JP2020153904A - Sensor substrate manufacturing method, sensor substrate, and detection device - Google Patents

Sensor substrate manufacturing method, sensor substrate, and detection device Download PDF

Info

Publication number
JP2020153904A
JP2020153904A JP2019054567A JP2019054567A JP2020153904A JP 2020153904 A JP2020153904 A JP 2020153904A JP 2019054567 A JP2019054567 A JP 2019054567A JP 2019054567 A JP2019054567 A JP 2019054567A JP 2020153904 A JP2020153904 A JP 2020153904A
Authority
JP
Japan
Prior art keywords
metal layer
region
molecule
sensor substrate
plasmon resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019054567A
Other languages
Japanese (ja)
Inventor
脇田 尚英
Hisahide Wakita
尚英 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019054567A priority Critical patent/JP2020153904A/en
Publication of JP2020153904A publication Critical patent/JP2020153904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide a sensor substrate manufacturing method, etc., with which detection accuracy is improved.SOLUTION: Provided is a manufacturing method for a sensor substrate 100 having a metal layer 2 on a substrate 1, in which a localized surface plasmon resonance occurs, comprising: a binding step for binding a first coating molecule 9 onto the metal layer 2; and an immobilization step for binding a molecular recognition substance 10 that specifically binds to a prescribed specimen 20 to the first coating molecule 9 and immobilizing these. In the binding step, the metal layer 2 is irradiated with light of a wavelength that causes a localized surface plasmon resonance to occur, and the first coating molecule 9 is bound to a first region 11 on the metal layer 2 with higher density than in a second region 12 on the metal layer 2, electric field augmentation due to a localized surface plasmon resonance in the first region 11 being larger than electric field augmentation in the second region 12.SELECTED DRAWING: Figure 5

Description

本開示は、試料中の被検出物質、例えば病原体またはアレルゲン等を検出するためのセンサ基板の製造方法、センサ基板および検出装置に関する。 The present disclosure relates to a method for manufacturing a sensor substrate for detecting a substance to be detected in a sample, for example, a pathogen or an allergen, a sensor substrate, and a detection device.

微量の被検出物質を検出する方法として、金属ナノ構造体の表面に生じる局在表面プラズモン共鳴を利用する検出方法がある。局在表面プラズモン共鳴を利用する検出方法では、局在表面プラズモン共鳴により生じる数十から数百万倍に及ぶ局所的な電場増強を利用することによって、被検出物質の感度が高まる。局在表面プラズモン共鳴を利用する検出方法としては、例えば、局在表面プラズモン共鳴で増強されたラマン散乱スペクトルにより分子レベルの分析ができる表面増強ラマン散乱法、および、抗原抗体反応を用いる表面プラズモン増強蛍光イムノアッセイ法(例えば特許文献1を参照)などがある。特許文献1の検出方法では、まず、金属層を含むセンサ部上に分子認識機能物質として抗体を固定化し、その上に、蛍光物質で標識された抗体(以下、標識化抗体と称す)が結合された被検出物質を結合させる。そして、金属層にプラズモンを励起させる励起光をセンサ部に照射することにより、プラズモンにより増強した光電場(以下、増強電場と称す)を生じさせる。このとき、増強電場内に存在する標識化抗体の蛍光物質から生じる蛍光の量を測定することにより、被検出物質の量を検出することができる。 As a method for detecting a trace amount of a substance to be detected, there is a detection method using localized surface plasmon resonance generated on the surface of a metal nanostructure. In the detection method using localized surface plasmon resonance, the sensitivity of the substance to be detected is increased by utilizing the local electric field enhancement of tens to millions of times caused by the localized surface plasmon resonance. Detection methods using localized surface plasmon resonance include, for example, a surface-enhanced Raman scattering method capable of molecular-level analysis using a Raman scattering spectrum enhanced by localized surface plasmon resonance, and surface plasmon enhancement using an antigen-antibody reaction. Fluorescent immunoassay methods (see, for example, Patent Document 1) and the like. In the detection method of Patent Document 1, first, an antibody is immobilized as a molecular recognition functional substance on a sensor unit including a metal layer, and an antibody labeled with a fluorescent substance (hereinafter referred to as a labeled antibody) is bound thereto. The detected substance is bound. Then, by irradiating the sensor unit with excitation light that excites the plasmon in the metal layer, a photoelectric field enhanced by the plasmon (hereinafter referred to as an enhanced electric field) is generated. At this time, the amount of the substance to be detected can be detected by measuring the amount of fluorescence generated from the fluorescent substance of the labeled antibody existing in the enhanced electric field.

また、特許文献2は、表面に誘電体を有する基板と、誘電体上に形成された複数の金属粒子と、金属粒子間の誘電体上に形成され、標的分子を付着する有機分子膜と、を有する光学デバイスを開示している。誘電体上の増強電場を強める為に金属粒子間の間隙は10nm未満とし、標的分子が誘電体上の有機分子膜に到達し易いように金属粒子間の間隙の入口側を広くした構造としている。 Further, Patent Document 2 describes a substrate having a dielectric on its surface, a plurality of metal particles formed on the dielectric, and an organic molecular film formed on the dielectric between the metal particles to which a target molecule is attached. The optical device having the above is disclosed. The gap between the metal particles is set to less than 10 nm in order to strengthen the enhanced electric field on the dielectric, and the inlet side of the gap between the metal particles is widened so that the target molecule can easily reach the organic molecular film on the dielectric. ..

特開2010−043934号公報JP-A-2010-0439334 特開2013−231637号公報Japanese Unexamined Patent Publication No. 2013-231637 特開2003−321479号公報Japanese Unexamined Patent Publication No. 2003-321479

しかしながら、上記従来の技術では、検出感度が不十分な場合がある。 However, the above-mentioned conventional technique may have insufficient detection sensitivity.

そこで、本開示は、検出感度が向上したセンサ基板の製造方法等を提供する。 Therefore, the present disclosure provides a method for manufacturing a sensor substrate with improved detection sensitivity.

本開示の一態様に係るセンサ基板の製造方法は、基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板の製造方法であって、前記金属層上に、第1被覆分子を結合させる結合工程と、所定の検体と特異的に結合する分子認識機能物質を前記第1被覆分子に結合させて固定化する固定化工程と、を含み、前記結合工程では、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射して、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で、前記第1被覆分子を結合させ、前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい。 The method for manufacturing a sensor substrate according to one aspect of the present disclosure is a method for manufacturing a sensor substrate having a metal layer on which localized surface plasmon resonance occurs, and a first coating molecule is bonded onto the metal layer. The binding step includes a binding step of binding and immobilizing a molecular recognition functional substance that specifically binds to a predetermined sample to the first coating molecule, and in the binding step, the metal layer is subjected to the above. By irradiating light having a wavelength that causes localized surface plasmon resonance, the first coating molecule is bound to the first region on the metal layer at a density higher than that of the second region on the metal layer. The electric field enhancement due to the localized surface plasmon resonance in the first region is larger than the electric field enhancement in the second region.

本開示の一態様に係るセンサ基板は、基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板であって、前記金属層上に固定化され、所定の検体と特異的に結合する分子認識機能物質を備え、前記分子認識機能物質は、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で存在し、前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい。 The sensor substrate according to one aspect of the present disclosure is a sensor substrate having a metal layer on which localized surface plasmon resonance occurs, which is immobilized on the metal layer and specifically binds to a predetermined sample. The molecular recognition functional substance is provided, and the molecular recognition functional substance is present in the first region on the metal layer at a higher density than the second region on the metal layer, and the localized surface in the first region. The electric field enhancement by plasmon resonance is larger than the electric field enhancement in the second region.

本開示の一態様に係る検出装置は、上記センサ基板と、前記局在表面プラズモン共鳴を生じさせる波長の光を照射する光照射部と、前記センサ基板からの光反応信号を検出する光検出部を有する。 The detection device according to one aspect of the present disclosure includes the sensor substrate, a light irradiation unit that irradiates light having a wavelength that causes localized surface plasmon resonance, and a light detection unit that detects a photoreaction signal from the sensor substrate. Has.

本開示によれば、検出感度が向上したセンサ基板を製造できる。 According to the present disclosure, a sensor substrate with improved detection sensitivity can be manufactured.

図1は、局在表面プラズモン共鳴が生じるナノ構造体の電子顕微鏡像である。FIG. 1 is an electron microscope image of a nanostructure in which localized surface plasmon resonance occurs. 図2は、局在表面プラズモン共鳴が生じるナノ構造体について、シミュレーションにより求めた電場強度増幅率の分布を示す断面分布図である。FIG. 2 is a cross-sectional distribution map showing the distribution of the electric field intensity amplification factor obtained by simulation for the nanostructure in which localized surface plasmon resonance occurs. 図3は、局在表面プラズモン共鳴が生じる金属層を備えるセンサ基板を用いて蛍光イムノアッセイを行った場合の発光分布を観察した観察像である。FIG. 3 is an observation image of observing the emission distribution when a fluorescence immunoassay is performed using a sensor substrate provided with a metal layer in which localized surface plasmon resonance occurs. 図4は、図3で示される発光分布の観察に用いられたセンサ基板の概略図である。FIG. 4 is a schematic view of the sensor substrate used for observing the light emission distribution shown in FIG. 図5は、実施の形態1に係るセンサ基板の製造方法を示す工程概略図である。FIG. 5 is a schematic process diagram showing a method of manufacturing the sensor substrate according to the first embodiment. 図6は、実施の形態1に係るセンサ基板を用いた検出装置を示す概略図である。FIG. 6 is a schematic view showing a detection device using the sensor substrate according to the first embodiment. 図7は、実施の形態2に係るセンサ基板の製造方法を示す工程概略図である。FIG. 7 is a process schematic diagram showing a method of manufacturing the sensor substrate according to the second embodiment. 図8は、実施の形態2の変形例に係るセンサ基板の製造方法を示す工程概略図である。FIG. 8 is a process schematic diagram showing a method of manufacturing a sensor substrate according to a modified example of the second embodiment.

(本開示に至った知見)
局在表面プラズモン共鳴では、照射される光の波長より小さい形状を有する金属ナノ構造体表面の自由電子が、照射される光の電磁場と共鳴して振動し、局所的に非常に強い電場(ホットサイト)、すなわち電場増強が生じる。この電場増強は、金属表面から離れると急激に減少する。金属ナノ構造体が隣接している場合は、隣接する金属ナノ構造体間の隙間に最も強い電場が生じ、隣接間距離が狭い程、その電場は大きくなる。
(Findings that led to this disclosure)
In localized surface plasmon resonance, free electrons on the surface of a metal nanostructure having a shape smaller than the wavelength of the irradiated light resonate with the electromagnetic field of the irradiated light and vibrate, resulting in a locally very strong electric field (hot). Site), that is, electric field enhancement occurs. This electric field enhancement decreases sharply away from the metal surface. When the metal nanostructures are adjacent to each other, the strongest electric field is generated in the gap between the adjacent metal nanostructures, and the smaller the distance between the adjacent metal nanostructures, the larger the electric field.

特許文献2に記載の従来技術は、誘電体表面に狭い隙間で金属粒子を設け、誘電体上の金属粒子間に、選択的に標的を捕捉する有機分子を結合させた光学デバイスを用いている。標的を捕捉する有機分子は、誘電体上にある為、誘電体上の金属粒子間の間隙が大きくなると、局在表面プラズモン共鳴による金属粒子間の強い電場を得ることが出来ない。その為、特許文献2の光学デバイスでは、金属粒子間の間隙を10nm未満としている。一方で、標的となる、ウィルスおよび生物由来のアレルゲン、ならびに、抗体などの標的を捕捉する有機分子のサイズは、数nmから数百nmであり、10nmよりも大きい場合が多い。このため、特許文献2では、標的が金属粒子間の隙間に入れるように、誘電体上の金属粒子を、誘電体表面からの高さが高くなるほど幅が狭くなる形状にしている。特許文献2の光学デバイスでは、(1)金属粒子形状に上記の設計上の制約があること、(2)金属粒子の形状誤差によって、電場増強される場所が安定しないこと、および、(3)10mm未満である金属粒子間の間隙の幅がばらつくと、例えば1nmの誤差でも、電場強度が大きく変化して、検出性能が大きくばらつくこと、などの製造上の問題を有している。 The prior art described in Patent Document 2 uses an optical device in which metal particles are provided on the surface of a dielectric with narrow gaps, and organic molecules that selectively capture a target are bonded between the metal particles on the dielectric. .. Since the organic molecule that captures the target is on the dielectric, if the gap between the metal particles on the dielectric becomes large, a strong electric field between the metal particles due to localized surface plasmon resonance cannot be obtained. Therefore, in the optical device of Patent Document 2, the gap between the metal particles is set to less than 10 nm. On the other hand, the size of target allergens derived from viruses and organisms, and organic molecules that capture targets such as antibodies is several nm to several hundred nm, and is often larger than 10 nm. Therefore, in Patent Document 2, the width of the metal particles on the dielectric becomes narrower as the height from the surface of the dielectric increases so that the target is inserted into the gap between the metal particles. In the optical device of Patent Document 2, (1) the metal particle shape has the above-mentioned design restrictions, (2) the place where the electric field is enhanced is not stable due to the shape error of the metal particle, and (3). If the width of the gap between the metal particles, which is less than 10 mm, varies, for example, even with an error of 1 nm, the electric field strength changes significantly and the detection performance varies greatly, which is a manufacturing problem.

本発明者は、上記のような問題点を鑑み、局在表面プラズモン共鳴による電場増強が効率よく作用する、高感度のセンサ基板およびその製造方法を、鋭意検討した。 In view of the above problems, the present inventor has diligently studied a highly sensitive sensor substrate and a method for manufacturing the same, in which the electric field enhancement by localized surface plasmon resonance works efficiently.

図1は、波長780nmの近赤外線で局在表面プラズモン共鳴が生じるナノ構造体45の電子顕微鏡像(以下、SEM像と称す)である。図1の(a)は、ナノ構造体45の平面図であり、図1の(b)は、図1の(a)のナノ構造体45をI−I線で切断した場合の断面図である。図1に示されるナノ構造体45は、ナノインプリントで作成した多数のナノサイズの微細突起60を六方配置した樹脂基板61の上に、金からなる金属層62が真空成膜により形成されている。図1の(b)の断面図に示されるように、金属層62は、断面視で先端がやや丸まった柱状の複数の凸部62aを有している。複数の凸部62aは、狭い隙間を挟んで並んでいる。図1の(a)の平面図に示されるように、複数の凸部62aは、平面視で略六角形の形状で、六方最密充填状に配置されている。複数の凸部62aのピッチは460nmであり、複数の凸部62aそれぞれの高さは400nm強であり、隣接する凸部62a間の間隙は10nm以上20nm以下程度である。 FIG. 1 is an electron microscope image (hereinafter referred to as an SEM image) of the nanostructure 45 in which localized surface plasmon resonance occurs at near infrared rays having a wavelength of 780 nm. 1 (a) is a plan view of the nanostructure 45, and FIG. 1 (b) is a cross-sectional view of the nanostructure 45 of FIG. 1 (a) cut along the line I-I. is there. In the nanostructure 45 shown in FIG. 1, a metal layer 62 made of gold is formed by vacuum film formation on a resin substrate 61 in which a large number of nano-sized fine protrusions 60 created by nanoimprint are arranged in six directions. As shown in the cross-sectional view of FIG. 1B, the metal layer 62 has a plurality of columnar convex portions 62a whose tips are slightly rounded in cross-sectional view. The plurality of convex portions 62a are lined up with a narrow gap in between. As shown in the plan view of FIG. 1A, the plurality of convex portions 62a have a substantially hexagonal shape in a plan view and are arranged in a hexagonal close-packed shape. The pitch of the plurality of convex portions 62a is 460 nm, the height of each of the plurality of convex portions 62a is a little over 400 nm, and the gap between the adjacent convex portions 62a is about 10 nm or more and 20 nm or less.

図2は、上記ナノ構造体を3Dモデル化し、複数の凸部70(隣接する凸部間の間隙は16nm)を有する金属層を備えるナノ構造体に、ナノ構造体の金属層に局在表面プラズモン共鳴を生じさせる波長(以下、プラズモン共鳴波長と称す)である780nmの光を照射したときの、シミュレーションにより求めた電場強度増幅率の分布を示す断面分布図である。最も電場増強の大きい部分は、凸部70の中程にある狭い間隙部の領域71であり、領域71での電場強度増幅率は300倍強である。また、2つの凸部70の間隙が広がる入口付近、つまり、2つの凸部70の間隙開口部近傍の領域72にも、電場強度増幅率が100倍弱の電場増強が生じている。 FIG. 2 shows a 3D model of the nanostructure, and a surface localized on the metal layer of the nanostructure on the nanostructure having a metal layer having a plurality of convex portions 70 (the gap between adjacent convex portions is 16 nm). It is a cross-sectional distribution diagram which shows the distribution of the electric field intensity amplification factor obtained by simulation at the time of irradiating light of 780 nm which is a wavelength which causes plasmon resonance (hereinafter, referred to as a plasmon resonance wavelength). The portion having the largest electric field enhancement is the region 71 of the narrow gap portion in the middle of the convex portion 70, and the electric field intensity amplification factor in the region 71 is a little over 300 times. Further, in the vicinity of the inlet where the gap between the two convex portions 70 is widened, that is, in the region 72 near the gap opening between the two convex portions 70, an electric field enhancement having an electric field strength amplification factor of less than 100 times occurs.

図3は、局在表面プラズモン共鳴が生じるナノ構造体を備えるセンサ基板200を用いて蛍光イムノアッセイを行った場合の発光分布を観察した観察像である。具体的には、図3は、センサ基板200の発光の様子を示す平面図であり、白い部分が発光点として示されている。具体的には、図3では、図1に示されるナノ構造体45と同様に金の金属層によるナノ構造体を設けた基板上に、小型の抗体であるVHH抗体を分子認識機能物質として結合させ、インフルエンザウィルスの核蛋白質を検体として標識化抗体を結合させ、サンドイッチ型の蛍光イムノアッセイを行った結果を示している。発光分布の観察では、アッセイ後のナノ構造体に、プラズモン共鳴波長のレーザー光を照射するSTORM(STochastic Optical Reconstruction Microscopy)型超解像顕微鏡を用い、プラズモン共鳴波長である780nmの光を照射している。図3に示される右下の白い横棒が1μmのスケールバーであり、図1の(a)に示されるSEM像の凸部62aのピッチと同じ460nmのピッチを有する、六角形の網目状の光が観察され、凸部の間隙部近傍に発光点が分布していることが分かる。 FIG. 3 is an observation image of observing the emission distribution when a fluorescence immunoassay is performed using a sensor substrate 200 having a nanostructure in which localized surface plasmon resonance occurs. Specifically, FIG. 3 is a plan view showing a state of light emission of the sensor substrate 200, and a white portion is shown as a light emitting point. Specifically, in FIG. 3, a VHH antibody, which is a small antibody, is bound as a molecular recognition functional substance on a substrate provided with a nanostructure made of a gold metal layer similar to the nanostructure 45 shown in FIG. The results of a sandwich-type fluorescence immunoassay were shown in which a labeled antibody was bound to the nuclear protein of influenza virus as a sample. In the observation of the luminescence distribution, the nanostructure after the assay is irradiated with light having a plasmon resonance wavelength of 780 nm using a STORM (Stochastic Optical Reaction Microscopy) type super-resolution microscope that irradiates the nanostructure with a laser beam having a plasmon resonance wavelength. There is. The white horizontal bar at the lower right shown in FIG. 3 is a 1 μm scale bar, and has a hexagonal mesh-like pitch having the same pitch of 460 nm as the pitch of the convex portion 62a of the SEM image shown in FIG. 1 (a). Light is observed, and it can be seen that the light emitting points are distributed in the vicinity of the gaps between the convex portions.

比較の為に、金属層に局在表面プラズモン共鳴を生じさせない波長488nmのレーザー光、および波長488nmで励起されて蛍光を発する標識化抗体を用いて、同様の蛍光イムノアッセイを行ったところ、図3に示されるような網目状の光による模様は観察されず、蛍光の発光強度は、局在表面プラズモン共鳴が生じた場合の百分の1以下となっていると考えられる。従って、図3に示される発光分布は、検体および抗体が偏って付着していることを示しているのではなく、局在表面プラズモン共鳴による電場増強に由来する蛍光の分布を示していることが分かる。 For comparison, a similar fluorescence immunoassay was performed using a laser beam with a wavelength of 488 nm that does not cause localized surface plasmon resonance in the metal layer and a labeled antibody that is excited at a wavelength of 488 nm and emits fluorescence. FIG. No pattern due to the mesh-like light as shown in is observed, and it is considered that the emission intensity of fluorescence is 1/100 or less of the case where localized surface plasmon resonance occurs. Therefore, the luminescence distribution shown in FIG. 3 does not indicate that the sample and the antibody are unevenly attached, but shows the distribution of fluorescence derived from the electric field enhancement due to the localized surface plasmon resonance. I understand.

また、図3を用いた発光分布の観察では、電場強度が最も強い図2に示される領域71の狭い間隙部に対応する位置は特に強く光ってはおらず、間隙部近傍に発光が拡がっていることから、図2に示される領域72に相当する、凸部の間隙開口部側の金属層表面付近の電場増強部が主に発光に寄与していると考えられる。 Further, in the observation of the light emission distribution using FIG. 3, the position corresponding to the narrow gap portion of the region 71 shown in FIG. 2, which has the strongest electric field intensity, does not shine particularly strongly, and the light emission spreads in the vicinity of the gap portion. From this, it is considered that the electric field enhancing portion near the surface of the metal layer on the gap opening side of the convex portion, which corresponds to the region 72 shown in FIG. 2, mainly contributes to light emission.

図4は、図3で示される発光分布の観察に用いられたセンサ基板200の概略図である。図4に示されるように、金属層62の上に、被覆分子65を介して結合され、均等に分布する分子認識機能物質10が、標識化抗体21と結合した検体20とを捉えている。プラズモン共鳴波長の光を照射した場合には、凸部62aの間隙開口部近傍の標識化抗体21aのみが、強く発光している。 FIG. 4 is a schematic view of the sensor substrate 200 used for observing the light emission distribution shown in FIG. As shown in FIG. 4, the molecular recognition functional substance 10 bound to the metal layer 62 via the coating molecule 65 and evenly distributed captures the sample 20 bound to the labeled antibody 21. When irradiated with light having a plasmon resonance wavelength, only the labeled antibody 21a in the vicinity of the gap opening of the convex portion 62a emits strong light.

このように、本発明者は、図1に示されるような略六角形状の凸部62aが、均一な六方最密充填状に10nm以上20nm以下の間隙で隣接配置されたナノ構造体を用いたセンサ基板を作成し、高感度の検出が可能なことを確認した。しかしながら、プラズモン共鳴波長の光を照射する場合、隣接する凸部62a間の間隙がより狭い方が、電場強度は高まるが、間隙を10nm未満に設定すると、間隙のバラツキによって凸部62a間の隙間が無くなる部分も生じ、検出の再現性が取れない。そのため、凸部62aのピッチおよび高さは、検出に使用する光の波長の半分程度がよく、高さが100nmを超えるような凸部62a間の間隙を数nm以下のバラツキで作成することは、工法を変えても困難であり、隣接する凸部62a間の間隙は少なくとも10nm以上は必要である。一方で、隣接する凸部62a間の間隙が40nm以下であれば、局在表面プラズモン共鳴による電場増強の効果が、有意なレベルに確保される。よって、高感度の検出が可能なセンサ基板とするためには、凸部62a間の間隙は、10nm以上40nm以下が望ましい。 As described above, the present inventor used a nanostructure in which substantially hexagonal convex portions 62a as shown in FIG. 1 are adjacently arranged in a uniform hexagonal close-packed form with a gap of 10 nm or more and 20 nm or less. We created a sensor board and confirmed that high-sensitivity detection is possible. However, when irradiating light with a plasmon resonance wavelength, the narrower the gap between the adjacent convex portions 62a, the higher the electric field intensity, but when the gap is set to less than 10 nm, the gap between the convex portions 62a due to the variation of the gap. There is also a part where is lost, and the reproducibility of detection cannot be obtained. Therefore, the pitch and height of the convex portions 62a are preferably about half the wavelength of the light used for detection, and it is possible to create a gap between the convex portions 62a having a height exceeding 100 nm with a variation of several nm or less. It is difficult to change the construction method, and the gap between the adjacent convex portions 62a needs to be at least 10 nm or more. On the other hand, when the gap between the adjacent convex portions 62a is 40 nm or less, the effect of enhancing the electric field by the localized surface plasmon resonance is secured at a significant level. Therefore, in order to obtain a sensor substrate capable of high-sensitivity detection, the gap between the convex portions 62a is preferably 10 nm or more and 40 nm or less.

以上のように、局在表面プラズモン共鳴を生じさせるナノ構造体を適切な形状とすることで、高感度のセンサ基板を作成できることが分かった。一方で、図2から図4で示されるように、検出される発光を生じさせる標識化抗体21は、凸部62a先端側の間隙部近傍にある標識化抗体21に限られており、それ以外の領域の標識化抗体21は検出に寄与していない。このような知見を基に、局在表面プラズモン共鳴を、より効率的かつ安定的に作用させ、検出精度が向上した、センサ基板の構成と、その製造方法を鋭意検討し本開示に至ったので、以下の実施の形態に開示する。 As described above, it was found that a highly sensitive sensor substrate can be produced by shaping the nanostructure that causes localized surface plasmon resonance into an appropriate shape. On the other hand, as shown in FIGS. 2 to 4, the labeled antibody 21 that causes the detected luminescence is limited to the labeled antibody 21 located near the gap on the distal end side of the convex portion 62a, and other than that. The labeled antibody 21 in the region of is not contributing to the detection. Based on these findings, we have diligently studied the configuration of the sensor substrate and its manufacturing method, in which localized surface plasmon resonance acts more efficiently and stably and the detection accuracy is improved. , Disclosed in the following embodiments.

本開示の一態様に係るセンサ基板の製造方法は、基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板の製造方法であって、前記金属層上に、第1被覆分子を結合させる結合工程と、所定の検体と特異的に結合する分子認識機能物質を前記第1被覆分子に結合させて固定化する固定化工程と、を含み、前記結合工程では、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射して、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で、前記第1被覆分子を結合させ、前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい。 The method for manufacturing a sensor substrate according to one aspect of the present disclosure is a method for manufacturing a sensor substrate having a metal layer on which localized surface plasmon resonance occurs, and a first coating molecule is bonded onto the metal layer. The binding step includes a binding step of binding and immobilizing a molecular recognition functional substance that specifically binds to a predetermined sample to the first coating molecule, and in the binding step, the metal layer is subjected to the above. By irradiating light having a wavelength that causes localized surface plasmon resonance, the first coating molecule is bound to the first region on the metal layer at a density higher than that of the second region on the metal layer. The electric field enhancement due to the localized surface plasmon resonance in the first region is larger than the electric field enhancement in the second region.

これにより、局在表面プラズモン共鳴が生じる金属層の形状によって、局在表面プラズモン共鳴によって電場増強される領域の分布にばらつきがある場合であっても、製造工程中、金属層に、局在表面プラズモン共鳴を生じさせる波長の光を照射し、第2領域よりも電場増強の大きい第1領域に、第2領域よりも高い密度で第1被覆分子が結合する。第1被覆分子に分子認識機能物質が固定化されることから、電場増強の大きい第1領域に、第2領域よりも高い密度で分子認識機能物質も固定化される。よって、電場増強の大きい第1領域で、検体が捕捉されやすくなり、検出感度が向上したセンサ基板を製造できる。 As a result, even if the distribution of the region where the electric field is enhanced by the localized surface plasmon resonance varies depending on the shape of the metal layer in which the localized surface plasmon resonance occurs, the localized surface is formed on the metal layer during the manufacturing process. By irradiating light with a wavelength that causes plasmon resonance, the first coating molecule is bound to the first region, which has a larger electric field enhancement than the second region, at a density higher than that of the second region. Since the molecular recognition functional substance is immobilized on the first coated molecule, the molecular recognition functional substance is also immobilized on the first region where the electric field enhancement is large at a higher density than the second region. Therefore, it is possible to manufacture a sensor substrate in which the sample is easily captured and the detection sensitivity is improved in the first region where the electric field enhancement is large.

また、本開示の一態様に係るセンサ基板の製造方法において、前記結合工程は、一方の末端は前記金属層と結合し、かつ、他方の末端は前記分子認識機能物質および前記検体に対して不活性である第2被覆分子を前記金属層と結合させる工程と、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記金属層に結合された前記第2被覆分子のうち、前記第1領域の前記第2被覆分子を除去する工程と、前記第1被覆分子を、前記第2被覆分子が除去された前記第1領域に結合させる工程と、を含んでもよい。 Further, in the method for manufacturing a sensor substrate according to one aspect of the present disclosure, in the binding step, one end is bonded to the metal layer and the other end is not suitable for the molecular recognition functional substance and the sample. The second step of binding the active second coating molecule to the metal layer and the second bonding of the metal layer to the metal layer by irradiating the metal layer with light having a wavelength that causes the localized surface plasmon resonance. Among the coated molecules, the step of removing the second coated molecule of the first region and the step of binding the first coated molecule to the first region from which the second coated molecule has been removed may be included. Good.

これにより、第1領域よりも電場増強の小さい第2領域に、分子認識機能物質および検体に対して不活性な第2被覆分子が結合する。そのため、第2領域には、分子認識機能物質が固定化されにくくなり、第2領域での検体の捕捉が抑制される。よって、電場増強の大きい第1領域で、検体が捕捉される可能性が高くなり、さらに検出感度が向上したセンサ基板を製造できる。 As a result, the molecular recognition functional substance and the second coated molecule that is inactive with respect to the sample are bound to the second region where the electric field enhancement is smaller than that of the first region. Therefore, the molecular recognition functional substance is less likely to be immobilized in the second region, and the capture of the sample in the second region is suppressed. Therefore, it is possible to manufacture a sensor substrate in which the possibility of capturing a sample is high and the detection sensitivity is further improved in the first region where the electric field enhancement is large.

また、本開示の一態様に係るセンサ基板の製造方法において、前記第1被覆分子は、一方の末端に前記金属層と結合する結合基を有し、他方の末端に前記分子認識機能物質と結合する官能基を有し、前記結合工程では、前記第1被覆分子の前記結合基または前記官能基を光解離性保護基で保護した前駆体を前記金属層上に配置し、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射して、前記前駆体の前記光解離性保護基が解離した前記第1被覆分子を、前記第1領域に結合させてもよい。 Further, in the method for producing a sensor substrate according to one aspect of the present disclosure, the first coated molecule has a bonding group that binds to the metal layer at one end and binds to the molecule recognition functional substance at the other end. In the bonding step, the binding group of the first coating molecule or a precursor obtained by protecting the functional group with a photodissociable protective group is placed on the metal layer, and the metal layer is subjected to the treatment. The first coated molecule in which the photodissociable protective group of the precursor is dissociated may be bound to the first region by irradiating with light having a wavelength that causes the localized surface plasmon resonance.

これにより、金属層に、局在表面プラズモン共鳴を生じさせる波長の光を照射して、光解離性保護基が前駆体から解離し、電場増強の大きい第1領域に第1被覆分子が結合する。光解離性保護基の種類によって、保護する対象、および、光解離性保護基を解離させるための条件を変えることができるため、検出感度が向上したセンサ基板を製造しやすくなる。 As a result, the metal layer is irradiated with light having a wavelength that causes localized surface plasmon resonance, the photodissociative protecting group is dissociated from the precursor, and the first coating molecule is bound to the first region where the electric field enhancement is large. .. Since the object to be protected and the conditions for dissociating the photodissociable protecting group can be changed depending on the type of the photodissociable protecting group, it becomes easy to manufacture a sensor substrate with improved detection sensitivity.

また、本開示の一態様に係るセンサ基板の製造方法において、前記前駆体の前記結合基は、前記光解離性保護基に保護されており、前記結合工程では、前記前駆体を含む溶液を前記金属層に接触させた状態で、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記前駆体の前記光解離性保護基が解離してなる前記第1被覆分子を、前記第1領域に結合させてもよい。 Further, in the method for producing a sensor substrate according to one aspect of the present disclosure, the binding group of the precursor is protected by the photodissociating protecting group, and in the binding step, the solution containing the precursor is used. The first, in which the photodissociative protecting group of the precursor is dissociated by irradiating the metal layer with light having a wavelength that causes localized surface plasmon resonance in contact with the metal layer. The coating molecule may be attached to the first region.

これにより、前駆体を含む溶液を金属層上に接触させた状態で、金属層に、局在表面プラズモン共鳴を生じさせる波長の光を照射するという簡易な操作で、電場増強の大きい第1領域に第1被覆分子が結合する。よって、簡易に検出感度が向上したセンサ基板を製造できる。 As a result, the first region with large electric field enhancement can be achieved by a simple operation of irradiating the metal layer with light having a wavelength that causes localized surface plasmon resonance while the solution containing the precursor is in contact with the metal layer. The first coating molecule binds to. Therefore, a sensor substrate with improved detection sensitivity can be easily manufactured.

また、本開示の一態様に係るセンサ基板の製造方法において、前記結合工程では、前記第1被覆分子を前記第1領域に結合させた後、一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質および前記検体に対して不活性な第2被覆分子を、前記第2領域に結合させてもよい。 Further, in the method for manufacturing a sensor substrate according to one aspect of the present disclosure, in the bonding step, after the first coating molecule is bonded to the first region, one end is bonded to the metal layer and the other. At the end, the molecular recognition functional substance and a second coated molecule that is inactive with respect to the sample may be bound to the second region.

これにより、第1領域よりも電場増強の小さい第2領域に、分子認識機能物質に対して不活性な第2被覆分子が結合する。そのため、第2領域には、分子認識機能物質が固定化されにくくなり、第2領域での検体の捕捉が抑制される。よって、電場増強の大きい第1領域で、検体が捕捉される可能性が高くなり、さらに検出感度が向上したセンサ基板を製造できる。 As a result, the second coated molecule, which is inactive for the molecular recognition functional substance, binds to the second region, which has a smaller electric field enhancement than the first region. Therefore, the molecular recognition functional substance is less likely to be immobilized in the second region, and the capture of the sample in the second region is suppressed. Therefore, it is possible to manufacture a sensor substrate in which the possibility of capturing a sample is high and the detection sensitivity is further improved in the first region where the electric field enhancement is large.

また、本開示の一態様に係るセンサ基板の製造方法において、前記前駆体の前記官能基は、前記光解離性保護基に保護されており、前記結合工程では、前記前駆体を前記金属層上に結合させた後、前記金属層に前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記第1領域に結合した前記前駆体から前記光解離性保護基を解離させてもよい。 Further, in the method for producing a sensor substrate according to one aspect of the present disclosure, the functional group of the precursor is protected by the photodissociable protecting group, and in the bonding step, the precursor is placed on the metal layer. Even if the photodissociative protecting group is dissociated from the precursor bonded to the first region by irradiating the metal layer with light having a wavelength that causes the localized surface plasmon resonance. Good.

これにより、前駆体を金属層上に結合させた状態で、金属層に、局在表面プラズモン共鳴を生じさせる波長の光を照射するという簡易な操作で、電場増強の大きい第1領域に第1被覆分子が結合する。よって、簡易に検出感度が向上したセンサ基板を製造できる。また、第1領域よりも電場増強の小さい第2領域には、分子認識機能物質と結合する官能基が保護された前駆体が結合する。そのため、第2領域には、分子認識機能物質が固定化されにくくなり、電場増強の小さい第2領域での検体の捕捉が抑制される。よって、さらに検出感度が向上したセンサ基板を製造できる。 As a result, with the precursor bonded on the metal layer, the metal layer is irradiated with light having a wavelength that causes localized surface plasmon resonance, and the first region has a large electric field enhancement. The coating molecules bind. Therefore, a sensor substrate with improved detection sensitivity can be easily manufactured. In addition, a precursor having a protected functional group that binds to a molecular recognition functional substance binds to the second region, which has a smaller electric field enhancement than the first region. Therefore, the molecular recognition functional substance is less likely to be immobilized in the second region, and the capture of the sample in the second region where the electric field enhancement is small is suppressed. Therefore, it is possible to manufacture a sensor substrate with further improved detection sensitivity.

また、本開示の一態様に係るセンサ基板は、基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板であって、前記金属層上に固定化され、所定の検体と特異的に結合する分子認識機能物質を備え、前記分子認識機能物質は、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で存在し、前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい。 Further, the sensor substrate according to one aspect of the present disclosure is a sensor substrate having a metal layer on which localized surface plasmon resonance occurs, and is immobilized on the metal layer to be specific to a predetermined sample. The molecular recognition functional substance is provided to be bound, and the molecular recognition functional substance is present in the first region on the metal layer at a higher density than the second region on the metal layer, and the station in the first region. The electric field enhancement due to surface plasmon resonance is larger than the electric field enhancement in the second region.

これにより、第2領域よりも電場増強の大きい第1領域に、第2領域よりも高い密度で分子認識機能物質が存在するため、第1領域で、検体を捕捉しやすくなる。よって、センサ基板の検出感度を向上させることができる。 As a result, since the molecular recognition functional substance is present in the first region where the electric field enhancement is larger than that in the second region at a density higher than that in the second region, it becomes easy to capture the sample in the first region. Therefore, the detection sensitivity of the sensor substrate can be improved.

また、本開示の一態様に係るセンサ基板において、一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質と結合する第1被覆分子と、一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質および検体に対して不活性な第2被覆分子と、を備え、前記第1被覆分子は、前記第1領域に、前記第2領域よりも高い密度で結合しており、前記第2被覆分子は、前記第2領域に、前記第1領域よりも高い密度で結合しており、前記分子認識機能物質は、前記第1被覆分子に結合されていてもよい。 Further, in the sensor substrate according to one aspect of the present disclosure, one end is bound to the metal layer, the other end is a first coated molecule that is bound to the molecular recognition functional substance, and one end is the metal layer. The other end comprises the molecular recognition functional substance and a second coated molecule that is inactive with respect to the sample, and the first coated molecule has a higher density in the first region than in the second region. The second coated molecule is bound to the second region at a higher density than that of the first region, and the molecular recognition functional substance is bound to the first coated molecule. May be good.

これにより、第1領域よりも電場増強の小さい第2領域に、分子認識機能物質および検体に対して不活性な第2被覆分子が第1領域よりも高い密度で存在するため、第2領域での検体の捕捉が抑制される。また、電場増強の大きい第1領域には、分子認識機能物質と結合した第1被覆分子が第2領域よりも高い密度で結合している。よって、第1領域で、検体が捕捉される可能性が高くなり、センサ基板の検出感度をさらに向上させることができる。 As a result, in the second region where the electric field enhancement is smaller than that in the first region, the molecular recognition functional substance and the second coated molecule which is inactive for the sample are present at a higher density than the first region. Specimen capture is suppressed. Further, in the first region where the electric field enhancement is large, the first coated molecule bound to the molecular recognition functional substance is bound at a higher density than the second region. Therefore, there is a high possibility that the sample will be captured in the first region, and the detection sensitivity of the sensor substrate can be further improved.

また、本開示の一態様に係るセンサ基板において、前記分子認識機能物質は抗体であり、前記金属層は、金、銀、または、金もしくは銀を主成分とする合金からなり、前記第1被覆分子は、一方の末端にチオール基を有し、他方の末端に前記分子認識機能物質と結合する官能基を有し、前記官能基に接続する親水基の繰り返し配列を有し、前記金属層上で自己組織化単分子膜を形成しており、前記第2被覆分子は、一方の末端にチオール基を有し、他方の末端に水酸基を有し、前記水酸基に接続する親水基の繰り返し配列を有し、前記金属層上で自己組織化単分子膜を形成していてもよい。 Further, in the sensor substrate according to one aspect of the present disclosure, the molecular recognition functional substance is an antibody, and the metal layer is made of gold, silver, or an alloy containing gold or silver as a main component, and the first coating The molecule has a thiol group at one end, a functional group that binds to the molecular recognition functional substance at the other end, a repeating sequence of hydrophilic groups that connect to the functional group, and is on the metal layer. The second coated molecule has a thiol group at one end and a hydroxyl group at the other end, and has a repeating sequence of hydrophilic groups connected to the hydroxyl group. It may have and form a self-assembled monomolecular film on the metal layer.

これにより、金属層と第1被覆分子、および、金属層と第2被覆分子とが結合しやすく、かつ、自己組織化単分子膜が金属層上に形成される。そのため、金属層上に第1被覆分子および第2被覆分子が自己組織化単分子膜として存在するため、金属層への検体の非特異吸着が抑制される。よって、センサ基板の検出感度をさらに向上させることができる。 As a result, the metal layer and the first coating molecule, and the metal layer and the second coating molecule are easily bonded, and a self-assembled monolayer is formed on the metal layer. Therefore, since the first-coated molecule and the second-coated molecule exist as a self-assembled monolayer on the metal layer, non-specific adsorption of the sample to the metal layer is suppressed. Therefore, the detection sensitivity of the sensor substrate can be further improved.

また、本開示の一態様に係る検出装置は、上記センサ基板と、前記局在表面プラズモン共鳴を生じさせる波長の光を照射する光照射部と、前記センサ基板からの光反応信号を検出する光検出部を有する。 Further, the detection device according to one aspect of the present disclosure includes the sensor substrate, a light irradiation unit that irradiates light having a wavelength that causes localized surface plasmon resonance, and light that detects a photoreaction signal from the sensor substrate. It has a detection unit.

これにより、検出感度が向上した上記センサ基板を用いるため、検出精度を向上させることができる。 As a result, since the sensor substrate with improved detection sensitivity is used, the detection accuracy can be improved.

以下、実施の形態に関して図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.

なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは、一例であり、請求の範囲を限定する趣旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that all of the embodiments described below show comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, processes, order of processes, etc. shown in the following embodiments are examples, and do not intend to limit the scope of claims. Further, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components.

また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。 Moreover, each figure is not necessarily exactly illustrated. In each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description is omitted or simplified.

(実施の形態1)
まず、実施の形態1に係るセンサ基板の製造方法について、図5を用いて説明する。図5は、実施の形態1に係るセンサ基板100の製造方法を示す工程概略図である。センサ基板100は、局在表面プラズモン共鳴が生じる金属層2を有するセンサ基板であり、金属層2上方に固定化され、所定の検体と特異的に結合する分子認識機能物質10を備える。
(Embodiment 1)
First, the method of manufacturing the sensor substrate according to the first embodiment will be described with reference to FIG. FIG. 5 is a process schematic diagram showing a method of manufacturing the sensor substrate 100 according to the first embodiment. The sensor substrate 100 is a sensor substrate having a metal layer 2 in which localized surface plasmon resonance occurs, and includes a molecular recognition functional substance 10 that is immobilized above the metal layer 2 and specifically binds to a predetermined sample.

実施の形態1に係るセンサ基板100の製造方法では、基板1上に、局在表面プラズモン共鳴が生じる金属層2が形成されたナノ構造体40を用いる。 In the method for manufacturing the sensor substrate 100 according to the first embodiment, the nanostructure 40 in which the metal layer 2 in which the localized surface plasmon resonance occurs is formed on the substrate 1 is used.

金属層2は、金、銀、アルミニウムなどの金属から構成され、金、銀、または、金もしくは銀を主成分とする合金で構成されるとよい。金属層2は、複数の凸部2aを有する。複数の凸部2aは、間隙3を挟んで隣接配置されている。なお、図5においては、複数の凸部2aのうち2つの凸部2aのみを示しており、他の凸部は省略された図となっているが、凸部2aの数に特に制限は無い。具体的には、例えば、図1のSEM像に示されるように金からなる多数の凸部が六方細密充填配置されたナノ構造体であるとよい。プラズモン共鳴波長は、金属層に用いられる金属の種類およびナノ構造体40の形状によって変わり、シミュレーション等により設計可能である。周期構造の場合の凸部2aのピッチは、プラズモン共鳴波長の1/2程度になる。また、上述したように隣接する凸部2a間の間隙3は、10nm以上40nm以下が好ましい。例えば、図1で示される形状のナノ構造体において、凸部のピッチが460nmであり、高さが400nm程度である場合、プラズモン共鳴波長は780nm前後になる。また、プラズモン共鳴波長は、同じナノ構造体でも、金属が接する媒質の屈折率、および、光の入射角によって若干シフトするので、ナノ構造体の吸収スペクトルを測定して、光の波長および入射角度を適宜調整するとよい。 The metal layer 2 is composed of a metal such as gold, silver, and aluminum, and may be composed of gold, silver, or an alloy containing gold or silver as a main component. The metal layer 2 has a plurality of convex portions 2a. The plurality of convex portions 2a are arranged adjacent to each other with the gap 3 interposed therebetween. In FIG. 5, only two convex portions 2a out of the plurality of convex portions 2a are shown, and the other convex portions are omitted, but the number of convex portions 2a is not particularly limited. .. Specifically, for example, as shown in the SEM image of FIG. 1, a nanostructure in which a large number of convex portions made of gold are densely packed in six directions is preferable. The plasmon resonance wavelength varies depending on the type of metal used for the metal layer and the shape of the nanostructure 40, and can be designed by simulation or the like. The pitch of the convex portion 2a in the case of the periodic structure is about ½ of the plasmon resonance wavelength. Further, as described above, the gap 3 between the adjacent convex portions 2a is preferably 10 nm or more and 40 nm or less. For example, in the nanostructure having the shape shown in FIG. 1, when the pitch of the convex portion is 460 nm and the height is about 400 nm, the plasmon resonance wavelength is about 780 nm. Further, even in the same nanostructure, the plasmon resonance wavelength slightly shifts depending on the refractive index of the medium in contact with the metal and the incident angle of light. Therefore, the absorption spectrum of the nanostructure is measured to measure the wavelength and incident angle of light. Should be adjusted as appropriate.

このようなナノ構造体40を、洗剤または酸素プラズマ等で洗浄した後、図5の(a)に示されるように、第2被覆分子5を含む水溶液4の中に置き、水溶液4を金属層2に室温から40℃で一定時間(例えば、室温で16時間、または、40℃で1時間)接触させる。 After washing such a nanostructure 40 with a detergent, oxygen plasma, or the like, as shown in FIG. 5A, the nanostructure 40 is placed in an aqueous solution 4 containing a second coating molecule 5, and the aqueous solution 4 is placed in a metal layer. 2 is contacted at room temperature to 40 ° C. for a certain period of time (for example, 16 hours at room temperature or 1 hour at 40 ° C.).

第2被覆分子5は、一方の末端が金属層と結合し、かつ、他方の末端が分子認識機能物質および検体に対して不活性である分子である。具体的には、第2被覆分子5は、一方の末端に金属と結合するチオール基またはホスホン酸基などの結合基を有し、他方の末端に分子認識機能物質に対して不活性な水酸基などの末端基を有し、自己組織化単分子膜(以下、SAM膜と称す)を形成する分子であるとよい。さらに、第2被覆分子5は、検出対象の検体を含む他のタンパク質に対して不活性な、親水基の繰り返し配列が末端基に接続されているとよい。親水基の繰り返し配列としては、エチレングリコール基の繰り返し配列、または、リン脂質基などが挙げられる。第2被覆分子5は、例えば、Hydroxy−EG−undecanethiol(EGはエチレングリコール基)であるとよい。 The second coated molecule 5 is a molecule in which one end is bound to the metal layer and the other end is inactive with respect to the molecular recognition functional substance and the sample. Specifically, the second coated molecule 5 has a bonding group such as a thiol group or a phosphonic acid group that binds to a metal at one end, and a hydroxyl group that is inactive with respect to a molecular recognition functional substance at the other end. It is preferable that the molecule has a terminal group of the above and forms a self-assembled monolayer (hereinafter referred to as SAM film). Further, in the second coated molecule 5, it is preferable that the repeating sequence of the hydrophilic group, which is inactive for other proteins including the sample to be detected, is connected to the terminal group. Examples of the repeating sequence of the hydrophilic group include a repeating sequence of an ethylene glycol group, a phospholipid group, and the like. The second coating molecule 5 may be, for example, Hydroxy-EG 3- undecanetic (EG is an ethylene glycol group).

水溶液4を金属層2に接触させることで、図5の(b)に示されるように、第2被覆分子5が金属層2と結合し、第2被覆分子5を含むSAM膜が形成される。 By bringing the aqueous solution 4 into contact with the metal layer 2, as shown in FIG. 5B, the second coating molecule 5 binds to the metal layer 2 to form a SAM film containing the second coating molecule 5. ..

次に、図5の(c)に示されるように、プラズモン共鳴波長のレーザー光等の単色光6を金属層2に照射すると、凸部2aの間隙部近傍の第1領域11に電場増強が生じる。金属層2と第2被覆分子5との結合、例えば、金と第2被覆分子5のチオール基との金−硫黄結合は、窒素雰囲気中で5W/cmの可視光または近赤外光レーザー照射によって、チオール基の酸化により、結合が切断されることが知られている。よって、局在表面プラズモン共鳴による電場増強により金属層2と第2被覆分子5との結合が切断される強度で、プラズモン共鳴波長のレーザー光を照射することにより、第1領域11に結合している第2被覆分子5と金属層2との結合が選択的に切断される。その結果、金属層2上の第1領域11に結合した第2被覆分子5が除去され、図5の(d)に示されるように、局在表面プラズモン共鳴により電場増強される第1領域11の第2被覆分子5が除去され、電場増強が第1領域11よりも小さい第2領域12に結合した第2被覆分子5aが損傷されずに残る。つまり、第1領域11の局在表面プラズモン共鳴による電場増強は、第2領域12の電場増強よりも大きいため、金属層2上の第1領域11に結合した第2被覆分子5が除去され、金属層2上の第2領域12に結合した第2被覆分子5aが残る。 Next, as shown in FIG. 5 (c), when the metal layer 2 is irradiated with monochromatic light 6 such as laser light having a plasmon resonance wavelength, an electric field enhancement is generated in the first region 11 near the gap portion of the convex portion 2a. Occurs. The bond between the metal layer 2 and the second coated molecule 5, for example, the gold-sulfur bond between gold and the thiol group of the second coated molecule 5, is 5 W / cm 2 visible or near infrared laser in a nitrogen atmosphere. It is known that the bond is cleaved by the oxidation of the thiol group by irradiation. Therefore, by irradiating a laser beam having a plasmon resonance wavelength with an intensity that breaks the bond between the metal layer 2 and the second coating molecule 5 due to the enhancement of the electric field by the localized surface plasmon resonance, the metal layer 2 is bonded to the first region 11. The bond between the second coated molecule 5 and the metal layer 2 is selectively cleaved. As a result, the second coated molecule 5 bound to the first region 11 on the metal layer 2 is removed, and as shown in FIG. 5D, the first region 11 whose electric field is enhanced by the localized surface plasmon resonance. The second coated molecule 5 of the above is removed, and the second coated molecule 5a bound to the second region 12 whose electric field enhancement is smaller than that of the first region 11 remains undamaged. That is, since the electric field enhancement by the localized surface plasmon resonance of the first region 11 is larger than the electric field enhancement of the second region 12, the second coating molecule 5 bound to the first region 11 on the metal layer 2 is removed. The second coated molecule 5a bound to the second region 12 on the metal layer 2 remains.

例えば、図1に示されるナノ構造体では、電場強度増幅率は100倍弱なので、50〜100mW/cmの、プラズモン共鳴波長である780nmのレーザー光を1分照射した後、速やかに水洗することにより、第1領域の第2被覆分子が選択的に除去される。ナノ構造体の形状または材質が異なる場合でも、プラズモン共鳴波長の光を、電場強度増幅率を考慮した強度で照射することにより、選択的な除去が可能である。金属層として、銀またはアルミニウムを用いた場合は、プラズモン共鳴波長を紫外域まで短波長化することも可能である。この場合、水中で紫外域の波長のレーザー光を金属層上の第2被覆分子に照射することで、金属−硫黄結合が切断され、第1領域の第2被覆分子が選択的に除去される。 For example, in the nanostructure shown in FIG. 1, the electric field intensity amplification factor is a little less than 100 times, so that the nanostructure is immediately washed with water after being irradiated with a laser beam of 50 to 100 mW / cm 2 at 780 nm, which is a plasmon resonance wavelength, for 1 minute. As a result, the second coating molecule in the first region is selectively removed. Even if the shape or material of the nanostructure is different, selective removal is possible by irradiating light with a plasmon resonance wavelength at an intensity that takes into consideration the electric field intensity amplification factor. When silver or aluminum is used as the metal layer, the plasmon resonance wavelength can be shortened to the ultraviolet region. In this case, by irradiating the second coating molecule on the metal layer with a laser beam having a wavelength in the ultraviolet region in water, the metal-sulfur bond is broken and the second coating molecule in the first region is selectively removed. ..

次に、図5の(e)に示されるように、第1被覆分子9を含む燐酸緩衝液などの水溶液8を金属層2上に満たして、室温から40℃で水溶液8を金属層2に一定時間(例えば、室温で16時間、または、40℃で1時間)接触させる。 Next, as shown in FIG. 5 (e), the metal layer 2 is filled with an aqueous solution 8 such as a phosphoric acid buffer solution containing the first coating molecule 9, and the aqueous solution 8 is applied to the metal layer 2 at room temperature to 40 ° C. Contact for a period of time (eg, 16 hours at room temperature or 1 hour at 40 ° C.).

第1被覆分子9は、一方の末端が金属層と結合し、他方の末端が分子認識機能物質と結合する分子である。具体的に、第1被覆分子9は、一方の末端にチオール基またはホスホン酸基のような金属と結合する結合基を有し、他方の末端に抗体などの分子認識機能物質と結合するカルボキシ基、アミノ基、またはエポキシ基などの官能基を有し、SAM膜を形成する分子であるとよい。第1被覆分子9は、例えば、Carboxy−EG−undecanethiolであるとよい。例えば、カルボキシ基は、タンパク質のアミノ基との結合する官能基として一般的に用いられており、N−Hydroxy succineimide(以下、NHSと称す)とカルボキシ基とを反応させたNHSエステルを経て、タンパク質のアミノ基と反応し、結合する。なお、未反応のカルボキシ基が残る場合には、水中でイオン化して非特異吸着を生じるので、水溶液8中に、第1被覆分子9としてCarboxy−EG−undecanethiolと、第2被覆分子5としてHydroxy−EG−undecanethiolとを混合して、第1領域11に結合する第1被覆分子9の密度を調整することで、カルボキシ基の密度を調整してもよい。 The first coated molecule 9 is a molecule in which one end is bound to a metal layer and the other end is bound to a molecular recognition functional substance. Specifically, the first coated molecule 9 has a binding group that binds to a metal such as a thiol group or a phosphonic acid group at one end, and a carboxy group that binds to a molecular recognition functional substance such as an antibody at the other end. , Amino group, or a molecule having a functional group such as an epoxy group and forming a SAM film. The first coating molecule 9 may be, for example, Carboxy-EG 6- undequanethial. For example, a carboxy group is generally used as a functional group that binds to an amino group of a protein, and a protein is passed through an NHS ester obtained by reacting an N-Hydroxy succiniumide (hereinafter referred to as NHS) with a carboxy group. Reacts with and binds to the amino group of. If an unreacted carboxy group remains, it is ionized in water to cause non-specific adsorption. Therefore, as the first coating molecule 9, Carboxy-EG 6- undekanethial and the second coating molecule 5 are used in the aqueous solution 8. The density of the carboxy group may be adjusted by mixing with Hydroxy-EG 3- undekanethyl to adjust the density of the first coating molecule 9 bound to the first region 11.

水溶液8を金属層2に一定時間接触させることで、図5の(f)に示されるように、第2被覆分子5が除去された金属層2上の第1領域11に、第1被覆分子9が結合し、第1被覆分子9を含むSAM膜が形成される。つまり、第2領域12よりも局在表面プラズモン共鳴による電場増強が大きい第1領域11aに、第2領域12よりも高い密度で第1被覆分子9が結合する。 By bringing the aqueous solution 8 into contact with the metal layer 2 for a certain period of time, as shown in FIG. 5 (f), the first coated molecule is formed in the first region 11 on the metal layer 2 from which the second coated molecule 5 has been removed. 9 binds to form a SAM film containing the first coated molecule 9. That is, the first coating molecule 9 binds to the first region 11a, which has a larger electric field enhancement due to localized surface plasmon resonance than the second region 12, at a density higher than that of the second region 12.

第1被覆分子9の官能基と、抗体などの分子認識機能物質10とを上述のNHSエステルを経る方法などの化学反応で結合させることにより、図5の(g)に示されるように、分子認識機能物質10が結合した第1被覆分子9が、金属層2上の隣接する凸部2aの間隙開口部近傍の第1領域11aに選択的に結合した、実施の形態1に係るセンサ基板100が作成される。つまり、第1領域11aに、第2領域よりも高い密度で分子認識機能物質10が存在するセンサ基板100が作成される。 By binding the functional group of the first coated molecule 9 and the molecular recognition functional substance 10 such as an antibody by a chemical reaction such as the method via the NHS ester described above, the molecule is shown in FIG. 5 (g). The sensor substrate 100 according to the first embodiment, wherein the first coated molecule 9 to which the recognition functional substance 10 is bound is selectively bound to the first region 11a near the gap opening of the adjacent convex portion 2a on the metal layer 2. Is created. That is, the sensor substrate 100 in which the molecular recognition functional substance 10 exists in the first region 11a at a higher density than that in the second region is created.

隣接する凸部2a間の間隙が、例えば、10nm以上20nm以下である場合、分子認識機能物質10の大きさが隣接する凸部2a間の間隙よりも大きくなる場合が多い。そのため、隣接する凸部2a間の間隙に分子認識機能物質10が入り込めないため、図5の(g)に示されるように凸部2aの基板1に近い第1領域11bに結合した第1被覆分子9には、分子認識機能物質10が結合されない。なお、隣接する凸部2a間の間隙の大きさよりも分子認識機能物質10の大きさが小さい場合には、第1領域11bに結合した第1被覆分子9にも分子認識機能物質10が結合されていてもよい。 When the gap between the adjacent convex portions 2a is, for example, 10 nm or more and 20 nm or less, the size of the molecular recognition functional substance 10 is often larger than the gap between the adjacent convex portions 2a. Therefore, the molecular recognition functional substance 10 cannot enter the gap between the adjacent convex portions 2a, and therefore, as shown in FIG. 5 (g), the first region 11b of the convex portion 2a close to the substrate 1 is bonded. The molecular recognition functional substance 10 is not bound to the coated molecule 9. When the size of the molecular recognition functional substance 10 is smaller than the size of the gap between the adjacent convex portions 2a, the molecular recognition functional substance 10 is also bound to the first coated molecule 9 bound to the first region 11b. You may be.

以上のように、本実施の形態1に係るセンサ基板100の製造方法は、局在表面プラズモン共鳴による電場増強を利用して、電場増強が生じる隣接する凸部2aの間隙近傍部位(第1領域11)の金属層2と、金属層2上の被覆分子との結合状態を、局所的かつ選択的に変化させる。これにより、ナノ構造体の高さ、間隙部の幅および形状が製造時にばらついたために局在表面プラズモン共鳴の電場増強の分布がばらつく場合でも、電場増強が大きい第1領域11に選択的かつ局所的に分子認識機能物質10を固定化することが出来る、という格段の効果がある。 As described above, the method for manufacturing the sensor substrate 100 according to the first embodiment utilizes the electric field enhancement by the localized surface plasmon resonance to generate the electric field enhancement in the vicinity of the gap (first region) of the adjacent convex portion 2a. The bonding state between the metal layer 2 of 11) and the coating molecule on the metal layer 2 is locally and selectively changed. As a result, even if the height of the nanostructure, the width and shape of the gaps vary during manufacturing, and the distribution of the electric field enhancement of the localized surface plasmon resonance varies, it is selective and local to the first region 11 where the electric field enhancement is large. There is a remarkable effect that the molecular recognition functional substance 10 can be immobilized.

このようにして製造した実施の形態1に係るセンサ基板100は、分子認識機能物質10が、金属層2上の、局在表面プラズモン共鳴による電場増強が第2領域12よりも大きい第1領域11に偏在する。これにより、タンパク質などの高分子の検体分子が接近可能な凸部2aの先端側のうち、局在表面プラズモン共鳴による電場増強が生じる第1領域11で検体が捕捉されるため、検体を検出する感度が向上する。よって、局在表面プラズモン共鳴により生じる強い電場増強の効果を、安定して発揮させることができる高感度のセンサ基板を実現できる。 In the sensor substrate 100 according to the first embodiment manufactured in this manner, the molecular recognition functional substance 10 has an electric field enhancement on the metal layer 2 due to localized surface plasmon resonance, which is larger than that of the second region 12. Is unevenly distributed in. As a result, the sample is captured in the first region 11 where the electric field enhancement due to the localized surface plasmon resonance occurs on the tip side of the convex portion 2a to which the sample molecule of the polymer such as protein can approach, so that the sample is detected. Sensitivity is improved. Therefore, it is possible to realize a highly sensitive sensor substrate capable of stably exerting the effect of strong electric field enhancement caused by localized surface plasmon resonance.

また、センサ基板100の、複数の凸部2a先端側の中心近傍の第2領域12では、分子認識機能物質10および検体に対して不活性な第2被覆分子5aを含むSAM膜が金属層2を被覆している。つまり、第2被覆分子5aは、第2領域12に、第1領域11よりも高い密度で結合している。一方、第1被覆分子9は、第1領域11aに、第2領域12よりも高い密度で結合している。これにより、第1領域11よりも電場増強が小さい第2領域12では、分子認識機能物質10および他のタンパク質等の検体も吸着し難くなる為、分子認識機能物質10を間隙開口部近傍の第1領域11に偏在し易くできると共に、非特異吸着を低減できる。 Further, in the second region 12 near the center of the plurality of convex portions 2a on the distal end side of the sensor substrate 100, the metal layer 2 is a SAM film containing the molecular recognition functional substance 10 and the second coated molecule 5a inactive with respect to the sample. Is covered. That is, the second coated molecule 5a is bound to the second region 12 at a higher density than that of the first region 11. On the other hand, the first coated molecule 9 is bound to the first region 11a at a higher density than that of the second region 12. As a result, in the second region 12, where the electric field enhancement is smaller than that of the first region 11, it becomes difficult to adsorb the molecular recognition functional substance 10 and samples such as other proteins. Therefore, the molecular recognition functional substance 10 is placed in the vicinity of the gap opening. It can be easily unevenly distributed in one region 11 and non-specific adsorption can be reduced.

また、隣接する凸部2a間の間隙は、製造上のバラツキの影響を少なくする観点から、10nm以上が好ましく、電場増強を確保する観点から、40nm以下が好ましい。 The gap between the adjacent convex portions 2a is preferably 10 nm or more from the viewpoint of reducing the influence of variations in manufacturing, and is preferably 40 nm or less from the viewpoint of ensuring the enhancement of the electric field.

次に、このようにして製造した実施の形態1に係るセンサ基板100を用いて、病原体などの検体を検出する方法、および、検出装置の一例について説明する。図6は、実施の形態1に係るセンサ基板100を用いた検出装置300を示す概略図である。検出装置300は、センサ基板100と、光照射部30と、ビームスプリッター32と、光検出部33を備える。 Next, a method of detecting a sample such as a pathogen and an example of a detection device will be described using the sensor substrate 100 according to the first embodiment manufactured in this manner. FIG. 6 is a schematic view showing a detection device 300 using the sensor substrate 100 according to the first embodiment. The detection device 300 includes a sensor substrate 100, a light irradiation unit 30, a beam splitter 32, and a light detection unit 33.

まず、図6の(a)に示されるように、図5に示される工程概略図で製造されるセンサ基板100をウェル(図示省略)中に置き、あらかじめ、蛍光物質で標識された標識化抗体21と、ウィルスなどの被検出物質である検体20を燐酸緩衝液(以下、PBSと称す)中で混合させた検査液19をウェルに投入し、検査液19をセンサ基板100と接触させる。検体20の一部は、検査液19中で標識化抗体21と結合して複合粒子22を形成している。検体20を含む複合粒子22は、ブラウン運動によりセンサ基板100の金属層2の表面に接近し、分子認識機能物質10と結合していない第2被覆分子5aには結合せずに、第1被覆分子9と結合した分子認識機能物質10と結合する。十分な時間放置した後、PBSで洗浄することで、分子認識機能物質10と結合していない標識化抗体21および検体20等は洗い流されて、図6の(b)に示されるように、金属層2上の第1領域11aに偏在する分子認識機能物質10に、複合粒子22の検体20が結合した状態となる。 First, as shown in FIG. 6A, the sensor substrate 100 manufactured in the schematic process diagram shown in FIG. 5 is placed in a well (not shown), and a labeled antibody labeled with a phosphoric acid in advance is provided. A test solution 19 obtained by mixing 21 and a sample 20 which is a substance to be detected such as a virus in a phosphate buffer solution (hereinafter referred to as PBS) is put into a well, and the test solution 19 is brought into contact with the sensor substrate 100. A part of the sample 20 binds to the labeled antibody 21 in the test solution 19 to form composite particles 22. The composite particle 22 containing the sample 20 approaches the surface of the metal layer 2 of the sensor substrate 100 by Brownian motion, and does not bind to the second coated molecule 5a that is not bound to the molecular recognition functional substance 10, but the first coating. It binds to the molecular recognition functional substance 10 bound to the molecule 9. By washing with PBS after leaving it for a sufficient time, the labeled antibody 21 and the sample 20 which are not bound to the molecular recognition functional substance 10 are washed away, and as shown in FIG. 6 (b), the metal is washed away. The sample 20 of the composite particle 22 is bound to the molecular recognition functional substance 10 which is unevenly distributed in the first region 11a on the layer 2.

そして、プラズモン共鳴波長の光を発する半導体レーザーなどの光照射部30により、ビームスプリッター32を介してセンサ基板100に単色光31を照射すると、電場増強が大きい第1領域11に捕捉された複合粒子22の標識化抗体21が強く蛍光発光し、この蛍光を光反応信号として検出する光センサなどの光検出部33により検出することで、検体20を高感度に検出できる。 Then, when the sensor substrate 100 is irradiated with the monochromatic light 31 via the beam splitter 32 by the light irradiation unit 30 such as a semiconductor laser that emits light having a plasmon resonance wavelength, the composite particles captured in the first region 11 where the electric field enhancement is large. The labeled antibody 21 of 22 emits strong fluorescence, and the sample 20 can be detected with high sensitivity by detecting the fluorescence with a photodetector 33 such as a photosensor that detects this fluorescence as a photoreaction signal.

光照射部30としては、公知の技術を特に限定することなく利用することができ、例えば、半導体レーザー、ガスレーザー等のレーザー光源を利用することができる。なお、光照射部30としては、検体20と相互作用が小さい波長の励起光を照射する光源を利用してもよい。 As the light irradiation unit 30, known techniques can be used without particular limitation, and for example, a laser light source such as a semiconductor laser or a gas laser can be used. As the light irradiation unit 30, a light source that irradiates excitation light having a wavelength that has a small interaction with the sample 20 may be used.

光検出部33としては、特定の波長帯の光を分光し、検出できるものであれば公知の技術を特に限定無く利用することができ、例えば、光を分光するために特定の波長帯を透過させる干渉フィルター、回折格子を用いて分光するツェルニーターナ―型分光器、および、エシェル型分光器等を利用することができる。 As the light detection unit 33, a known technique can be used without particular limitation as long as it can disperse light in a specific wavelength band and can detect it. For example, it transmits light in a specific wavelength band in order to disperse light. It is possible to use an interference filter, a Zellny turner type spectroscope that disperses using a diffraction lattice, an Echel type spectroscope, and the like.

図1に示されるナノ構造体、および、上述の第1被覆分子、第2被覆分子ならびに分子認識機能物質を用いて、図5に示される製造方法により実施の形態1に係るセンサ基板を製造し、標識化抗体および検体(インフルエンザウィルス核蛋白質)を用いたサンドイッチ型の蛍光イムノアッセイを行った所、図4に示されるように分子認識機能物質を金属層上に均等に分布させ、従来の方法で製造したセンサ基板で同様のサンドイッチ型の蛍光イムノアッセイを行った場合と比べて、数十倍以上の光信号強度を得ることが出来た。さらに、実施の形態1に係るセンサ基板では、検体が入っていない検査液で生じる非特異吸着によるノイズは、従来の方法で製造したセンサ基板に比べて、数分の1以下に低減し、100倍以上の高感度化を実現できることが確認された。 Using the nanostructure shown in FIG. 1, the first coated molecule, the second coated molecule, and the molecular recognition functional substance described above, the sensor substrate according to the first embodiment is manufactured by the manufacturing method shown in FIG. , A sandwich-type fluorescent immunoassay using a labeled antibody and a sample (influenza virus nuclear protein) was performed. As shown in FIG. 4, the molecular recognition functional substance was evenly distributed on the metal layer, and the conventional method was used. Compared with the case where the same sandwich type fluorescence immunoassay was performed on the manufactured sensor substrate, it was possible to obtain an optical signal intensity several tens of times higher. Further, in the sensor substrate according to the first embodiment, the noise due to non-specific adsorption generated in the test solution containing no sample is reduced to less than a fraction of that of the sensor substrate manufactured by the conventional method, and is 100. It was confirmed that it was possible to achieve more than double the sensitivity.

なお、本実施の形態では、蛍光イムノアッセイ法による検出の例を説明したが、これに限らず、表面プラズモン増強ラマン法などの局在表面プラズモン共鳴による検出を行う方法であれば、同様の効果がある。分子認識機能物質の例として、抗体の場合を記載したが、これに限らず、プロテインA/Gのようなタンパク質、または、表面修飾したナノ粒子なども利用可能である。 In this embodiment, an example of detection by the fluorescence immunoassay method has been described, but the same effect can be obtained if the method is not limited to this and the detection is performed by localized surface plasmon resonance such as the surface plasmon enhancement Raman method. is there. The case of an antibody has been described as an example of a molecular recognition functional substance, but the case is not limited to this, and proteins such as protein A / G, surface-modified nanoparticles, and the like can also be used.

(実施の形態2)
次に、実施の形態2に係るセンサ基板の製造方法について、図7を用いて説明する。なお、以下の実施の形態2の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。実施の形態2に係るセンサ基板の製造方法では、局在表面プラズモン共鳴を利用して、第2被覆分子を金属層上に結合させる前に、電場増強される第1領域に第1被覆分子を局所的に結合させる。
(Embodiment 2)
Next, a method of manufacturing the sensor substrate according to the second embodiment will be described with reference to FIG. 7. In the following description of the second embodiment, the differences from the first embodiment will be mainly described, and the description of the common points will be omitted or simplified. In the method for manufacturing a sensor substrate according to the second embodiment, the localized surface plasmon resonance is used to apply the first coated molecule to the first region where the electric field is enhanced before the second coated molecule is bonded onto the metal layer. Combine locally.

図7は、実施の形態2に係るセンサ基板110の製造方法の工程概略図である。実施の形態2に係るセンサ基板110の製造方法では、実施の形態1と同様の、複数の凸部2aが間隙を挟んで隣接配置された構造を有する金属層2が基板1上に形成されたナノ構造体40を用いる。図7の(a)に示されるように、第1被覆分子9の前駆体を含む反応溶液50中にナノ構造体40を浸漬し、プラズモン共鳴波長の単色光51を照射する。反応溶液50は、第1被覆分子9の前駆体を、水またはエタノールなどの溶媒に溶解させた溶液である。具体的に、反応溶液50に含まる前駆体は、一方の末端に金属層と結合する結合基を有し、他方の末端に分子認識機能物質と結合する官能基を有する第1被覆分子9の、結合基が光解離性保護基で保護された分子である。第1被覆分子9は、実施の形態1と同様の分子であり、例えば、Carboxy−EG−undecanethiolであるとよい。そして、結合基であるチオール基が、光解離性保護基、例えば、ニトロベンジル基またはクマリン誘導体基と結合されて、いわゆるケージド化合物が合成され、第1被覆分子9の前駆体が得られる。ケージド化合物の合成法などについては、例えば、特開2003−321479号公報(特許文献3)などに記載されており、反応に用いる光解離性保護基導入剤が東京化成工業株式会社などで販売されている。 FIG. 7 is a process schematic diagram of a method for manufacturing the sensor substrate 110 according to the second embodiment. In the method for manufacturing the sensor substrate 110 according to the second embodiment, a metal layer 2 having a structure in which a plurality of convex portions 2a are arranged adjacent to each other with a gap thereof is formed on the substrate 1 as in the first embodiment. The nanostructure 40 is used. As shown in FIG. 7A, the nanostructure 40 is immersed in the reaction solution 50 containing the precursor of the first coating molecule 9, and is irradiated with monochromatic light 51 having a plasmon resonance wavelength. The reaction solution 50 is a solution in which the precursor of the first coating molecule 9 is dissolved in a solvent such as water or ethanol. Specifically, the precursor contained in the reaction solution 50 is the first coated molecule 9 having a linking group that binds to the metal layer at one end and a functional group that binds to the molecular recognition functional substance at the other end. , A molecule whose binding group is protected by a photodissociative protective group. The first coated molecule 9 is a molecule similar to that of the first embodiment, and may be, for example, Carboxy-EG 6- undekanethial. Then, the thiol group, which is a binding group, is bonded to a photodissociative protecting group, for example, a nitrobenzyl group or a coumarin derivative group to synthesize a so-called caged compound, and a precursor of the first coating molecule 9 is obtained. A method for synthesizing a caged compound is described in, for example, Japanese Patent Application Laid-Open No. 2003-321479 (Patent Document 3), and a photodissociative protecting group-introducing agent used in the reaction is sold by Tokyo Chemical Industry Co., Ltd. and the like. ing.

例えば、第1被覆分子9として、Carboxy−EG−undecanethiolを用いた場合、第1被覆分子9と光解離性保護基導入剤である2−ニトロベンジルブロマイドとを反応させると、下記反応式(1)の反応により、2−ニトロベンジルブロマイドの臭素が脱離して、Carboxy−EG−undecanethiolの硫黄と結合し、下記反応式(1)の右辺に示される前駆体が得られる。このように、前駆体は、第1被覆分子9の結合基が保護された構造であるため、保護前の第1被覆分子9よりも金属層と反応しにくい、金属層に対して不活性な分子である。 For example, when Carboxy-EG 6- undekanethyl is used as the first coating molecule 9, when the first coating molecule 9 is reacted with 2-nitrobenzyl bromide, which is a photodissociable protecting group-introducing agent, the following reaction formula ( By the reaction of 1), the bromine of 2-nitrobenzyl bromide is eliminated and combined with the sulfur of Carboxy-EG 6- undekanethyl to obtain the precursor shown on the right side of the following reaction formula (1). As described above, since the precursor has a structure in which the binding group of the first coating molecule 9 is protected, it is less likely to react with the metal layer than the first coating molecule 9 before protection, and is inactive with respect to the metal layer. It is a molecule.

HOOC−EG−(CH11−SH + Br−CH−CNO
→ HOOC−EG−(CH11−S−CH−CNO (1)
HOOC−EG−(CH11−S−CH−CNO
→ HOOC−EG−(CH11−SH+OHC−CNO (2)
HOOC-EG 6- (CH 2 ) 11- SH + Br-CH 2- C 6 H 4 NO 2
→ HOOC-EG 6- (CH 2 ) 11- S-CH 2- C 6 H 4 NO 2 (1)
HOOC-EG 6- (CH 2 ) 11- S-CH 2- C 6 H 4 NO 2
→ HOOC-EG 6- (CH 2 ) 11- SH + OHC-C 6 H 4 NO (2)

得られた前駆体に紫外域から近紫外域の波長の光を照射すると、上記反応式(2)に示されるように、ニトロベンジル基が解離し、第1被覆分子9であるCarboxy−EG−undecanethiolが生成し、金などの金属と結合できるようになる。 When the obtained precursor is irradiated with light having a wavelength in the ultraviolet to near-ultraviolet region, the nitrobenzyl group is dissociated as shown in the above reaction formula (2), and Carboxy-EG 6 which is the first coating molecule 9 is dissociated. -Benzyl is generated and can be bonded to metals such as gold.

通常、反応式(2)で示される反応は、紫外域から近紫外域の波長の光の照射により生じるが、光の強度が強い場合には二光子反応によって、可視光域から近赤外域の波長の光の照射でも生じる。図7の(a)に示されるように、プラズモン共鳴波長の単色光51を照射すると、凸部2aの間隙部近傍の第1領域11に電場増強が生じる。そのため、可視光域から近赤外域の波長の光を照射した場合に、電場増強が大きい第1領域11では、反応式(2)の反応が進行し、前駆体から光解離性保護基が解離して、第1領域11で第1被覆分子9であるCarboxy−EG−undecanethiolが生成する。 Normally, the reaction represented by the reaction formula (2) is caused by irradiation with light having a wavelength in the ultraviolet to near-ultraviolet region, but when the light intensity is strong, it is caused by a two-photon reaction in the visible to near-infrared region. It also occurs when irradiated with light of a wavelength. As shown in FIG. 7A, when monochromatic light 51 having a plasmon resonance wavelength is irradiated, an electric field enhancement occurs in the first region 11 near the gap portion of the convex portion 2a. Therefore, when the light having a wavelength in the visible light region to the near infrared region is irradiated, the reaction of the reaction formula (2) proceeds in the first region 11 where the electric field enhancement is large, and the photodissociative protecting group is dissociated from the precursor. Then, in the first region 11, the first coating molecule 9, Carboxy-EG 6- underkanethial, is generated.

そして、図7の(b)に示されるように、金属層2上の第1領域11に第1被覆分子9が結合し、官能基を末端に有する第1被覆分子9を含むSAM膜が形成される。前駆体から光解離性保護基を解離させ、金属層2上の第1領域11に第1被覆分子9を結合させる場合、300mW/cm以上1W/cm以下のレーザー光が金属層2に10分程度照射されるとよい。 Then, as shown in FIG. 7 (b), the first coating molecule 9 is bound to the first region 11 on the metal layer 2, and a SAM film containing the first coating molecule 9 having a functional group at the end is formed. Will be done. When the photodissociative protecting group is dissociated from the precursor and the first coating molecule 9 is bonded to the first region 11 on the metal layer 2, laser light of 300 mW / cm 2 or more and 1 W / cm 2 or less is applied to the metal layer 2. It is recommended to irradiate for about 10 minutes.

次に、図7の(c)に示されるように、一方の末端が金属層2と結合し、他方の末端が分子認識機能物質10に対して不活性な第2被覆分子5、例えば、実施の形態1と同様のHydroxy−EG−undecanethiolを含む水溶液53を金属層2に一定時間接触させる。水溶液53を金属層2に一定時間接触させることで、図7の(d)に示されるように、第1領域11よりもプラズモン共鳴波長による電場増強が小さいために第1被覆分子9が結合していない第2領域12に、第2被覆分子5aが結合し、第2被覆分子5aを含むSAM膜が形成される。 Next, as shown in FIG. 7 (c), a second coated molecule 5 having one end bonded to the metal layer 2 and the other end inactive with respect to the molecular recognition functional substance 10, for example, is carried out. An aqueous solution 53 containing the same Hydroxy-EG 6- underkanethyl as in Form 1 of No. 1 is brought into contact with the metal layer 2 for a certain period of time. When the aqueous solution 53 is brought into contact with the metal layer 2 for a certain period of time, as shown in FIG. 7D, the first coating molecule 9 is bound because the electric field enhancement due to the plasmon resonance wavelength is smaller than that of the first region 11. The second coated molecule 5a is bound to the second region 12 which is not covered, and a SAM film containing the second coated molecule 5a is formed.

そして、第1被覆分子9のカルボキシ基などの官能基と抗体などの分子認識機能物質10とを、上述のNHSエステルを経る方法などの化学反応で結合させることで、図7の(e)に示されるように、第2領域12よりも電場増強が大きい、隣接する凸部2aの間隙開口部近傍の第1領域11aに分子認識機能物質10が偏在した、実施の形態2に係るセンサ基板110が製造される。 Then, by binding a functional group such as a carboxy group of the first coated molecule 9 and a molecular recognition functional substance 10 such as an antibody by a chemical reaction such as the method via the NHS ester described above, (e) of FIG. 7 is obtained. As shown, the sensor substrate 110 according to the second embodiment, wherein the molecular recognition functional substance 10 is unevenly distributed in the first region 11a near the gap opening of the adjacent convex portion 2a, which has a larger electric field enhancement than the second region 12. Is manufactured.

以上のような製造方法により、作成したセンサ基板110は、実施の形態1と同様に、局在表面プラズモン共鳴による電場増強が大きい第1領域11aに局所的に分子認識機能物質10が結合されているため、高感度の検出が可能である。 In the sensor substrate 110 produced by the above manufacturing method, the molecular recognition functional substance 10 is locally bound to the first region 11a in which the electric field enhancement due to the localized surface plasmon resonance is large, as in the first embodiment. Therefore, highly sensitive detection is possible.

(変形例)
次に、実施の形態2の変形例に係るセンサ基板の製造方法について、図8を用いて説明する。実施の形態2の変形例に係るセンサ基板の製造方法は、第1被覆分子の官能基を光解離性保護基により保護された前駆体を用いる。
(Modification example)
Next, a method of manufacturing the sensor substrate according to the modified example of the second embodiment will be described with reference to FIG. The method for manufacturing the sensor substrate according to the modified example of the second embodiment uses a precursor in which the functional group of the first coating molecule is protected by a photodispersible protecting group.

図8は、実施の形態2の変形例に係るセンサ基板120の製造方法の工程概略図である。実施の形態2の変形例に係るセンサ基板120の製造方法では、実施の形態1と同様の、複数の凸部2aが間隙を挟んで隣接配置された構造を有する金属層2が基板1上に形成されたナノ構造体40を用いる。 FIG. 8 is a process schematic diagram of a method of manufacturing the sensor substrate 120 according to the modified example of the second embodiment. In the method for manufacturing the sensor substrate 120 according to the modified example of the second embodiment, a metal layer 2 having a structure in which a plurality of convex portions 2a are arranged adjacent to each other with a gap thereof is provided on the substrate 1 as in the first embodiment. The formed nanostructure 40 is used.

図8の(a)に示されるように、前駆体56を含む水溶液55の中に置き、水溶液4を金属層2上に室温で一晩接触させる。 As shown in FIG. 8A, the aqueous solution 55 is placed in the aqueous solution 55 containing the precursor 56, and the aqueous solution 4 is brought into contact with the metal layer 2 at room temperature overnight.

実施の形態2の変形例に係る前駆体56は、第1被覆分子9の官能基を光解離性保護基により保護した第1被覆分子9の前駆体である。実施の形態2に係る前駆体から光解離性保護基導入剤の種類を変更することで、第1被覆分子9の結合基ではなく、官能基が保護される。例えば、第1被覆分子9として、Carboxy−EG−undecanethiolを用いた場合、第1被覆分子9と光解離性保護基導入剤として(2−ニトロフェニル)ジアゾメタンとを反応させることで、官能基であるカルボキシ基を保護した前駆体56が得られる。このように、前駆体56は、第1被覆分子9の官能基が保護された構造であるため、保護前の第1被覆分子9よりも分子認識機能物質と結合しにくい、分子認識機能物質に対して不活性な分子である。 The precursor 56 according to the modified example of the second embodiment is a precursor of the first coated molecule 9 in which the functional group of the first coated molecule 9 is protected by a photodispersible protecting group. By changing the type of the photodissociative protecting group-introducing agent from the precursor according to the second embodiment, not the binding group of the first coating molecule 9 but the functional group is protected. For example, when Carboxy-EG 6- undekanethiol is used as the first coated molecule 9, the functional group is formed by reacting the first coated molecule 9 with (2-nitrophenyl) diazomethane as a photodissociative protecting group introducer. A precursor 56 having a protected carboxy group is obtained. As described above, since the precursor 56 has a structure in which the functional group of the first coated molecule 9 is protected, it becomes a molecular recognition functional substance that is less likely to bind to the molecular recognition functional substance than the first coated molecule 9 before protection. On the other hand, it is an inactive molecule.

水溶液55を金属層2に一定時間接触させることで、図8の(b)に示されるように、前駆体56が金属層2上に均一に結合し、前駆体56を含むSAM膜が形成される。 By bringing the aqueous solution 55 into contact with the metal layer 2 for a certain period of time, the precursor 56 is uniformly bonded onto the metal layer 2 as shown in FIG. 8 (b), and a SAM film containing the precursor 56 is formed. To.

図8の(c)に示されるように、プラズモン共鳴波長の単色光57を照射すると、第1領域11に電場増強が生じ、前駆体56から光解離性保護基が解離する。これにより、図8の(d)に示されるように、第1領域11に第1被覆分子9が生成し、第1被覆分子9を含むSAM膜が形成される。第1領域11よりも電場増強が小さい第2領域12には、官能基が保護された前駆体56aを含むSAM膜が残る。図8の(e)に示されるように、第1被覆分子9のカルボキシ基に抗体などの分子認識機能物質10を結合させることで、隣接する凸部2aの間隙開口部近傍の第1領域11aに抗体などの分子認識機能物質10を結合させることができる。ただし、この場合、第1領域11aよりも電場増強が小さい第2領域12には、光解離性保護基で保護された官能基を有する前駆体56aが残るため、光解離性保護基が解離しないように、紫外線カットフィルタ等でセンサ基板120を保護する必要がある。 As shown in FIG. 8 (c), when monochromatic light 57 having a plasmon resonance wavelength is irradiated, an electric field enhancement occurs in the first region 11, and a photodissociative protecting group is dissociated from the precursor 56. As a result, as shown in FIG. 8D, the first coated molecule 9 is generated in the first region 11, and the SAM film containing the first coated molecule 9 is formed. A SAM film containing a functional group-protected precursor 56a remains in the second region 12, which has a smaller electric field enhancement than the first region 11. As shown in FIG. 8 (e), by binding a molecular recognition functional substance 10 such as an antibody to the carboxy group of the first coating molecule 9, the first region 11a near the gap opening of the adjacent convex portion 2a A molecular recognition functional substance 10 such as an antibody can be bound to. However, in this case, the photodissociative protecting group does not dissociate because the precursor 56a having the functional group protected by the photodissociative protecting group remains in the second region 12 where the electric field enhancement is smaller than that of the first region 11a. As described above, it is necessary to protect the sensor substrate 120 with an ultraviolet cut filter or the like.

以上のように、実施の形態2および実施の形態2に係る製造方法では、第1被覆分子の結合基または官能基を光解離性保護基で保護した前駆体を金属層上に配置し、金属層に、局在表面プラズモン共鳴を生じさせる波長の光を照射して、前駆体の光解離性保護基が解離した第1被覆分子を、第1領域に結合させる。これにより、製造したセンサ基板は、実施の形態1と同様に、高感度の検出が可能である。また、光解離性保護基の種類によって、保護する対象、および、光解離性保護基を解離させるための条件を変えることができるため、センサ基板を製造しやすくなる。 As described above, in the second embodiment and the production method according to the second embodiment, a precursor in which the binding group or functional group of the first coating molecule is protected by a photodispersible protecting group is arranged on the metal layer to form a metal. The layer is irradiated with light of a wavelength that causes localized surface plasmon resonance, and the first coated molecule in which the photodissociable protecting group of the precursor is dissociated is bound to the first region. As a result, the manufactured sensor substrate can be detected with high sensitivity as in the first embodiment. Further, since the object to be protected and the conditions for dissociating the photodissociable protecting group can be changed depending on the type of the photodissociable protecting group, the sensor substrate can be easily manufactured.

(他の実施の形態)
以上、本開示に係るセンサ基板の製造方法、センサ基板および検出装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
(Other embodiments)
The method for manufacturing the sensor substrate, the sensor substrate, and the detection device according to the present disclosure have been described above based on the embodiments, but the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the embodiment, and other forms constructed by combining some components in the embodiment are also included in the scope of the present disclosure. included.

また、上記の各実施の形態は、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, each of the above embodiments can be changed, replaced, added, omitted, etc. within the scope of claims or the equivalent scope thereof.

例えば、上記実施の形態では、図7に示される製造方法では、第2領域に第2被覆分子を結合させているが、これに限らない。例えば、金属層上に第2被覆分子を結合させていない図7の(b)に示される状態で、第1被覆分子に分子認識機能物質を結合させて、第2領域に第2被覆分子が結合されていないセンサ基板が製造されてもよい。 For example, in the above embodiment, in the production method shown in FIG. 7, the second coating molecule is bound to the second region, but the present invention is not limited to this. For example, in the state shown in FIG. 7 (b) in which the second coated molecule is not bound on the metal layer, the molecular recognition functional substance is bound to the first coated molecule, and the second coated molecule is formed in the second region. Uncoupled sensor substrates may be manufactured.

本開示に係るセンサ基板は、ウィルスなどの病原体や、花粉や食物アレルギーなどのアレルゲンを検出するセンサおよび検出装置に利用できる。 The sensor substrate according to the present disclosure can be used as a sensor and a detection device for detecting pathogens such as viruses and allergens such as pollen and food allergies.

1 基板
2、62 金属層
2a、62a、70 凸部
3 間隙
4、8、53、55 水溶液
5、5a 第2被覆分子
6、31、51、57 単色光
9 第1被覆分子
10 分子認識機能物質
11、11a、11b 第1領域
12 第2領域
19 検査液
20 検体
21、21a 標識化抗体
22 複合粒子
30 光照射部
32 ビームスプリッター
33 光検出部
40、45 ナノ構造体
50 反応溶液
56、56a 前駆体
60 微細突起
61 樹脂基板
65 被覆分子
71、72 領域
100、110、120、200 センサ基板
300 検出装置
1 Substrate 2, 62 Metal layer 2a, 62a, 70 Convex part 3 Gap 4, 8, 53, 55 Aqueous solution 5, 5a Second coating molecule 6, 31, 51, 57 Monochromatic light 9 First coating molecule 10 Molecular recognition functional substance 11, 11a, 11b 1st region 12 2nd region 19 Test solution 20 Specimen 21, 21a Labeled antibody 22 Composite particle 30 Light irradiation unit 32 Beam splitter 33 Light detection unit 40, 45 Nanostructure 50 Reaction solution 56, 56a precursor Body 60 Fine protrusions 61 Resin substrate 65 Coating molecules 71, 72 Regions 100, 110, 120, 200 Sensor substrate 300 Detection device

Claims (10)

基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板の製造方法であって、
前記金属層上に、第1被覆分子を結合させる結合工程と、
所定の検体と特異的に結合する分子認識機能物質を前記第1被覆分子に結合させて固定化する固定化工程と、を含み、
前記結合工程では、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射して、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で、前記第1被覆分子を結合させ、
前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい、
センサ基板の製造方法。
A method for manufacturing a sensor substrate having a metal layer on which localized surface plasmon resonance occurs on the substrate.
A bonding step of binding the first coating molecule onto the metal layer,
It includes an immobilization step of binding and immobilizing a molecular recognition functional substance that specifically binds to a predetermined sample to the first coated molecule.
In the bonding step, the metal layer is irradiated with light having a wavelength that causes the localized surface plasmon resonance, so that the first region on the metal layer has a higher density than the second region on the metal layer. , The first coating molecule is bound to
The electric field enhancement due to the localized surface plasmon resonance in the first region is larger than the electric field enhancement in the second region.
Manufacturing method of sensor board.
前記結合工程は、
一方の末端は前記金属層と結合し、かつ、他方の末端は前記分子認識機能物質および前記検体に対して不活性である第2被覆分子を前記金属層と結合させる工程と、
前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記金属層に結合された前記第2被覆分子のうち、前記第1領域の前記第2被覆分子を除去する工程と、
前記第1被覆分子を、前記第2被覆分子が除去された前記第1領域に結合させる工程と、を含む、
請求項1に記載のセンサ基板の製造方法。
The joining step is
One end is bound to the metal layer, and the other end is a step of binding the molecular recognition functional substance and a second coating molecule that is inactive to the sample to the metal layer.
By irradiating the metal layer with light having a wavelength that causes the localized surface plasmon resonance, the second coating molecule in the first region among the second coating molecules bonded to the metal layer is removed. And the process to do
Includes a step of binding the first coated molecule to the first region from which the second coated molecule has been removed.
The method for manufacturing a sensor substrate according to claim 1.
前記第1被覆分子は、一方の末端に前記金属層と結合する結合基を有し、他方の末端に前記分子認識機能物質と結合する官能基を有し、
前記結合工程では、前記第1被覆分子の前記結合基または前記官能基を光解離性保護基で保護した前駆体を前記金属層上に配置し、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射して、前記前駆体の前記光解離性保護基が解離した前記第1被覆分子を、前記第1領域に結合させる、
請求項1に記載のセンサ基板の製造方法。
The first coated molecule has a binding group that binds to the metal layer at one end and a functional group that binds to the molecular recognition functional substance at the other end.
In the binding step, a precursor in which the binding group or the functional group of the first coating molecule is protected with a photodissociative protecting group is placed on the metal layer, and the localized surface plasmon resonance is applied to the metal layer. By irradiating with light of a wavelength to be generated, the first coating molecule in which the photodispersible protecting group of the precursor is dissociated is bound to the first region.
The method for manufacturing a sensor substrate according to claim 1.
前記前駆体の前記結合基は、前記光解離性保護基に保護されており、
前記結合工程では、前記前駆体を含む溶液を前記金属層に接触させた状態で、前記金属層に、前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記前駆体の前記光解離性保護基が解離してなる前記第1被覆分子を、前記第1領域に結合させる、
請求項3に記載のセンサ基板の製造方法。
The binding group of the precursor is protected by the photodissociative protecting group.
In the bonding step, the metal layer is irradiated with light having a wavelength that causes the localized surface plasmon resonance in a state where the solution containing the precursor is in contact with the metal layer. The first coating molecule formed by dissociating the photodissociable protective group is bound to the first region.
The method for manufacturing a sensor substrate according to claim 3.
前記結合工程では、前記第1被覆分子を前記第1領域に結合させた後、一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質および前記検体に対して不活性な第2被覆分子を、前記第2領域に結合させる、
請求項4に記載のセンサ基板の製造方法。
In the binding step, after the first coated molecule is bound to the first region, one end binds to the metal layer and the other end is inactive to the molecular recognition functional substance and the sample. The second coated molecule is attached to the second region.
The method for manufacturing a sensor substrate according to claim 4.
前記前駆体の前記官能基は、前記光解離性保護基に保護されており、
前記結合工程では、前記前駆体を前記金属層上に結合させた後、前記金属層に前記局在表面プラズモン共鳴を生じさせる波長の光を照射することにより、前記第1領域に結合した前記前駆体から前記光解離性保護基を解離させる、
請求項3に記載のセンサ基板の製造方法。
The functional group of the precursor is protected by the photodissociative protecting group.
In the binding step, the precursor is bound to the first region by binding the precursor onto the metal layer and then irradiating the metal layer with light having a wavelength that causes the localized surface plasmon resonance. Dissociate the photodissociative protecting group from the body,
The method for manufacturing a sensor substrate according to claim 3.
基板上に、局在表面プラズモン共鳴が生じる金属層を有するセンサ基板であって、
前記金属層上に固定化され、所定の検体と特異的に結合する分子認識機能物質を備え、
前記分子認識機能物質は、前記金属層上の第1領域に、前記金属層上の第2領域よりも高い密度で存在し、
前記第1領域での前記局在表面プラズモン共鳴による電場増強は、前記第2領域での前記電場増強より大きい、
センサ基板。
A sensor substrate having a metal layer on which localized surface plasmon resonance occurs.
It is provided with a molecular recognition functional substance that is immobilized on the metal layer and specifically binds to a predetermined sample.
The molecular recognition functional substance is present in the first region on the metal layer at a higher density than the second region on the metal layer.
The electric field enhancement due to the localized surface plasmon resonance in the first region is larger than the electric field enhancement in the second region.
Sensor board.
一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質と結合する第1被覆分子と、
一方の末端は前記金属層と結合し、他方の末端は前記分子認識機能物質および検体に対して不活性な第2被覆分子と、を備え、
前記第1被覆分子は、前記第1領域に、前記第2領域よりも高い密度で結合しており、
前記第2被覆分子は、前記第2領域に、前記第1領域よりも高い密度で結合しており、
前記分子認識機能物質は、前記第1被覆分子に結合されている、
請求項7に記載のセンサ基板。
One end is bound to the metal layer, and the other end is a first coated molecule that binds to the molecular recognition functional substance.
One end is bound to the metal layer and the other end comprises the molecular recognition functional material and a second coated molecule that is inert to the sample.
The first coated molecule is bound to the first region at a higher density than the second region.
The second coated molecule is bound to the second region at a higher density than the first region.
The molecular recognition functional substance is bound to the first coated molecule.
The sensor substrate according to claim 7.
前記分子認識機能物質は抗体であり、
前記金属層は、金、銀、または、金もしくは銀を主成分とする合金からなり、
前記第1被覆分子は、一方の末端にチオール基を有し、他方の末端に前記分子認識機能物質と結合する官能基を有し、前記官能基に接続する親水基の繰り返し配列を有し、前記金属層上で自己組織化単分子膜を形成しており、
前記第2被覆分子は、一方の末端にチオール基を有し、他方の末端に水酸基を有し、前記水酸基に接続する親水基の繰り返し配列を有し、前記金属層上で自己組織化単分子膜を形成している、
請求項8に記載のセンサ基板。
The molecular recognition functional substance is an antibody.
The metal layer is made of gold, silver, or an alloy containing gold or silver as a main component.
The first coated molecule has a thiol group at one end, a functional group that binds to the molecular recognition functional substance at the other end, and a repeating sequence of hydrophilic groups that connect to the functional group. A self-assembled monolayer is formed on the metal layer,
The second coated molecule has a thiol group at one end, a hydroxyl group at the other end, a repeating sequence of hydrophilic groups connected to the hydroxyl group, and is a self-assembled monolayer on the metal layer. Forming a film,
The sensor substrate according to claim 8.
請求項7から9のいずれか1項に記載のセンサ基板と、
前記局在表面プラズモン共鳴を生じさせる波長の光を照射する光照射部と、
前記センサ基板からの光反応信号を検出する光検出部を有する、
検出装置。
The sensor substrate according to any one of claims 7 to 9,
A light irradiation unit that irradiates light having a wavelength that causes the localized surface plasmon resonance,
It has a photodetector that detects a photoreaction signal from the sensor substrate.
Detection device.
JP2019054567A 2019-03-22 2019-03-22 Sensor substrate manufacturing method, sensor substrate, and detection device Pending JP2020153904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054567A JP2020153904A (en) 2019-03-22 2019-03-22 Sensor substrate manufacturing method, sensor substrate, and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054567A JP2020153904A (en) 2019-03-22 2019-03-22 Sensor substrate manufacturing method, sensor substrate, and detection device

Publications (1)

Publication Number Publication Date
JP2020153904A true JP2020153904A (en) 2020-09-24

Family

ID=72558739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054567A Pending JP2020153904A (en) 2019-03-22 2019-03-22 Sensor substrate manufacturing method, sensor substrate, and detection device

Country Status (1)

Country Link
JP (1) JP2020153904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181196A1 (en) * 2021-02-26 2022-09-01 学校法人関西学院 Chip for sensing, method for manufacturing chip for sensing, kit for sensing, measurement method, and measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181196A1 (en) * 2021-02-26 2022-09-01 学校法人関西学院 Chip for sensing, method for manufacturing chip for sensing, kit for sensing, measurement method, and measurement device

Similar Documents

Publication Publication Date Title
JP3897703B2 (en) Sensor device and inspection method using the same
TWI296044B (en) Coupled waveguide-surface plasmon resonance biosensor
CN1930475A (en) Method to detect molecular binding by surface-enhanced Raman spectroscopy
KR101483725B1 (en) Method and Apparatus for Detecting a Specific Molecule Using Surface-Enhanced Raman Spectroscopy
JP5587816B2 (en) Nucleic acid analysis device and nucleic acid analysis apparatus
JP4247398B2 (en) Localized surface plasmon sensor
JP2020153904A (en) Sensor substrate manufacturing method, sensor substrate, and detection device
Tran et al. Gold nanoparticles are capped under the IRMOF-3 platform for in-situ surface-enhanced Raman scattering technique and optic fiber sensor
US11768155B2 (en) Detection device and detection method
Penon et al. Optimized immobilization of lectins using self-assembled monolayers on polysilicon encoded materials for cell tagging
WO2013080505A1 (en) Sensing device and sensing method using same
KR101768750B1 (en) A method and system for fluorescence-free detection of a target biomolecule using total internal reflection scattering
Kim et al. Label-free C-reactive protein SERS detection with silver nanoparticle aggregates
Moretta et al. Toward multi-parametric porous silicon transducers based on covalent grafting of Graphene oxide for biosensing applications
JP2013096939A (en) Optical device and detector
JP2006329631A (en) Detector of intermolecular interaction and molecule recovery device using it
JP5369172B2 (en) New mass spectrometry signal amplification technology
US20110195516A1 (en) Wire grid substrate structure and method for manufacturing such a substrate
JP2016509675A (en) Chemical detector
WO2019069717A1 (en) Sensor substrate, detection device, and method for manufacturing sensor substrate
KR101745897B1 (en) Method for Quantitative Screening of Viruses Using Total Internal Reflection Scattering
JP2009014491A (en) Target material detection element and target material detection device
JP5527096B2 (en) Measuring method of absolute value of electric field enhancement, measuring device of absolute value of electric field enhancement, evaluation method of measuring member, evaluation device of measuring member, analyte detecting method and analyte detecting device
JP6586867B2 (en) Electric field enhancing element and Raman spectrometer
JP2017191109A (en) Measurement method and measurement device using array type sensor used with enhanced electromagnetic field