JP2020153111A - Pier damage evaluation support device, evaluation method and program - Google Patents

Pier damage evaluation support device, evaluation method and program Download PDF

Info

Publication number
JP2020153111A
JP2020153111A JP2019051143A JP2019051143A JP2020153111A JP 2020153111 A JP2020153111 A JP 2020153111A JP 2019051143 A JP2019051143 A JP 2019051143A JP 2019051143 A JP2019051143 A JP 2019051143A JP 2020153111 A JP2020153111 A JP 2020153111A
Authority
JP
Japan
Prior art keywords
pier
degree
deterioration
superstructure
structural analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051143A
Other languages
Japanese (ja)
Other versions
JP7190700B2 (en
Inventor
州彦 宇野
Kunihiko Uno
州彦 宇野
光保 岩波
Mitsuho Iwanami
光保 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Penta Ocean Construction Co Ltd
Original Assignee
Tokyo Institute of Technology NUC
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Penta Ocean Construction Co Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2019051143A priority Critical patent/JP7190700B2/en
Publication of JP2020153111A publication Critical patent/JP2020153111A/en
Application granted granted Critical
Publication of JP7190700B2 publication Critical patent/JP7190700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To easily obtain a degree of pier damage when an external force acts thereon.SOLUTION: A computer device acquires data on a deterioration degree for each beam of an actual pier, and calculates a superstructure deterioration degree for a pier from the acquired data on a deterioration degree. The computer device stores, in a database, structural analysis results of the pier beam damage when external forces such as a berthing force, a level 1 seismic ground motion, and a level 2 seismic ground motion act. The computer device acquires the structural analysis results corresponding to the calculated superstructure deterioration degree from the database and outputs the same.SELECTED DRAWING: Figure 4

Description

本発明は、桟橋の損傷度を評価する技術に関する。 The present invention relates to a technique for evaluating the degree of damage to a pier.

桟橋は経年劣化していくため、定期的な点検と補修が必要である。例えば非特許文献1には、桟橋の詳細定期点検診断と、詳細定期点検診断より簡易に実施できる一般定期点検診断の各々に関し、点検項目及び判断基準が示されている。 As the pier deteriorates over time, regular inspections and repairs are required. For example, Non-Patent Document 1 describes inspection items and judgment criteria for each of a detailed periodic inspection diagnosis of a pier and a general periodic inspection diagnosis that can be carried out more easily than the detailed periodic inspection diagnosis.

国土交通省港湾局監修、「港湾の施設の維持管理技術マニュアル(改訂版)」一般財団法人沿岸技術研究センター、2018年7月、p.296、p.317Supervised by Port Bureau, Ministry of Land, Infrastructure, Transport and Tourism, "Maintenance and Management Technical Manual for Port Facilities (Revised Edition)", Coastal Technology Research Center, July 2018, p. 296, p. 317

外力に対する桟橋の損傷を評価するには、非特許文献1に記載された詳細定期点検診断を実施し、その結果に基づいた構造解析を行う必要がある。詳細定期点検診断の実施は、点検期間が長期に渡り、またコストもかかるため、外力に対する桟橋の損傷の評価を積極的に実施しにくい状況となっている。 In order to evaluate the damage of the pier due to the external force, it is necessary to carry out the detailed periodic inspection and diagnosis described in Non-Patent Document 1 and perform the structural analysis based on the result. Since the inspection period is long and the cost is high, it is difficult to positively evaluate the damage to the pier against external force.

上述の背景に鑑み、本発明は、外力が作用したときの桟橋の損傷の程度を簡易に取得可能とする手段を提供する。 In view of the above background, the present invention provides a means for easily obtaining the degree of damage to the pier when an external force is applied.

上述した課題を解決するために、想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得する判定結果取得手段と、前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算する計算手段と、前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する結果取得手段と、取得した前記構造解析結果を出力する出力手段とを備える桟橋の評価支援装置を第1の態様として提供する。 In order to solve the above-mentioned problems, the judgment was made based on the appearance of the evaluation target pier to be evaluated in the state where a database storing a plurality of structural analysis results of the pier superstructure to which the assumed external force was applied was constructed. The evaluation result acquisition means for acquiring the deterioration degree determination result of each beam, the calculation means for calculating the superstructure deterioration degree of the evaluation target pier using the deterioration degree determination result, and the evaluation target pier from the database. As the first aspect, a pier evaluation support device including a result acquisition means for acquiring the structural analysis result of the pier superstructure corresponding to the degree of deterioration of the superstructure and an output means for outputting the acquired structural analysis result is provided. To do.

第1の態様の評価支援装置によれば、外力が作用したときの桟橋の損傷の程度を簡易に取得することができる。 According to the evaluation support device of the first aspect, the degree of damage to the pier when an external force acts can be easily obtained.

第1の態様の評価支援装置において、前記計算手段は、前記評価対象桟橋の各梁に対して設定された補正係数及び前記劣化度判定結果を用いて計算される数値をそれぞれ積算することにより、前記評価対象桟橋の上部工劣化度を示す点数を計算する、という構成が第2の態様として採用されてもよい。 In the evaluation support device of the first aspect, the calculation means integrates the correction coefficient set for each beam of the evaluation target pier and the numerical value calculated using the deterioration degree determination result. A configuration in which a score indicating the degree of deterioration of the superstructure of the pier to be evaluated is calculated may be adopted as the second aspect.

第2の態様の評価支援装置によれば、劣化について梁の位置による桟橋全体への影響の程度を含めて点数を計算することで、構造解析結果を得ることができる。 According to the evaluation support device of the second aspect, the structural analysis result can be obtained by calculating the score including the degree of influence of the position of the beam on the entire pier for deterioration.

また、本発明は、第2の態様の評価支援装置において、前記各梁は、前記評価対象桟橋の法線平行方向の梁配列に応じてグループが形成され、前記計算手段における前記補正係数は、同一のグループに属する梁に対しては当該グループ固有の値をそれぞれ用いる、という構成を第3の態様として提供する。 Further, in the evaluation support device of the second aspect, the present invention forms a group of the beams according to the beam arrangement in the normal direction of the evaluation target pier, and the correction coefficient in the calculation means is calculated. As a third aspect, a configuration is provided in which a value unique to the group is used for each beam belonging to the same group.

第3の態様の評価支援装置によれば、桟橋の法線平行方向の梁の劣化について、梁の配列による桟橋全体への影響の程度を含めて点数を計算することで、構造解析結果を得ることができる。 According to the evaluation support device of the third aspect, the structural analysis result is obtained by calculating the score of the deterioration of the beam in the direction parallel to the normal of the pier, including the degree of influence of the beam arrangement on the entire pier. be able to.

また、本発明は、第2の態様の評価支援装置において、前記各梁は、前記評価対象桟橋の法線に対する梁向きに応じてグループが形成され、前記計算手段における前記補正係数は、同一のグループに属する梁に対しては当該グループ固有の値をそれぞれ用いる、という構成を第4の態様として提供する。 Further, in the evaluation support device of the second aspect of the present invention, the beams are grouped according to the beam direction with respect to the normal of the evaluation target pier, and the correction coefficient in the calculation means is the same. As a fourth aspect, a configuration is provided in which a value unique to the group is used for each beam belonging to the group.

第4の態様の評価支援装置によれば、梁の向きによる桟橋全体への影響の程度を含めて点数を計算することで、構造解析結果を得ることができる。 According to the evaluation support device of the fourth aspect, the structural analysis result can be obtained by calculating the score including the degree of influence of the direction of the beam on the entire pier.

また、本発明は、第1乃至4のいずれかの態様の評価支援装置において、前記出力手段は、前記各梁において予め定義されたレベルの損傷が発生することが予測される領域の面積を前記構造解析結果として出力する、という構成を第5の態様として提供する。 Further, according to the present invention, in the evaluation support device according to any one of the first to fourth aspects, the output means measures the area of a region where a predefined level of damage is predicted to occur in each beam. A configuration of outputting as a structural analysis result is provided as a fifth aspect.

第5の態様の評価支援装置によれば、損傷の程度を具体的に知ることができる。 According to the evaluation support device of the fifth aspect, the degree of damage can be specifically known.

また、本発明は、第1乃至5のいずれかの態様の評価支援装置において、将来予測の確率モデルを用いて、前記評価対象桟橋の将来の任意時点における上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する、という構成を第6の態様として提供する。 Further, according to the present invention, in the evaluation support device of any one of the first to fifth aspects, the upper part of the pier corresponds to the degree of deterioration of the superstructure at any time in the future of the pier to be evaluated by using the probability model of future prediction. As a sixth aspect, the configuration of acquiring the structural analysis result of the work is provided.

第6の態様の評価支援装置によれば、将来の時点における損傷の程度を取得することができる。 According to the evaluation support device of the sixth aspect, the degree of damage at a future time point can be obtained.

また、本発明は、想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得するステップと、前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算するステップと、前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得するステップと、取得した前記構造解析結果を出力するステップとを備える桟橋の評価方法を第7の態様として提供する。 Further, the present invention relates to each beam determined based on the appearance of the evaluation target pier to be evaluated in a state where a database storing a plurality of structural analysis results of the pier superstructure to which an assumed external force is applied is constructed. Corresponding to the step of acquiring the deterioration degree determination result, the step of calculating the superstructure deterioration degree of the evaluation target pier using the deterioration degree determination result, and the superstructure deterioration degree of the evaluation target pier from the database. A method for evaluating a pier including a step of acquiring a structural analysis result of the pier superstructure and a step of outputting the acquired structural analysis result is provided as a seventh aspect.

第7の態様の評価支援方法によれば、外力が作用したときの桟橋の損傷の程度を簡易に取得することができる。 According to the evaluation support method of the seventh aspect, the degree of damage to the pier when an external force acts can be easily obtained.

また、本発明は、想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、コンピュータを、評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得する判定結果取得手段と、前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算する計算手段と、前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する結果取得手段と、取得した前記構造解析結果を出力する出力手段として機能させるためのプログラムを第8の態様として提供する。 Further, in the present invention, a computer is determined based on the appearance of the evaluation target pier to be evaluated in a state where a database storing a plurality of structural analysis results of the pier superstructure to which an assumed external force is applied is constructed. The evaluation result acquisition means for acquiring the deterioration degree determination result of each beam, the calculation means for calculating the superstructure deterioration degree of the evaluation target pier using the deterioration degree determination result, and the evaluation target pier from the database. As the eighth aspect, a result acquisition means for acquiring the structural analysis result of the pier superstructure corresponding to the degree of deterioration of the superstructure and a program for functioning as an output means for outputting the acquired structural analysis result are provided.

第8の態様のプログラムによれば、外力が作用したときの桟橋の損傷の程度を簡易に取得することができる。 According to the program of the eighth aspect, the degree of damage to the pier when an external force is applied can be easily obtained.

本発明の実施形態に係るコンピュータ装置10のハードウェア構成を示したブロック図。The block diagram which showed the hardware structure of the computer apparatus 10 which concerns on embodiment of this invention. データベースDB1の一例を示した図。The figure which showed an example of the database DB1. コンピュータ装置10の機能ブロック図。The functional block diagram of the computer apparatus 10. コンピュータ装置10が行う処理の流れを示したフローチャート。The flowchart which showed the flow of processing performed by a computer apparatus 10. 桟橋の梁の劣化度の判定基準の一例を示した図。The figure which showed an example of the judgment criteria of the degree of deterioration of a beam of a pier. 桟橋Pの梁の劣化度の判定結果の一例を示した図。The figure which showed an example of the judgment result of the deterioration degree of the beam of a pier P. 桟橋Pの梁の補正係数を説明するための図。The figure for demonstrating the correction coefficient of the beam of a pier P. 桟橋Pの梁の補正係数を説明するための図。The figure for demonstrating the correction coefficient of the beam of a pier P. 変形例に係るコンピュータ装置10が行う処理の流れを示したフローチャート。The flowchart which showed the flow of the process performed by the computer apparatus 10 which concerns on a modification.

[実施形態]
図1は、本発明の一実施形態に係るコンピュータ装置10のハードウェア構成を示したブロック図である。コンピュータ装置10は、本発明に係る評価支援装置の一例であり、桟橋に外力が作用したときに生じる損傷に係る情報を出力する機能を有する。本実施形態においては、コンピュータ装置10は、パーソナルコンピュータである。
[Embodiment]
FIG. 1 is a block diagram showing a hardware configuration of a computer device 10 according to an embodiment of the present invention. The computer device 10 is an example of the evaluation support device according to the present invention, and has a function of outputting information on damage caused when an external force acts on the pier. In the present embodiment, the computer device 10 is a personal computer.

操作部104は、キーボードおよびマウスを有する。オペレータは、操作部104のキーボードやマウスを操作することにより、桟橋の評価に係る各種データを入力する。なお、各種データの入力は、キーボードやマウスを用いる構成に限定されるものではなく、例えば、音声入力や画像認識による入力で行われてもよい。ディスプレイ103は、コンピュータ装置10を操作するためのGUIや、桟橋の評価結果を表示する。 The operation unit 104 has a keyboard and a mouse. The operator inputs various data related to the evaluation of the pier by operating the keyboard and mouse of the operation unit 104. The input of various data is not limited to the configuration using a keyboard or mouse, and may be input by voice input or image recognition, for example. The display 103 displays a GUI for operating the computer device 10 and an evaluation result of the pier.

記憶部102は、ハードディスク装置を有し、取得したデータに基づいて桟橋の損傷に係る情報を出力するプログラムを記憶する。また、記憶部102は、複数の桟橋について、梁の劣化のパターンを複数設定し、設定したパターンのそれぞれについて外力が作用したときの構造解析の結果を格納したデータベースDB1を記憶する。 The storage unit 102 has a hard disk device and stores a program that outputs information related to damage to the pier based on the acquired data. Further, the storage unit 102 sets a plurality of beam deterioration patterns for the plurality of piers, and stores the database DB1 that stores the results of the structural analysis when an external force acts on each of the set patterns.

図2は、記憶部102が記憶するデータベースDB1の一例を示した図である。解析ケースの列には、梁の損傷のパターンを識別する番号が格納される。構造解析結果の列には、桟橋に対して外力が作用したときの損傷の構造解析結果が格納され、例えば、外力として桟橋に接岸する船舶から桟橋が受ける接岸力、レベル1地震動、レベル2地震動が作用したときの損傷の構造解析結果などが格納される。なお、図2に示した外力は一例である。外力は、前述のものに限定されるものではなく、クレーン作業荷重や牽引力などを含めてもよい。構造解析結果の列に格納されるデータは、本発明に係る構造解析結果の一例である。 FIG. 2 is a diagram showing an example of the database DB 1 stored in the storage unit 102. The analysis case column stores a number that identifies the pattern of beam damage. The column of structural analysis results stores the structural analysis results of damage when an external force acts on the pier. For example, the berthing force received by the pier from a ship berthing at the pier as an external force, level 1 seismic motion, and level 2 seismic motion. The structural analysis result of the damage when the action is performed is stored. The external force shown in FIG. 2 is an example. The external force is not limited to the above, and may include a crane working load, a traction force, and the like. The data stored in the structural analysis result column is an example of the structural analysis result according to the present invention.

なお、図2に示した例では、構造解析結果として、梁の総面積に対する有害ひび割れ領域の割合(面積率)、梁の総面積に対する降伏領域の割合(面積率)、梁の総面積に対する終局領域の割合(面積率)を示している。有害ひび割れ領域については、港湾の施設の技術上の基準に基づき、予め定められたひび割れ幅の限界値を超える場合を有害ひび割れとし、有害ひび割れ幅が存在する梁の領域を有害ひび割れ領域としている。降伏領域については、弾性範囲を超え、塑性領域に達している梁の領域とし、終局領域については、破断等の終局状態に至る梁の領域としている。なお、構造解析結果は、前述のものに限定されるものではなく、例えば許容応力に達している梁の領域等を含む構成であってもよく、任意の判定基準を満たす領域の割合(面積率)を格納できる。また、構造解析結果として格納される面積率については、前述の面積率に限定されるものではない。例えば、桟橋上部工の総面積に対して、損傷した梁の面積および損傷した梁に隣接する床版において損傷した面積が占める割合を面積率としてもよい。床版において損傷した面積は、例えば、床版を受け持つ梁において損傷した梁の本数に応じて求めてもよく、例えば、床版を受け持つ梁の数が4本であり、そのうちの1本の梁が損傷した場合には、床版面積の1/4が損傷しているとして面積を求めてもよい。 In the example shown in FIG. 2, as a result of structural analysis, the ratio of the harmful cracked area to the total area of the beam (area ratio), the ratio of the yield area to the total area of the beam (area ratio), and the final result to the total area of the beam. The ratio of the area (area ratio) is shown. Regarding the harmful crack area, based on the technical standards of the port facilities, the case where the limit value of the predetermined crack width is exceeded is regarded as the harmful crack, and the area of the beam where the harmful crack width exists is regarded as the harmful crack area. The yield region is the region of the beam that exceeds the elastic range and reaches the plastic region, and the ultimate region is the region of the beam that reaches the ultimate state such as fracture. The structural analysis result is not limited to the above-mentioned one, and may include, for example, a region of a beam that has reached the allowable stress, and the ratio of the region (area ratio) that satisfies an arbitrary judgment criterion. ) Can be stored. Further, the area ratio stored as the structural analysis result is not limited to the above-mentioned area ratio. For example, the area ratio may be the ratio of the damaged beam area and the damaged area in the floor slab adjacent to the damaged beam to the total area of the pier superstructure. The damaged area in the floor slab may be obtained, for example, according to the number of damaged beams in the beam in charge of the floor slab. For example, the number of beams in charge of the floor slab is four, and one of the beams is one of them. If is damaged, the area may be calculated assuming that 1/4 of the floor slab area is damaged.

損傷度の列には、損傷の構造解析結果から算出した桟橋の損傷度が格納される。損傷度とは、外力に応じた桟橋上部工の構造解析結果を一つの指標で表したものである。桟橋上部工とは、例えば桟橋の梁である。損傷度は、構造解析で得られた有害ひび割れ領域、降伏領域、終局領域の算出結果を予め定められた式に導入することにより算出される。上部工劣化度の列には、梁の損傷のパターンから算出した梁の上部工劣化度が格納される。梁の上部工劣化度の算出方法については後述する。 The damage degree column stores the damage degree of the pier calculated from the damage structure analysis result. The degree of damage is the result of structural analysis of the pier superstructure according to the external force expressed by one index. The pier superstructure is, for example, a beam of a pier. The degree of damage is calculated by introducing the calculation results of the harmful crack region, the yield region, and the ultimate region obtained by the structural analysis into a predetermined formula. The column of superstructure deterioration degree stores the beam superstructure deterioration degree calculated from the damage pattern of the beam. The method of calculating the degree of deterioration of the superstructure of the beam will be described later.

制御部101は、CPUおよびメモリを有し、記憶部102に記憶されているプログラムを実行する。CPUがメモリを使用してプログラムを実行することにより、桟橋の損傷に係る情報を出力する機能が実現する。 The control unit 101 has a CPU and a memory, and executes a program stored in the storage unit 102. When the CPU executes the program using the memory, the function of outputting the information related to the damage of the pier is realized.

図3は、制御部101のCPUがプログラムを実行することにより実現する機能ブロックを示した図である。データ取得部1001は、操作部104で入力された梁の劣化度を示す劣化度データを取得する。データ取得部1001は、本発明に係る判定結果取得手段の一例である。計算部1002は、データ取得部1001が取得した劣化度データから上部工劣化度を計算する。計算部1002は、本発明に係る計算手段の一例である。結果取得部1003は、計算部1002が計算した上部工劣化度に対応する桟橋の構造解析結果をデータベースDB1から取得する。結果取得部1003は、本発明に係る結果取得手段の一例である。出力部1004は、結果取得部1003が取得した構造解析結果をディスプレイ103で表示する。出力部1004は、本発明に係る出力手段の一例である。 FIG. 3 is a diagram showing a functional block realized by the CPU of the control unit 101 executing a program. The data acquisition unit 1001 acquires deterioration degree data indicating the deterioration degree of the beam input by the operation unit 104. The data acquisition unit 1001 is an example of the determination result acquisition means according to the present invention. The calculation unit 1002 calculates the superstructure deterioration degree from the deterioration degree data acquired by the data acquisition unit 1001. The calculation unit 1002 is an example of the calculation means according to the present invention. The result acquisition unit 1003 acquires the structural analysis result of the pier corresponding to the degree of deterioration of the superstructure calculated by the calculation unit 1002 from the database DB1. The result acquisition unit 1003 is an example of the result acquisition means according to the present invention. The output unit 1004 displays the structural analysis result acquired by the result acquisition unit 1003 on the display 103. The output unit 1004 is an example of the output means according to the present invention.

次に本実施形態に係る桟橋の損傷の評価方法について、図4のフローチャートを用いて説明する。オペレータは、損傷を評価する評価対象である実物の桟橋Pについて設計図を参照し、桟橋Pの梁を仮想的に表すモデルを作成する操作を操作部104で行う。桟橋Pは、本発明に係る評価対象桟橋である。コンピュータ装置10は、オペレータが行った操作に応じて桟橋Pのモデルを生成する(ステップS101)。次にオペレータは、生成したモデルに対し、桟橋Pの上部工である複数の梁の各々の劣化度を示す劣化度データを操作部104から入力し、コンピュータ装置10のデータ取得部1001は、入力される劣化度データを取得する(ステップS102)。劣化度データは、本発明に係る梁の劣化度判定結果の一例である。 Next, a method for evaluating damage to the pier according to the present embodiment will be described with reference to the flowchart of FIG. The operator refers to the design drawing of the actual pier P to be evaluated for damage, and the operation unit 104 performs an operation of creating a model that virtually represents the beam of the pier P. The pier P is an evaluation target pier according to the present invention. The computer device 10 generates a model of the pier P according to the operation performed by the operator (step S101). Next, the operator inputs deterioration degree data indicating the deterioration degree of each of the plurality of beams which are superstructures of the pier P to the generated model from the operation unit 104, and the data acquisition unit 1001 of the computer device 10 inputs the deterioration degree data. The deterioration degree data to be performed is acquired (step S102). The deterioration degree data is an example of the deterioration degree determination result of the beam according to the present invention.

梁の劣化度については、実物の桟橋Pの上部工を構成する複数の梁の各々の劣化度を、所定の判定基準に従って判定する。図5は、劣化度の判定に用いられる判定基準(以下、「判定基準C」という)を例示した図である。判定基準Cは劣化度a、劣化度b、劣化度cおよび劣化度dがある。劣化度は、劣化度aが最も劣化の程度が高く、劣化度bは劣化度aより劣化の程度が低く、劣化度cは劣化度bより劣化の程度が低く、劣化度dは、変状なしというものである。図6に、評価する実物の桟橋Pの梁の劣化度の判定結果の一例を示す。図6に示す岸壁法線Lは、桟橋Pと陸との境界を示し、図6においては、岸壁法線Lに沿った方向を法線平行方向と称し、岸壁法線Lに直角な方向を法線直角方向と称する。 Regarding the degree of deterioration of the beams, the degree of deterioration of each of the plurality of beams constituting the superstructure of the actual pier P is determined according to a predetermined criterion. FIG. 5 is a diagram illustrating a determination criterion (hereinafter, referred to as “determination criterion C”) used for determining the degree of deterioration. Judgment criteria C include deterioration degree a, deterioration degree b, deterioration degree c, and deterioration degree d. As for the degree of deterioration, the degree of deterioration a is the highest degree of deterioration, the degree of deterioration b is lower than the degree of deterioration a, the degree of deterioration c is lower than the degree of deterioration b, and the degree of deterioration d is deformation. There is nothing. FIG. 6 shows an example of the determination result of the degree of deterioration of the beam of the actual pier P to be evaluated. The quay normal line L shown in FIG. 6 indicates the boundary between the pier P and the land. In FIG. 6, the direction along the quay normal line L is referred to as the normal parallel direction, and the direction perpendicular to the quay normal line L is defined as the normal direction. It is called the direction perpendicular to the normal.

オペレータは、劣化度データを入力し終えると、桟橋Pの評価を指示する操作を操作部104において行う。この操作が行われたコンピュータ装置10の計算部1002は、桟橋Pのモデルを構成する梁の劣化度を点数化する(ステップS103)。 When the operator finishes inputting the deterioration degree data, the operator performs an operation instructing the evaluation of the pier P in the operation unit 104. The calculation unit 1002 of the computer device 10 in which this operation is performed scores the degree of deterioration of the beams constituting the model of the pier P (step S103).

具体的には、コンピュータ装置10は、次の式(1)を用いて劣化度から劣化度点数を算出する。
劣化度点数=p1×(劣化度aの梁の割合)+p2×(劣化度bの梁の割合)+p3×(劣化度cの梁の割合)+p4×(劣化度dの梁の割合)・・・式(1)
劣化度点数は、本発明に係る上部工劣化度の一例である。
Specifically, the computer device 10 calculates the degree of deterioration score from the degree of deterioration using the following equation (1).
Deterioration score = p1 x (ratio of beams with degree of deterioration a) + p2 x (ratio of beams with degree b deterioration) + p3 x (ratio of beams with degree c deterioration) + p4 x (ratio of beams with degree d deterioration) ...・ Equation (1)
The degree of deterioration score is an example of the degree of deterioration of the superstructure according to the present invention.

p1、p2、p3およびp4は、判定した劣化度に対応した点数であり、p1は劣化度aの点数を示し、p2は劣化度bの点数を示し、p3は劣化度cの点数を示し、p4は劣化度dの点数を示す。p1〜p4は、予め定められた値であり、p1〜p4の大小関係は、p1>p2>p3>p4となっている。 p1, p2, p3 and p4 are the scores corresponding to the determined deterioration degree, p1 indicates the deterioration degree a score, p2 indicates the deterioration degree b score, and p3 indicates the deterioration degree c score. p4 indicates the score of the degree of deterioration d. p1 to p4 are predetermined values, and the magnitude relationship of p1 to p4 is p1> p2> p3> p4.

式(1)における梁の割合については、例えば、梁の総本数が100本であり、劣化度aの梁の本数が30本、劣化度bの梁の本数が40本、劣化度cの梁の本数が15本、劣化度dの梁の本数が15本の場合、劣化度aの梁の割合=0.3、劣化度bの梁の割合=0.4、劣化度dの梁の割合=0.15、劣化度dの梁の割合=0.15となる。 Regarding the ratio of beams in the formula (1), for example, the total number of beams is 100, the number of beams with a degree of deterioration a is 30, the number of beams with a degree of deterioration b is 40, and the number of beams with a degree of deterioration c is 40. When the number of beams is 15 and the number of beams with a degree of deterioration d is 15, the ratio of beams with a degree of deterioration a = 0.3, the ratio of beams with a degree of deterioration b = 0.4, and the ratio of beams with a degree of deterioration d = 0.15, and the ratio of beams having a degree of deterioration d = 0.15.

次にコンピュータ装置10の計算部1002は、桟橋Pが直杭式横桟橋の場合(ステップS104でYES)、桟橋Pのモデルの梁の各々について補正係数を設定する(ステップS105)。海側に配置された梁と陸側に配置された梁では、同じ劣化度であっても桟橋P全体に与える影響が異なる。そこで、梁配列に応じて補正係数を設定する。例えば、法線平行方向に沿った梁について、陸からの位置に応じて補正係数を設定する。法線平行方向に沿った梁が5列ある桟橋Pの場合、図7に示すように、海側から1列目の梁に補正係数a1を設定し、海側から2列目の梁に補正係数a2を設定し、海側から3列目の梁に補正係数a3を設定し、海側から4列目の梁に補正係数a4を設定し、海側から5列目の梁に補正係数a5を設定する。即ち、本発明においては、法線平行方向に沿った梁の列に応じてグループを形成し、同一のグループに属する梁に対しては、グループ固有の補正係数を設定している。 Next, when the pier P is a straight pile type horizontal pier (YES in step S104), the calculation unit 1002 of the computer device 10 sets a correction coefficient for each of the beams of the model of the pier P (step S105). The beam arranged on the sea side and the beam arranged on the land side have different effects on the entire pier P even if the degree of deterioration is the same. Therefore, the correction coefficient is set according to the beam arrangement. For example, for a beam along the normal parallel direction, a correction coefficient is set according to the position from the land. In the case of a pier P having five rows of beams along the normal parallel direction, as shown in FIG. 7, a correction coefficient a1 is set for the beam in the first row from the sea side, and the beam is corrected to the beam in the second row from the sea side. The coefficient a2 is set, the correction coefficient a3 is set for the beam in the third row from the sea side, the correction coefficient a4 is set for the beam in the fourth row from the sea side, and the correction coefficient a5 is set for the beam in the fifth row from the sea side. To set. That is, in the present invention, a group is formed according to a row of beams along the normal parallel direction, and a group-specific correction coefficient is set for beams belonging to the same group.

また、法線直角方向に沿った梁について、陸からの位置に応じて補正係数を設定する。法線直角方向に沿った梁が4列ある桟橋Pの場合、図7に示すように、海側の梁からそれぞれ補正係数aa1、補正係数aa2、補正係数aa3、補正係数aa4を設定する。即ち、本発明においては、法線直角方向に沿った梁の列に応じてグループを形成し、同一のグループに属する梁に対しては、グループ固有の補正係数を設定している。 In addition, for beams along the direction perpendicular to the normal line, a correction coefficient is set according to the position from the land. In the case of the pier P having four rows of beams along the normal direction, the correction coefficient aa1, the correction coefficient aa2, the correction coefficient aa3, and the correction coefficient aa4 are set from the beams on the sea side, respectively, as shown in FIG. That is, in the present invention, groups are formed according to the rows of beams along the direction perpendicular to the normal line, and group-specific correction coefficients are set for beams belonging to the same group.

また、法線平行方向に沿った梁と法線直角方向に沿った梁では、同じ劣化度であっても、その方向によって桟橋P全体に与える影響が異なる。そこで、梁の方向に応じて補正係数を設定する。具体的には、法線平行方向に沿った梁について、陸からの位置に応じて補正係数を設定する。例えば、図8に示すように、法線平行方向に沿った梁のそれぞれについて補正係数b1を設定し、法線直角方向に沿った梁のそれぞれについて補正係数b2を設定する。即ち、本発明においては、梁向きに応じてグループを形成し、同一のグループに属する梁に対しては、グループ固有の補正係数を設定している。 Further, the beam along the normal parallel direction and the beam along the normal perpendicular direction have different effects on the entire pier P depending on the direction even if the degree of deterioration is the same. Therefore, the correction coefficient is set according to the direction of the beam. Specifically, the correction coefficient is set according to the position from the land for the beam along the normal parallel direction. For example, as shown in FIG. 8, a correction coefficient b1 is set for each of the beams along the normal parallel direction, and a correction coefficient b2 is set for each of the beams along the normal perpendicular direction. That is, in the present invention, groups are formed according to the beam orientation, and group-specific correction coefficients are set for beams belonging to the same group.

コンピュータ装置10の計算部1002は、設定した補正係数を劣化度点数に乗じることにより、桟橋Pの点数である上部工劣化度を算出する(ステップS106)。 The calculation unit 1002 of the computer device 10 calculates the superstructure deterioration degree, which is the score of the pier P, by multiplying the set correction coefficient by the deterioration degree score (step S106).

具体的には、桟橋Pの場合、コンピュータ装置10の計算部1002は、法線平行方向に沿った梁で劣化度aの梁の評価点を式(2)で算出し、法線直角方向に沿った梁で劣化度aの梁の評価点を式(3)で算出し、式(4)により劣化度aの梁の評価点を算出する。
法線平行方向に沿った梁で劣化度aの梁の評価点=(p1×(法線平行方向に沿った梁で海側から1列目の劣化度aの梁の割合)×補正係数a1)+(p1×(法線平行方向に沿った梁で海側から2列目の劣化度aの梁の割合)×補正係数a2)+(p1×(法線平行方向に沿った梁で海側から3列目の劣化度aの梁の割合)×補正係数a3)+(p1×(法線平行方向に沿った梁で海側から4列目の劣化度aの梁の割合)×補正係数a4)+(p1×(法線平行方向に沿った梁で海側から5列目の劣化度aの梁の割合)×補正係数a5)・・・式(2)
法線直角方向に沿った梁で劣化度aの梁の評価点=(p1×(法線直角方向に沿った梁で海側から1列目の劣化度aの梁の割合)×補正係数aa1)+(p1×(法線直角方向に沿った梁で海側から2列目の劣化度aの梁の割合)×補正係数aa2)+(p1×(法線直角方向に沿った梁で海側から3列目の劣化度aの梁の割合)×補正係数aa3)+(p1×(法線直角方向に沿った梁で海側から4列目の劣化度aの梁の割合)×補正係数aa4)・・・式(3)
劣化度aの梁の評価点=法線平行方向に沿った梁で劣化度aの梁の評価点+法線直角方向に沿った梁で劣化度aの梁の評価点・・・式(4)
Specifically, in the case of the pier P, the calculation unit 1002 of the computer device 10 calculates the evaluation point of the beam having the degree of deterioration a with the beam along the normal parallel direction by the equation (2), and in the direction perpendicular to the normal. The evaluation points of the beams having a degree of deterioration a are calculated by the equation (3), and the evaluation points of the beams having a degree of deterioration a are calculated by the equation (4).
Evaluation point of the beam with deterioration degree a in the beam along the normal line = (p1 × (ratio of the beam with deterioration degree a in the first row from the sea side in the beam along the normal line) × correction coefficient a1 ) + (P1 × (ratio of beams with a degree of deterioration a in the second row from the sea side along the parallel direction of the normal line) × correction coefficient a2) + (p1 × (beams along the parallel direction with the normal line and the sea) Ratio of beams with a degree of deterioration a in the third row from the side) x Correction coefficient a3) + (p1 x (Ratio of beams with a degree of deterioration a in the fourth row from the sea side along the direction parallel to the normal line) x Correction Coefficient a4) + (p1 × (ratio of beams along the parallel direction of the normal line with a degree of deterioration a in the fifth row from the sea side) × correction coefficient a5) ... Equation (2)
Evaluation points of beams with a degree of deterioration a along the direction perpendicular to the normal line = (p1 x (ratio of beams along the direction perpendicular to the normal line with a degree of deterioration a in the first row from the sea side) x correction coefficient aa1 ) + (P1 × (ratio of beams with a degree of deterioration a in the second row from the sea side with beams along the normal direction) × correction coefficient aa2) + (p1 × (beams along the normal direction with the sea) Ratio of beams with a degree of deterioration a in the third row from the side) x Correction coefficient aa3) + (p1 x (Ratio of beams with a degree of deterioration a in the fourth row from the sea side along the direction perpendicular to the normal line) x Correction Coefficient aa4) ... Equation (3)
Evaluation point of the beam of deterioration degree a = Evaluation point of the beam of deterioration degree a in the direction parallel to the normal + Evaluation point of the beam of deterioration degree a in the direction perpendicular to the normal line ... Equation (4) )

また、コンピュータ装置10の計算部1002は、法線平行方向に沿った梁で劣化度bの梁の評価点を式(5)で算出し、法線直角方向に沿った梁で劣化度bの梁の評価点を式(6)で算出し、式(7)により劣化度bの梁の評価点を算出する。
法線平行方向に沿った梁で劣化度bの梁の評価点=(p2×(法線平行方向に沿った梁で海側から1列目の劣化度bの梁の割合)×補正係数a1)+(p2×(法線平行方向に沿った梁で海側から2列目の劣化度bの梁の割合)×補正係数a2)+(p2×(法線平行方向に沿った梁で海側から3列目の劣化度bの梁の割合)×補正係数a3)+(p2×(法線平行方向に沿った梁で海側から4列目の劣化度bの梁の割合)×補正係数a4)+(p2×(法線平行方向に沿った梁で海側から5列目の劣化度bの梁の割合)×補正係数a5)・・・式(5)
法線直角方向に沿った梁で劣化度bの梁の評価点=(p2×(法線直角方向に沿った梁で海側から1列目の劣化度bの梁の割合)×補正係数aa1)+(p2×(法線直角方向に沿った梁で海側から2列目の劣化度bの梁の割合)×補正係数aa2)+(p2×(法線直角方向に沿った梁で海側から3列目の劣化度bの梁の割合)×補正係数aa3)+(p2×(法線直角方向に沿った梁で海側から4列目の劣化度bの梁の割合)×補正係数aa4)・・・式(6)
劣化度bの梁の評価点=法線平行方向に沿った梁で劣化度bの梁の評価点+法線直角方向に沿った梁で劣化度bの梁の評価点・・・式(7)
Further, the calculation unit 1002 of the computer device 10 calculates the evaluation point of the beam having the deterioration degree b with the beam along the normal parallel direction by the equation (5), and the deterioration degree b is calculated with the beam along the normal direction. The evaluation point of the beam is calculated by the equation (6), and the evaluation point of the beam having the deterioration degree b is calculated by the equation (7).
Evaluation point of the beam with deterioration degree b in the beam along the normal line direction = (p2 × (ratio of the beam with deterioration degree b in the first row from the sea side in the beam along the normal line direction) × correction coefficient a1 ) + (P2 × (ratio of beams with a degree of deterioration b in the second row from the sea side along the parallel direction of the normal line) × correction coefficient a2) + (p2 × (beams along the parallel direction with the normal line and the sea) (Ratio of beams with degree of deterioration b in the third row from the side) x Correction coefficient a3) + (p2 x (Ratio of beams with degree of deterioration b in the fourth row from the sea side along the direction parallel to the normal line) x Correction Coefficient a4) + (p2 × (ratio of beams along the parallel direction of the normal line with a degree of deterioration b in the fifth row from the sea side) × correction coefficient a5) ... Equation (5)
Evaluation point of the beam with deterioration degree b for the beam along the normal line perpendicular direction = (p2 × (ratio of the beam with deterioration degree b in the first row from the sea side for the beam along the normal line right angle direction) × correction coefficient aa1 ) + (P2 × (ratio of beams along the normal direction and the degree of deterioration b in the second row from the sea side) × correction coefficient aa2) + (p2 × (beams along the normal direction and sea) (Ratio of beams with deterioration degree b in the third row from the side) x Correction coefficient aa3) + (p2 x (Ratio of beams with deterioration degree b in the fourth row from the sea side along the direction perpendicular to the normal line) x Correction Coefficient aa4) ... Equation (6)
Evaluation point of the beam of deterioration degree b = Evaluation point of the beam of deterioration degree b in the direction parallel to the normal + Evaluation point of the beam of deterioration degree b in the direction perpendicular to the normal line ... Equation (7) )

また、コンピュータ装置10の計算部1002は、法線平行方向に沿った梁で劣化度cの梁の評価点を式(8)で算出し、法線直角方向に沿った梁で劣化度cの梁の評価点を式(9)で算出し、式(10)により劣化度cの梁の評価点を算出する。
法線平行方向に沿った梁で劣化度cの梁の評価点=(p3×(法線平行方向に沿った梁で海側から1列目の劣化度cの梁の割合)×補正係数a1)+(p3×(法線平行方向に沿った梁で海側から2列目の劣化度cの梁の割合)×補正係数a2)+(p3×(法線平行方向に沿った梁で海側から3列目の劣化度cの梁の割合)×補正係数a3)+(p3×(法線平行方向に沿った梁で海側から4列目の劣化度cの梁の割合)×補正係数a4)+(p3×(法線平行方向に沿った梁で海側から5列目の劣化度cの梁の割合)×補正係数a5)・・・式(8)
法線直角方向で劣化度cの梁の評価点=(p3×(法線直角方向に沿った梁で海側から1列目の劣化度cの梁の割合)×補正係数aa1)+(p3×(法線直角方向に沿った梁で海側から2列目の劣化度cの梁の割合)×補正係数aa2)+(p3×(法線直角方向に沿った梁で海側から3列目の劣化度cの梁の割合)×補正係数aa3)+(p3×(法線直角方向に沿った梁で海側から4列目の劣化度cの梁の割合)×補正係数aa4)・・・式(9)
劣化度cの梁の評価点=法線平行方向に沿った梁で劣化度cの梁の評価点+法線直角方向に沿った梁で劣化度cの梁の評価点・・・式(10)
Further, the calculation unit 1002 of the computer device 10 calculates the evaluation point of the beam having the deterioration degree c with the beam along the normal parallel direction by the equation (8), and the deterioration degree c with the beam along the normal direction. The evaluation point of the beam is calculated by the equation (9), and the evaluation point of the beam having the deterioration degree c is calculated by the equation (10).
Evaluation point of the beam with deterioration degree c in the beam parallel to the normal line = (p3 × (ratio of the beam with deterioration degree c in the first row from the sea side in the beam parallel to the normal line) × correction coefficient a1 ) + (P3 × (ratio of beams with a degree of deterioration c in the second row from the sea side along the parallel direction of the normal line) × correction coefficient a2) + (p3 × (beams along the parallel direction with the normal line and the sea) Ratio of beams with a degree of deterioration c in the third row from the side) x Correction coefficient a3) + (p3 x (Ratio of beams with a degree of deterioration c in the fourth row from the sea side along the parallel direction of the normal line) x Correction Coefficient a4) + (p3 × (ratio of beams along the parallel direction of the normal line with a degree of deterioration c in the fifth row from the sea side) × correction coefficient a5) ... Equation (8)
Evaluation point of the beam with deterioration degree c in the direction perpendicular to the normal = (p3 × (ratio of the beam along the normal direction with deterioration degree c in the first row from the sea side) × correction coefficient aa1) + (p3 × (the ratio of the beam along the normal direction and the deterioration degree c in the second row from the sea side) × correction coefficient aa2) + (p3 × (the beam along the normal direction and the third row from the sea side) (Ratio of beams with degree c of deterioration of eyes) x correction coefficient aa3) + (p3 x (ratio of beams with degree c of deterioration c in the fourth row from the sea side along the direction perpendicular to the normal line) x correction coefficient aa4)・ ・ Equation (9)
Evaluation point of the beam with deterioration degree c = Evaluation point of the beam with deterioration degree c along the direction parallel to the normal + Evaluation point of the beam with deterioration degree c along the direction perpendicular to the normal line ... Equation (10) )

また、コンピュータ装置10の計算部1002は、法線平行方向に沿った梁で劣化度dの梁の評価点を式(11)で算出し、法線直角方向に沿った梁で劣化度dの梁の評価点を式(12)で算出し、式(13)により劣化度dの梁の評価点を算出する。
法線平行方向に沿った梁で劣化度dの梁の評価点=(p4×(法線平行方向に沿った梁で海側から1列目の劣化度dの梁の割合)×補正係数a1)+(p4×(法線平行方向に沿った梁で海側から2列目の劣化度dの梁の割合)×補正係数a2)+(p4×(法線平行方向に沿った梁で海側から3列目の劣化度dの梁の割合)×補正係数a3)+(p4×(法線平行方向に沿った梁で海側から4列目の劣化度dの梁の割合)×補正係数a4)+(p4×(法線平行方向に沿った梁で海側から5列目の劣化度dの梁の割合)×補正係数a5)・・・式(11)
法線直角方向に沿った梁で劣化度dの梁の評価点=(p4×(法線直角方向に沿った梁で海側から1列目の劣化度dの梁の割合)×補正係数aa1)+(p4×(法線直角方向に沿った梁で海側から2列目の劣化度dの梁の割合)×補正係数aa2)+(p4×(法線直角方向に沿った梁で海側から3列目の劣化度dの梁の割合)×補正係数aa3)+(p4×(法線直角方向に沿った梁で海側から4列目の劣化度dの梁の割合)×補正係数aa4)・・・式(12)
劣化度dの梁の評価点=法線平行方向に沿った梁で劣化度bの梁の評価点+法線直角方向に沿った梁で劣化度dの梁の評価点・・・式(13)
Further, the calculation unit 1002 of the computer device 10 calculates the evaluation point of the beam having the deterioration degree d with the beam along the normal parallel direction by the equation (11), and the deterioration degree d with the beam along the normal direction. The evaluation point of the beam is calculated by the equation (12), and the evaluation point of the beam having the deterioration degree d is calculated by the equation (13).
Evaluation point of the beam with deterioration degree d in the beam parallel to the normal line = (p4 × (ratio of the beam with deterioration degree d in the first row from the sea side in the beam parallel to the normal line) × correction coefficient a1 ) + (P4 × (ratio of beams with a degree of deterioration d in the second row from the sea side along the parallel direction of the normal line) × correction coefficient a2) + (p4 × (beams along the parallel direction with the normal line and the sea) Ratio of beams with a degree of deterioration d in the third row from the side) x Correction coefficient a3) + (p4 x (Ratio of beams with a degree of deterioration d in the fourth row from the sea side along the parallel direction of the normal line) x Correction Coefficient a4) + (p4 × (ratio of beams along the parallel direction of the normal line with a degree of deterioration d in the fifth row from the sea side) × correction coefficient a5) ... Equation (11)
Evaluation point of a beam with a degree of deterioration d along the direction perpendicular to the normal line = (p4 × (ratio of beams along the direction perpendicular to the normal line with a degree of deterioration d in the first row from the sea side) × correction coefficient aa1 ) + (P4 × (ratio of beams along the normal direction and the degree of deterioration d in the second row from the sea side) × correction coefficient aa2) + (p4 × (beams along the normal direction and sea) Ratio of beams with a degree of deterioration d in the third row from the side) x Correction coefficient aa3) + (p4 x (Ratio of beams with a degree of deterioration d in the fourth row from the sea side along the direction perpendicular to the normal line) x Correction Coefficient aa4) ... Equation (12)
Evaluation point of the beam with the degree of deterioration d = Evaluation point of the beam with the degree of deterioration b along the direction parallel to the normal line + Evaluation point of the beam with the degree of deterioration d along the direction perpendicular to the normal line ... Equation (13) )

コンピュータ装置10の計算部1002は、式(14)により、桟橋Pの上部工劣化度を算出する。桟橋Pの上部工劣化度=劣化度aの梁の評価点+劣化度bの梁の評価点+劣化度cの梁の評価点+劣化度dの梁の評価点・・・式(14)
なお、コンピュータ装置10の計算部1002は、桟橋Pが直杭式縦桟橋等のように海底地盤面が傾斜していない場合には(ステップS104でNO)、ステップS103で算出した劣化度点数を桟橋Pの上部工劣化度とする。桟橋Pの上部工劣化度は、本発明に係る上部工劣化度の一例である。即ち、コンピュータ装置10は、劣化度と補正係数とで算出される数値を積算することにより、上部工劣化度を算出している。
The calculation unit 1002 of the computer device 10 calculates the degree of deterioration of the superstructure of the pier P by the equation (14). Deterioration of superstructure of pier P = evaluation point of beam of deterioration degree a + evaluation point of beam of deterioration degree b + evaluation point of beam of deterioration degree c + evaluation point of beam of deterioration degree d ... Equation (14)
In addition, when the pier P is not inclined on the seabed ground surface like a straight pile type vertical pier (NO in step S104), the calculation unit 1002 of the computer device 10 calculates the deterioration degree score in step S103. The degree of deterioration of the superstructure of the pier P. The degree of deterioration of the superstructure of the pier P is an example of the degree of deterioration of the superstructure according to the present invention. That is, the computer device 10 calculates the superstructure deterioration degree by integrating the numerical values calculated by the deterioration degree and the correction coefficient.

コンピュータ装置10の結果取得部1003は、算出した上部工劣化度を用いて桟橋Pの構造解析結果を取得する(ステップS107)。具体的には、コンピュータ装置10は、算出した桟橋Pの上部工劣化度を格納したレコードをデータベースDB1において検索する。コンピュータ装置10は、算出した上部工劣化度を格納したレコードを見つけると、算出した上部工劣化度を格納したレコードから、損傷度と、桟橋Pに外力が作用したときの損傷の構造解析結果を取得する。例えば、コンピュータ装置10は、算出した上部工劣化度が35%であった場合、図2のデータベースDB1において、解析ケースが1のレコードから構造解析結果と損傷度を取得する。ここで取得する構造解析結果および損傷度は、いずれも本発明に係る構造解析結果の一例である。 The result acquisition unit 1003 of the computer device 10 acquires the structural analysis result of the pier P using the calculated superstructure deterioration degree (step S107). Specifically, the computer device 10 searches the database DB1 for a record storing the calculated superstructure deterioration degree of the pier P. When the computer device 10 finds a record that stores the calculated superstructure deterioration degree, the damage degree and the structural analysis result of the damage when an external force acts on the pier P are obtained from the record that stores the calculated superstructure deterioration degree. get. For example, when the calculated superstructure deterioration degree is 35%, the computer device 10 acquires the structural analysis result and the damage degree from the record in which the analysis case is 1 in the database DB1 of FIG. The structural analysis results and the degree of damage obtained here are both examples of the structural analysis results according to the present invention.

次にコンピュータ装置10の出力部1004は、取得した損傷度と構造解析結果をディスプレイ103で出力する(ステップS108)。なお、コンピュータ装置10は、取得した損傷度のみを表示してもよく、また、取得した構造解析結果のみを取得してもよい。 Next, the output unit 1004 of the computer device 10 outputs the acquired damage degree and the structural analysis result on the display 103 (step S108). The computer device 10 may display only the acquired degree of damage, or may acquire only the acquired structural analysis result.

本実施形態によれば、オペレータは、桟橋Pの実物の劣化度を入力することにより、桟橋Pの損傷に係る情報を得ることができる。また、本実施形態によれば、計算結果からデータベースDB1を参照して構造解析結果と損傷度を得るため、複雑な計算を行うことなく、損傷に係る情報を得ることができる。また、本実施形態によれば、有害なひび割れ領域の割合、降伏領域の割合、終局領域の割合などが出力されるため、供用可能、供用しながら補修、供用停止、撤去などの判断を行うことができる。 According to the present embodiment, the operator can obtain information on the damage of the pier P by inputting the actual deterioration degree of the pier P. Further, according to the present embodiment, since the structural analysis result and the degree of damage are obtained by referring to the database DB1 from the calculation result, it is possible to obtain the information related to the damage without performing complicated calculation. Further, according to the present embodiment, since the ratio of harmful cracked areas, the ratio of yield areas, the ratio of ultimate areas, etc. are output, it is necessary to judge whether the product can be used, repaired while in service, stopped in service, or removed. Can be done.

[変形例]
上述した実施形態は様々に変形することができる。以下にそれらの変形の例を示す。なお、上述した実施形態及び以下に示す変形例は適宜組み合わされてもよい。
[Modification example]
The above-described embodiment can be modified in various ways. Examples of these modifications are shown below. In addition, the above-described embodiment and the following modifications may be combined as appropriate.

(1)本発明においては、桟橋の一部の区域について、ステップS101でモデルを作成し、当該区域の梁の劣化度の判定結果をステップS102で入力することにより、桟橋の一部の区域について損傷の構造解析結果と損傷度を出力してもよい。 (1) In the present invention, a model is created in step S101 for a part of the pier, and the determination result of the degree of deterioration of the beam in the area is input in step S102 for the part of the pier. The result of structural analysis of the damage and the degree of damage may be output.

(2)上述した実施形態においては、データベースDB1において、有害ひび割れ領域の割合、降伏領域の割合、終局領域の割合を構造解析結果として格納し、この割合をディスプレイ103で出力しているが、ステップS101で生成したモデルと、格納されている割合から各領域の面積を算出し、算出した面積を出力してもよい。 (2) In the above-described embodiment, the database DB1 stores the ratio of the harmful cracked area, the ratio of the yield area, and the ratio of the final area as the structural analysis result, and outputs this ratio on the display 103. The area of each area may be calculated from the model generated in S101 and the stored ratio, and the calculated area may be output.

(3)桟橋の損傷に係る情報の出力については、経年劣化を考慮した将来の時点における桟橋Pに対して外力が加えられた後の損傷に係る情報を出力してもよい。図9は、将来の時点における桟橋Pに対して外力が加えられた後の損傷に係る情報を出力する処理の流れを示したフローチャートである。 (3) Regarding the output of information on damage to the pier, information on damage after an external force is applied to the pier P at a future time in consideration of aging deterioration may be output. FIG. 9 is a flowchart showing a flow of processing for outputting information relating to damage after an external force is applied to the pier P at a future time point.

まず、オペレータは、損傷を評価する実物の桟橋Pについて設計図を参照し、桟橋Pの梁を仮想的に表すモデルを作成する操作を操作部104で行う。コンピュータ装置10は、オペレータが行った操作に応じて桟橋Pのモデルを生成する(ステップS201)。 First, the operator refers to the design drawing of the actual pier P for evaluating damage, and the operation unit 104 performs an operation of creating a model that virtually represents the beam of the pier P. The computer device 10 generates a model of the pier P according to the operation performed by the operator (step S201).

次にオペレータは、時点t0における桟橋Pの複数の梁の各々の劣化度を示す劣化度データを操作部104から入力し、コンピュータ装置10のデータ取得部1001は、入力される劣化度データを取得する(ステップS202)。また、オペレータは、時点t0より後の時点t1における桟橋Pの複数の梁の各々の劣化度を示す劣化度データを操作部104から入力し、コンピュータ装置10のデータ取得部1001は、入力される劣化度データを取得する(ステップS203)。なお、時点t0は例えば桟橋Pの建設時点としてもよい。時点t0を桟橋Pの建設時点とする場合、時点t0における梁の劣化度は全て劣化度dであることが自明のため、仮に時点t1より過去に梁の目視点検等が1度も行われていなくても、本変形例は実施可能である。 Next, the operator inputs the deterioration degree data indicating the deterioration degree of each of the plurality of beams of the pier P at the time point t0 from the operation unit 104, and the data acquisition unit 1001 of the computer device 10 acquires the input deterioration degree data. (Step S202). Further, the operator inputs the deterioration degree data indicating the deterioration degree of each of the plurality of beams of the pier P at the time point t1 after the time point t0 from the operation unit 104, and the data acquisition unit 1001 of the computer device 10 is input. Acquire deterioration degree data (step S203). The time point t0 may be, for example, the time point at which the pier P is constructed. When the time point t0 is the time of construction of the pier P, it is obvious that the degree of deterioration of the beam at the time point t0 is all the degree of deterioration d. Therefore, the beam has been visually inspected even once before the time point t1. This modification can be carried out without it.

オペレータは、時点t0から時点t1までの時間を示す時間データおよび時点t1から時点t1より後の任意時点である時点t2までの時間を示す時間データを操作部104から入力し、コンピュータ装置10は、入力された時間データを取得する(ステップS204)。時間データを取得したコンピュータ装置10は、取得した劣化度データと時間データを、予め準備された確率モデルに入力し、時点t2における各梁の劣化度を将来予測の確率モデルにより推定する(ステップS205)。なお、ここで用いられる確率モデルは、過去の状態推移に基づく確率により将来の状態推移を推定するモデルであれば、いずれのモデルであってもよい。そのようなモデルの一例として、マルコフ連鎖モデルが挙げられる。 The operator inputs time data indicating the time from the time point t0 to the time point t1 and time data indicating the time from the time point t1 to the time point t2 which is an arbitrary time point after the time point t1 from the operation unit 104, and the computer device 10 inputs the time data. Acquire the input time data (step S204). The computer device 10 that has acquired the time data inputs the acquired deterioration degree data and the time data into a probability model prepared in advance, and estimates the deterioration degree of each beam at the time point t2 by the probability model of future prediction (step S205). ). The probabilistic model used here may be any model as long as it is a model that estimates future state transitions based on probabilities based on past state transitions. An example of such a model is a Markov chain model.

コンピュータ装置10は、上記のように推定した時点t2における劣化度を用いて、ステップS206〜ステップS211の処理を行う。ステップS206〜ステップS211の処理は、ステップS103〜ステップS108の処理と同じであるため、その説明を省略する。本変形例によれば、将来の時点t2において外力が桟橋Pに加えられた後の桟橋Pの損傷に係る情報を得ることができる。 The computer device 10 performs the processes of steps S206 to S211 using the degree of deterioration at the time point t2 estimated as described above. Since the processing of steps S206 to S211 is the same as the processing of steps S103 to S108, the description thereof will be omitted. According to this modification, it is possible to obtain information on damage to the pier P after an external force is applied to the pier P at a future time point t2.

なお、本変形例においては、二つの時点の劣化度を入力し、確率モデルにより将来の時点の劣化度を推定しているが、コンピュータ装置10は、梁の劣化速度、損傷を予測する時点t2を取得して確率モデルに入力し、時点t2における梁の損傷度を確率モデルにより推定してもよい。 In this modified example, the degree of deterioration at two time points is input and the degree of deterioration at a future time point is estimated by the probability model. However, the computer device 10 predicts the deterioration rate and damage of the beam at the time point t2. May be obtained and input to the probability model, and the degree of damage to the beam at the time point t2 may be estimated by the probability model.

(4)梁の劣化度の判定に用いられる判定基準は図2に示した判定基準Cに限られず、他の様々な判定基準が採用され得る。また、劣化度の区分数は4つに限られず、例えば5以上の区分で劣化度が判定されてもよい。 (4) The judgment criteria used for judging the degree of deterioration of the beam are not limited to the judgment criteria C shown in FIG. 2, and various other judgment criteria may be adopted. Further, the number of deterioration degree divisions is not limited to four, and the deterioration degree may be determined in, for example, five or more divisions.

(5)梁の補正係数は、桟橋Pにおいて法線平行方向の端にある梁と、中央にある梁とで補正係数が異なる構成としてもよい。 (5) The correction coefficient of the beam may be configured such that the correction coefficient is different between the beam at the end parallel to the normal line and the beam at the center of the pier P.

(6)本発明においては、データベースDB1は、記憶部102に記憶される構成に限定されるものではなく、通信ネットワークに接続された外部のストレージ装置に記憶され、外部のストレージ装置に記憶されたデータベースDB1にコンピュータ装置10がアクセスする構成であってもよい。 (6) In the present invention, the database DB 1 is not limited to the configuration stored in the storage unit 102, but is stored in an external storage device connected to the communication network and stored in the external storage device. The computer device 10 may access the database DB1.

(7)本発明においては、コンピュータ装置10は、クライアントサーバモデルのサーバとして動作してもよい。この変形例の場合、サーバとして機能するコンピュータ装置10は、クライアントである端末装置と通信ネットワークを介して通信を行う。サーバとして機能するコンピュータ装置10は、端末装置にて行われた操作に応じてステップS101の処理を行い、端末装置から劣化度データを取得し、ステップS103からステップS107の処理を行い、桟橋Pの損傷度と構造解析結果をクライアントである端末装置に出力する。 (7) In the present invention, the computer device 10 may operate as a server of the client-server model. In the case of this modification, the computer device 10 that functions as a server communicates with a terminal device that is a client via a communication network. The computer device 10 functioning as a server performs the process of step S101 according to the operation performed by the terminal device, acquires the deterioration degree data from the terminal device, performs the processes of steps S103 to S107, and performs the process of step S107 to the pier P. The degree of damage and the structural analysis result are output to the terminal device that is the client.

10…コンピュータ装置、101…制御部、102…記憶部、103…ディスプレイ、104…操作部、1001…データ取得部、1002…計算部、1003…結果取得部、1004…出力部。 10 ... Computer device, 101 ... Control unit, 102 ... Storage unit, 103 ... Display, 104 ... Operation unit, 1001 ... Data acquisition unit, 1002 ... Calculation unit, 1003 ... Result acquisition unit, 1004 ... Output unit.

Claims (8)

想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、
評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得する判定結果取得手段と、
前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算する計算手段と、
前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する結果取得手段と、
取得した前記構造解析結果を出力する出力手段と
を備える桟橋の損傷度評価支援装置。
In a state where a database that stores multiple structural analysis results of the pier superstructure to which the expected external force is applied is constructed.
Judgment result acquisition means for acquiring the deterioration degree judgment result of each beam judged based on the appearance of the evaluation target pier to be evaluated, and
A calculation means for calculating the superstructure deterioration degree of the evaluation target pier using the deterioration degree determination result, and
A result acquisition means for acquiring the structural analysis result of the pier superstructure corresponding to the degree of deterioration of the superstructure of the pier to be evaluated from the database.
A pier damage evaluation support device including an output means for outputting the acquired structural analysis result.
前記計算手段は、前記評価対象桟橋の各梁に対して設定された補正係数及び前記劣化度判定結果を用いて計算される数値をそれぞれ積算することにより、前記評価対象桟橋の上部工劣化度を示す点数を計算する
請求項1に記載の桟橋の損傷度評価支援装置。
The calculation means calculates the superstructure deterioration degree of the evaluation target pier by integrating the correction coefficient set for each beam of the evaluation target pier and the numerical value calculated using the deterioration degree determination result. The damage degree evaluation support device for a pier according to claim 1, which calculates the indicated points.
前記各梁は、前記評価対象桟橋の法線平行方向の梁配列に応じてグループが形成され、
前記計算手段における前記補正係数は、同一のグループに属する梁に対しては当該グループ固有の値をそれぞれ用いる
請求項2に記載の桟橋の損傷度評価支援装置。
Each of the beams is grouped according to the beam arrangement in the direction parallel to the normal of the pier to be evaluated.
The damage degree evaluation support device for a pier according to claim 2, wherein the correction coefficient in the calculation means uses a value unique to the group for beams belonging to the same group.
前記各梁は、前記評価対象桟橋の法線に対する梁向きに応じてグループが形成され、
前記計算手段における前記補正係数は、同一のグループに属する梁に対しては当該グループ固有の値をそれぞれ用いる
請求項2に記載の桟橋の損傷度評価支援装置。
Each of the beams is grouped according to the beam orientation with respect to the normal of the pier to be evaluated.
The damage degree evaluation support device for a pier according to claim 2, wherein the correction coefficient in the calculation means uses a value unique to the group for beams belonging to the same group.
前記出力手段は、前記各梁において予め定義されたレベルの損傷が発生することが予測される領域の面積を前記構造解析結果として出力する
請求項1乃至4のいずれか一項に記載の桟橋の損傷度評価支援装置。
The pier according to any one of claims 1 to 4, wherein the output means outputs the area of a region where a predefined level of damage is predicted to occur in each beam as the structural analysis result. Damage degree evaluation support device.
将来予測の確率モデルを用いて、前記評価対象桟橋の将来の任意時点における上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する
請求項1乃至5のいずれか一項に記載の桟橋の損傷度評価支援装置。
The invention according to any one of claims 1 to 5, wherein the structural analysis result of the pier superstructure corresponding to the deterioration degree of the superstructure at an arbitrary time in the future of the pier to be evaluated is acquired by using the probability model of the future prediction. Damage evaluation support device for piers.
想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、
評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得するステップと、
前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算するステップと、
前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得するステップと、
取得した前記構造解析結果を出力するステップと
を備える桟橋の評価方法。
In a state where a database that stores multiple structural analysis results of the pier superstructure to which the expected external force is applied is constructed.
Steps to acquire the deterioration degree judgment result of each beam judged based on the appearance of the evaluation target pier to be evaluated, and
A step of calculating the superstructure deterioration degree of the pier to be evaluated using the deterioration degree determination result, and
From the database, the step of acquiring the structural analysis result of the pier superstructure corresponding to the degree of deterioration of the superstructure of the pier to be evaluated, and
An evaluation method of a pier including a step of outputting the acquired structural analysis result.
想定される外力が与えられた桟橋上部工の構造解析結果を複数保存したデータベースが構築されている状態において、
コンピュータを、
評価対象とする評価対象桟橋の外観に基づき判定した各梁の劣化度判定結果を取得する判定結果取得手段と、
前記劣化度判定結果を用いて前記評価対象桟橋の上部工劣化度を計算する計算手段と、
前記データベースの中から、前記評価対象桟橋の上部工劣化度に対応する、桟橋上部工の構造解析結果を取得する結果取得手段と、
取得した前記構造解析結果を出力する出力手段
として機能させるためのプログラム。
In a state where a database that stores multiple structural analysis results of the pier superstructure to which the expected external force is applied is constructed.
Computer,
Judgment result acquisition means for acquiring the deterioration degree judgment result of each beam judged based on the appearance of the evaluation target pier to be evaluated, and
A calculation means for calculating the superstructure deterioration degree of the evaluation target pier using the deterioration degree determination result, and
A result acquisition means for acquiring the structural analysis result of the pier superstructure corresponding to the degree of deterioration of the superstructure of the pier to be evaluated from the database.
A program for functioning as an output means for outputting the acquired structural analysis result.
JP2019051143A 2019-03-19 2019-03-19 Pier damage evaluation support device, evaluation method and program Active JP7190700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051143A JP7190700B2 (en) 2019-03-19 2019-03-19 Pier damage evaluation support device, evaluation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051143A JP7190700B2 (en) 2019-03-19 2019-03-19 Pier damage evaluation support device, evaluation method and program

Publications (2)

Publication Number Publication Date
JP2020153111A true JP2020153111A (en) 2020-09-24
JP7190700B2 JP7190700B2 (en) 2022-12-16

Family

ID=72558204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051143A Active JP7190700B2 (en) 2019-03-19 2019-03-19 Pier damage evaluation support device, evaluation method and program

Country Status (1)

Country Link
JP (1) JP7190700B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340590A (en) * 2003-05-13 2004-12-02 Kajima Corp Renewal support system, renewal support method, program, and record medium
JP2006323741A (en) * 2005-05-20 2006-11-30 Kajima Corp Asset management support system, asset management support method, program and recording medium
WO2017047315A1 (en) * 2015-09-16 2017-03-23 富士フイルム株式会社 Soundness determination device, soundness determination method and soundness determination program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340590A (en) * 2003-05-13 2004-12-02 Kajima Corp Renewal support system, renewal support method, program, and record medium
JP2006323741A (en) * 2005-05-20 2006-11-30 Kajima Corp Asset management support system, asset management support method, program and recording medium
WO2017047315A1 (en) * 2015-09-16 2017-03-23 富士フイルム株式会社 Soundness determination device, soundness determination method and soundness determination program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宇野州彦、岩波光保: "劣化度判定結果を活用した残存耐力評価手法の実桟橋への適用", 土木学会論文集B3(海洋開発), vol. 74, no. 2, JPN6022030340, 12 September 2018 (2018-09-12), JP, pages 55 - 60, ISSN: 0004833921 *
石原慎太郎ほか: "桟橋上部工の劣化度予測手法について", 沿岸技術研究センター論文集, JPN6022030339, October 2007 (2007-10-01), JP, pages 63 - 67, ISSN: 0004833920 *

Also Published As

Publication number Publication date
JP7190700B2 (en) 2022-12-16

Similar Documents

Publication Publication Date Title
CN108431585B (en) Information processing apparatus and information processing method
Friis-Hansen et al. GRACAT: software for grounding and collision risk analysis
JP2019039936A (en) Damage information extraction device, damage information extraction method and damage information extraction program
Malekzehtab et al. Damage detection in an offshore jacket platform using genetic algorithm based finite element model updating with noisy modal data
JP6487888B2 (en) Estimation method of building layer stiffness
US20200292411A1 (en) Displacement component detection apparatus, displacement component detection method, and computer-readable recording medium
KR20160057381A (en) Ship propulsion performance predicting apparatus and method thereof, and ship navigation assistance system
JP7229383B2 (en) Information processing device, identification method, and identification program
Bakhary et al. Substructuring technique for damage detection using statistical multi-stage artificial neural network
CN110487576B (en) Equal-section beam damage identification method for damage state inclination angle symmetric slope
Stupishin et al. Assessing the state of buildings’ foundations and residual lide of their bearing capacity
JP7190700B2 (en) Pier damage evaluation support device, evaluation method and program
CN109902752B (en) Bridge regular inspection classification method, device and equipment based on disease information big data
CN111428413B (en) Method for identifying bending rigidity of continuous beam sections
US20230313480A1 (en) Deterioration models development method for offshore jacket-type platforms
JP2022129145A (en) Damage degree prediction device, learned model, method for generating learned model, and damage degree prediction method
Cho et al. Probabilistic risk assessment for the construction phases of a PSC box girder railway bridge system with six sigma methodology
JP6944902B2 (en) How to calculate the residual strength of the pier
Lee et al. Two-step approaches for effective bridge health monitoring
JP2016122391A (en) Maintenance management indicator calculation device and maintenance management indicator calculation method
JP7341414B2 (en) Damage degree prediction device, learned model, and learned model generation method
JP5606647B1 (en) Existing bridge restoration design system
CN115859733B (en) Crack T beam unit damage degree calculation method by Gaussian process regression
JP7274077B1 (en) Information processing device, information processing method and program
Dong Risk, Resilience, and Sustainability-Informed Assessment and Management of Aging Structural Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7190700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150