to the conceptualized information, and the predetermined unit that is extracted by the extraction unit. It is provided with a classification unit that classifies the predetermined node extracted by the extraction unit based on the information of the lower node associated with the node.
本発明によれば、使われ方が反映された情報を階層的に管理することができる。 According to the present invention, information that reflects how it is used can be managed hierarchically.
実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが発明の解決手段に必須であるとは限らない。 The embodiment will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are essential for the means for solving the invention. Not necessarily.
実施形態に係る情報管理装置は、ドキュメントの表記の使われ方に基づいて情報を分類する。このとき、情報管理装置は、概念化された情報に割り当てられたノードの階層構造から所定ノードを抽出し、その所定ノードに紐付けられた下位ノードの情報に基づいて所定ノードを分類する。ノードは、例えば、ドキュメントの項目が割り当てられる。ノードは、ドキュメントの見出しが割り当てられてもよいし、ドキュメントのタイトルが割り当てられてもよい。ノードは、例えば、帳票などの項目名が割り当てられてもよい。 The information management device according to the embodiment classifies information based on how the notation of the document is used. At this time, the information management device extracts a predetermined node from the hierarchical structure of the nodes assigned to the conceptualized information, and classifies the predetermined node based on the information of the lower node associated with the predetermined node. Nodes are assigned, for example, document items. The node may be assigned a document heading or a document title. The node may be assigned an item name such as a form.
以下、実施形態に係る情報管理装置について、ドキュメントの項目がノードに割り当てられる場合を例にとって説明する。以下の説明では、“○○部は”と動作主体を記した場合、プロセッサがプログラムである○○部を読み出し、DRAM(Dynamic Random Access Memory)にロードした上で○○部の機能を実現することを意味するものとする。 Hereinafter, the information management device according to the embodiment will be described by taking the case where the document items are assigned to the nodes as an example. In the following explanation, when the operation subject is described as "○○ part is", the processor reads the program ○○ part, loads it into the DRAM (Dynamic Random Access Memory), and then realizes the function of the ○○ part. It shall mean that.
図1は、実施形態に係る情報管理装置の構成例を示すブロック図である。
図1において、情報管理装置は、項目抽出部1、ノード候補生成部2、ノード抽出部3、ノード統合部4、分類部5、モデル化部6、ノード分割部7、シソーラス辞書8および概念モデル9を備える。
FIG. 1 is a block diagram showing a configuration example of the information management device according to the embodiment.
In FIG. 1, the information management device includes an
項目抽出部1は、ドキュメントD1〜D4・・から項目を抽出し、その項目が割り当てられたノードの階層構造を生成する。このとき、項目抽出部1は、ノードに付される項目名として、ドキュメントD1〜D4・・の記載をそのまま用いる。このため、ノードに付される項目名は、同一の概念の項目であっても、表記にバラツキが発生することがある。
The
ノード候補生成部2は、形態素解析および類語分析に基づいて、ドキュメントD1〜D4・・から抽出された同一概念の項目の名称を統一する。このとき、ノード候補生成部2は、シソーラス辞書8を参照することができる。また、ノード候補生成部2は、ドキュメントD1〜D4・・から抽出された単語の包含関係に基づいてノードの階層構造を修正する。例えば、所定ノードに紐付く下位ノードの概念が、所定ノードの概念に含まれない修飾語である場合、ノード候補生成部2は、その下位ノードを所定ノードに集約することができる。 The node candidate generation unit 2 unifies the names of the items of the same concept extracted from the documents D1 to D4 ... Based on the morphological analysis and the synonym analysis. At this time, the node candidate generation unit 2 can refer to the thesaurus dictionary 8. Further, the node candidate generation unit 2 modifies the hierarchical structure of the nodes based on the inclusion relationship of the words extracted from the documents D1 to D4. For example, when the concept of the lower node associated with the predetermined node is a modifier that is not included in the concept of the predetermined node, the node candidate generation unit 2 can aggregate the lower node into the predetermined node.
ノード抽出部3は、ノードの階層構造から所定ノードを抽出する。例えば、ノード抽出部3は、所定ノードとして、下位ノードの階層が1段以下のノードを抽出することができる。所定ノードとして、下位ノードの階層が1段以下のノードを抽出することにより、所定ノードに紐付く下位ノードの項目に基づくパタン分類を容易化することができる。
The
ノード統合部4は、所定ノードに紐付く下位ノードの項目の抽象度を統合する。このとき、ノード統合部4は、概念モデル9を参照することができる。これにより、同一階層の項目であっても、上位概念で表記された項目名と、下位概念で表記された項目名とを一致させることができる。
The node integration unit 4 integrates the degree of abstraction of the items of the lower node associated with the predetermined node. At this time, the node integration unit 4 can refer to the
分類部5は、所定ノードに紐付く下位ノードの項目に基づいて所定ノードを分類する。このとき、分類部5は、所定ノードに紐付く下位ノードの概念の組み合わせに基づいて、所定ノードを分類することができる。例えば、分類部5は、第1ノードに紐付く下位ノードの概念が、第2ノードに紐付く下位ノードの概念となり得ない場合、第1ノードと第2ノードを異なるグループに分類することができる。これにより、第1ノードの項目名と第2ノードの項目名とが等しい場合においても、第1ノードの項目と第2ノードの項目とは、使われ方が異なると判断することができる。
The
ここで、異なるグループに分類された所定ノードに割り当てられた項目は、表記が同じであっても、使われ方が異なると判断することができ、項目の使われ方が反映された情報の検索効率を向上させることができる。このため、報告書、設計書、企画書、論文、社内向けおよび社外向けなどの種類に応じて適正化されたドキュメントの作成を支援したり、採択率の良い論文の作成を支援したりすることができる。 Here, it can be determined that the items assigned to the predetermined nodes classified into different groups are used differently even if the notation is the same, and the search for information reflecting the usage of the items is performed. Efficiency can be improved. For this reason, we support the creation of documents optimized for each type of report, design document, proposal, dissertation, internal and external, etc., and support the creation of dissertation with a good acceptance rate. Can be done.
モデル化部6は、所定ノードに紐付く下位ノードの情報に基づいて、下位ノードの紐付き方のモデルを推定する。このとき、モデル化部6は、分類部5にて同一グループに分類された所定ノードに紐付く下位ノードの紐付き方のパタンを生成することができる。このパタンは、複数のドキュメントD1〜D4・・から抽出された項目に割り当てられた所定ノードに紐付く下位ノードのまとまり度またはバラツキ度を示すことができる。
The
モデル化部6は、下位ノードの紐付き方のモデルを推定する場合、所定ノードに紐付く下位ノードの情報内容を参照することができる。例えば、モデル化部6は、所定ノードに紐付く下位ノードの情報内容の要素に基づいて、下位ノードの紐付き方のモデルを推定することができる。下位ノードの情報内容の要素は、例えば、下位ノードの情報内容に含まれる単語である。この下位ノードの情報の紐付き方のモデルは、下位ノードの情報内容の情報量に基づいて構築してもよいし、下位ノードの情報内容の要素の類似性に基づいて構築してもよい。
When estimating the model of how the lower node is associated, the
ノード分割部7は、異なるグループに分類された所定ノードにそれぞれ紐付く下位ノードの項目を、各グループに特有の具体的な項目に分割し、そのノードの階層構造をグループごとに出力する。このとき、ノード分割部7は、モデル化部6にて推定されたモデルに基づいて、所定ノードに紐付く下位ノードの項目を分割することができる。これにより、ドキュメントD1〜D4・・から同一概念の項目として抽出された場合においても、これらの項目の使われ方に違いに応じて項目名を異ならせることができ、項目の使われ方の違いが反映された検索を実現することができる。
The
シソーラス辞書8は、意味の類似性に基づいて単語を分類した辞書である。概念モデル9は、概念間の上下の関係性を示すモデルである。このとき、上位の階層は、下位の階層よりも抽象度を高くすることができる。概念モデル9は、例えば、オントロジーを用いることができる。
The thesaurus dictionary 8 is a dictionary in which words are classified based on the similarity of meanings. The
以下、図1の情報管理装置の処理について、実際のドキュメントを例にとって具体的に説明する。
図2は、図1のドキュメントの一例を示す図である。
図2において、ドキュメントD1には、クマノミの生態というタイトルが設けられている。ドキュメントD1は、生息環境、繁殖方法、採食方法、性別および生存期間という項目を含む。生息環境という項目は、水質、水深、温度、共生および生息海域という項目を含む。
Hereinafter, the processing of the information management device of FIG. 1 will be specifically described by taking an actual document as an example.
FIG. 2 is a diagram showing an example of the document of FIG.
In FIG. 2, document D1 is given the title of anemone fish ecology. Document D1 includes items such as habitat, breeding method, foraging method, gender and survival time. Habitat items include water quality, depth, temperature, symbiosis and habitat areas.
水質という項目は、海水という情報内容を含む。水深という項目は、20−40mという情報内容を含む。温度という項目は、24度という情報内容を含む。共生という項目は、イソギンチャクという情報内容を含む。生息海域という項目は、インド太平洋および赤道付近という情報内容を含む。 The item of water quality includes the information content of seawater. The item "water depth" includes the information content of 20-40 m. The item "temperature" includes the information content of 24 degrees. The item of symbiosis includes the information content of sea anemones. The item Habitat includes information about the Indo-Pacific and near the equator.
図3は、図1のドキュメントのその他の例を示す図である。
図3において、ドキュメントD2には、ドビウオの生態というタイトルが設けられている。ドキュメントD2は、生息環境、繁殖方法、餌接種方法、性別および寿命という項目を含む。生息環境という項目は、水質、水深、温度および生息地域という項目を含む。
FIG. 3 is a diagram showing another example of the document of FIG.
In FIG. 3, document D2 is given the title of Dobiuo ecology. Document D2 includes items such as habitat, breeding method, feeding method, gender and longevity. The item habitat includes items such as water quality, depth, temperature and habitat.
水質という項目は、海水という情報内容を含む。水深という項目は、1mという情報内容を含む。生息地域という項目は、太平洋、インド洋および大西洋という情報内容を含む。 The item of water quality includes the information content of seawater. The item "water depth" includes the information content of 1 m. The habitat section includes information about the Pacific Ocean, Indian Ocean, and Atlantic Ocean.
図4は、図1のドキュメントのさらにその他の例を示す図である。
図4において、ドキュメントD3には、パンダの生態というタイトルが設けられている。ドキュメントD3は、形態、生息地域、繁殖方法、採食方法および寿命という項目を含む。形態という項目は、大きさ、体毛および鳴き声という項目を含む。大きさという項目は、全長および体重という項目を含む。鳴き声という項目は、おすおよびめすという項目を含む。生息地域という項目は、国名および生息環境という項目を含む。生息環境という項目は、温帯および竹林という項目を含む。
FIG. 4 is a diagram showing still another example of the document of FIG.
In FIG. 4, document D3 is given the title of panda ecology. Document D3 includes items such as morphology, habitat, breeding method, foraging method and longevity. The item morphology includes the items size, hair and bark. The item of size includes the items of total length and weight. The item barking includes the items male and female. The item habitat includes the item country name and habitat. The item habitat includes the items temperate and bamboo grove.
体重という項目は、kgという情報内容を含む。おすという項目は、ニャーニャーという情報内容を含む。めすという項目は、ミャンミャンという情報内容を含む。国名という項目は、中国という情報内容を含む The item of weight includes the information content of kg. The item "Osu" includes the information content "Meow Meow". The item "female" includes the information content "myanmyan". The item "country name" includes the information content "China"
図5は、図1のドキュメントのさらにその他の例を示す図である。
図5において、ドキュメントD4には、ライオンの生態というタイトルが設けられている。ドキュメントD4は、形態、生息地域、繁殖方法、採食方法、社会システムおよび寿命という項目を含む。形態という項目は、大きさ、体毛および鳴き声という項目を含む。大きさという項目は、全長および体重という項目を含む。生息地域という項目は、国名および生息環境という項目を含む。生息環境という項目は、亜熱帯および草地という項目を含む。国名という項目は、アフリカという情報内容を含む。
FIG. 5 is a diagram showing still another example of the document of FIG.
In FIG. 5, document D4 is given the title of lion ecology. Document D4 includes items such as morphology, habitat, breeding method, foraging method, social system and longevity. The item morphology includes the items size, hair and bark. The item of size includes the items of total length and weight. The item habitat includes the item country name and habitat. The item Habitat includes the items Subtropical and Grassland. The item "country name" includes the information content of Africa.
図6(a)は、図2のドキュメントの項目が割り当てられたノードの階層構造を示す図、図6(b)は、図3のドキュメントの項目が割り当てられたノードの階層構造を示す図である。
図6(a)において、項目抽出部1は、図2のドキュメントD1からタイトルおよび項目を抽出する。そして、項目抽出部1は、クマノミの生態というタイトルにノードN111を割り当てる。
FIG. 6A is a diagram showing a hierarchical structure of nodes to which the document items of FIG. 2 are assigned, and FIG. 6B is a diagram showing a hierarchical structure of nodes to which the document items of FIG. 3 are assigned. is there.
In FIG. 6A, the
項目抽出部1は、生息環境、繁殖方法、採食方法、性別および生存期間という項目にノードN121〜N125をそれぞれ割り当てる。項目抽出部1は、水質、水深、温度、共生および生息海域という項目にノードN131〜N135をそれぞれ割り当てる。項目抽出部1は、ノードN111にノードN121〜N125を紐付け、ノードN121にノードN131〜N135を紐付ける。
The
図6(b)において、図1の項目抽出部1は、図3のドキュメントD2からタイトルおよび項目を抽出する。そして、項目抽出部1は、トビウオの生態というタイトルにノードN211を割り当てる。
In FIG. 6B, the
項目抽出部1は、生息環境、繁殖方法、餌接種方法、性別および寿命という項目にノードN221〜N225をそれぞれ割り当てる。項目抽出部1は、水質、水深、温度および生息地域という項目にノードN231〜N234をそれぞれ割り当てる。項目抽出部1は、ノードN211にノードN221〜N225を紐付け、ノードN221にノードN231〜N234を紐付ける。
The
ここで、図6(a)のノードN123の採食方法という項目と、図6(b)のノードN223の餌接種方法という項目とは、同一概念であるが、項目抽出部1は、ドキュメントD1、D2の表記をそのまま用いる。また、図6(a)のノードN125の生存期間という項目と、図6(b)のノードN225の寿命という項目とは、同一概念であるが、項目抽出部1は、ドキュメントD1、D2の表記をそのまま用いる。
Here, the item of the foraging method of the node N123 in FIG. 6A and the item of the inoculation method of the node N223 in FIG. 6B have the same concept, but the
図7(a)は、図6(a)の階層構造のノードの概念の意味解析に基づく統合例を示す図、図7(b)は、図6(b)の階層構造のノードの概念の意味解析に基づく概念の統合例を示す図、図7(c)は、図4(b)のドキュメントの項目に基づく階層構造のノードの概念の意味解析に基づく統合例を示す図である。
図7(a)において、図1のノード候補生成部2は、形態素解析に基づいて、ノードN111のクマノミの生態というタイトルから生態という項目を抽出し、ノードN111の名称を生態という項目に変更する。また、ノード候補生成部2は、類語分析に基づいて、ノードN125の生存期間という項目を寿命という項目に変更する。
FIG. 7 (a) is a diagram showing an integration example based on the semantic analysis of the concept of the hierarchical structure node of FIG. 6 (a), and FIG. 7 (b) is a diagram of the concept of the hierarchical structure node of FIG. 6 (b). FIG. 7 (c) is a diagram showing an integrated example of the concept based on the semantic analysis, and FIG. 7 (c) is a diagram showing an integrated example based on the semantic analysis of the concept of the node having a hierarchical structure based on the item of the document of FIG. 4 (b).
In FIG. 7A, the node candidate generation unit 2 of FIG. 1 extracts an item of ecology from the title of anemone fish ecology of node N111 based on morphological analysis, and changes the name of node N111 to the item of ecology. .. Further, the node candidate generation unit 2 changes the item of the survival period of the node N125 to the item of the lifespan based on the synonym analysis.
図7(b)において、ノード候補生成部2は、形態素解析に基づいて、ノードN211のトビウオの生態というタイトルから生態という項目を抽出し、ノードN211の名称を生態という項目に変更する。また、ノード候補生成部2は、類語分析に基づいて、ノードN223の餌接種方法という項目を繁殖方法という項目に変更する。 In FIG. 7B, the node candidate generation unit 2 extracts the item "ecology" from the title of the flying fish ecology of the node N211 based on the morphological analysis, and changes the name of the node N211 to the item "ecology". Further, the node candidate generation unit 2 changes the item of the feeding method of the node N223 to the item of the breeding method based on the synonym analysis.
これにより、ノード候補生成部2は、ドキュメントD1、D2において同一概念の項目の表記が異なる場合においても、同一概念の項目の表記を統合することができる。 As a result, the node candidate generation unit 2 can integrate the notations of the items of the same concept even when the notations of the items of the same concept are different in the documents D1 and D2.
図7(c)において、図1の項目抽出部1は、図4のドキュメントD3からタイトルおよび項目を抽出する。そして、項目抽出部1は、パンダの生態というタイトルにノードN311を割り当てる。
In FIG. 7 (c), the
項目抽出部1は、生息地域、形態、採食方法、繁殖方法および寿命という項目にノードN321〜N325をそれぞれ割り当てる。項目抽出部1は、国名、生息環境、大きさ、体毛および鳴き声という項目にノードN331〜N335をそれぞれ割り当てる。項目抽出部1は、温帯、竹林、全長、体重、おすおよびめすという項目にノードN341〜N346をそれぞれ割り当てる。項目抽出部1は、ノードN311にノードN321〜N325を紐付け、ノードN321にノードN331、N322を紐付け、ノードN322にノードN333〜N335を紐付け、ノードN332にノードN341、N342を紐付け、ノードN333にノードN343、N344を紐付け、ノードN335にノードN345、N346を紐付ける。
The
ここで、項目抽出部1は、ノードN341の温帯という項目に対して、温帯の上位概念の仮項目X1を設定し、ノードN342の竹林という項目に対して、竹林の上位概念の仮項目X2を設定することができる。
Here, the
次に、ノード候補生成部2は、形態素解析に基づいて、ノードN311のパンダの生態というタイトルから生態という項目を抽出し、ノードN311の名称を生態という項目に変更する。また、ノード候補生成部2は、ノードN345のおすという項目の概念およびノードN346のめすという項目の概念が、ノードN335の鳴き声という項目の概念に含まれるどうかを判断する。また、ノード候補生成部2は、ノードN345のニャーニャーという情報内容およびノードN346のミャンミャンという情報内容が、ノードN335の鳴き声という項目の概念に含まれるどうかを判断する。 Next, the node candidate generation unit 2 extracts the item "ecology" from the title of the panda ecology of the node N311 based on the morphological analysis, and changes the name of the node N311 to the item "ecology". Further, the node candidate generation unit 2 determines whether or not the concept of the item of the node N345 and the concept of the item of the node N346 are included in the concept of the item of the bark of the node N335. Further, the node candidate generation unit 2 determines whether or not the information content of the node N345 as meow and the information content of the node N346 as myanmyan are included in the concept of the item of the bark of the node N335.
そして、ノード候補生成部2は、ノードN345のおすという項目の概念およびノードN346のめすという項目の概念が、ノードN335の鳴き声という項目の概念に含まれないが、ノードN345のニャーニャーという情報内容およびノードN346のミャンミャンという情報内容が、ノードN335の鳴き声という項目の概念に含まれる場合、ノードN345のおすという項目およびノードN346のめすという項目は、単なる修飾語と判断し、ノードN345、N346をノードN335に集約する。 Then, in the node candidate generation unit 2, the concept of the item of the node N345 and the concept of the item of the node N346 are not included in the concept of the item of the bark of the node N335, but the information content of the meow of the node N345 and the information content When the information content of node N346 is included in the concept of the item of barking of node N335, the item of node N345 and the item of node N346 are judged to be mere modifiers, and nodes N345 and N346 are noded. Consolidate to N335.
図8(a)は、図6(b)の階層構造についての下位ノードの統合または分割の対象となる所定ノードの抽出例を示す図、図8(b)は、図5のドキュメントの項目に基づく階層構造についての下位ノードの統合または分割の対象となる所定ノードの抽出例を示す図である。
図8(a)において、図1のノード抽出部3は、ノード候補生成部2にて図7(b)のノードの階層構造が生成されると、下層構造が1段である下位ノードN231〜N234に紐付くノードN221を抽出する。
8 (a) is a diagram showing an example of extracting a predetermined node to be integrated or divided of lower nodes for the hierarchical structure of FIG. 6 (b), and FIG. 8 (b) is an item of the document of FIG. It is a figure which shows the extraction example of the predetermined node which is the target of integration or division of the lower node about the hierarchical structure based on.
In FIG. 8A, the
図8(b)において、図1の項目抽出部1は、図5のドキュメントD4からタイトルおよび項目を抽出する。そして、項目抽出部1は、ライオンの生態というタイトルにノードN411を割り当てる。
In FIG. 8B, the
項目抽出部1は、生息地域、形態、採食方法、繁殖方法、寿命および社会システムという項目にノードN421〜N426をそれぞれ割り当てる。項目抽出部1は、国名、生息環境、大きさ、体毛および鳴き声という項目にノードN431〜N435をそれぞれ割り当てる。項目抽出部1は、亜熱帯、草原、全長および体重という項目にノードN441〜N444をそれぞれ割り当てる。項目抽出部1は、ノードN411にノードN421〜N426を紐付け、ノードN421にノードN431、N422を紐付け、ノードN422にノードN433〜N435を紐付け、ノードN432にノードN441、N442を紐付け、ノードN433にノードN443、N444を紐付ける。
The
ここで、項目抽出部1は、ノードN441の亜熱帯という項目に対して、亜熱帯の上位概念の仮項目Y1を設定し、ノードN442の草原という項目に対して、草原の上位概念の仮項目Y2を設定することができる。
Here, the
ノード抽出部3は、項目抽出部1にて図8(b)のノードの階層構造が生成されると、下層構造が1段である下位ノードN441、N442に紐付くノードN432を抽出することができる。あるいは、ノード抽出部3は、下層構造が1段である下位ノードN443、N444に紐付くノードN433抽出してもよい。
When the
図9(a)は、図7(a)の階層構造のノードの概念の抽象度解析に基づく統合例を示す図、図9(b)は、図8(a)の階層構造のノードの概念の抽象度解析に基づく概念の統合例を示す図、図9(c)は、図7(c)の階層構造のノードの概念の抽象度解析に基づく統合例を示す図、図9(d)は、図8(b)の階層構造のノードの概念の抽象度解析に基づく統合例を示す図である。 9 (a) is a diagram showing an integration example based on the abstraction degree analysis of the concept of the hierarchical structure node of FIG. 7 (a), and FIG. 9 (b) is the concept of the hierarchical structure node of FIG. 8 (a). 9 (c) is a diagram showing an integration example of the concept based on the abstraction degree analysis of FIG. 7 (c), and FIG. 9 (d) is a diagram showing an integration example based on the abstraction degree analysis of the concept of the node of the hierarchical structure of FIG. 7 (c). Is a diagram showing an integration example based on the abstraction degree analysis of the concept of the node of the hierarchical structure shown in FIG. 8 (b).
図9(a)において、図1のノード抽出部3は、図7(a)のノードの階層構造から、下層構造が1段である下位ノードN131〜N135に紐付くノードN121を抽出したものとする。また、図9(b)において、ノード抽出部3は、図7(b)のノードの階層構造から、下層構造が1段である下位ノードN231〜N234に紐付くノードN221を抽出したものとする。
In FIG. 9A, the
そして、ノード統合部4は、抽象度解析に基づいて、図9(a)の下位ノードN135の生息海域という項目を生息地域という項目に統合する。これにより、図9(a)の下位ノードN135の項目名を、図9(b)の下位ノードN234の項目名に一致させることができ、下位ノードの表記の揺れを除去することができる。 Then, the node integration unit 4 integrates the item of the habitat area of the lower node N135 in FIG. 9A into the item of the habitat area based on the abstraction degree analysis. As a result, the item name of the lower node N135 in FIG. 9A can be matched with the item name of the lower node N234 in FIG. 9B, and the fluctuation of the notation of the lower node can be eliminated.
また、図9(c)において、ノード抽出部3は、図7(c)のノードの階層構造から、下層構造が1段である下位ノードN341〜N342に紐付くノードN332を抽出したものとする。さらに、図9(d)において、ノード抽出部3は、図8(b)のノードの階層構造から、下層構造が1段である下位ノードN441〜N442に紐付くノードN432を抽出したものとする。
Further, in FIG. 9C, it is assumed that the
そして、ノード統合部4は、抽象度解析に基づいて、下位ノードN341の仮項目X1を気候という項目に統合し、下位ノードN342の仮項目X2を植生という項目に統合する。さらに、ノード統合部4は、抽象度解析に基づいて、下位ノードN441の仮項目Y1を気候という項目に統合し、下位ノードN442の仮項目Y2を植生という項目に統合する。これにより、図9(c)の下位ノードN341、N342の項目名と、図9(b)の下位ノードN441、N442の項目名とをそれぞれ一致させることができ、下位ノードの表記の揺れを除去することができる。 Then, the node integration unit 4 integrates the temporary item X1 of the lower node N341 into the item of climate and the temporary item X2 of the lower node N342 into the item of vegetation based on the abstraction degree analysis. Further, the node integration unit 4 integrates the temporary item Y1 of the lower node N441 into the item of climate and the temporary item Y2 of the lower node N442 into the item of vegetation based on the abstraction degree analysis. As a result, the item names of the lower nodes N341 and N342 in FIG. 9C can be matched with the item names of the lower nodes N441 and N442 in FIG. 9B, respectively, and the fluctuation of the notation of the lower node can be eliminated. can do.
図10は、図1のドキュメントから抽出された情報内容と項目との対応関係の一例を示す図である。
図10において、概念モデル9は、例えば、海水、汽水および淡水という下位概念を水質という上位概念に関連付け、インド太平洋、赤道付近の海域、インド洋、太平洋、東アジア河川という下位概念を生息地域という上位概念に関連付け、温帯および亜熱帯という下位概念を気候という上位概念に関連付け、草原および竹林という下位概念を植生という上位概念に関連付ける。
FIG. 10 is a diagram showing an example of a correspondence relationship between items and information contents extracted from the document of FIG.
In FIG. 10, in the
ノード統合部4は、概念モデル9を参照することにより、抽象度の異なる下位ノードの概念の項目名を統合することができる。例えば、図2のドキュメントD1には、インド太平洋および赤道付近という情報内容に対して生息海域という項目が記載されている。このとき、図10の概念モデル9には、インド太平洋および赤道付近の海域という情報内容に対して生息地域という項目が関連付けられている。このため、ノード統合部4は、図10の概念モデル9を参照することにより、図9(a)の下位ノードN135の生息海域という項目を生息地域という項目に統合することができる。
By referring to the
また、概念モデル9には、温帯および亜熱帯という情報内容に対して気候という項目が関連付けられ、草原および竹林という情報内容に対して植生という項目が関連付けられている。このため、ノード統合部4は、図10の概念モデル9を参照することにより、図9(c)および図9(d)の下位ノードN341、N441の仮項目X1、Y1を気候という項目に統合し、下位ノードN342、N442の仮項目X2、Y2を植生という項目に統合することができる。
Further, in the
図11(a)は、各ドキュメントの生息環境に紐付く下位ノードの紐付き方のパタンの分類例を示す図、図11(b)は、図11(a)のパタンP1の数理モデルの一例を示す図、図11(c)は、図11(a)のパタンP2の数理モデルの一例を示す図、図11(d)は、図11(a)のパタンP3の数理モデルの一例を示す図である。 FIG. 11 (a) is a diagram showing a classification example of patterns of how to associate lower nodes associated with the habitat of each document, and FIG. 11 (b) is an example of a mathematical model of pattern P1 of FIG. 11 (a). 11 (c) is a diagram showing an example of a mathematical model of pattern P2 of FIG. 11 (a), and FIG. 11 (d) is a diagram showing an example of a mathematical model of pattern P3 of FIG. 11 (a). Is.
図11(a)において、例えば、クマノミ、トビウオ、イルカ、アユ、メダカ、パンダおよびライオンの生態に関するドキュメントについて、図1のノード抽出部3は、所定ノードとして生息環境という項目を抽出したものとする。
In FIG. 11A, for example, regarding a document relating to the ecology of anemone fish, flying fish, dolphin, sweetfish, medaka, panda and lion, the
このとき、クマノミの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、水質、水深、温度、生息地域および共生があり、トビウオの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、水質、水深、温度および生息地域があり、イルカの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、水質、水深および温度があるものとする。 At this time, regarding the document on the ecology of bear flies, there are water quality, water depth, temperature, habitat and symbiosis as items of lower nodes linked to the item of habitat, and for the document on the ecology of Tobiuo, the item of habitat. The items of the subordinate nodes associated with it are water quality, water depth, temperature and habitat, and for the document on the ecology of dolphins, the items of the subordinate nodes associated with the item of habitat are water quality, water depth and temperature. ..
また、アユの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、水質、生息地域および流速があり、メダカの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、水質および流速があるものとする。 In addition, regarding the document on the ecology of medaka, there are water quality, habitat and velocity as items of the lower node linked to the item of habitat, and for the document on the ecology of medaka, the item of the lower node linked to the item of habitat. It is assumed that the items are water quality and flow velocity.
さらに、パンダの生態に関するドキュメントおよびライオンの生態に関するドキュメントについては、生息環境という項目に紐付く下位ノードの項目として、気候および植生があるものとする。 Furthermore, regarding the document on the ecology of pandas and the document on the ecology of lions, it is assumed that the items of the lower nodes associated with the item of habitat are climate and vegetation.
そして、図1の分類部5は、生息環境という項目に紐付く下位ノードの項目に基づいて、クマノミ、トビウオ、イルカ、アユ、メダカ、パンダおよびライオンの生態に関する各ドキュメントにおける生息環境という項目を分類する。このとき、分類部5は、各ドキュメントにおける生息環境という項目を分類するための指標として、例えば、各ドキュメントの下位ノードの項目をベクトル化した時のベクトル間の距離を用いることができる。
Then, the
このとき、分類部5は、下位ノードの項目の有無に応じて1または0という成分が付与されたベクトルを生成することができる。例えば、分類部5は、クマノミについては、(1,1,1,1,1,0,0,0)というベクトルを生成し、トビウオについては、(1,1,1,1,0,0,0,0)というベクトルを生成し、イルカについては、(1,1,1,0,0,0,0,0)というベクトルを生成し、アユについては、(1,0,0,1,0,1,0,0)というベクトルを生成し、メダカについては、(1,0,0,0,0,1,0,0)というベクトルを生成し、パンダおよびライオンについては、(0,0,0,0,0,0,1,1)というベクトルを生成する。
At this time, the
クマノミ、トビウオおよびイルカについては、ベクトル間の距離は1または2である。アユおよびメダカについては、ベクトル間の距離は1である。パンダおよびライオンについては、ベクトル間の距離は0である。クマノミ、トビウオおよびイルカは、アユおよびメダカと、距離が3以上離れている。クマノミ、トビウオおよびイルカは、パンダおよびライオンと、距離が5以上離れている。アユおよびメダカとは、パンダおよびライオンと、距離が4以上離れている。 For anemone fish, flying fish and dolphins, the distance between the vectors is 1 or 2. For sweetfish and medaka, the distance between the vectors is 1. For pandas and lions, the distance between the vectors is zero. Clownfish, flying fish and dolphins are more than three distances from sweetfish and killifish. Clownfish, flying fish and dolphins are more than five distances from pandas and lions. Ayu and medaka are at least 4 distances from pandas and lions.
このため、分類部5は、下位ノードのベクトル間の距離の閾値を3に設定することで、ベクトル間の距離が3より小さい下位ノードに紐付く生息環境という項目を同一グループに分類し、ベクトル間の距離が3以上の下位ノードに紐付く生息環境という項目を別グループに分類することができる。
Therefore, by setting the threshold of the distance between the vectors of the lower nodes to 3, the
なお、分類部5は、第1ノードに紐付く下位ノードの概念が、第2ノードに紐付く下位ノードの概念となり得ない場合、第1ノードと第2ノードを異なるグループに分類するようにしてもよい。例えば、パンダおよびライオンの生態についての気候および植生という項目は、クマノミ、トビウオ、イルカ、アユおよびメダカの生態についての項目とはなり得ない。このため、パンダおよびライオンについての生息環境という項目は、クマノミ、トビウオ、イルカ、アユおよびメダカについての生息環境という項目と別グループに分類することができる。また、アユおよびメダカの生態についての流速という項目は、クマノミ、トビウオおよびイルカの生態についての項目とはなり得ない。このため、アユおよびメダカについての生息環境という項目は、クマノミ、トビウオおよびイルカについての生息環境という項目と別グループに分類することができる。
Note that the
次に、モデル化部6は、クマノミ、トビウオおよびイルカについての生息環境という項目への紐付き方を示す生息環境パタンP1、アユおよびメダカについての生息環境という項目への紐付き方を示す生息環境パタンP2およびパンダおよびライオンについての生息環境という項目への紐付き方を示す生息環境パタンP3を生成する。
Next, the
このとき、モデル化部6は、各生息環境パタンP1〜P3に紐付く下位ノードの情報に基づいて、各生息環境パタンP1〜P3についての数理モデルを推定することができる。各生息環境パタンP1〜P3の数理モデルでは、例えば、下位項目の存在確率、各生息環境パタンP1〜P3の下位ノードのまとまり度または各下位項目に紐付く情報の分布モデルを用いることができる。下位項目に紐付く情報は、下位項目よりさらに下位の項目または情報内容を用いることができる。下位ノードのまとまり度は、生息環境パタンP1〜P3ごとの下位項目の存在確率の分散に基づいて算出することができる。各生息環境パタンP1〜P3に属するベクトルの代表ベクトルからの平均距離に基づいて下位ノードのまとまり度を求めてもよい。
At this time, the
例えば、図11(b)に示すように、生息環境パタンP1において、水質、水深、温度、生息地域および共生という項目の存在確率は、それぞれ1.0、1.0、1.0、0.67、0.33である。この結果、生息環境パタンP1についてのまとまり度は、0.45となる。また、生息環境パタンP1の生息地域という項目において、太平洋という情報内容が0.5の割合で存在し、インド洋という情報内容が0.3の割合で存在するという分布モデルを生成することができる。 For example, as shown in FIG. 11B, in the habitat pattern P1, the existence probabilities of the items of water quality, water depth, temperature, habitat and symbiosis are 1.0, 1.0, 1.0 and 0, respectively. 67, 0.33. As a result, the cohesiveness of the habitat pattern P1 is 0.45. In addition, in the item of habitat area of habitat pattern P1, it is possible to generate a distribution model in which the information content of the Pacific Ocean exists at a ratio of 0.5 and the information content of the Indian Ocean exists at a ratio of 0.3. ..
また、図11(c)に示すように、生息環境パタンP2において、水質、生息地域および流速という項目の存在確率は、それぞれ1.0、0.5、1.0である。この結果、生息環境パタンP2についてのまとまり度は0.7となる。また、生息環境パタンP2の水質という項目において、淡水という単語は出現するが、汽水および海水という単語は出現しない場合、(淡水、汽水、海水)=(1.0,0.0,0.0)という分布モデルを生成することができる。さらに、生息環境パタンP2の生息地域という項目において、東アジア河川という単語は出現するが、それ以外に河川という単語は出現しない場合、(東アジア河川)=(1.0)という分布モデルを生成することができる。 Further, as shown in FIG. 11C, the existence probabilities of the items of water quality, habitat area and flow velocity in the habitat pattern P2 are 1.0, 0.5 and 1.0, respectively. As a result, the degree of cohesion for the habitat pattern P2 is 0.7. Also, in the item of water quality of habitat pattern P2, if the word freshwater appears but the words brackish water and seawater do not appear, (freshwater, brackish water, seawater) = (1.0, 0.0, 0.0). ) Can be generated. Furthermore, if the word East Asian river appears in the item of habitat pattern P2 habitat, but the word river does not appear other than that, a distribution model of (East Asian river) = (1.0) is generated. can do.
また、図11(d)に示すように、生息環境パタンP3において、気候および植生という項目の存在確率は、それぞれ1.0、1.0である。この結果、生息環境パタンP3についてのまとまり度は1.0となる。また、生息環境パタンP3の気候という項目において、亜熱帯および温帯という単語が均等に出現する場合、(亜熱帯、温帯)=(0.5,0.5)という分布モデルを生成し、生息環境パタンP3の植生という項目において、竹林および草原という単語が均等に出現する場合、(竹林、草原)=(0.5,0.5)という分布モデルを生成することができる。 Further, as shown in FIG. 11D, the existence probabilities of the items of climate and vegetation in the habitat pattern P3 are 1.0 and 1.0, respectively. As a result, the degree of cohesion for the habitat pattern P3 is 1.0. In addition, when the words subtropical and temperate appear evenly in the item of climate of vegetation pattern P3, a distribution model of (subtropical, temperate) = (0.5,0.5) is generated, and vegetation pattern P3 If the words bamboo grove and grassland appear evenly in the item of vegetation, a distribution model of (bamboo grove, grassland) = (0.5, 0.5) can be generated.
図12(a)は、図11(b)のパタンP1に基づく下位ノードの分割例を示す図、図12(b)は、図11(c)のパタンP2に基づく下位ノードの分割例を示す図、図12(c)は、図11(d)のパタンP3に基づく下位ノードの分割例を示す図である。 FIG. 12A shows an example of dividing the lower node based on the pattern P1 of FIG. 11B, and FIG. 12B shows an example of dividing the lower node based on the pattern P2 of FIG. 11C. FIG. 12 (c) is a diagram showing an example of division of lower nodes based on the pattern P3 of FIG. 11 (d).
図12(a)において、図1のノード分割部7は、生息環境パタンP1に紐付く下位ノードの項目を、生息環境パタンP1に特有の具体的な項目に分割する。例えば、ノード分割部7は、生息環境パタンP1の生息地域という項目では、太平洋およびインド洋などの海域を表す情報内容しか現れない場合、生息環境パタンP1の生息地域という項目を海域という項目に変更する。
In FIG. 12A, the
また、図12(b)において、ノード分割部7は、生息環境パタンP2の生息地域という項目では、(東アジア河川)=(1.0)という分布モデルを示す場合、生息環境パタンP2の生息地域という項目を河川域という項目に変更する。
Further, in FIG. 12B, when the
ここで、生息環境パタンP1、P2に紐付く下位ノードの項目を、各生息環境パタンP1、P2に特有の具体的な項目に分割することにより、例えば、コイという淡水魚について論文を書くものとすると、アユおよびメダカの生態に関する生息環境パタンP2を参照することができる。このため、アユおよびメダカ以外のコイという淡水魚について論文を書く場合に、生息環境という項目から流速という項目が抜け落ちるのを防止することが可能となるとともに、生息環境という項目に水深などの余計な項目が挿入されるのを防止することができ、論文の品質を向上させることができる。 Here, by dividing the items of the lower nodes associated with the habitat patterns P1 and P2 into specific items specific to each habitat pattern P1 and P2, for example, it is assumed that a paper is written about a freshwater fish called carp. , Ayu and Medaka ecology habitat patterns P2 can be referred to. For this reason, when writing a dissertation on freshwater fish called carp other than sweetfish and medaka, it is possible to prevent the item of flow velocity from falling out from the item of habitat, and the item of habitat is an extra item such as water depth. Can be prevented from being inserted, and the quality of the paper can be improved.
また、図12(c)において、ノード分割部7は、生息環境パタンP3の気候という項目では、気候を具体化した情報内容に偏りがない場合、生息環境パタンP3の気候という項目をそのまま維持する。また、ノード分割部7は、生息環境パタンP3の植生という項目では、植生を具体化した情報内容に偏りがない場合、生息環境パタンP3の植生という項目をそのまま維持する。
Further, in FIG. 12C, the
ここで、下位ノードの項目の情報内容に偏りがない場合、その項目の抽象度をそのまま維持することにより、寒帯に生息する動物または森林に生息する動物について論文を書く場合に、生息環境パタンP3を参照することができる。 Here, if there is no bias in the information content of the item of the lower node, by maintaining the abstraction level of the item as it is, when writing a paper about animals living in the boreal zone or animals living in the forest, the habitat pattern P3 Can be referred to.
図13(a)は、図7(a)の階層構造に基づく下位ノードの統合または分割の対象となる所定ノードのその他の抽出例を示す図、図13(b)は、図8(b)の階層構造に基づく下位ノードの統合または分割の対象となる所定ノードのその他の抽出例を示す図である。 13 (a) is a diagram showing another extraction example of a predetermined node to be integrated or divided of lower nodes based on the hierarchical structure of FIG. 7 (a), and FIG. 13 (b) is FIG. 8 (b). It is a figure which shows the other extraction example of the predetermined node which is the target of integration or division of the lower node based on the hierarchical structure of.
図13(a)において、図1のノード抽出部3は、図1の分類部5の処理結果が反映されたノードの階層構造から所定ノードを抽出する。例えば、ノード抽出部3は、図7(a)のノードN121の生息環境という項目の下位ノードN131〜N135をパタンPAとしてノードN121の情報内容として設定する。このとき、生態という項目が割り当てられたノードN111の下位ノードN121〜N125の階層は1段となる。このため、ノード抽出部3は、下位ノードの階層が1段以下のノードを抽出することにより、所定ノードとして生態という項目が割り当てられたノードN111を抽出することができる。この結果、図7(a)の階層構造からは抽出されなかった生態という項目についても、分類部5によるパタン分類の対象とすることができる。
In FIG. 13A, the
また、図13(b)において、ノード抽出部3は、図8(b)のノードN432の生息環境という項目の下位ノードN441、N442をパタンPBとしてノードN432の情報内容として設定する。このとき、生息地域という項目が割り当てられたノードN421の下位ノードN431、N432の階層は1段となる。このため、ノード抽出部3は、下位ノードの階層が1段以下のノードを抽出することにより、所定ノードとして生息地域という項目が割り当てられたノードN421を抽出することができる。この結果、図8(b)の階層構造からは抽出されなかった生息地域という項目についても、分類部5によるパタン分類の対象とすることができる。
Further, in FIG. 13B, the
図14は、実施形態に係る下位構造に基づくパタン分類と数理モデル化処理を示すフローチャートである。
図14において、分析対象のノード名Nと、ノード名Nの下位ノード名リストを取得する(S11)。
FIG. 14 is a flowchart showing pattern classification and mathematical modeling processing based on the substructure according to the embodiment.
In FIG. 14, the node name N to be analyzed and the subordinate node name list of the node name N are acquired (S11).
次に、全ドキュメントからノード名Nのノードを抽出し、ノードiの下位ノードベクトルをviとして、抽出した全ノードにそれぞれ対応する下位ノードベクトルviを算出する(S12)。下位ノードベクトルviは、ノード名Nのあるノードiに実際に紐付く下位ノード群と、ノード名Nの下位ノード名リストMに記載されるノード情報との対応関係を数値化したベクトルである。 Then extracted node node name N from all documents, the lower node vector of the node i as v i, extracting corresponding respectively to all nodes that calculates a lower node vector v i (S12). The lower node vector v i is a vector that quantifies the correspondence between the lower node group actually associated with the node i having the node name N and the node information described in the lower node name list M of the node name N. ..
次に、下位ノードベクトルviをクラスタリングして、全ドキュメントから抽出したノード名NのノードをK(Kは正の整数)個のグループに分類する(S13)。クラスタリングは、任意のクラスタリング手法を用いることができる。例えば、予め分類数を決めてK−means法で分類し、ベクトル間の類似度に関する閾値を任意に設定して階層型クラスタリングを実施することができる。 Next, clustering descendants vector v i, node K of the node name N extracted from all documents (K is a positive integer) are classified into pieces of a group (S13). Any clustering method can be used for clustering. For example, the number of classifications can be determined in advance, classified by the K-means method, and the threshold value regarding the similarity between vectors can be arbitrarily set to perform hierarchical clustering.
次に、k=1に設定する(S14)。 Next, k = 1 is set (S14).
次に、k番目のクラスタリンググループに属するノードをノード名Nのkパターンノードとして、グループidであるkNを付与する(S15)。 Next, the nodes belonging to the k-th cluster group as k pattern node of the node name N, imparts k N is the group id (S15).
次に、kNグループのノードの下位ノードベクトルviの平均ベクトルを、kNグループのノードに各下位ノードが紐付く確率ベクトルPkNとして算出する(S16)。 Then, k the mean vector of the lower node vectors v i of N groups of nodes, k N each lower node to a node of the group is calculated as the cord attached probability vector P kN (S16).
また、kNグループのノードのバラツキ度の指標σkNとして、kNグループのノードの下位ノードベクトルviの分散を計算する(S17)。 Furthermore, as k N group node variation of the index sigma kN of calculating the variance of the lower node vectors v i of k N group of nodes (S17).
次に、kNグループのノードの各下位ノードに実際に格納される情報内容の数理モデルを推定する(S18)。 Next, to estimate the mathematical model of the information content that is actually stored in each lower node k N group of nodes (S18).
次に、k=k+1に設定する(S19)。 Next, k = k + 1 is set (S19).
次に、k≦Kかどうかを判断する(S20)。k≦Kの場合、S15の処理に戻り、k≦Kでない場合、処理を終了する。 Next, it is determined whether k ≦ K (S20). If k ≦ K, the process returns to S15, and if k ≦ K, the process ends.
図15は、図14のS18の処理の具体例を示すフローチャートである。
図15において、kNグループのノードに紐付く下位ノード名数M(Mは正の整数)を取得する(S31)。
FIG. 15 is a flowchart showing a specific example of the process of S18 in FIG.
In Figure 15, k N lower node name number tied to a node of the group M (M is a positive integer) to acquire (S31).
次に、m=1に設定する(S32)。 Next, m = 1 is set (S32).
次に、kNグループのノードs(s=1,…,S(Sは正の整数))に関して、その下位ノードmに格納されている情報内容ys m(s=1,…,S)を抽出する(S33)。このとき、ノードsが、下位ノードmと紐付いていない場合、ys m=0とする。 Next, the node s of k N group (s = 1, ..., S (S is a positive integer)) with respect to the information content y s m stored in the lower node m (s = 1, ..., S) Is extracted (S33). At this time, if the node s is not associated with the lower node m, y s m = 0.
次に、ベースとなる数理モデルYmが存在するか判断する(S34)。例えば、身長という項目が割り当てられたノードのベースモデルは、正規分布とすることができる。 Next, it is determined whether or not the base mathematical model Y m exists (S34). For example, the base model of a node to which the item height is assigned can be a normal distribution.
次に、ベースとなる数理モデルYmが存在する場合、情報内容ys mに基づき数理モデルYmのパラメータを計算し、kNグループの下位ノードmの情報内容ys mに関する数理モデルYm kNを算出し(S35)、S40に進む。 Then, if the mathematical model Y m as a base is present, the information content y s parameters of the mathematical model Y m calculated on the basis of m, mathematical models for k information content lower nodes m of N group y s m Y m Calculate kN (S35) and proceed to S40.
一方、ベースとなる数理モデルYmが存在しない場合、下位ノードmに格納され得る各要素zの情報内容ys mにおける存在確率pm kN(z)を算出する(S36)。 On the other hand, if the mathematical model Y m as a base is absent, it calculates the presence probability p m kN (z) in the information content y s m of each element z, which may be stored in the lower node m (S36).
次に、情報内容ys mに同時に複数の要素zが存在するかを判断する(S37)。 Next, the information content y s m a plurality of elements z determines whether there simultaneously (S37).
情報内容ys mに同時に複数の要素zが存在する場合、それらの要素zについてz*pm kN(z)の総和をとることで数理モデルYm kNを算出し(S38)、S40に進む。 When a plurality of elements z exist at the same time in the information content y s m , the mathematical model Y m kN is calculated by taking the sum of z * p m kN (z) for those elements z (S38), and the process proceeds to S40. ..
一方、情報内容ys mに同時に複数の要素zが存在しない場合、存在確率pm kN(z)の全要素zに関するベクトルPm kNを、数理モデルYm kNに格納する(S39)。 On the other hand, when a plurality of elements z do not exist at the same time in the information content y s m , the vector P m kN relating to all the elements z of the existence probability p m kN (z) is stored in the mathematical model Y m kN (S39).
次に、m=m+1に設定する(S40)。 Next, m = m + 1 is set (S40).
次に、m≦Mかどうかを判断する(S41)。m≦Mの場合、S32の処理に戻り、m≦Mでない場合、処理を終了する。 Next, it is determined whether m ≦ M (S41). If m ≦ M, the process returns to S32, and if m ≦ M, the process ends.
図16は、実施形態に係る抽象度再設定に基づくノードの分割処理の一例を示すフローチャートである。
図16において、kが異なる複数のグループkNにおいて、それぞれD(Dは正の整数)個以上のデータを有する下位ノードu(u=1,…,U(Uは正の整数))を抽出する(S51)。Dは、任意に設定した閾値である。例えば、D=1としたとき、図11(c)の例では、水質と生息地域のノードが抽出される。
FIG. 16 is a flowchart showing an example of node division processing based on the abstraction degree reset according to the embodiment.
In FIG. 16, in a plurality of groups k N having different k, lower nodes u (u = 1, ..., U (U is a positive integer)) each having D (D is a positive integer) or more data are extracted. (S51). D is an arbitrarily set threshold value. For example, when D = 1, in the example of FIG. 11C, the nodes of water quality and habitat are extracted.
次に、u=1に設定する(S52)。 Next, u = 1 is set (S52).
次に、グループ間で下位ノードuに格納され得る要素(p>0となる要素)を比較し、対象グループの要素を説明するが、他グループの要素を含まない最大抽象度の概念名に対象グループに関するノードuのノード名を再設定する(S53)。 Next, the elements that can be stored in the lower node u (elements with p> 0) are compared between the groups, and the elements of the target group are explained, but the target is the concept name of the maximum abstraction that does not include the elements of other groups. The node name of the node u related to the group is reset (S53).
次に、u=u+1に設定する(S54)。 Next, u = u + 1 is set (S54).
次に、u≦Uかどうかを判断する(S55)。u≦Uの場合、S52の処理に戻り、u≦Uでない場合、処理を終了する。 Next, it is determined whether u ≦ U (S55). If u ≦ U, the process returns to S52, and if u ≦ U, the process ends.
図17は、実施形態に係る抽象度再設定に基づくノードの分割処理のその他の例を示すフローチャートである。
図17において、m=1に設定する(S61)。
FIG. 17 is a flowchart showing another example of the node division process based on the abstraction degree reset according to the embodiment.
In FIG. 17, m = 1 is set (S61).
次に、ノード名Nの下位ノードmについて、抽象化前に付与されていたノード名リストLを取得する(S62)。 Next, for the lower node m of the node name N, the node name list L given before the abstraction is acquired (S62).
次に、k=1に設定する(S63)。 Next, k = 1 is set (S63).
次に、リストLのノード名と、グループkNにおける下位ノードmに格納される情報内容ys mを比較し、情報内容ys mを包含するノード名のうち最も抽象度の低いノード名を下位ノードmのノード名に再設定する(S64)。 Next, the node name in the list L, to compare the information content y s m which is stored in the lower node m in the group k N, the node name lowest abstract of information content y s m encompassing the node name Reset to the node name of the lower node m (S64).
次に、k=k+1に設定する(S65)。 Next, k = k + 1 is set (S65).
次に、k≦Kかどうかを判断する(S66)。k≦Kの場合、S63の処理に戻り、k≦Kでない場合、S67の処理に進む。 Next, it is determined whether k ≦ K (S66). If k ≦ K, the process returns to S63, and if k ≦ K, the process proceeds to S67.
次に、m=m+1に設定する(S67)。 Next, m = m + 1 is set (S67).
次に、m≦Mかどうかを判断する(S68)。m≦Mの場合、S61の処理に戻り、m≦Mでない場合、処理を終了する。 Next, it is determined whether m ≦ M (S68). If m ≦ M, the process returns to S61, and if m ≦ M, the process ends.
図18は、実施形態に係る抽象度再設定に基づくノードの分割処理のさらにその他の例を示すフローチャートである。
図18において、m=1に設定する(S71)。
FIG. 18 is a flowchart showing still another example of the node division process based on the abstraction degree reset according to the embodiment.
In FIG. 18, m = 1 is set (S71).
次に、k=1に設定する(S72)。 Next, k = 1 is set (S72).
次に、グループkNにおける下位ノードmに格納される情報内容ys mが0でないデータに含まれる要素の個数Xを算出する(S73)。個数Xでは、情報内容ys mに複数の要素が存在する場合はそれらを全て足す。 Next, the number X of the elements included in the data in which the information content y s m stored in the lower node m in the group k N is not 0 is calculated (S73). In the number X, if a plurality of elements exist in the information content y s m , all of them are added.
次に、ノードmと概念的に同等又は下位に位置するノードoに関して、ベースとなる数理モデルYoが存在するかどうかを判断する(S74)。 Next, it is determined whether or not the base mathematical model Yo exists for the node o that is conceptually equivalent to or lower than the node m (S74).
ベースとなる数理モデルYoが存在する場合、要素の個数がX個のデータ集合が各数理モデルYoに属するかどうかを判断するための閾値を取得する(S75)。 If the underlying mathematical model Y o is present, the number of elements X data set to obtain a threshold value for determining whether belonging to each mathematical model Y o (S75).
次に、各数理モデルYoに対して、グループkNにおける下位ノードmに格納される情報内容ys mが属する確率を算出し、閾値を下回る数理モデルYoのうち最も抽象度の低いノードoを下位ノードmのノード名に再設定し(S76)、S79の処理に進む。 Then, for each mathematical model Y o, a group k N calculates the probability that information content y s m which is stored in the lower node m belongs in the lowest level of abstraction node of mathematical models Y o below the threshold Reset o to the node name of the lower node m (S76), and proceed to the process of S79.
一方、ベースとなる数理モデルYoが存在しない場合、要素の個数がX個のデータ集合がある概念に属するかどうかを判断する基準となる対象概念の要素種類数の閾値を取得する(S77)。 On the other hand, when the base mathematical model Yo does not exist, the threshold value of the number of element types of the target concept as a reference for determining whether the number of elements belongs to a certain concept is acquired (S77). ..
次に、グループkNにおける下位ノードmに格納される情報内容ys mを包含するノードのうち、閾値を下回る要素種類数のノードの中で最も下位ノードとなるノードoを下位ノードmのノード名に再設定する(S78)。 Next, among the nodes including the information content y s m stored in the lower node m in the group k N, the node o which is the lowest node among the nodes having the number of element types below the threshold value is the node of the lower node m. Reset to the first name (S78).
次に、k=k+1に設定する(S79)。 Next, k = k + 1 is set (S79).
次に、k≦Kかどうかを判断する(S80)。k≦Kの場合、S72の処理に戻り、k≦Kでない場合、S81の処理に進む。 Next, it is determined whether k ≦ K (S80). If k ≦ K, the process returns to S72, and if k ≦ K, the process proceeds to S81.
次に、m=m+1に設定する(S81)。 Next, m = m + 1 is set (S81).
次に、m≦Mかどうかを判断する(S82)。m≦Mの場合、S71の処理に戻り、m≦Mでない場合、処理を終了する。 Next, it is determined whether m ≦ M (S82). If m ≦ M, the process returns to S71, and if m ≦ M, the process ends.
図19は、図1の情報管理装置のハードウェア構成例を示すブロック図である。
図19において、情報管理装置101は、プロセッサ11、通信制御デバイス12、通信インタフェース13、主記憶デバイス14および外部記憶デバイス15を備える。プロセッサ11、通信制御デバイス12、通信インタフェース13、主記憶デバイス14および外部記憶デバイス15は、内部バス16を介して相互に接続されている。主記憶デバイス14および外部記憶デバイス15は、プロセッサ11からアクセス可能である。
FIG. 19 is a block diagram showing a hardware configuration example of the information management device of FIG.
In FIG. 19, the
また、情報管理装置101の外部には、入力装置20および出力装置21が設けられている。入力装置20および出力装置21は、入出力インタフェース17を介して内部バス16に接続されている。入力装置20は、例えば、キーボード、マウス、タッチパネル、カードリーダ、音声入力装置等である。出力装置21は、例えば、画面表示装置(液晶モニタ、有機EL(Electro Luminescence)ディスプレイ、グラフィックカード等)、音声出力装置(スピーカ等)、印字装置等である。
Further, an
プロセッサ11は、情報管理装置101全体の動作制御を司るハードウェアである。プロセッサ11は、CPU(Central Processing Unit)であってもよいし、GPU(Graphics Processing Unit)であってもよい。プロセッ11は、シングルコアロセッサであってもよいし、マルチコアロセッサであってもよい。プロセッサ11は、処理の一部または全部を行うハードウェア回路(例えば、FPGA(Field−Programmable Gate Array)またはASIC(Application Specific Integrated Circuit))を備えていてもよい。プロセッサ11は、ニューラルネットワークを備えていてもよい。
The
主記憶デバイス14は、例えば、SRAMまたはDRAMなどの半導体メモリから構成することができる。主記憶デバイス14には、プロセッサ11が実行中のプログラムを格納したり、プロセッサ11がプログラムを実行するためのワークエリアを設けたりすることができる。
The
外部記憶デバイス15は、大容量の記憶容量を備える記憶デバイスであり、例えば、ハードディスク装置またはSSD(Solid State Drive)である。外部記憶デバイス15は、各種プログラムの実行ファイルやプログラムの実行に用いられるデータを保持することができる。外部記憶デバイス15には、情報管理プログラム15Aを格納することができる。情報管理プログラム15Aは、情報管理装置101にインストール可能なソフトウェアであってもよいし、情報管理装置101にファームウェアとして組み込まれていてもよい。
The
通信制御デバイス12は、外部との通信を制御する機能を備えるハードウェアである。通信制御デバイス12は、通信インタフェース13を介してネットワーク19に接続される。ネットワーク19は、インターネットなどのWAN(Wide Area Network)であってもよいし、WiFiまたはイーサネット(登録商標)などのLAN(Local Area Network)であってもよいし、WANとLANが混在していてもよい。
The
入出力インタフェース17は、入力装置20から入力されるデータをプロセッサ11が処理可能なデータ形式に変換したり、プロセッサ11から出力されるデータを出力装置21が処理可能なデータ形式に変換したりする。
The input /
プロセッサ11が情報管理プログラム15Aを主記憶デバイス14に読み出し、情報管理プログラム15Aを実行することにより、概念化された情報に割り当てられたノードの階層構造から所定ノードを抽出し、その所定ノードに紐付けられた下位ノードの情報に基づいて所定ノードを分類することができる。このとき、プロセッサ11は、図1の項目抽出部1、ノード候補生成部2、ノード抽出部3、ノード統合部4、分類部5、モデル化部6およびノード分割部7の機能を実現することができる。
The
なお、情報管理プログラム15Aの実行は、複数のプロセッサやコンピュータに分担させてもよい。あるいは、プロセッサ11は、ネットワーク19を介してクラウドコンピュータなどに情報管理プログラム15Aの全部または一部の実行を指示し、その実行結果を受け取るようにしてもよい。
The execution of the information management program 15A may be shared by a plurality of processors and computers. Alternatively, the
本発明は、上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration. Further, each of the above configurations, functions, processing units, processing means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit.
1 項目抽出部、2 ノード候補生成部、3 ノード抽出部、4 ノード統合部、5 分類部、6 モデル化部、7 ノード分割部、8 シソーラス辞書、9 概念モデル
1 item extraction unit, 2 node candidate generation unit, 3 node extraction unit, 4 node integration unit, 5 classification unit, 6 modeling unit, 7 node division unit, 8 thesaurus dictionary, 9 conceptual model
Claims (15)
前記抽出部にて抽出された前記所定ノードに紐付けられた下位ノードの情報に基づいて、前記抽出部で抽出された前記所定ノードを分類する分類部とを備える情報管理装置。 An extraction unit that extracts a predetermined node from the hierarchical structure of the nodes assigned to the conceptualized information,
An information management device including a classification unit that classifies the predetermined node extracted by the extraction unit based on the information of a lower node associated with the predetermined node extracted by the extraction unit.
前記分類部は、前記第1ノードに紐付く下位ノードの概念が、前記第2ノードに紐付く下位ノードの概念となり得ない場合、前記第1ノードを前記第2ノードと異なるグループに分類する請求項1に記載の情報管理装置。 The extraction unit extracts the first node and the second node as the predetermined node,
The classification unit requests that the first node be classified into a group different from the second node when the concept of the lower node associated with the first node cannot be the concept of the lower node associated with the second node. Item 1. The information management device according to item 1.
前記プロセッサは、
項目が割り当てられたノードの階層構造から所定ノードを抽出し、
前記所定ノードに紐付けられた下位ノードの項目に基づいて前記所定ノードを分類する情報管理方法。 Information management method executed by the processor
The processor
Extract the specified node from the hierarchical structure of the node to which the item is assigned,
An information management method for classifying the predetermined node based on the item of the lower node associated with the predetermined node.
形態素解析および類語分析に基づいて、ドキュメントから抽出された同一概念の項目の名称を統一し、
前記所定ノードに紐付く下位ノードの項目の抽象度を統合し、
前記抽象度が統合された下位ノードの項目に基づいて前記所定ノードを分類し、
前記所定ノードに紐付く前記下位ノードの情報に基づいて、前記下位ノードの紐付き方のモデルを推定し、
前記下位ノードの紐付き方のモデルに基づいて、前記所定ノードに紐付く下位ノードの項目を分割する請求項14に記載の情報管理方法。
The processor
Based on morphological analysis and synonym analysis, unify the names of items of the same concept extracted from the document,
Integrate the abstraction level of the items of the lower node associated with the predetermined node,
The predetermined node is classified based on the item of the lower node in which the abstraction level is integrated.
Based on the information of the lower node associated with the predetermined node, a model of how the lower node is associated is estimated.
The information management method according to claim 14, wherein the items of the lower node associated with the predetermined node are divided based on the model of the lower node association method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019054851A JP7099976B2 (en) | 2019-03-22 | 2019-03-22 | Information management device and information management method |
PCT/JP2020/008353 WO2020195545A1 (en) | 2019-03-22 | 2020-02-28 | Information management device and information management method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019054851A JP7099976B2 (en) | 2019-03-22 | 2019-03-22 | Information management device and information management method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020154991A true JP2020154991A (en) | 2020-09-24 |
JP7099976B2 JP7099976B2 (en) | 2022-07-12 |
Family
ID=72559317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019054851A Active JP7099976B2 (en) | 2019-03-22 | 2019-03-22 | Information management device and information management method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7099976B2 (en) |
WO (1) | WO2020195545A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7540676B1 (en) | 2024-02-27 | 2024-08-27 | プログレス・テクノロジーズ株式会社 | Information processing device, information processing method, and information processing program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009136426A1 (en) * | 2008-05-08 | 2009-11-12 | 三菱電機株式会社 | Search query providing equipment |
JP2010501947A (en) * | 2006-08-31 | 2010-01-21 | スウィーニー,ピーター | System, method and computer program for consumer-defined information architecture |
US20160062993A1 (en) * | 2014-08-21 | 2016-03-03 | Samsung Electronics Co., Ltd. | Method and electronic device for classifying contents |
JP2016139229A (en) * | 2015-01-27 | 2016-08-04 | 日本放送協会 | Device and program for generating personal profile, and content recommendation device |
-
2019
- 2019-03-22 JP JP2019054851A patent/JP7099976B2/en active Active
-
2020
- 2020-02-28 WO PCT/JP2020/008353 patent/WO2020195545A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010501947A (en) * | 2006-08-31 | 2010-01-21 | スウィーニー,ピーター | System, method and computer program for consumer-defined information architecture |
WO2009136426A1 (en) * | 2008-05-08 | 2009-11-12 | 三菱電機株式会社 | Search query providing equipment |
US20160062993A1 (en) * | 2014-08-21 | 2016-03-03 | Samsung Electronics Co., Ltd. | Method and electronic device for classifying contents |
JP2016139229A (en) * | 2015-01-27 | 2016-08-04 | 日本放送協会 | Device and program for generating personal profile, and content recommendation device |
Non-Patent Citations (3)
Title |
---|
山本 浩平、外2名: "カテゴリ階層の拡張を目的とした階層的トピックモデル", 第6回データ工学と情報マネジメントに関するフォーラム (第12回日本データベース学会年次大会), JPN6020011894, 3 May 2014 (2014-05-03), JP, pages 1 - 8, ISSN: 0004742625 * |
市瀬 龍太郎、外2名: "インスタンスに基づく階層的知識源の統合", AIチャレンジ研究会(第11回) SIG−CHALLENGE−0111, JPN6020011890, 12 March 2001 (2001-03-12), JP, pages 61 - 66, ISSN: 0004742623 * |
青木 千鶴、外2名: "汎用オントロジーと判例群を利用した法的オントロジー構築支援環境", 第27回ヒューマンインタフェースと認知モデル研究会資料(SIG−HICG−9503), JPN6020011891, 25 March 1996 (1996-03-25), JP, pages 9 - 16, ISSN: 0004742624 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7540676B1 (en) | 2024-02-27 | 2024-08-27 | プログレス・テクノロジーズ株式会社 | Information processing device, information processing method, and information processing program |
Also Published As
Publication number | Publication date |
---|---|
WO2020195545A1 (en) | 2020-10-01 |
JP7099976B2 (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dinh et al. | Clustering mixed numerical and categorical data with missing values | |
Wang et al. | Locating structural centers: A density-based clustering method for community detection | |
WO2014109127A1 (en) | Index generating device and method, and search device and search method | |
Czarnowski et al. | An approach to data reduction for learning from big datasets: Integrating stacking, rotation, and agent population learning techniques | |
Wang et al. | Exploiting user-to-user topic inclusion degree for link prediction in social-information networks | |
Vinokourov et al. | A probabilistic framework for the hierarchic organisation and classification of document collections | |
CN102609528A (en) | Frequent mode association sorting method based on probabilistic graphical model | |
Jantawan et al. | A comparison of filter and wrapper approaches with data mining techniques for categorical variables selection | |
Laclavík et al. | Emails as graph: relation discovery in email archive | |
Xiao et al. | A survey of parallel clustering algorithms based on spark | |
Chen et al. | An overlapping cluster algorithm to provide non-exhaustive clustering | |
Praveen et al. | A novel approach to improve the performance of divisive clustering-BST | |
Boden et al. | MiMAG: mining coherent subgraphs in multi-layer graphs with edge labels | |
Wang et al. | Link prediction in heterogeneous collaboration networks | |
Qiu et al. | Discovering organizational structure in dynamic social network | |
WO2020195545A1 (en) | Information management device and information management method | |
Bernard et al. | Contextual and behavioral customer journey discovery using a genetic approach | |
Wang et al. | Maximal sub-prevalent co-location patterns and efficient mining algorithms | |
CN110162580A (en) | Data mining and depth analysis method and application based on distributed early warning platform | |
Suresh et al. | A fuzzy based hybrid hierarchical clustering model for twitter sentiment analysis | |
Kang et al. | STUN: Querying spatio-temporal uncertain (social) networks | |
Kim et al. | (p, n)-core: Core Decomposition in Signed Networks | |
Kolias et al. | A Covering Classification Rule Induction Approach for Big Datasets | |
Bielak et al. | Retrofitting structural graph embeddings with node attribute information | |
Li et al. | Integrating attributes of nodes solves the community structure partition effectively |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7099976 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |