JP2020154627A - Heat insulation performance evaluation device - Google Patents

Heat insulation performance evaluation device Download PDF

Info

Publication number
JP2020154627A
JP2020154627A JP2019051739A JP2019051739A JP2020154627A JP 2020154627 A JP2020154627 A JP 2020154627A JP 2019051739 A JP2019051739 A JP 2019051739A JP 2019051739 A JP2019051739 A JP 2019051739A JP 2020154627 A JP2020154627 A JP 2020154627A
Authority
JP
Japan
Prior art keywords
heat
transmission coefficient
building
heat insulation
loss amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051739A
Other languages
Japanese (ja)
Other versions
JP7115707B2 (en
Inventor
綾子 大屋
Ayako Oya
綾子 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Original Assignee
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Housing Corp filed Critical Toyota Housing Corp
Priority to JP2019051739A priority Critical patent/JP7115707B2/en
Publication of JP2020154627A publication Critical patent/JP2020154627A/en
Application granted granted Critical
Publication of JP7115707B2 publication Critical patent/JP7115707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To appropriately evaluate the heat insulation performance of a building.SOLUTION: In the heat insulation performance evaluation device 10, a reception unit 40 receives structural information of each part of an outer skin of a steel-framed house, attribute information of each member in the structural information, and building information including heat insulation specifications of the individual parts. A first calculation unit 44 calculates a heat loss amount q1 by using a heat transmission coefficient U for a general part for each part and a linear heat transmission ratio Ψ for a thermal bridge part, and a second calculation unit 46 calculates a heat loss amount q2 using a heat transmission coefficient Us. A heat insulation performance determination unit 56 determines the heat insulation performance of the house based on an average heat transmission coefficient of the outer skin calculated from a heat loss amount q set for each part using a smaller one of the heat loss amount q1 and the heat loss amount q2. As a result, the heat insulating performance of the house can be appropriately evaluated, making it possible to prevent the heat insulation performance of the house from becoming excessive.SELECTED DRAWING: Figure 1

Description

本発明は、建物の断熱性能を評価する断熱性能評価装置に関する。 The present invention relates to a heat insulating performance evaluation device for evaluating the heat insulating performance of a building.

住宅などの建物には、所定以上の断熱性能(建築物のエネルギー消費性能の向上に関する法律(建築物省エネ法に規定される断熱性能)が要求されている。このため、建物の設計等の際には、設計した建物について断熱性能を評価することが行われる。 Buildings such as houses are required to have heat insulation performance above a specified level (the law concerning improvement of energy consumption performance of buildings (heat insulation performance stipulated in the Building Energy Conservation Law). Therefore, when designing a building, etc. Is to evaluate the insulation performance of the designed building.

ここで、特許文献1の外皮の断熱性能計算システムは、開口部の設計因子について、予め定められた基準に従った断熱性能である第1開口部断熱情報を用いて第1断熱性能を計算すると共に、実際の断熱性能である第2開口部断熱情報を用いて第2断熱性能を計算する。また、特許文献1のシステムでは、第1断熱性能と第2断熱性能とを比較し、何れか断熱性能の優れる断熱性能を用いて、建物の外皮の断熱性能を計算するように提案している。 Here, the heat insulation performance calculation system for the outer skin of Patent Document 1 calculates the first heat insulation performance of the design factor of the opening using the first heat insulation information which is the heat insulation performance according to a predetermined standard. At the same time, the second heat insulation performance is calculated using the second opening heat insulation information which is the actual heat insulation performance. Further, in the system of Patent Document 1, it is proposed to compare the first heat insulating performance and the second heat insulating performance, and to calculate the heat insulating performance of the exodermis of the building by using the heat insulating performance which is superior in the heat insulating performance. ..

特開2018−73152号公報JP-A-2018-731152

ところで、建物の断熱性能には、開口部のみならず屋根(又は天井)、壁、床などの各部位の熱損失(熱損失量)が影響する。このため、開口部のみについて断熱性能を評価しても、建物全体の断熱性能を適切に評価することができないことがある。 By the way, the heat insulation performance of a building is affected not only by the opening but also by the heat loss (heat loss amount) of each part such as the roof (or ceiling), wall, and floor. Therefore, even if the heat insulating performance is evaluated only for the opening, it may not be possible to appropriately evaluate the heat insulating performance of the entire building.

一般に建物の断熱性能は、屋根(又は天井)、壁、床等の外皮の各部位について一般部と鉄骨部分などの熱橋部(熱橋等)とに分けられ、各部位は、一般部に対して熱貫流率が用いられ、熱橋部に対して線熱貫流率が用いられて熱損失量が演算される。また、建物の断熱性能の評価には、建物全体の熱損失量から演算される外皮平均熱貫流率などが用いられる。 In general, the heat insulation performance of a building is divided into a general part for each part of the outer skin such as the roof (or ceiling), wall, and floor, and a thermal bridge part (heat bridge, etc.) such as a steel frame part, and each part is divided into general parts. On the other hand, the heat transmission coefficient is used, and the linear heat transmission coefficient is used for the thermal bridge portion to calculate the amount of heat loss. In addition, the average heat transmission coefficient of the outer skin calculated from the amount of heat loss of the entire building is used to evaluate the heat insulation performance of the building.

建物の断熱性能の評価における熱損失量等の演算には、所定の機関に予め申請して承認された演算手法を用いることが可能とされている。ここから、鉄骨ラーメン構造等の軽量鉄骨構造の住宅を製造する住宅メーカでは、鉄骨部材などの熱橋部を含めた単位面積当たりの熱の伝わり方を示す値を熱貫流率として求め、製造する住宅の断熱性能の評価を行うことがある。 For the calculation of the amount of heat loss, etc. in the evaluation of the heat insulation performance of a building, it is possible to use the calculation method approved in advance by applying to a predetermined organization. From this, a house maker that manufactures a house with a lightweight steel structure such as a steel frame structure obtains a value indicating how heat is transferred per unit area including a thermal bridge part such as a steel frame member as a heat transmission coefficient and manufactures the house. The insulation performance of a house may be evaluated.

このように住宅の断熱性能を評価には、各種の手法で演算された熱損失量や外皮平均熱貫流率が用いられているが、断熱性能の評価が適切でないと、断熱性能が過剰になってしまう。このため、住宅などの建物についての適切な断熱性能の評価が望まれている。 In this way, the amount of heat loss and the average heat transmission coefficient of the outer skin calculated by various methods are used to evaluate the heat insulation performance of a house, but if the evaluation of the heat insulation performance is not appropriate, the heat insulation performance will be excessive. It ends up. For this reason, it is desired to evaluate the appropriate heat insulation performance of buildings such as houses.

本発明は、上記事実を鑑みて成されたものであり、建物の断熱性能を適切に評価できる断熱性能評価装置を提供することを目的とする。 The present invention has been made in view of the above facts, and an object of the present invention is to provide a heat insulating performance evaluation device capable of appropriately evaluating the heat insulating performance of a building.

上記目的を達成するための本発明の第1の態様の断熱性能評価装置は、鉄骨構造の建物の外皮の各部位の構造情報、該構造情報における各部材の属性情報、前記各部位の断熱仕様を含む建物情報を受け付ける受付部と、前記部位ごとの前記構造情報、前記属性情報及び前記断熱仕様に応じて前記部位ごとに決められた第1熱貫流率及び線熱貫流率を適用し、前記部位ごとの一般部に当該部位の前記第1熱貫流率を用いると共に熱橋部に当該部位の前記線熱貫流率を用いて、前記部位ごとの第1の熱損失量を演算する第1演算部と、前記部位ごとの前記構造情報、前記属性情報及び前記断熱仕様に応じ、該部位ごとに熱橋部を含む単位面積当たりの熱の伝わり方の値として予め設定された第2熱貫流率を適用し、前記部位ごとの第2の熱損失量を演算する第2演算部と、前記部位ごとに前記第1の熱損失量及び前記第2の熱損失量の何れか小さい値を当該部位の熱損失量に設定し、前記部位ごとに設定した前記熱損失量に基づいて前記建物の断熱性能を評価する評価部と、前記評価部の評価結果を出力する出力部と、を含む。 The heat insulating performance evaluation device of the first aspect of the present invention for achieving the above object is the structural information of each part of the outer skin of the building having a steel structure, the attribute information of each member in the structural information, and the heat insulating specification of each part. The reception unit that receives the building information including the above, and the first heat transmission coefficient and the linear heat transmission coefficient determined for each part according to the structural information, the attribute information, and the heat insulation specifications for each part are applied. The first calculation for calculating the first heat loss amount for each part by using the first heat transmission coefficient of the part for the general part for each part and the linear heat transmission rate of the part for the thermal bridge part. A second heat transmission coefficient preset as a value of how heat is transferred per unit area including a thermal bridge portion for each part according to the part, the structural information for each part, the attribute information, and the heat insulation specifications. The second calculation unit that calculates the second heat loss amount for each part, and the part that is smaller of the first heat loss amount and the second heat loss amount for each part. It includes an evaluation unit that sets the heat loss amount of the above and evaluates the heat insulation performance of the building based on the heat loss amount set for each part, and an output unit that outputs the evaluation result of the evaluation unit.

第1の態様の断熱性能評価装置では、躯体が鉄骨構造の建物を対象とし、受付部が、建物の外皮の各部位の構造情報、該構造情報における各部材の属性情報、各部位の断熱仕様を含む建物情報を受け付ける。 In the heat insulating performance evaluation device of the first aspect, the building is targeted for a building having a steel frame structure, and the reception part receives structural information of each part of the outer skin of the building, attribute information of each member in the structural information, and heat insulating specifications of each part. Accepts building information including.

第1演算部は、各々部位ごとの構造情報、属性情報及び断熱仕様に応じて部位ごとに決められた第1熱貫流率及び線熱貫流率を適用し、部位ごとの一般部に当該部位の第1熱貫流率を用いると共に熱橋部に当該部位の線熱貫流率を用いて、部位ごとの第1の熱損失量を演算する。また、第2演算部は、部位ごとの構造情報、属性情報及び断熱仕様に応じ、該部位ごとに熱橋部を含む単位面積当たりの熱の伝わり方の値として予め設定された第2熱貫流率を適用し、部位ごとの第2の熱損失量を演算する。これにより、部位ごとに第1の熱損失量及び第2の熱損失量が得られる。 The first calculation unit applies the first heat transmission coefficient and linear heat transmission coefficient determined for each part according to the structural information, attribute information, and heat insulation specifications for each part, and applies the first heat transmission coefficient and linear heat transmission rate for each part to the general part for each part. The first heat loss amount for each part is calculated by using the first heat transmission coefficient and the linear heat transmission coefficient of the relevant part in the thermal bridge portion. In addition, the second calculation unit has a second heat transmission that is preset as a value of how heat is transferred per unit area including the thermal bridge portion for each part according to the structural information, attribute information, and heat insulation specifications for each part. The rate is applied to calculate the second heat loss amount for each part. As a result, the first heat loss amount and the second heat loss amount can be obtained for each part.

評価部は、部位ごとの第1の熱損失量及び第2の熱損失量の何れか小さい値を当該部位の熱損失量に設定し、設定した部位ごとの熱損失量に基づいて建物の断熱性能を評価し、出力部が、評価結果を出力する。 The evaluation unit sets the smaller of the first heat loss amount and the second heat loss amount for each part as the heat loss amount for the part, and insulates the building based on the set heat loss amount for each part. The performance is evaluated, and the output unit outputs the evaluation result.

ここで、第1演算部は、各部位において躯体の鉄骨等の熱橋部については線熱貫流率を用い、部位ごとの第1の熱損失量を演算する。また、第2演算部は、各部位について熱橋部を含む単位面積当たりの熱の伝わり方の値として設定した第2熱貫流率を用い、部位ごとの第2の熱損失量を演算する。また、評価部は、第1の熱損失量及び第2の熱損失量のうち何れか小さい値をその部位の熱損失量に設定して、建物の断熱性能の評価を行う。 Here, the first calculation unit calculates the first heat loss amount for each part by using the linear heat transmission coefficient for the thermal bridge part such as the steel frame of the skeleton at each part. Further, the second calculation unit calculates the second heat loss amount for each part by using the second heat transmission coefficient set as the value of the heat transfer method per unit area including the thermal bridge part for each part. In addition, the evaluation unit sets the smaller value of the first heat loss amount and the second heat loss amount as the heat loss amount of the portion, and evaluates the heat insulation performance of the building.

これにより、建物の断熱性能が低く(悪く)評価されてしまうのを抑制できて、建物の断熱性能を適切に評価できて、実際の建物の断熱性能が必要以上に高くなってしまうのを抑制できる。 As a result, it is possible to prevent the heat insulation performance of the building from being evaluated low (badly), to appropriately evaluate the heat insulation performance of the building, and to prevent the heat insulation performance of the actual building from becoming higher than necessary. it can.

第2の態様の断熱性能評価装置は、第1の態様において、前記評価部は、前記部位ごとに設定した前記熱損失量から演算した外皮平均熱貫流率に基づいて前記建物の断熱性能を評価する、ことを含む。 In the first aspect, the heat insulating performance evaluation device of the second aspect evaluates the heat insulating performance of the building based on the average heat transmission coefficient of the outer skin calculated from the heat loss amount set for each part. Including that.

第2の態様の断熱性能評価装置では、設定された各部位の熱損失量から建物の外皮平均熱貫流率を演算し、演算した外皮平均熱貫流率を用いて建物の断熱性能を評価する。ここで、外皮平均熱貫流率は、建物の外皮の部位の全面積に対する熱損失量の総和から得られるので、各部位に設定される熱損失量が抑制されることで、外皮平均熱貫流率が大きくなるのを抑制できる。これにより、建物の断熱性能を適切に評価できて、建物の断熱性能が低く(悪く)評価されてしまうのを抑制できる。 In the heat insulation performance evaluation device of the second aspect, the average heat transmission coefficient of the outer skin of the building is calculated from the set heat loss amount of each part, and the heat insulation performance of the building is evaluated using the calculated average heat transmission coefficient of the outer skin. Here, the average heat transmission coefficient of the exodermis is obtained from the sum of the amount of heat loss with respect to the total area of the outer skin of the building. Therefore, the average heat transmission coefficient of the outer skin is suppressed by suppressing the amount of heat loss set for each part. Can be suppressed from becoming large. As a result, the heat insulating performance of the building can be appropriately evaluated, and it is possible to prevent the heat insulating performance of the building from being evaluated as low (bad).

第3の態様の断熱性能評価装置は、第1又は第2の態様において、前記受付部は、前記建物の方位情報を受け付け、前記評価部は、前記方位情報及び前記部位ごとに設定した前記熱損失量から演算した該部位ごとの日射熱取得率に基づいて前記建物の前記部位ごとの断熱性能を評価する、ことを含む。 In the first or second aspect of the heat insulating performance evaluation device of the third aspect, the reception unit receives the orientation information of the building, and the evaluation unit receives the orientation information and the heat set for each part. It includes evaluating the heat insulation performance of each part of the building based on the solar heat gain rate for each part calculated from the amount of loss.

第3の態様の断熱性能評価装置では、受付部が建物の方位情報を受け付けることで、評価部は、方位情報及び部位ごとの熱損失量から日射熱取得率を演算し、演算した日射熱取得率に基づいて、部位ごとの断熱性能を評価する。これにより、建物の外皮の部位ごとの断熱性能を適切に評価できる。なお、評価部は、方位情報及び部位ごとの日射熱取得率から建物の暖房期の日射熱取得率及び建物の冷房期の日射熱取得率を演算して、建物の暖房期及び冷房期の断熱性能を評価してもよい。 In the heat insulation performance evaluation device of the third aspect, the reception unit receives the orientation information of the building, and the evaluation unit calculates the solar heat acquisition rate from the orientation information and the amount of heat loss for each part, and the calculated solar heat acquisition. Evaluate the insulation performance of each part based on the rate. As a result, the heat insulating performance of each part of the outer skin of the building can be appropriately evaluated. In addition, the evaluation department calculates the solar heat acquisition rate during the heating period of the building and the solar heat acquisition rate during the cooling period of the building from the orientation information and the solar heat acquisition rate for each part, and insulates the building during the heating period and cooling period. Performance may be evaluated.

第4の態様の断熱性能評価装置は、第2の態様において、前記建物情報に基づいて前記建物において外気に接する部位ごとの熱損失量を演算し、前記熱損失量の総和から前記建物の外皮平均熱貫流率を演算する第3演算部を含み、前記評価部は、前記部位ごとに設定した前記熱損失量から演算した外皮平均熱貫流率と前記第3演算部が演算した外皮平均熱貫流率の何れか小さい値から設定した外皮熱貫流率を用いて前記建物の断熱性能を評価する、ことを含む。 In the second aspect, the heat insulating performance evaluation device of the fourth aspect calculates the amount of heat loss for each part of the building in contact with the outside air based on the building information, and the total amount of the heat loss is used to calculate the amount of heat loss of the outer skin of the building. The evaluation unit includes a third calculation unit that calculates the average heat transmission coefficient, and the evaluation unit includes an exodermis average heat transmission coefficient calculated from the heat loss amount set for each part and an exodermis average heat transmission calculation calculated by the third calculation unit. It includes evaluating the heat insulation performance of the building using the heat transmission coefficient of the exodermis set from the smaller value of the rate.

第4の態様の断熱性能評価装置では、第3演算部が、建物情報に基づいて建物において外気に接する部位ごとの熱損失量を演算し、熱損失量の総和から建物の外皮平均熱貫流率を演算する。また、評価部は、部位ごとに設定した熱損失量から演算した外皮平均熱貫流率と第3演算部が演算した外皮平均熱貫流率の何れか小さい値から設定した外皮熱貫流率を用いて建物の断熱性能を評価する。 In the heat insulation performance evaluation device of the fourth aspect, the third calculation unit calculates the amount of heat loss for each part of the building in contact with the outside air based on the building information, and the average heat transmission coefficient of the outer skin of the building is calculated from the total amount of heat loss. Is calculated. In addition, the evaluation unit uses the exodermis heat transmission coefficient set from the smaller of the exodermis average heat transmission coefficient calculated from the heat loss amount set for each part and the exodermis average heat transmission coefficient calculated by the third calculation unit. Evaluate the insulation performance of the building.

これにより、建物の外皮平均熱貫流率を用いて建物の断熱性能を一層適切に評価できて、建物の断熱性能が低く(悪く)評価されてしまうのを一層抑制できる。 As a result, the heat insulation performance of the building can be evaluated more appropriately using the average heat transmission coefficient of the outer skin of the building, and it is possible to further suppress the evaluation of the heat insulation performance of the building being low (bad).

第5の態様の断熱性能評価装置は、第2、第2を引用する第3又は第4の態様において、前記評価部は、前記外皮平均熱貫流率と目標とする外皮平均熱貫流率とを比較して前記建物の断熱性能を評価する、ことを含む。 In the third or fourth aspect in which the heat insulating performance evaluation device of the fifth aspect cites the second and second aspects, the evaluation unit determines the exodermis average heat transmission coefficient and the target exodermis average heat transmission coefficient. Including to evaluate the heat insulating performance of the building by comparison.

第5の態様の断熱性能評価装置では、評価部が建物の外皮平均熱貫流率を目標とする外皮平均熱貫流率と比較する。これにより、建物の断熱性能が目標の断熱性能を満たしているか否かを容易に評価できる。 In the heat insulating performance evaluation device of the fifth aspect, the evaluation unit compares the average heat transmission coefficient of the outer skin of the building with the average heat transmission coefficient of the outer skin of the target. This makes it possible to easily evaluate whether or not the heat insulating performance of the building satisfies the target heat insulating performance.

第6の態様の断熱性能評価装置は、第1から第5の態様の何れか1において、前記建物の前記部位の前記断熱仕様の変更を受け付ける変更受付部を含み、前記評価部は、変更された前記断熱仕様に基づいて前記建物の断熱性能を評価する、ことを含む。 In any one of the first to fifth aspects, the heat insulating performance evaluation device of the sixth aspect includes a change receiving unit that accepts a change in the heat insulating specifications of the part of the building, and the evaluation unit is modified. It includes evaluating the heat insulating performance of the building based on the heat insulating specifications.

第6の態様の断熱性能評価装置では、変更受付部が建物の何れかの部位について断熱仕様の変更を受け付けると、変更された断熱仕様に応じて建物の断熱性能を評価する。これにより、建物の断熱性能を目標とする断熱性能に近づけるのが容易になる。 In the heat insulating performance evaluation device of the sixth aspect, when the change receiving unit receives a change in the heat insulating specification for any part of the building, the heat insulating performance of the building is evaluated according to the changed heat insulating specification. This makes it easy to bring the heat insulation performance of the building closer to the target heat insulation performance.

第7の態様の断熱性能評価装置は、第1から第6の態様の何れか1において、前記評価部は、前記各部位の前記断熱仕様に応じて予め設定された施工単価に基づき、前記部位ごとの施工コストを評価する、ことを含む。 In any one of the first to sixth aspects of the heat insulating performance evaluation device of the seventh aspect, the evaluation unit is based on the construction unit price set in advance according to the heat insulating specifications of each part. Includes evaluating the construction cost for each.

第7の態様の断熱性能評価装置では、各部位について予め断熱仕様ごとに設定された施工単価にもとづいて、各部位の断熱仕様に対応する施工コスト(施工費)を演算しれ評価する。これにより、建物について目標とする断熱性能を得ながら施工コストを抑制できる断熱仕様の設定が可能になる。 In the heat insulating performance evaluation device of the seventh aspect, the construction cost (construction cost) corresponding to the heat insulating specification of each part is calculated and evaluated based on the construction unit price set in advance for each heat insulating specification for each part. This makes it possible to set heat insulation specifications that can suppress construction costs while obtaining the target heat insulation performance for the building.

本発明の第1の態様の断熱性能評価装置によれば、第1の熱損失量及び第2の熱損失量の何れか小さい値を用いて建物の断熱性能を評価するので、建物の断熱性能を適切に評価できる、という効果が得られる。 According to the heat insulating performance evaluation device of the first aspect of the present invention, the heat insulating performance of the building is evaluated using the smaller value of the first heat loss amount and the second heat loss amount, so that the heat insulating performance of the building is evaluated. The effect of being able to properly evaluate is obtained.

第2の態様の断熱性能評価装置によれば、建物の外皮平均熱貫流率を用いて、建物の断熱性能を容易に評価できる。 According to the heat insulating performance evaluation device of the second aspect, the heat insulating performance of the building can be easily evaluated by using the average heat transmission coefficient of the outer skin of the building.

第3の態様の断熱性能評価装置によれば、建物の外皮の部位ごとの断熱性能を適切に評価できる、という効果が得られる。 According to the heat insulating performance evaluation device of the third aspect, the effect that the heat insulating performance of each part of the outer skin of the building can be appropriately evaluated can be obtained.

第4の態様の断熱性能評価装置によれば、部位ごとの熱損失量から得られる外皮平均熱貫流率及び外気に接する部位ごとの熱損失量から得られる外皮平均熱貫流率の何れか小さい値の外皮平均熱貫流率を用いるので、建物の断熱性能を一層適切に評価できる、という効果が得られる。 According to the heat insulation performance evaluation device of the fourth aspect, the smaller value of the exodermis average heat transmission coefficient obtained from the heat loss amount for each part and the exodermis average heat transmission rate obtained from the heat loss amount for each part in contact with the outside air. Since the average heat transmission coefficient of the exodermis is used, the effect that the heat insulation performance of the building can be evaluated more appropriately can be obtained.

第5の態様の断熱性能評価装置によれば、建物の断熱性能が目標の断熱性能を満たしているか否かを適切に評価できる、という効果が得られる。 According to the heat insulating performance evaluation device of the fifth aspect, it is possible to appropriately evaluate whether or not the heat insulating performance of the building satisfies the target heat insulating performance.

第6の態様の断熱性能評価装置よれば、建物の断熱性能を目標とする断熱性能に近づけるのが容易になる、という効果が得られる。 According to the heat insulating performance evaluation device of the sixth aspect, the effect that the heat insulating performance of the building can be easily brought close to the target heat insulating performance can be obtained.

第7の態様の断熱性能評価装置によれば、建物について目標とする断熱性能を得ながら施工コストを抑制できる、という効果が得られる。 According to the heat insulating performance evaluation device of the seventh aspect, it is possible to obtain the effect that the construction cost can be suppressed while obtaining the target heat insulating performance for the building.

本実施形態に係る断熱性能評価装置の機能ブロック図である。It is a functional block diagram of the heat insulation performance evaluation apparatus which concerns on this embodiment. 断熱性能評価装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the heat insulation performance evaluation apparatus. 本実施形態に係る断熱性能評価処理の概略を示す流れ図である。It is a flow chart which shows the outline of the heat insulation performance evaluation process which concerns on this Embodiment. 部位ごとの断熱仕様及び熱貫流率の概略を示す図表である。It is a chart which shows the outline of the heat insulation specification and the heat transmission coefficient for each part. 変形例1に係る断熱性能評価装置の機能ブロック図である。It is a functional block diagram of the heat insulation performance evaluation apparatus which concerns on modification 1. FIG. 部位ごとの断熱仕様及び施工単価の概略を示す図表である。It is a chart which shows the outline of the heat insulation specification and construction unit price for each part. 変形例2に係る断熱性能評価装置の機能ブロック図である。It is a functional block diagram of the heat insulation performance evaluation apparatus which concerns on modification 2. FIG. 変形例2に係る断熱性能評価処理の概略を示す流れ図である。It is a flow chart which shows the outline of the heat insulation performance evaluation process which concerns on modification 2.

以下、図面を参照して本発明の実施形態について詳細に説明する。
本実施形態では、建物として躯体が鉄骨軸組構造や鉄骨ラーメン構造などの鉄骨構造(軽量鉄骨構造)の戸建ての住宅を適用する。また、本実施形態では、軽量鉄骨構造の戸建ての住宅として、ユニット式の住宅(図示省略)を例に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present embodiment, a detached house having a steel structure (lightweight steel structure) such as a steel frame structure or a steel frame structure is applied as a building. Further, in the present embodiment, a unit type house (not shown) will be described as an example of a detached house having a lightweight steel structure.

ユニット式の住宅は、複数の建物用ユニットが用いられており、建物用ユニットは、四隅にフレーム支柱が配置され、フレーム支柱の上部に天井フレームが接合されると共に、下部に床フレームが接合されて矩形箱枠状に形成されている。天井フレーム及び床フレームは、妻側の一対の大梁(桁天井大梁及び桁床大梁)、及び桁側の一対の大梁(妻天井大梁及び妻床大梁)を備え、桁側の大梁の間に複数の小梁(天井小梁及び床小梁)が接合されて、略梯子状に形成されている。 In a unit-type house, multiple building units are used. In the building unit, frame columns are arranged at the four corners, the ceiling frame is joined to the upper part of the frame support, and the floor frame is joined to the lower part. It is formed in the shape of a rectangular box frame. The ceiling frame and floor frame include a pair of girders on the wife side (girder ceiling girder and girder floor girder) and a pair of girders on the girder side (wife ceiling girder and girder floor girder), and a plurality of girders are provided between the girder side girders. Beams (ceiling beams and floor beams) are joined to form a substantially ladder shape.

建物用ユニットは、複数が縦横及び上下に配列され、互いに隣接する建物用ユニット同士が連結されて鉄骨ラーメン構造の躯体を構成する。ユニット式の住宅は、鉄骨ラーメン構造の躯体に屋根フレームが連結されている。このようなユニット式の住宅では、制振装置としての制振ダンパが建物用ユニットに設置されることもある。 A plurality of building units are arranged vertically and horizontally and vertically, and building units adjacent to each other are connected to form a steel frame rigid frame structure. In a unit-type house, the roof frame is connected to the frame of the steel frame structure. In such a unit-type house, a vibration damping damper as a vibration damping device may be installed in the building unit.

建物用ユニットは、製造工場において天井フレームの小梁(天井小梁)又は小梁に形成された天井下地に天井板が張られて天井が形成されると共に、床フレームの小梁(床小梁)が下地とされるか小梁に設けた根太が下地にされて床が形成される。また、建物用ユニットは、住宅の間取りに合わせて仕切り壁が形成されると共に、外壁が形成される。 In the building unit, the ceiling is formed by stretching the ceiling plate on the beam of the ceiling frame (ceiling beam) or the ceiling base formed on the beam in the manufacturing factory, and the beam of the floor frame (floor beam). ) Is used as the base, or the joists provided on the beams are used as the base to form the floor. Further, in the building unit, a partition wall is formed and an outer wall is formed according to the floor plan of the house.

本実施形態では、軽量鉄骨構造の住宅(ユニット式の住宅)の断熱性能の評価に断熱性能評価装置10を適用する。図1には、本実施形態に係る断熱性能評価装置10が機能ブロック図にて示され、図2には、断熱性能評価装置10の概略構成(ハードウェア構成)がブロック図にて示されている。 In the present embodiment, the heat insulating performance evaluation device 10 is applied to the evaluation of the heat insulating performance of a house having a lightweight steel structure (unit type house). FIG. 1 shows a functional block diagram of the heat insulating performance evaluation device 10 according to the present embodiment, and FIG. 2 shows a schematic configuration (hardware configuration) of the heat insulating performance evaluation device 10 in a block diagram. There is.

図2に示すように、断熱性能評価装置10は、パーソナルコンピュータ(PC)12を含んでいる。パーソナルコンピュータ12は、CPU14、ROM16、RAM18、及び入出力ポート20を備え、これらがアドレスバス、データバス及び制御バス等のバス22を介して相互に接続されている。 As shown in FIG. 2, the heat insulating performance evaluation device 10 includes a personal computer (PC) 12. The personal computer 12 includes a CPU 14, a ROM 16, a RAM 18, and an input / output port 20, which are connected to each other via a bus 22 such as an address bus, a data bus, and a control bus.

また、パーソナルコンピュータ12は、ディスプレイ24、キーボード26、マウス28等の入出力デバイスと共に、記憶デバイスとしてのHDD(半導体メモリでもよい)30、通信デバイスとしての通信インターフェイス(通信I/F)32等が入出力ポート20に接続されている。また、パーソナルコンピュータ12は、入出力ポート20又は通信I/F32を介して印刷出力デバイス(プリンタ等、図示省略)が接続されてもよい。 Further, the personal computer 12 includes input / output devices such as a display 24, a keyboard 26, and a mouse 28, as well as an HDD (semiconductor memory) 30 as a storage device, a communication interface (communication I / F) 32 as a communication device, and the like. It is connected to the input / output port 20. Further, the personal computer 12 may be connected to a print output device (printer or the like, not shown) via the input / output port 20 or the communication I / F 32.

本実施形態においてパーソナルコンピュータ12には、通信I/F32を介して、CADシステム34が接続され、CADシステム34等によって作成されたデータの入出力が可能とされてもよい。また、パーソナルコンピュータ12は、入出力ポート20にディスクドライブ36が接続され、ディスクドライブ36に装着されたディスク38を介してCADシステム34等によって作成されたデータが入力されてもよい。 In the present embodiment, the CAD system 34 may be connected to the personal computer 12 via the communication I / F 32 to enable input / output of data created by the CAD system 34 or the like. Further, in the personal computer 12, the disk drive 36 is connected to the input / output port 20, and the data created by the CAD system 34 or the like may be input via the disk 38 mounted on the disk drive 36.

パーソナルコンピュータ12は、CPU14がROM16及びHDD30に記憶されたプログラムを読み出し、RAM18を作業メモリとして使用しながら各種の処理を実行する。パーソナルコンピュータ12のROM16及びHDD30には、住宅の断熱性能を評価するために実行される各種のプログラムが記憶されている。パーソナルコンピュータ12は、CPU14がROM16及びHDD30に記憶された住宅の断熱性能を評価するためのプログラムを読み出して実行することで断熱性能評価装置10として機能する。なお、プログラムは、通信I/F32が接続されるネットワークを介して取得されてもよく、可搬式記録媒体としてのディスク38や半導体記憶媒体としてのUSBメモリなどを介して取得されてもよい。 The personal computer 12 reads the programs stored in the ROM 16 and the HDD 30 by the CPU 14, and executes various processes while using the RAM 18 as the working memory. The ROM 16 and the HDD 30 of the personal computer 12 store various programs executed for evaluating the heat insulating performance of the house. The personal computer 12 functions as the heat insulating performance evaluation device 10 by the CPU 14 reading and executing a program for evaluating the heat insulating performance of the house stored in the ROM 16 and the HDD 30. The program may be acquired via a network to which the communication I / F 32 is connected, or may be acquired via a disk 38 as a portable recording medium, a USB memory as a semiconductor storage medium, or the like.

図1に示すように、断熱性能評価装置10には、受付部40、記憶部42、第1演算部44、第2演算部46及び出力部48が形成されている。また、断熱性能評価装置10には、評価部を構成する比較部50、日射演算部52、外皮性能演算部54及び断熱性能判定部56が形成されている。記憶部42は、HDD30によって実現され、記憶部42には、予め各種のデータが記憶されると共に、受付部40が受け付けた各種の情報(データ)が記憶される。 As shown in FIG. 1, the heat insulating performance evaluation device 10 is formed with a reception unit 40, a storage unit 42, a first calculation unit 44, a second calculation unit 46, and an output unit 48. Further, the heat insulation performance evaluation device 10 is formed with a comparison unit 50, a solar radiation calculation unit 52, an exodermis performance calculation unit 54, and a heat insulation performance determination unit 56 that form an evaluation unit. The storage unit 42 is realized by the HDD 30, and various data are stored in advance in the storage unit 42, and various information (data) received by the reception unit 40 is stored.

受付部40は、建物情報を受け付ける受付部、及び建物情報の変更や追加を受け付ける変更受付部として機能する。受付部40は、ディスプレイ24に表示される所定のユーザインターフェイス(UI)に基づいてキーボード26及びマウス28を操作することで入力される情報の受け付けが可能になっている。 The reception unit 40 functions as a reception unit that receives building information and a change reception unit that receives changes and additions of building information. The reception unit 40 can receive information input by operating the keyboard 26 and the mouse 28 based on a predetermined user interface (UI) displayed on the display 24.

建物情報は、対象とする住宅について、断熱性能の評価に用いられる情報が含まれ、建物情報には、CADシステム34等によって作成された2次元或いは3次元のCADデータが含まれる。CADデータは、CADシステム34等から入力されるか、CADシステム34等からディスク38に記録されて入力される。また、建物情報は、CADデータに加え、キーボード26やマウス28が操作されて入力されるデータが含まれてもよい。 The building information includes information used for evaluating the heat insulation performance of the target house, and the building information includes two-dimensional or three-dimensional CAD data created by a CAD system 34 or the like. The CAD data is input from the CAD system 34 or the like, or is recorded and input from the CAD system 34 or the like on the disk 38. Further, the building information may include data input by operating the keyboard 26 or the mouse 28 in addition to the CAD data.

住宅の断熱性能の評価には、外皮平均熱貫流率UA(W/mK)を用いられる。この外皮平均熱貫流率UAの演算には、(1)式を用いる手法があり、住宅の断熱性能の評価は、例えば、外皮平均熱貫流率UAが予め設定された目標値(目標の外皮平均熱貫流率UAs)に達しているか否かが適用される。 The average heat transmission coefficient UA (W / m 2 K) of the outer skin is used to evaluate the heat insulation performance of the house. There is a method using Eq. (1) to calculate the average heat transmission coefficient UA of the outer skin. For evaluation of the heat insulation performance of a house, for example, the average heat transmission coefficient UA of the outer skin is a preset target value (target outer skin average). Whether or not the heat transmission coefficient UAs) is reached is applied.

なお、Aiは外皮の部位(一般部位又は開口部)iの面積(m)、Uiは外皮の部位の熱貫流率(W/mK)、Hiは外皮の部位の温度差係数、Ljは熱橋等(熱橋及び土間床等の外周部)jの長さ(m)、Ψjは熱橋等jの線熱貫流率(W/mK)、Hjは熱橋等jの温度差係数、Aenvは外皮の部位の面積の合計(m)としている。 In addition, Ai is the area (m 2 ) of the outer skin part (general part or opening) i, Ui is the heat transmission coefficient (W / m 2 K) of the outer skin part, Hi is the temperature difference coefficient of the outer skin part, Lj. Is the length (m) of the thermal bridge, etc. (outer periphery of the thermal bridge and soil floor) j, Ψj is the linear heat transmission coefficient (W / mK) of the thermal bridge, etc. j, and Hj is the temperature difference coefficient of the thermal bridge, etc. , Aenv is the total area of the outer skin (m 2 ).

上記(1)式は、住宅の外皮(外皮の部位)の面積等を用いる手法であり、分子は、外皮の部位ごとの熱損失(熱損失量)及び熱橋等の熱損失(熱損失量)の総和を示している。本実施形態では、外皮平均熱貫流率UAの演算の一手法として、熱損失量について外皮とされる屋根(又は天井)、壁、床などの各部位の熱損失量qiを演算し、演算した部位ごとの熱損失量qiの総和を用いる。なお、外皮の部位には、住宅の基礎等が含まれ、熱損失量は、基礎等についても演算されるが、本実施形態では、基礎等についての説明を省略する。 The above equation (1) is a method using the area of the exodermis (exodermis part) of the house, and the numerator is the heat loss (heat loss amount) for each exodermis part and the heat loss (heat loss amount) for the thermal bridge. ) Is shown. In the present embodiment, as one method of calculating the average heat transmission coefficient UA of the outer skin, the heat loss amount qi of each part such as the roof (or ceiling), the wall, and the floor, which is the outer skin, is calculated and calculated for the heat loss amount. The sum of the heat loss amount qi for each part is used. The exodermis includes the foundation of a house and the like, and the amount of heat loss is calculated for the foundation and the like, but in the present embodiment, the description of the foundation and the like will be omitted.

本実施形態において建物情報には、外皮の部位となる屋根(又は天井)、壁、床などの各々の構造情報、外皮の各部位に用いられた鉄骨部材を含む各部材の属性情報、及び各部位の断熱仕様が含まれる。また、建物情報には、建物の方位を示す情報が含まれることが好ましい。構造情報には、外皮の各部位における鋼材を用いた柱(フレーム支柱)や梁(大梁、小梁)などの熱橋部の構成、窓やドアなどの開口部の情報が含まれ、属性情報には、各部材の形状、寸法、配置などが含まれる。また、各部位の構造情報、属性情報及び断熱仕様を含む建物情報には、各部位における熱の伝わり方を示す情報を特定できる情報が含まれる。 In the present embodiment, the building information includes structural information of each of the roof (or ceiling), wall, floor, etc., which is a part of the exodermis, attribute information of each member including the steel frame member used for each part of the exodermis, and each. Includes site insulation specifications. Further, it is preferable that the building information includes information indicating the orientation of the building. Structural information includes information on the configuration of thermal bridges such as columns (frame columns) and beams (beams and beams) using steel materials in each part of the exodermis, and information on openings such as windows and doors, and attribute information. Includes the shape, dimensions, arrangement, etc. of each member. In addition, the building information including the structural information, attribute information, and heat insulation specifications of each part includes information that can specify information indicating how heat is transferred in each part.

各部位の熱の伝わり方を示す情報には、外皮の各部位における一般部(熱橋部を除く一般部又は開口部)の熱貫流率U(W/mK)、及び熱橋部(熱橋等)の線熱貫流率Ψ(W/mK)の各パラメータが含まれ、補正熱貫流率Ur(W/mK)などのパラメータが含まれてもよい。これらの情報(各パラメータ)は、CADデータに含まれてもよく、キーボード26及びマウス28等の操作によってCADデータとは別に入力されてもよく、記憶部42に予め記憶されていてもよい。 Information indicating how heat is transferred in each part includes the heat transmission coefficient U (W / m 2 K) of the general part (general part or opening excluding the thermal bridge part) in each part of the outer skin, and the thermal bridge part (W / m 2 K). contains the parameters of the linear thermal transmission coefficient of thermal bridges, etc.) Ψ (W / mK), it may include parameters such as correction heat transmission coefficient Ur (W / m 2 K) . These information (each parameter) may be included in the CAD data, may be input separately from the CAD data by operating the keyboard 26, the mouse 28, or the like, or may be stored in advance in the storage unit 42.

一方、各部位の熱損失量の演算には、所定の公的機関(例えば、国立研究開発法人 建築研究所など)に申請し、承認された演算式(又は演算手法)を用いる方法がある。上記した外皮平均熱貫流率UAの演算の一手法とは別の手法として、本実施形態では、各部位について熱貫流率Uiに替わる数値とする第2熱貫流率としての熱貫流率Us(W/mK)を適用する。 On the other hand, for the calculation of the amount of heat loss of each part, there is a method of applying to a predetermined public institution (for example, National Research and Development Corporation Building Research Institute) and using an approved calculation formula (or calculation method). As a method different from the above-mentioned method of calculating the average heat transmission coefficient UA of the outer skin, in the present embodiment, the heat transmission coefficient Us (W) as the second heat transmission coefficient, which is a numerical value replacing the heat transmission coefficient Ui for each part. / m 2 K) to apply.

本実施形態では、断熱性能の評価に用いる情報として、上記各パラメータとは別に、外皮の各部位について熱橋部(熱橋等)を含む単位面積当たりの熱の伝わり方の値とする熱貫流率Us(W/mK)が予め演算されて求められて記憶部42に記憶されている。 In the present embodiment, as information used for evaluating the heat insulation performance, in addition to the above parameters, heat transmission is a value of how heat is transferred per unit area including a thermal bridge portion (thermal bridge, etc.) for each part of the exodermis. The rate Us (W / m 2 K) is calculated in advance, obtained, and stored in the storage unit 42.

これにより、第1演算部44及び第2演算部46は、互いに異なる手法を用いて部位ごとの熱損失量qを演算する。第1演算部44では、各部位の第1熱貫流率として熱貫流率Uが適用され、各部位ごとの熱貫流率U(補正熱貫流率Urを含んでもよい)及び線熱貫流率Ψが用いられて、各部位について第1の熱損失量としての熱損失量q(単位温度差当たりの熱損失量(W/K))が演算される。また、第2演算部46では、記憶部42に記憶されている熱貫流率Usが用いられて、部位ごとの第2の熱損失量としての熱損失量q(W/K)が演算される。 As a result, the first calculation unit 44 and the second calculation unit 46 calculate the heat loss amount q for each part by using different methods. In the first calculation unit 44, the heat transmission coefficient U is applied as the first heat transmission coefficient of each part, and the heat transmission rate U (may include the corrected heat transmission rate Ur) and the linear heat transmission rate Ψ for each part are Used, the heat loss amount q 1 (heat loss amount per unit temperature difference (W / K)) as the first heat loss amount is calculated for each part. Further, in the second calculation unit 46, the heat transmission coefficient Us stored in the storage unit 42 is used to calculate the heat loss amount q 2 (W / K) as the second heat loss amount for each part. To.

比較部50では、外皮の部位ごとに、第1演算部44で演算された熱損失量qと第2演算部46で演算された熱損失量qとが比較され、何れか小さい値が当該部位の熱損失量qに設定される。日射演算部52では、部位ごとの熱損失量qに基づき、対象とする住宅の部位ごとの日射熱取得率ηが演算される。また、日射演算部52では、住宅の暖房期の日射熱取得率ηh、及び住宅の冷房期の日射熱取得率ηcが演算されてもよい。 The comparison unit 50, for each region of the skin, the heat loss calculated by the first calculation unit 44 q 1 and the heat loss q 2 calculated by the second calculating section 46 is compared, it is either smaller The heat loss amount q of the relevant part is set. The solar radiation calculation unit 52 calculates the solar heat acquisition rate η for each part of the target house based on the heat loss amount q for each part. Further, the solar radiation calculation unit 52 may calculate the solar heat acquisition rate ηh in the heating period of the house and the solar heat acquisition rate ηc in the cooling period of the house.

さらに、外皮性能演算部54では、部位ごとの熱損失量qから対象とする住宅の熱損失量の総和(外皮の部位の熱損失量及び熱橋等の熱損失量の総和)が演算され、住宅の外皮平均熱貫流率UAが演算される。 Further, the outer skin performance calculation unit 54 calculates the total amount of heat loss of the target house from the amount of heat loss q for each part (the total amount of heat loss of the outer skin part and the total amount of heat loss of the thermal bridge, etc.). The average heat transmission coefficient UA of the outer skin of the house is calculated.

断熱性能判定部56では、外皮性能演算部54において演算された外皮平均熱貫流率UAが、予め設定している目標値(目標とする外皮平均熱貫流率UAs)に達しているか否かが判定される。この際、断熱性能判定部56は、外皮平均熱貫流率UAが外皮平均熱貫流率UAs以下(UA≦UAs)であると、当該住宅について目標とする断熱性能を満たしていると判定(評価)する。また、断熱性能判定部56は、外皮平均熱貫流率UAが外皮平均熱貫流率UAsを超えている(UA>UAs)と、当該住宅が目標とする断熱性能に達していない(満たしていない)と判定(評価)する。 The heat insulating performance determination unit 56 determines whether or not the outer skin average heat transmission coefficient UA calculated by the outer skin performance calculation unit 54 has reached a preset target value (target outer skin average heat transmission coefficient UAs). Will be done. At this time, the heat insulating performance determination unit 56 determines (evaluation) that the target heat insulating performance of the house is satisfied when the average heat transmission coefficient UA of the outer skin is equal to or less than the average heat transmission coefficient UAs (UA ≤ UAs) of the outer skin. To do. Further, in the heat insulating performance determination unit 56, when the average heat transmission coefficient UA of the outer skin exceeds the average heat transmission coefficient UAs of the outer skin (UA> UAs), the heat insulating performance targeted by the house is not reached (not satisfied). Judgment (evaluation).

さらに、断熱性能判定部56では、対象とする住宅の外皮の各部位について、日射熱取得率ηが予め設定した目標値を満たしているか否かを判定する。また、断熱性能判定部56では、外皮の各部位の日射熱取得率ηから、対象とする住宅の暖房期の日射熱取得率ηh及び冷房期の日射熱取得率ηcを求めて、これらの値が予め設定している目標値(基準値)を満たしているか(目標値に達しているか)否かを判定する。なお、各目標値は、住宅の部位ごとに設定された値が適用される。 Further, the heat insulating performance determining unit 56 determines whether or not the solar heat acquisition rate η satisfies a preset target value for each part of the outer skin of the target house. In addition, the heat insulation performance determination unit 56 obtains the solar heat acquisition rate ηh in the heating period and the solar heat acquisition rate ηc in the cooling period from the solar heat acquisition rate η of each part of the outer skin, and these values. Determines whether or not meets the preset target value (reference value) (whether or not the target value is reached). In addition, the value set for each part of the house is applied to each target value.

出力部48は、ディスプレイ24や入出力ポート20に接続されるプリンタ等の印刷出力デバイス、ディスクドライブ36に装着されたディスク38等によって達成される。出力部48は、対象とする住宅の断熱性能の評価結果として断熱性能判定部56の判定結果を出力する。また、出力部48は、第1演算部44の演算結果(熱損失量q)、第2演算部の演算結果(熱損失量q)、各部位についての比較部50の比較結果(各部位の熱損失量q)、日射演算部52において演算された各部位の日射熱取得率η、及び外皮性能演算部54において演算された外皮平均熱貫流率UA等を出力してもよい。なお、出力部48は、通信I/F32を介してパーソナルコンピュータ12にネットワーク接続された外部処理端末からの要求にもとづいて判定結果等を出力してもよい。 The output unit 48 is achieved by a print output device such as a printer connected to the display 24 or the input / output port 20, a disk 38 mounted on the disk drive 36, and the like. The output unit 48 outputs the determination result of the heat insulation performance determination unit 56 as the evaluation result of the heat insulation performance of the target house. Further, the output unit 48 uses the calculation result of the first calculation unit 44 (heat loss amount q 1 ), the calculation result of the second calculation unit (heat loss amount q 2 ), and the comparison result of the comparison unit 50 for each part (each). The heat loss amount q) of the part, the solar heat acquisition rate η of each part calculated by the solar radiation calculation unit 52, the outer skin average heat transmission coefficient UA calculated by the outer skin performance calculation unit 54, and the like may be output. The output unit 48 may output a determination result or the like based on a request from an external processing terminal connected to the personal computer 12 via the communication I / F 32.

次に本実施形態の作用として、図3を参照しながら断熱性能評価装置10における断熱性能評価処理を説明する。図3には、断熱性能評価装置10において実行される断熱性能処理の概略が流れ図にて示されている。 Next, as the operation of the present embodiment, the heat insulating performance evaluation process in the heat insulating performance evaluation device 10 will be described with reference to FIG. FIG. 3 is a flow chart showing an outline of the heat insulating performance processing executed by the heat insulating performance evaluation device 10.

断熱性能評価装置10は、予め記憶部42に所定のデータが記憶された状態で図3のフローチャートが実行される。最初のステップ100では、対象とする住宅の建物情報が入力されることで、入力された建物情報を受け付け、受け付けた建物情報を記憶部42に記憶する(ステップ102)。これにより、第1演算部44、第2演算部46、日射演算部52、外皮性能演算部54及び断熱性能判定部56の各々に用いられえる各種のデータが記憶部42に記憶される。 The heat insulation performance evaluation device 10 executes the flowchart of FIG. 3 in a state where predetermined data is stored in the storage unit 42 in advance. In the first step 100, the building information of the target house is input, the input building information is received, and the received building information is stored in the storage unit 42 (step 102). As a result, various data that can be used for each of the first calculation unit 44, the second calculation unit 46, the solar radiation calculation unit 52, the exodermis performance calculation unit 54, and the heat insulation performance determination unit 56 are stored in the storage unit 42.

一般に、住宅の外皮平均熱貫流率UAは、屋根(又は天井)、壁、床等の各部位の熱損失量qi(W/K)が用いられる。各部位における熱損失量qiは、一般部(一般部又は開口部)の熱損失量及び熱橋部の熱損失量から求められ、一般部の熱損失量は、一般部の熱貫流率Ui(W/mK)及び一般部の面積S(m)から得られ、熱橋部の熱損失量は、熱橋部ごとの線熱貫流率Ψj(W/mK)及び熱橋部ごとの長さLj(m)から得られる。線熱貫流率Ψjは、鉄骨柱、梁の見付面積と外装材及び断熱補強材の熱抵抗から導出できる。また、各部位の熱貫流率Uiは、外装材と断熱補強材との熱抵抗から導出される補正熱貫流率Ur(W/mK)が用いられて補正される。 Generally, as the average heat transmission coefficient UA of the outer skin of a house, the heat loss amount qi (W / K) of each part such as a roof (or ceiling), a wall, and a floor is used. The amount of heat loss qi in each part is obtained from the amount of heat loss in the general part (general part or opening) and the amount of heat loss in the thermal bridge part, and the amount of heat loss in the general part is the heat transmission coefficient Ui ( Obtained from W / m 2 K) and the area S (m 2 ) of the general part, the amount of heat loss of the thermal bridge part is the linear heat transmission coefficient Ψj (W / mK) for each thermal bridge part and for each thermal bridge part. Obtained from length Lj (m). The linear heat transmission coefficient Ψj can be derived from the found area of the steel column and the beam and the thermal resistance of the exterior material and the heat insulating reinforcing material. Further, the heat transmission coefficient Ui of each portion is corrected by using the corrected heat transmission coefficient Ur (W / m 2 K) derived from the thermal resistance between the exterior material and the heat insulating reinforcing material.

ステップ104(第1演算部44)では、各部位について、部位の一般部iの熱貫流率Ui、一般部iの補正熱貫流率Ur、一般部の対象面積S、熱橋部jの線熱貫流率Ψj、及び熱橋部jの長さ(熱橋部長さ)Ljを用いて熱損失量qiを演算する((2)式参照)。
=qi=(Ui+Ur)×S+Ψj×Lj ・・・(2)
In step 104 (first calculation unit 44), for each part, the heat transmission coefficient Ui of the general part i of the part, the corrected heat transmission rate Ur of the general part i, the target area S of the general part, and the linear heat of the thermal bridge part j. The heat loss amount qi is calculated using the transmission coefficient Ψj and the length of the thermal bridge portion j (thermal bridge portion length) Lj (see equation (2)).
q 1 = qi = (Ui + Ur) × S + Ψj × Lj ・ ・ ・ (2)

また、記憶部42には、熱橋部を含めた単位面積当たりの熱の伝わり方を示す数値として予め承認された演算式が用いられて演算された熱貫流率Usが記憶されている。図4には、承認された演算式に基づいて演算されて記憶部42に記憶されたデータの一部が図表にて示されている。 Further, the storage unit 42 stores the heat transmission coefficient Us calculated by using a calculation formula approved in advance as a numerical value indicating how heat is transferred per unit area including the thermal bridge portion. FIG. 4 is a chart showing a part of the data calculated based on the approved calculation formula and stored in the storage unit 42.

熱橋部を含めた単位面積当たりの熱の伝わり方を示す数値は、各部位の構造、使用されている部材、断熱仕様などによって異なる。また、断熱仕様は、使用される断熱材料、断熱構造(断熱材料の施工方法)、外壁材、内装材等の組合せなどによって定まり、同様の部位であっても断熱仕様が異なることで、熱貫流率Usが異なる。 The numerical value indicating how heat is transferred per unit area including the thermal bridge part differs depending on the structure of each part, the members used, the heat insulation specifications, and the like. In addition, the heat insulation specifications are determined by the combination of the heat insulation material used, the heat insulation structure (construction method of the heat insulation material), the outer wall material, the interior material, etc., and the heat transmission specifications are different even in the same part, so that heat transmission flows The rate Us is different.

図4に示すように、熱貫流率Us(Usi)は、屋根(又は天井)、壁、床などの各部位について、構造ごと及び断熱仕様ごとに演算されて設定されている。なお、壁などにおいては、例えば、内部に制振ダンパ等が設置されていることで、断熱材料の施工等において制振ダンパが設けられていない場合と構造等が異なる。このような部分については、特殊部として、一般部とは別に熱貫流率Usが演算されて設定されている。 As shown in FIG. 4, the heat transmission coefficient Us (Usi) is calculated and set for each part such as the roof (or ceiling), wall, and floor for each structure and each heat insulation specification. It should be noted that, for example, the structure and the like of the wall and the like are different from the case where the vibration damping damper is not provided in the construction of the heat insulating material because the vibration damping damper or the like is installed inside. For such a portion, the heat transmission coefficient Us is calculated and set as a special portion separately from the general portion.

ステップ106(第2演算部)では、記憶部42に記憶された熱貫流率Us(Usi)を用い、各部位の熱損失量qとする熱損失量qiを演算する。この熱損失量qi(q)の演算には、(3)式が用いられる。なお、面積S(m)は、各部位について一般部i及び熱橋部(見付面積)jを含めた面積とされている。
=qi=Usi×S ・・・(3)
In step 106 (second calculation unit), the heat loss amount qi, which is the heat loss amount q 2 of each part, is calculated using the heat transmission coefficient Us (Usi) stored in the storage unit 42. Equation (3) is used to calculate the amount of heat loss qi (q 2 ). The area S (m 2 ) is the area including the general part i and the thermal bridge part (found area) j for each part.
q 2 = qi = Usi × S ・ ・ ・ (3)

これにより、ステップ104では、各部位について熱貫流率Uiに関連付けられて熱損失量qが取得され、ステップ106では、各部位について熱貫流率Usiに関連付けられて熱損失量qが取得される。ステップ108では、部位ごとに熱損失量qと熱損失量qとを比較し、熱損失量q、qのうち何れか小さい値を当該部位の熱損失量qとして設定する。 As a result, in step 104, the heat loss amount q 1 is acquired in association with the heat transmission coefficient Ui for each part, and in step 106, the heat loss amount q 2 is acquired in association with the heat transmission rate Usi for each part. To. In step 108, the heat loss amount q 1 and the heat loss amount q 2 are compared for each part, and the smaller value of the heat loss amounts q 1 and q 2 is set as the heat loss amount q of the part.

次のステップ110、112は、並行して実行されてもよく、順に実行されてもよい。ステップ110では、日射を受ける部位について日射熱取得率η等を演算する。日射熱取得率ηは、当該部位の熱貫流率Uに、予め設定された係数を掛けることで求められる。なお、熱貫流率Uは、当該部位について設定された熱損失量qに対応する値(熱貫流率Ui又は熱貫流率Usi)が用いられる。 The next steps 110 and 112 may be executed in parallel or in sequence. In step 110, the solar heat acquisition rate η and the like are calculated for the portion that receives the solar radiation. The solar heat acquisition rate η is obtained by multiplying the heat transmission coefficient U of the relevant portion by a preset coefficient. As the heat transmission coefficient U, a value (heat transmission coefficient Ui or heat transmission coefficient Usi) corresponding to the heat loss amount q set for the relevant portion is used.

また、ステップ110では、各部位の日射熱取得率ηから対象とする住宅の暖房期の日射熱取得率ηh及び冷房期の日射熱取得率ηcを演算する。暖房期の日射熱取得率ηhは、各部位の暖房期の日射熱取得量mhと対象面積Aから演算され(ηh=mh/A)、冷房期の日射熱取得率ηcは、各部位の冷房期の日射熱取得量mcと対象面積Aから演算される(ηc=mc/A)。 Further, in step 110, the solar heat acquisition rate ηh in the heating period and the solar heat acquisition rate ηc in the cooling period of the target house are calculated from the solar heat acquisition rate η of each part. The solar heat acquisition rate ηh in the heating period is calculated from the solar heat acquisition amount mh in the heating period and the target area A (ηh = mh / A), and the solar heat acquisition rate ηc in the cooling period is the cooling of each part. It is calculated from the solar heat gained amount mc of the period and the target area A (ηc = mc / A).

部位ごとの暖房期の日射熱取得量は、当該部位の対象面積A、日射熱取得率η及び当該部位の暖房期における方位係数vhから得られ、暖房期の日射熱取得量mhは、各部位の暖房期の日射熱取得量の総和として求められる。また、部位ごとの冷房期の日射熱取得量は、当該部位の対象面積A、日射熱取得率η及び当該部位の冷房期における方位係数vcから得られ、冷房期の日射熱取得量mcは、各部位の暖房期の日射熱取得量の総和と求められる。なお、方位係数vh、vcは、予め記憶部42に記憶され、建物情報等によって方視が入力されることで部位ごとに定まる。このような、日射熱取得率η、暖房期の日射熱取得率ηh、及び冷房期の日射熱取得率ηcは、公知の手法で演算される。 The amount of solar heat gained in the heating period for each part is obtained from the target area A of the part, the solar heat gain rate η, and the orientation coefficient vh in the heating period of the part, and the amount of solar heat gained mh in the heating period is each part. It is calculated as the total amount of solar heat gained during the heating period. Further, the amount of solar heat gained in the cooling period for each part is obtained from the target area A of the part, the solar heat gain rate η, and the orientation coefficient vc in the cooling period of the part, and the amount of solar heat gained mc in the cooling period is It is calculated as the total amount of solar heat gained during the heating period of each part. The azimuth coefficients vh and vc are stored in the storage unit 42 in advance, and are determined for each part by inputting a direction according to building information or the like. Such a solar heat acquisition rate η, a solar heat acquisition rate ηh in the heating period, and a solar heat acquisition rate ηc in the cooling period are calculated by known methods.

ステップ112では、設定された各部位の熱損失量q及び外皮の全面積Saから対象とする住宅の外皮平均熱貫流率UAを演算する(UA=q/Sa)。 In step 112, the average heat transmission coefficient UA of the outer skin of the target house is calculated from the heat loss amount q of each set portion and the total area Sa of the outer skin (UA = q / Sa).

ステップ114では、演算した外皮平均熱貫流率UAと、目標とする断熱性能が得られる外皮平均熱貫流率UAsとを比較し、住宅が目標とする断熱性能を満たしているか否かを判定(評価)する。なお、目標とする外皮平均熱貫流率UAsは、戸建て住宅に対応する省エネルギー基準に基づいた値であってもよく、住宅メーカ等が製品品質を考慮して設定した基準値であってもよい。 In step 114, the calculated exodermis average heat transmission coefficient UA is compared with the exodermis average heat transmission coefficient UAs that can obtain the target heat insulation performance, and it is determined (evaluated) whether or not the house satisfies the target heat insulation performance. ). The target exodermis average heat transmission coefficient UAs may be a value based on the energy saving standard corresponding to the detached house, or may be a standard value set by the house maker or the like in consideration of the product quality.

また、ステップ114では、各部位の日射熱取得率η、住宅の暖房期の日射熱取得率ηh、及び住宅の冷房期の日射熱取得率ηcについて判定する。この判定は、予め設定されている目標値を比較することで行われ、各部位の日射熱取得率η、住宅の暖房期の日射熱取得率ηh、及び住宅の冷房期の日射熱取得率ηcの各々が目標値に達しているか否かが判断される。なお、各部位の日射熱取得率η、対象とする住宅の暖房期の日射熱取得率ηh、及び対象とする住宅の冷房期の日射熱取得率ηcの各目標値は、住宅メーカが設定している基準値などを適用できる。 Further, in step 114, the solar heat acquisition rate η of each part, the solar heat acquisition rate ηh in the heating period of the house, and the solar heat acquisition rate ηc in the cooling period of the house are determined. This determination is made by comparing preset target values, and the solar heat acquisition rate η of each part, the solar heat acquisition rate ηh during the heating period of the house, and the solar heat acquisition rate ηc during the cooling period of the house. It is judged whether or not each of the above has reached the target value. The target values of the solar heat acquisition rate η of each part, the solar heat acquisition rate ηh during the heating period of the target house, and the solar heat acquisition rate ηc during the cooling period of the target house are set by the housing manufacturer. The standard value that is set can be applied.

この後、ステップ116では、出力部48から判定結果(評価結果)を出力する。判定結果は、外皮平均熱貫流率UAが目標としている外皮平均熱貫流率UAs以下の場合、対象とする住宅が目標とする断熱性能を満たしていると出力される。また、外皮平均熱貫流率UAが外皮平均熱貫流率UAsより大きい場合、判定結果は、対象とする住宅が目標とする断熱性能を満たしていないと出力される。 After that, in step 116, the determination result (evaluation result) is output from the output unit 48. The determination result is output when the average heat transmission coefficient UA of the outer skin is equal to or less than the average heat transmission coefficient UA of the outer skin, and the target house satisfies the target heat insulation performance. Further, when the average heat transmission coefficient UA of the outer skin is larger than the average heat transmission coefficient UA of the outer skin, the determination result is output as not satisfying the target heat insulation performance of the target house.

また、出力される判定結果は、各部位の日射熱取得率η、住宅の暖房期の日射熱取得率ηh、住宅の冷房期の日射熱取得率ηc、及び各々が目標値に達しているか否かがなどが含まれてもよい。なお、ステップ116では、各部位について、部位ごとの断熱仕様、第1演算部44の演算結果(熱損失量q)、第2演算部の演算結果(熱損失量q)、及び比較部50の比較結果(各部位の熱損失量q)等を合わせて出力してもよい。 In addition, the output judgment results are the solar heat acquisition rate η of each part, the solar heat acquisition rate ηh in the heating period of the house, the solar heat acquisition rate ηc in the cooling period of the house, and whether or not each of them reaches the target value. Kagami may be included. In step 116, for each part, the heat insulation specifications for each part, the calculation result of the first calculation unit 44 (heat loss amount q 1 ), the calculation result of the second calculation unit (heat loss amount q 2 ), and the comparison unit. The comparison results of 50 (heat loss amount q of each part) and the like may be combined and output.

一方、ステップ118では、対象とする住宅について何れかの部位の断熱仕様を変更するか否かを確認する。例えば、出力された判定結果から対象とする住宅について目標とする断熱性能を満たしていないと評価された場合、対象とする住宅が目標とする断熱性能を満たすように断熱仕様を変更する必要がある。また、対象とする住宅が目標とする断熱性能を満たしていると評価された場合であっても、外皮平均熱貫流率UAが外皮平均熱貫流率UAsと離れている場合などでは、断熱仕様の変更の余地がある。 On the other hand, in step 118, it is confirmed whether or not to change the heat insulation specification of any part of the target house. For example, if it is evaluated from the output judgment result that the target house does not meet the target heat insulation performance, it is necessary to change the heat insulation specifications so that the target house meets the target heat insulation performance. .. In addition, even if the target house is evaluated to meet the target heat insulation performance, if the exodermis average heat transmission coefficient UA is different from the exodermis average heat transmission rate UAs, the insulation specifications will be used. There is room for change.

さらに、対象とする住宅が目標とする断熱性能を満たしていると評価された場合であっても、各部位の日射熱取得率η、対象とする住宅の暖房期の日射熱取得率ηh、及び対象とする住宅の冷房期の日射熱取得率ηcの何れかが目標に達していない場合がある。 Furthermore, even if the target house is evaluated to meet the target heat insulation performance, the solar heat acquisition rate η of each part, the solar heat acquisition rate ηh during the heating period of the target house, and In some cases, one of the solar heat gain rates ηc during the cooling period of the target house has not reached the target.

ここから、断熱仕様の変更が指示されると、ステップ118において肯定判定してステップ120に移行する。なお、断熱仕様を変更しない場合(変更指示が入力されない場合)や、対象とする住宅について断熱性能の評価を終了する場合などには、ステップ118において否定判定して処理を終了する。 From here, when a change in the heat insulation specification is instructed, an affirmative determination is made in step 118 and the process proceeds to step 120. If the heat insulation specifications are not changed (when no change instruction is input), or if the evaluation of the heat insulation performance of the target house is completed, a negative determination is made in step 118 and the process is terminated.

ステップ120では、例えば、ディスプレイ24に表示されるUI(ユーザインターフェイス)に基づいてキーボード26やマウス28が操作されて、何れか少なくとも1つの部位について断熱仕様の変更等が入力されると、変更された断熱仕様を受け付ける。この後、ステップ102に戻ることで変更された断熱仕様に基づいて、対象とする住宅についての断熱性能の再評価が行われる。なお、また、対象とする住宅について目標とする断熱性能に達しない場合、ステップ118を省略してステップ120に移行し、断熱仕様等の変更を受け付けるようにしてもよい。また、断熱仕様の変更に伴い該当部位の構造情報及び属性情報が変更される場合、断熱仕様と共に構造情報及び属性情報が変更される。 In step 120, for example, when the keyboard 26 or the mouse 28 is operated based on the UI (user interface) displayed on the display 24 and a change in heat insulation specifications is input for at least one of the parts, the change is made. We accept heat insulation specifications. After that, by returning to step 102, the heat insulation performance of the target house is re-evaluated based on the changed heat insulation specifications. Further, when the target heat insulating performance of the target house is not reached, step 118 may be omitted and the process proceeds to step 120 to accept changes in the heat insulating specifications and the like. In addition, when the structural information and attribute information of the relevant part are changed due to the change of the heat insulating specification, the structural information and the attribute information are changed together with the heat insulating specification.

このように断熱性能評価装置10では、第1演算部44及び第2演算部46により各々が断熱性能の評価に適用し得る熱損失量q、qを演算し、演算した熱損失量q、qのうちで何れか小さい値を当該部位の熱損失量qに設定する。これにより、外皮の各部位について熱損失量qが高くなるのを抑制できて、外皮の各部位の熱損失量qを用いた適切な断熱性能の評価をできる。 In this way, in the heat insulation performance evaluation device 10, the first calculation unit 44 and the second calculation unit 46 calculate the heat loss amounts q 1 and q 2 that can be applied to the evaluation of the heat insulation performance, respectively, and the calculated heat loss amount q. The smaller value of 1 and q 2 is set as the heat loss amount q of the relevant portion. As a result, it is possible to suppress an increase in the heat loss amount q for each part of the exodermis, and it is possible to evaluate an appropriate heat insulating performance using the heat loss amount q for each part of the exodermis.

また、断熱性能評価装置10では、対象とする住宅の外皮平均熱貫流率UAを演算し、演算した外皮平均熱貫流率UAを目標とする外皮平均熱貫流率UAsと比較する。これにより、対象とする住宅の断熱性能をより適切に評価できて、対象とする住宅の断熱性能が過剰となるのを抑制できる。 Further, the heat insulating performance evaluation device 10 calculates the average heat transmission coefficient UA of the outer skin of the target house, and compares the calculated average heat transmission coefficient UA of the outer skin with the average heat transmission coefficient UA of the outer skin. As a result, the heat insulating performance of the target house can be evaluated more appropriately, and it is possible to prevent the heat insulating performance of the target house from becoming excessive.

さらに、断熱性能評価装置10では、各部位について熱損失量q等を出力できるので、住宅の外皮の各部位の断熱性能を容易に把握できる。また、断熱性能評価装置10では、外皮の各部位について日射熱取得率ηを出力すると共に、住宅の暖房期の日射熱取得率ηh及び冷房期の日射熱取得率ηcを出力できる。このため、対象とする住宅について、外皮の各部位の日射性能の把握が容易になると共に、住宅の暖房期及び冷房期の断熱性能を容易に把握できる。これにより、例えば、住宅の断熱性能が過剰となったり、断熱性能が不足したりした場合に、原因となる部位(の断熱仕様)の把握が容易になるので、各部位の断熱仕様を適切にできる。 Further, since the heat insulation performance evaluation device 10 can output the heat loss amount q and the like for each part, the heat insulation performance of each part of the outer skin of the house can be easily grasped. Further, the heat insulating performance evaluation device 10 can output the solar heat acquisition rate η for each part of the outer skin, and also output the solar heat acquisition rate ηh in the heating period and the solar heat acquisition rate ηc in the cooling period. For this reason, it becomes easy to grasp the solar radiation performance of each part of the exodermis of the target house, and it is possible to easily grasp the heat insulation performance of the heating period and the cooling period of the house. As a result, for example, when the heat insulating performance of a house becomes excessive or the heat insulating performance is insufficient, it becomes easy to grasp the part (insulation specification) that causes the heat insulation performance of each part. it can.

また、断熱性能評価装置10では、何れかの部位の断熱仕様を変更することで、変更した断熱仕様に基づいて住宅の断熱性能の再評価を行うことができる。このため、目標の断熱性能を満たしていないと評価された場合には、目標の断熱性能が得られるように断熱仕様を変更でき、対象とする住宅の断熱性能が目標とする断熱性能を満たす場合には、断熱性能が過剰に高くなるのが抑制されるように断熱仕様を変更できる。これにより、住宅の各部位の断熱仕様を適切な断熱性能が得られるように決定できる。 Further, in the heat insulating performance evaluation device 10, by changing the heat insulating specifications of any part, it is possible to re-evaluate the heat insulating performance of the house based on the changed heat insulating specifications. Therefore, if it is evaluated that the target heat insulation performance is not satisfied, the heat insulation specifications can be changed so that the target heat insulation performance can be obtained, and the heat insulation performance of the target house satisfies the target heat insulation performance. Insulation specifications can be changed to prevent excessively high insulation performance. As a result, the heat insulation specifications of each part of the house can be determined so that appropriate heat insulation performance can be obtained.

〔変形例1〕
次に本実施形態の変形例1を説明する。
図5には、変形例1に係る断熱性能評価装置60の概略構成が機能ブロック図にて示されている。なお、変形例1に係る断熱性能評価装置60は、基本的構成が断熱性能評価装置10と同様にされており、変形例1において断熱性能評価装置10と同様の構成には、断熱性能評価装置10と同様の符号を付与してその詳細な説明を省略する。
[Modification 1]
Next, a modification 1 of the present embodiment will be described.
FIG. 5 shows a schematic configuration of the heat insulating performance evaluation device 60 according to the first modification in a functional block diagram. The heat insulating performance evaluation device 60 according to the modified example 1 has the same basic configuration as the heat insulating performance evaluation device 10, and the heat insulating performance evaluation device 60 has the same configuration as the heat insulating performance evaluation device 10 in the modified example 1. The same reference numerals as 10 are given and detailed description thereof will be omitted.

図5に示すように、断熱性能評価装置60には、コスト演算部62が設けられており、断熱性能評価装置60は、コスト演算部62を有する点で、断熱性能評価装置10と相違する。コスト演算部62は、住宅の外皮の各部位について断熱仕様に対応する施工コストを演算する。また、断熱性能評価装置60では、各部位の断熱仕様の各々に対する施工コストが予め算出されて記憶部42に記憶されている。図6には、変形例1において記憶部42に予め記憶されているデータの一部が図表にて示されている。 As shown in FIG. 5, the heat insulation performance evaluation device 60 is provided with a cost calculation unit 62, and the heat insulation performance evaluation device 60 is different from the heat insulation performance evaluation device 10 in that it has the cost calculation unit 62. The cost calculation unit 62 calculates the construction cost corresponding to the heat insulation specification for each part of the outer skin of the house. Further, in the heat insulating performance evaluation device 60, the construction cost for each of the heat insulating specifications of each part is calculated in advance and stored in the storage unit 42. In FIG. 6, a part of the data stored in advance in the storage unit 42 in the first modification is shown in a chart.

図6に示すように、記憶部42には、住宅の外皮の各部位について構造ごとに設定される複数の断熱仕様及び断熱仕様ごとに算出された施工単価が記憶されている。施工単価は、対応する断熱仕様の施工を行う場合の単位面積当たりの施工コスト(施工費用)に換算されている。 As shown in FIG. 6, the storage unit 42 stores a plurality of heat insulating specifications set for each structure for each part of the outer skin of the house and the construction unit price calculated for each heat insulating specification. The construction unit price is converted into the construction cost (construction cost) per unit area when the construction of the corresponding heat insulation specifications is performed.

コスト演算部62は、各部位について断熱仕様に対応する施工単価及び対象面積から当該部位の施工コスト(施工費用)を算出する。出力部48は、住宅の断熱性能の判定結果等と共に、各部位について、断熱仕様と施工コストを出力する。 The cost calculation unit 62 calculates the construction cost (construction cost) of each part from the construction unit price corresponding to the heat insulation specification and the target area. The output unit 48 outputs the heat insulation specifications and the construction cost for each part together with the determination result of the heat insulation performance of the house.

また、断熱性能評価装置60は、断熱仕様が変更されることで、変更された断熱仕様に基づいて断熱性能を判定し、住宅の断熱性能の判定結果と共に、断熱仕様が変更された部位を含む各部位の断熱仕様及び施工コストを出力する。これにより、断熱性能評価装置60は、対象とする住宅について、断熱仕様ごとの断熱性能の判定結果及び断熱仕様に対する施工コストを出力できる。 In addition, the heat insulation performance evaluation device 60 determines the heat insulation performance based on the changed heat insulation specification by changing the heat insulation specification, and includes the portion where the heat insulation specification is changed together with the judgment result of the heat insulation performance of the house. Output the heat insulation specifications and construction cost of each part. As a result, the heat insulation performance evaluation device 60 can output the determination result of the heat insulation performance for each heat insulation specification and the construction cost for the heat insulation specification for the target house.

断熱性能の評価を行う住宅(対象とする住宅)には、顧客から建築が依頼された住宅などが含まれる。断熱性能評価装置60は、対象とする住宅について、断熱仕様ごとの断熱性能の判定結果及び断熱仕様に対する施工コストのリストを顧客に提示できる。これにより、顧客は、施工コスト及び断熱性能を考慮した断熱仕様の選択が可能になる。 Houses for which heat insulation performance is evaluated (target houses) include houses for which construction is requested by customers. The heat insulation performance evaluation device 60 can present to the customer a determination result of the heat insulation performance for each heat insulation specification and a list of construction costs for the heat insulation specification for the target house. As a result, the customer can select the heat insulating specification in consideration of the construction cost and the heat insulating performance.

〔変形例2〕
次に本実施形態の変形例2を説明する。
図7には、変形例2に係る断熱性能評価装置70の概略構成が機能ブロック図にて示され、図8には、変形例2に係る断熱性能評価処理の概略が流れ図にて示されている。なお、変形例2に係る断熱性能評価装置70は、基本的構成が断熱性能評価装置10と同様にされており、変形例2において断熱性能評価装置10と同様の構成には、断熱性能評価装置10と同様の符号を付与してその詳細な説明を省略する。
[Modification 2]
Next, a modification 2 of the present embodiment will be described.
FIG. 7 shows a schematic configuration of the heat insulating performance evaluation device 70 according to the modified example 2 in a functional block diagram, and FIG. 8 shows an outline of the heat insulating performance evaluation process according to the modified example 2 in a flow diagram. There is. The heat insulating performance evaluation device 70 according to the modified example 2 has the same basic configuration as the heat insulating performance evaluation device 10, and the heat insulating performance evaluation device 70 has the same configuration as the heat insulating performance evaluation device 10 in the modified example 2. The same reference numerals as 10 are given and detailed description thereof will be omitted.

図7に示すように、断熱性能評価装置70には、比較部50に変えて第1比較部72が設けられている。また、断熱性能評価装置70には、第3演算部74及び第2比較部76が設けられていると共に、断熱性能判定部56に変えて断熱性能判定部78が設けられている。なお、断熱性能評価装置70では、日射演算部52が省略されている。 As shown in FIG. 7, the heat insulating performance evaluation device 70 is provided with a first comparison unit 72 instead of the comparison unit 50. Further, the heat insulation performance evaluation device 70 is provided with a third calculation unit 74 and a second comparison unit 76, and is provided with a heat insulation performance determination unit 78 instead of the heat insulation performance determination unit 56. In the heat insulation performance evaluation device 70, the solar radiation calculation unit 52 is omitted.

第1比較部72は、比較部50と同様に機能して各部位について第1演算部44で演算された熱損失量qと第2演算部46で演算された熱損失量qとを比較し、何れか小さい値を当該部位の熱損失量qに設定する。外皮性能演算部54は、各部位の熱損失量qに基づいて外皮平均熱貫流率UA(以下、外皮平均熱貫流率UAとする)を演算する。 First comparing section 72, a comparing unit 50 heat loss q 1 calculated by the first arithmetic unit 44 for each part functioning similarly to the heat loss quantity q 2 calculated by the second arithmetic unit 46 For comparison, the smaller value is set as the heat loss amount q of the relevant portion. The exodermis performance calculation unit 54 calculates the exodermis average heat transmission coefficient UA (hereinafter referred to as exodermis average heat transmission coefficient UA 1 ) based on the heat loss amount q of each part.

第3演算部74は、第1演算部44及び第2演算部46の演算結果から外皮平均熱貫流率UAを演算するのとは異なる手法を用いて、軽量鉄骨構造の住宅の外皮平均熱貫流率UA(以下、外皮平均熱貫流率UAとする)を演算する。 The third calculation unit 74 uses a method different from calculating the exodermis average heat transmission coefficient UA 1 from the calculation results of the first calculation unit 44 and the second calculation unit 46, and uses a method different from the calculation of the exodermis average heat transmission coefficient UA 1 of the house having a lightweight steel structure. The transmission rate UA (hereinafter referred to as the exodermis average heat transmission rate UA 2 ) is calculated.

木造一戸建ての住宅に対する外皮平均熱貫流率UAの演算には、外皮の面積等を用いずに演算する手法がある。第3演算部74は、軽量鉄骨構造の住宅について、木造一戸建ての住宅に対する演算手法である外皮の面積等を用いずに演算するのと同様の手法を用いて外皮平均熱貫流率UAを演算する。 There is a method of calculating the average heat transmission coefficient UA of the outer skin for a wooden detached house without using the area of the outer skin or the like. The third calculation unit 74 calculates the exodermis average heat transmission coefficient UA 2 by using the same method as that for a house having a lightweight steel structure without using the area of the exodermis, which is a calculation method for a wooden detached house. To do.

変形例2では、ユニット式の住宅(軽量鉄骨構造の住宅)を標準住戸とみなす。第3演算部74は、住宅(標準住戸)の各方位について、外気に接する部分(外皮の各部位についての外気に接する部分)の各々の単位温度差当たりの外皮熱損失量(熱損失量)Q(W/K)を演算する。また、第3演算部74は、演算した熱損失量Q及び住宅における外皮の部位(外気に接する部分)の面積の合計(面積A′env(m))から第2の外皮平均熱貫流率としての外皮平均熱貫流率UAを演算する((4)式参照)。
UA=Q/A′env ・・・(4)
In the second modification, the unit type house (house with a lightweight steel structure) is regarded as a standard dwelling unit. The third calculation unit 74 is the exodermis heat loss amount (heat loss amount) per unit temperature difference of each part in contact with the outside air (the part in contact with the outside air for each part of the exodermis) in each direction of the house (standard dwelling unit). Calculate Q (W / K). Further, the third calculation unit 74 has a second outer skin average heat transmission coefficient from the total of the calculated heat loss amount Q and the area of the outer skin portion (the portion in contact with the outside air) in the house (area A'env (m 2 )). The average heat transmission coefficient UA 2 of the exodermis is calculated as (see equation (4)).
UA 2 = Q / A'env ・ ・ ・ (4)

熱損失量Qには、一般部について、屋根(又は天井)、壁(一般部及び開口部)、床などの各部位の住宅全周に渡る部分の外気に接する面積、部位ごとの温度差係数H及び部位ごとの熱貫流率Uから、一般部における部位ごとに演算される熱損失量が含まれる。また、熱損失量Qには、外気に接する熱橋等(基礎など)について、熱橋等ごとの住宅全周に渡る長さ、熱橋等ごとの温度差係数H及び熱橋等ごとの線熱貫流率Ψから、熱橋等ごとに演算される熱損失量が含まれる。熱損失量Qは、一般部における部位ごとに演算される熱損失量、及び熱橋等ごとに演算される熱損失量の総和が適用される。 The amount of heat loss Q includes the area of the general part such as the roof (or ceiling), wall (general part and opening), and floor that covers the entire circumference of the house and the temperature difference coefficient for each part. The amount of heat loss calculated for each part in the general part is included from H and the heat transmission coefficient U for each part. In addition, the heat loss amount Q includes the length of the thermal bridge, etc. (foundation, etc.) in contact with the outside air over the entire circumference of the house, the temperature difference coefficient H for each thermal bridge, and the line for each thermal bridge, etc. The amount of heat loss calculated for each thermal bridge, etc. from the heat transmission coefficient Ψ is included. As the heat loss amount Q, the sum of the heat loss amount calculated for each part in the general part and the heat loss amount calculated for each thermal bridge or the like is applied.

熱損失量の演算対象の各部位や熱橋等は、外気に接する部分が対象にされ、対象面積又は長さは、住宅の全周に渡る面積(各方位の面積の和)又は長さ(各方位の長さの和)とされている。 Each part of the calculation target of the amount of heat loss, the thermal bridge, etc. is the part in contact with the outside air, and the target area or length is the area (sum of the areas in each direction) or the length (sum of the areas in each direction) over the entire circumference of the house. It is the sum of the lengths of each direction).

例えば、一般部としての屋根の熱損失量(W/K)は、(屋根の面積Aroof(m))×(屋根の温度差係数Hroof)×(屋根の熱貫流率Uroof(W/mK))から演算される。また、一般部としての壁の熱損失量(W/K)は、(各方位の面積の和(m))×(壁の温度差係数Hwall)×(壁の熱貫流率Ubase(W/mK))から演算される。熱橋等としては、基礎があり、基礎には、玄関の基礎等、浴室の基礎、その他の基礎(玄関の基礎等及び浴室の基礎を除く基礎)などがある。例えば、その他の基礎の熱損失量(W/K)は、(その他の基礎の外気に接する部分の長さ(各方位の長さの和)(m))×(その他の基礎の温度差係数Hbase)×(その他の基礎の線熱貫流率Ψbase(W/mK))から演算される。 For example, the amount of heat loss (W / K) of the roof as a general part is (roof area Aroof (m 2 )) × (roof temperature difference coefficient Hroof) × (roof heat transmission coefficient Uroof (W / m 2 )). Calculated from K)). The heat loss amount (W / K) of the wall as a general part is (sum of areas in each direction (m 2 )) × (temperature difference coefficient Hwall of the wall) × (heat transmission coefficient Ubase (W / K) of the wall). Calculated from m 2 K)). Thermal bridges and the like have foundations, and the foundations include entrance foundations, bathroom foundations, and other foundations (excluding entrance foundations and bathroom foundations). For example, the amount of heat loss (W / K) of the other foundation is (the length of the part of the other foundation in contact with the outside air (sum of the lengths in each direction) (m)) × (the temperature difference coefficient of the other foundation). Hbase) × (Linear heat transmission coefficient Ψbase (W / mK) of other foundations).

各部位及び熱橋等の温度差係数Hは、予め設定されて記憶部42に記憶される。また、各部位の熱貫流率U及び熱橋等の線熱貫流率Ψは、予め演算されるなどして設定され、建物情報として入力されるか、建物情報に関連付けられて予め記憶部42に記憶される。 The temperature difference coefficient H of each part and the thermal bridge is set in advance and stored in the storage unit 42. Further, the heat transmission coefficient U of each part and the linear heat transmission coefficient Ψ of the thermal bridge or the like are set by being calculated in advance and input as building information or are associated with the building information and stored in the storage unit 42 in advance. Be remembered.

第2比較部76は、外皮平均熱貫流率UAと外皮平均熱貫流率UAとを比較する。また、第2比較部76は、外皮平均熱貫流率UA及び外皮平均熱貫流率UAの何れか小さい値を対象とする住宅の外皮平均熱貫流率UAに設定する。断熱性能判定部78は、住宅の外皮平均熱貫流率UAが目標とする外皮平均熱貫流率UAsに達しているか否かを判定する。 The second comparison unit 76 compares the exodermis average heat transmission coefficient UA 1 with the exodermis average heat transmission coefficient UA 2 . Further, the second comparison unit 76 sets the exodermis average heat transmission coefficient UA 1 and the exodermis average heat transmission coefficient UA 2 whichever is smaller as the outer skin average heat transmission coefficient UA of the house. The heat insulating performance determination unit 78 determines whether or not the average heat transmission coefficient UA of the outer skin of the house has reached the target average heat transmission coefficient UA of the outer skin.

図8に示すように、断熱性能評価装置70では、対象とする住宅の建物情報が入力されると、入力された建物情報を受けつけ(ステップ100)、受け付けた建物情報を記憶部42に記憶する(ステップ102)。この後、対象とする住宅の各部位について熱損失量q及び熱損失量qが演算され(ステップ104、106)、部位ごとの熱損失量q、qから部位ごとの熱損失量qが設定されて(ステップ108)、対象とする住宅の外皮平均熱貫流率UAが演算される(ステップ130)。 As shown in FIG. 8, when the building information of the target house is input, the heat insulation performance evaluation device 70 receives the input building information (step 100) and stores the received building information in the storage unit 42. (Step 102). After that, the heat loss amount q 1 and the heat loss amount q 2 are calculated for each part of the target house (steps 104 and 106), and the heat loss amount for each part is calculated from the heat loss amounts q 1 and q 2 for each part. q is set (step 108), and the average heat transmission coefficient UA 1 of the outer skin of the target house is calculated (step 130).

ステップ132(第3演算部74)では、外皮平均熱貫流率UAが演算される。これにより、互いに異なる手法で演算された外皮平均熱貫流率UA、UAが得られる。 In step 132 (third calculation unit 74), the exodermis average heat transmission coefficient UA 2 is calculated. As a result, the exodermis average heat transmission coefficient UA 1 and UA 2 calculated by different methods can be obtained.

次のステップ134では、外皮平均熱貫流率UAと外皮平均熱貫流率UAとが比較される。また、ステップ134では、外皮平均熱貫流率UA及び外皮平均熱貫流率UAの何れか小さい値が対象とする住宅の外皮平均熱貫流率UAに設定される。 In the next step 134, the exodermis average heat transmission coefficient UA 1 and the exodermis average heat transmission coefficient UA 2 are compared. Further, in step 134, the smaller of the exodermis average heat transmission coefficient UA 1 and the exodermis average heat transmission coefficient UA 2 is set to the exodermis average heat transmission coefficient UA of the target house.

この後、ステップ136では、設定された外皮平均熱貫流率UAを用いて、対象とする住宅の断熱性能を判定し、ステップ116では、判定結果が出力部48から出力される。 After that, in step 136, the heat insulation performance of the target house is determined using the set exodermis average heat transmission coefficient UA, and in step 116, the determination result is output from the output unit 48.

ここで、住宅の断熱性能を評価に適用する外皮平均熱貫流率UAには、外皮平均熱貫流率UA及び外皮平均熱貫流率UAの何れか小さい値が適用される。このため、住宅の断熱性能を評価する際、外皮平均熱貫流率UAが大きくなるのを抑制できる。これにより、断熱性能評価装置70は、対象とする住宅の断熱性能をより適切に評価できて、対象とする住宅の断熱性能が過剰となるのを抑制できる。 Here, the smaller of the exodermis average heat transmission coefficient UA 1 and the exodermis average heat transmission coefficient UA 2 is applied to the exodermis average heat transmission coefficient UA that applies the heat insulation performance of the house to the evaluation. Therefore, when evaluating the heat insulating performance of a house, it is possible to suppress an increase in the average heat transmission coefficient UA of the outer skin. As a result, the heat insulating performance evaluation device 70 can more appropriately evaluate the heat insulating performance of the target house, and can prevent the heat insulating performance of the target house from becoming excessive.

また、外皮平均熱貫流率UAは、部位ごとの熱損失量q及び熱損失量qのうちから小さい値が用いられて演算されている。これにより、断熱性能評価装置70は、対象とする住宅の断熱性能をより一層適切に評価できて、対象とする住宅の断熱性能が過剰となるのを一層抑制できる。 Further, the average heat transmission coefficient UA 1 of the exodermis is calculated by using a smaller value from the heat loss amount q 1 and the heat loss amount q 2 for each part. As a result, the heat insulating performance evaluation device 70 can more appropriately evaluate the heat insulating performance of the target house, and can further suppress the excessive heat insulating performance of the target house.

なお、変形例2の断熱性能評価装置70では、外皮平均熱貫流率UAの比較対象とする外皮平均熱貫流率UAを、第1演算部44で演算された熱損失量qと第2演算部46で演算された熱損失量qとを比較して設定された熱損失量qから演算した。しかしながら、断熱性能評価装置は、第1演算部及び第2演算部の一方を省略し、第1演算部及び第2演算部の他方で演算された熱損失量を用いて、外皮平均熱貫流率UAを演算してもよい。 In the heat insulation performance evaluation device 70 of the second modification, the outer skin average heat transmission coefficient UA 1 to be compared with the outer skin average heat transmission coefficient UA 2 is calculated by the first calculation unit 44 as the heat loss amount q 1 and the first . 2 Calculated from the heat loss amount q set by comparing with the heat loss amount q 2 calculated by the calculation unit 46. However, in the heat insulation performance evaluation device, one of the first calculation unit and the second calculation unit is omitted, and the heat loss amount calculated by the other of the first calculation unit and the second calculation unit is used to obtain the average heat transmission coefficient of the outer skin. You may calculate UA 1 .

また、断熱性能評価装置は、第1演算部及び第2演算部を省略し、第3演算部によって演算された外皮平均熱貫流率を対象とする住宅の外皮熱貫流率として、対象とする住宅の断熱性能を評価してもよい。 In addition, the heat insulation performance evaluation device omits the first calculation unit and the second calculation unit, and uses the exodermis heat transmission coefficient calculated by the third calculation unit as the exodermis heat transmission coefficient of the target house. You may evaluate the heat insulation performance of.

さらに、本実施形態、変形例1及び変形例2では、第1演算部44において熱損失量qの演算に、一般部に当該部位の熱貫流率Uを用いると共に熱橋部に線熱貫流率Ψを用い、第2演算部46において熱損失量qの演算に、熱貫流率Usを用いた。しかしながら、第1演算部と第2演算部とは、互いに異なる手法で部位ごとの熱損失量を演算するものであればよい。 Further, in the present embodiment, the modified example 1 and the modified example 2, the first calculation unit 44 uses the heat transmission coefficient U of the relevant portion for the general portion and the linear heat transmission to the thermal bridge portion for the calculation of the heat loss amount q 1. Using the rate Ψ, the heat transmission coefficient Us was used in the calculation of the heat loss amount q 2 in the second calculation unit 46. However, the first calculation unit and the second calculation unit may be any as long as they calculate the amount of heat loss for each part by different methods.

10、60、70 断熱性能評価装置
30 HDD(記憶部)
34 CADシステム
40 受付部(受付部、変更受付部)
42 記憶部
44 第1演算部
46 第2演算部
48 出力部
50 比較部(評価部)
52 日射演算部(評価部)
54 外皮性能演算部(評価部)
56、78 断熱性能判定部(評価部)
62 コスト演算部
72 第1比較部(評価部)
74 第3演算部
76 第2比較部(評価部)
10, 60, 70 Insulation performance evaluation device 30 HDD (storage unit)
34 CAD system 40 Reception department (reception department, change reception department)
42 Storage unit 44 1st calculation unit 46 2nd calculation unit 48 Output unit 50 Comparison unit (evaluation unit)
52 Solar radiation calculation unit (evaluation unit)
54 Exodermis performance calculation unit (evaluation unit)
56, 78 Insulation performance judgment unit (evaluation unit)
62 Cost calculation unit 72 First comparison unit (evaluation unit)
74 Third calculation unit 76 Second comparison unit (evaluation unit)

Claims (7)

鉄骨構造の建物の外皮の各部位の構造情報、該構造情報における各部材の属性情報、前記各部位の断熱仕様を含む建物情報を受け付ける受付部と、
前記部位ごとの前記構造情報、前記属性情報及び前記断熱仕様に応じて前記部位ごとに決められた第1熱貫流率及び線熱貫流率を適用し、前記部位ごとの一般部に当該部位の前記第1熱貫流率を用いると共に熱橋部に当該部位の前記線熱貫流率を用いて、前記部位ごとの第1の熱損失量を演算する第1演算部と、
前記部位ごとの前記構造情報、前記属性情報及び前記断熱仕様に応じ、該部位ごとに熱橋部を含む単位面積当たりの熱の伝わり方の値として予め設定された第2熱貫流率を適用し、前記部位ごとの第2の熱損失量を演算する第2演算部と、
前記部位ごとに前記第1の熱損失量及び前記第2の熱損失量の何れか小さい値を当該部位の熱損失量に設定し、前記部位ごとに設定した前記熱損失量に基づいて前記建物の断熱性能を評価する評価部と、
前記評価部の評価結果を出力する出力部と、
を含む断熱性能評価装置。
A reception section that receives structural information of each part of the outer skin of a steel-framed building, attribute information of each member in the structural information, and building information including heat insulation specifications of each part.
The first heat transmission coefficient and the linear heat transmission coefficient determined for each part according to the structural information, the attribute information, and the heat insulation specifications for each part are applied, and the general part of each part is covered with the said part. A first calculation unit that calculates the first heat loss amount for each part by using the first heat transmission coefficient and the linear heat transmission coefficient of the relevant part in the thermal bridge part,
A second heat transmission coefficient set in advance as a value of heat transfer per unit area including a thermal bridge is applied to each part according to the structural information, attribute information, and heat insulation specifications for each part. , A second calculation unit that calculates the second heat loss amount for each part,
The smaller value of the first heat loss amount and the second heat loss amount is set as the heat loss amount of the part for each part, and the building is based on the heat loss amount set for each part. Evaluation department that evaluates the heat insulation performance of
An output unit that outputs the evaluation result of the evaluation unit and
Insulation performance evaluation device including.
前記評価部は、前記部位ごとに設定した前記熱損失量から演算した外皮平均熱貫流率に基づいて前記建物の断熱性能を評価する、
ことを含む請求項1に記載の断熱性能評価装置。
The evaluation unit evaluates the heat insulation performance of the building based on the average heat transmission coefficient of the outer skin calculated from the heat loss amount set for each part.
The heat insulating performance evaluation device according to claim 1.
前記受付部は、前記建物の方位情報を受け付け、
前記評価部は、前記方位情報及び前記部位ごとに設定した前記熱損失量から演算した該部位ごとの日射熱取得率に基づいて前記建物の前記部位ごとの断熱性能を評価する、
ことを含む請求項1又は請求項2に記載の断熱性能評価装置。
The reception section receives the orientation information of the building and receives
The evaluation unit evaluates the heat insulation performance of each part of the building based on the azimuth information and the solar heat acquisition rate for each part calculated from the heat loss amount set for each part.
The heat insulating performance evaluation device according to claim 1 or 2.
前記建物情報に基づいて前記建物において外気に接する部位ごとの熱損失量を演算し、前記熱損失量の総和から前記建物の外皮平均熱貫流率を演算する第3演算部を含み、
前記評価部は、前記部位ごとに設定した前記熱損失量から演算した外皮平均熱貫流率と前記第3演算部が演算した外皮平均熱貫流率の何れか小さい値から設定した外皮熱貫流率を用いて前記建物の断熱性能を評価する、
ことを含む請求項2に記載の断熱性能評価装置。
A third calculation unit that calculates the amount of heat loss for each part of the building in contact with the outside air based on the building information and calculates the average heat transmission coefficient of the outer skin of the building from the total amount of the heat loss is included.
The evaluation unit determines the exodermis heat transmission coefficient set from the smaller of the exodermis average heat transmission coefficient calculated from the heat loss amount set for each part and the exodermis average heat transmission coefficient calculated by the third calculation unit. To evaluate the insulation performance of the building,
The heat insulating performance evaluation device according to claim 2.
前記評価部は、前記外皮平均熱貫流率と目標とする外皮平均熱貫流率とを比較して前記建物の断熱性能を評価する、ことを含む請求項2、請求項2を引用する請求項3又は請求項4に記載の断熱性能評価装置。 Claim 2 and claim 3 quoting claim 2, wherein the evaluation unit evaluates the heat insulation performance of the building by comparing the average heat transmission coefficient of the outer skin with the target average heat transmission coefficient of the outer skin. Alternatively, the heat insulating performance evaluation device according to claim 4. 前記建物の前記部位の前記断熱仕様の変更を受け付ける変更受付部を含み、
前記評価部は、変更された前記断熱仕様に基づいて前記建物の断熱性能を評価する、
ことを含む請求項1から請求項5の何れか1項に記載の断熱性能評価装置。
Including a change reception part that accepts changes in the heat insulation specifications of the part of the building.
The evaluation unit evaluates the heat insulation performance of the building based on the changed heat insulation specifications.
The heat insulating performance evaluation device according to any one of claims 1 to 5, which includes the above.
前記評価部は、前記各部位の前記断熱仕様に応じて予め設定された施工単価に基づき、前記部位ごとの施工コストを評価する、
ことを含む請求項1から請求項6の何れか1項に記載の断熱性能評価装置。
The evaluation unit evaluates the construction cost for each part based on the construction unit price set in advance according to the heat insulation specifications of each part.
The heat insulating performance evaluation device according to any one of claims 1 to 6, which includes the above.
JP2019051739A 2019-03-19 2019-03-19 Thermal insulation performance evaluation device Active JP7115707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051739A JP7115707B2 (en) 2019-03-19 2019-03-19 Thermal insulation performance evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051739A JP7115707B2 (en) 2019-03-19 2019-03-19 Thermal insulation performance evaluation device

Publications (2)

Publication Number Publication Date
JP2020154627A true JP2020154627A (en) 2020-09-24
JP7115707B2 JP7115707B2 (en) 2022-08-09

Family

ID=72559132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051739A Active JP7115707B2 (en) 2019-03-19 2019-03-19 Thermal insulation performance evaluation device

Country Status (1)

Country Link
JP (1) JP7115707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230204424A1 (en) * 2021-12-28 2023-06-29 University Of North Dakota Surface temperature estimation for building energy audits
CN116446518A (en) * 2023-03-17 2023-07-18 中电建路桥集团有限公司 Assembled steel structure building system and energy-saving method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108571A (en) * 2010-11-15 2012-06-07 Toyota Home Kk House design system
JP2018073152A (en) * 2016-10-31 2018-05-10 パナホーム株式会社 Heat insulation performance calculation system of outer sheath of building and heat insulation performance calculation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108571A (en) * 2010-11-15 2012-06-07 Toyota Home Kk House design system
JP2018073152A (en) * 2016-10-31 2018-05-10 パナホーム株式会社 Heat insulation performance calculation system of outer sheath of building and heat insulation performance calculation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230204424A1 (en) * 2021-12-28 2023-06-29 University Of North Dakota Surface temperature estimation for building energy audits
US11828657B2 (en) * 2021-12-28 2023-11-28 University Of North Dakota Surface temperature estimation for building energy audits
CN116446518A (en) * 2023-03-17 2023-07-18 中电建路桥集团有限公司 Assembled steel structure building system and energy-saving method thereof
CN116446518B (en) * 2023-03-17 2023-11-17 中电建路桥集团有限公司 Assembled steel structure building system and energy-saving method thereof

Also Published As

Publication number Publication date
JP7115707B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
Fan et al. A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance
Huberman et al. Optimizing structural roof form for life-cycle energy efficiency
Chlela et al. A new methodology for the design of low energy buildings
Yigit et al. A simulation-based optimization method for designing energy efficient buildings
Ge et al. Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study
Macias et al. Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador
Ceballos-Fuentealba et al. A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings
Carlos et al. A simple methodology to predict heating load at an early design stage of dwellings
Talami et al. Early-design sensitivity of radiant cooled office buildings in the tropics for building performance
JP2020154627A (en) Heat insulation performance evaluation device
He et al. A bi-objective optimization of energy consumption and investment cost for public building envelope design based on the ε-constraint method
Santos et al. Assessment of building operational energy at early stages of design–A monthly quasi-steady-state approach
Hong et al. Embodied and operational energy analysis of passive house–inspired high-performance residential building envelopes
JP2003193585A (en) Selection supporting system for heat insulation construction method
Amiri Fard et al. Comparative assessment of insulated concrete wall technologies and wood-frame walls in residential buildings: a multi-criteria analysis of hygrothermal performance, cost, and environmental footprints
Efkarpidis et al. Modeling of heating and cooling energy needs in different types of smart buildings
Kadrić et al. Applying the response surface methodology to predict the energy retrofit performance of the TABULA residential building stock
Utkucu et al. Building Performance Optimization throughout the Design–Decision Process with a Holistic Approach
Li et al. A two-step approach for cost-effective design analysis of Net Zero Energy Homes
Darghiasi et al. Multi‐Level Optimization of UHP‐FRC Sandwich Panels for Building Façade Systems
Islam et al. Building performance analysis for optimizing the energy consumption of an educational building
Basbagill Integration of life cycle assessment and conceptual building design
Blaszak et al. Prioritizing method for retrofitting Toronto’s single-family housing stock to reduce heating and cooling loads
Lydon et al. High-resolution analysis for the development of tabs in lightweight structures
Salonvaara et al. Cost Assessment of Building Envelope Retrofits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7115707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150