JP2020152704A - Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof - Google Patents

Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof Download PDF

Info

Publication number
JP2020152704A
JP2020152704A JP2019055710A JP2019055710A JP2020152704A JP 2020152704 A JP2020152704 A JP 2020152704A JP 2019055710 A JP2019055710 A JP 2019055710A JP 2019055710 A JP2019055710 A JP 2019055710A JP 2020152704 A JP2020152704 A JP 2020152704A
Authority
JP
Japan
Prior art keywords
antibacterial
test
antifungal
resistant
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019055710A
Other languages
Japanese (ja)
Inventor
伸泰 清水
Nobuyasu Shimizu
伸泰 清水
千尋 高原
Chihiro Takahara
千尋 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamori Educational Found
Nagamori Educational Foundation
Original Assignee
Nagamori Educational Found
Nagamori Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamori Educational Found, Nagamori Educational Foundation filed Critical Nagamori Educational Found
Priority to JP2019055710A priority Critical patent/JP2020152704A/en
Publication of JP2020152704A publication Critical patent/JP2020152704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide antibacterial or antifungal agents comprising a naturally occurring substance or synthetic analogs thereof having high antibacterial activity against methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus and antifungal activity.SOLUTION: Disclosed are an antibacterial agent against methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus and an antifungal agent, both comprise 2,6-DH8 of the following formula or a homolog thereof as an effective ingredient. Antibacterial/antifungal textile products are also disclosed.SELECTED DRAWING: None

Description

天然物由来の化合物、及びこの合成類縁体を用いた、メチシリン耐性黄色ブドウ球菌(MRSA)またはバンコマイシン耐性腸球菌(VRE)に対する抗菌剤、並びに抗真菌剤、及び抗菌・抗真菌繊維製品に関する。 The present invention relates to an antibacterial agent against methicillin-resistant yellow staphylococcus (MRSA) or vancomycin-resistant enterococci (VRE), an antifungal agent, and an antibacterial / antifungal fiber product using a compound derived from a natural product and a synthetic analog thereof.

抗生物質とは「微生物が生産し、他の微生物の生育を抑制する物質」と定義されてきたが、現在では微生物に由来する抗菌剤、抗真菌剤、抗ウイルス剤も広義には抗生物質とされている。微生物以外の由来の化合物や合成品は抗菌物質と呼ばれ区別されてきたが、本研究では由来に関わらず細菌の生育を抑制する「抗菌物質」について新規の探索源を求めスクリーニングを行った。 Antibiotics have been defined as "substances produced by microorganisms that suppress the growth of other microorganisms", but nowadays, antibacterial agents, antifungal agents, and antiviral agents derived from microorganisms are also broadly defined as antibiotics. Has been done. Compounds and synthetic products derived from other than microorganisms have been called antibacterial substances and have been distinguished. In this study, we searched for new search sources for "antibacterial substances" that suppress the growth of bacteria regardless of their origin and screened them.

抗生物質の研究は、Streptmyces属を中心とした土壌放線菌を主体として進められてきた.その中にはペニシリンなどをはじめとして医薬品や農薬として実用化されているものも少なくないが、今後さらに土壌から新規骨格の抗菌活性物質を発見することは難しいと言われている。探索されつくしたと言われる土壌においても現在の技術で培養できない微生物が存在するため、新規の抗菌物質探索が不可能であるとは言えないが、有用物質の探索資源として深海の微生物など人間の手つかずの環境中の微生物に注目が集まりつつある。新規の化合物を求める背景として、抗菌物質の研究には常に薬剤耐性菌(特にはメチシリン耐性黄色ブドウ球菌(MRSA))の問題がある。MRSAは従来の抗菌薬の選択圧のある院内などで優位菌となり、従来の感染制御が効果を示さない(石井、2018)。このような菌の発生を阻害しようとすれば、新しい由来や、作用機序をもつような化合物を見つけ出さなければならない。 Research on antibiotics has been carried out mainly on soil actinomycetes centered on the genus Streptmyces. Many of them have been put to practical use as medicines and pesticides such as penicillin, but more soil will be used in the future. It is said that it is difficult to find an antibacterial active substance with a new skeleton. It cannot be said that it is impossible to search for new antibacterial substances because there are microorganisms that cannot be cultivated by the current technology even in the soil that is said to have been thoroughly searched, but as a search resource for useful substances, humans such as deep-sea microorganisms Attention is being focused on microorganisms in the untouched environment. As a background to the search for new compounds, research on antibacterial substances always has the problem of drug-resistant bacteria (particularly methicillin-resistant Staphylococcus aureus (MRSA)). MRSA becomes a dominant bacterium in hospitals where conventional antibacterial drug selection pressure is present, and conventional infection control is ineffective (Ishii, 2018). In order to inhibit the development of such bacteria, it is necessary to find a compound having a new origin or mechanism of action.

全生物の半数以上を占めると言われる昆虫では、生物間相互作用と関連付けられてさまざまな二次代謝物が同定されている。昆虫にとっても微生物は身近な存在であり、共生菌として共に暮らす微生物もあれば、昆虫に感染する外敵となりうる微生物も存在する。昆虫の細菌感染に対する防御機構としてよく知られているのは、抗菌ペプチドである。このペプチドは細菌に感染した際に、体内で一過的に合成され、体液中に分泌される。ミツバチのアピデシン、カメムシのタナチン、カブトムシのカブトムシディフェンシンなどが代表例であり、昆虫の抗菌性ペプチドは、細菌の細胞膜を破壊することがわかっている。カブトムシから単離された43アミノ酸残基からなる昆虫ディフェンシンはグラム陽性菌に抗菌活性を示し、さらにMRSAに対しても活性を示す(古川ら、2004)。昆虫には、抗菌物質を体表に分泌し、細菌の感染を防いでいる例もある。Stephanitis属およびCorythucha属のグンバイの若虫が分泌する1-(2,6-dihydroxyphenyl)dodecan-1-oneは、トマトかいよう病菌Clavibacter michiganenseを含む4種のグラム陽性菌と根頭がんしゅ病菌Agrobacterium tumifaciensを含む5種のグラム陰性菌に対する抗菌活性の検討が行われ、Clavibacter michiganenseに対して抗菌活性を示した(John W. Neal, JR., et al, 1995)。この論文では、構造活性相関研究が行われており、環化した化合物や側鎖末端にphenyl基が置換した化合物で検討されたが、これらの化合物は主にグラム陽性菌に対して活性を示すとされている。一方、この論文では合計9種の真菌に対しても1-(2,6-dihydroxyphenyl)dodecan-1-oneを用いた同様の抗真菌活性の検討が行われたが、いずれの真菌に対しても抗真菌活性は認められなかった。本研究で対象としたシキミグンバイ若虫も1-(2,6-dihydroxyphenyl)dodecan-1-oneを分泌している。 In insects, which are said to account for more than half of all organisms, various secondary metabolites have been identified in association with inter-organism interactions. Microorganisms are familiar to insects, and some microorganisms live together as symbiotic bacteria, while others can be foreign enemies that infect insects. A well-known defense mechanism against bacterial infections in insects is antimicrobial peptides. When infected with bacteria, this peptide is transiently synthesized in the body and secreted into body fluids. Typical examples are honeybee apidesin, stink bug tanatin, and beetle defensincin, and insect antibacterial peptides are known to destroy bacterial cell membranes. Insect defensin, which consists of 43 amino acid residues isolated from beetles, exhibits antibacterial activity against Gram-positive bacteria and also activity against MRSA (Furukawa et al., 2004). Insects also secrete antibacterial substances to the surface of the body to prevent bacterial infections. The 1- (2,6-dihydroxyphenyl) dodecan-1-one secreted by Gumbai larvae of the genus Stephanitis and Corythucha are four gram-positive bacteria including the tomato scab bacterium Clavibacter michiganense and the root cancer bacterium Agrobacterium tumifaciens. Antibacterial activity against 5 Gram-negative bacteria including Cavibacter michiganense was investigated and showed antibacterial activity against Clavibacter michiganense (John W. Neal, JR., Et al, 1995). In this paper, a structure-activity relationship study was conducted and examined with cyclized compounds and compounds with a phenyl group substituted at the end of the side chain, but these compounds are mainly active against Gram-positive bacteria. It is said that. On the other hand, in this paper, similar antifungal activity using 1- (2,6-dihydroxyphenyl) dodecane-1-one was examined for a total of 9 fungi, but for all fungi. However, no antifungal activity was observed. The nymphs of Tingidae, which were the subjects of this study, also secrete 1- (2,6-dihydroxyphenyl) dodecane-1-one.

John W. Neal, Jr., James E. Oliver, Raymond H. Fetterer; “In Vitro Antimicrobial and Nematocidal Activity of Acetgenins Identified from Exocrine Secretions of Stephanitis and Corythucha Lace Bugs Numphs (Heteroptera: Tingidae)” (1995) Ann. Entomol. Soc. Am. 88(4), 496-501.John W. Neal, Jr., James E. Oliver, Raymond H. Fetterer; “In Vitro Antimicrobial and Nematocidal Activity of Acetgenins Identified from Exocrine Secretions of Stephanitis and Corythucha Lace Bugs Numphs (Heteroptera: Tingidae)” (1995) Ann. Entomol . Soc. Am. 88 (4), 496-501. 日本農芸化学会2018年度大会講演要旨集(2018年3月5日発行)、講演番号:3A18p10 シキミグンバイ若虫分泌物に含まれる抗菌活性物質の探索Abstracts of the 2018 Annual Meeting of the Japan Society for Bioscience and Biotechnology (issued on March 5, 2018), Lecture No .: 3A18p10 Search for antibacterial active substances contained in nymph secretions

毒性が低いと推測される天然物由来の化合物、及びこの合成類縁体を用いて、メチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン耐性腸球菌(VRE)またはその他の耐性菌に対する高い抗菌活性を有する抗菌剤、並びに抗真菌剤、及び、これを用いた抗菌繊維製品を提供する。 Antibacterial agents with high antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) or other resistant strains using naturally occurring compounds that are presumed to be less virulent and their synthetic analogs. Agents, antifungal agents, and antibacterial fiber products using the same are provided.

このような背景のもと、昆虫を探索源とした抗菌活性物質の探索を行った。本研究ではグラム陽性菌の黄色ブドウ球菌 Staphylococcus aureusとグラム陰性菌の大腸菌Escherichia coliに対する抗菌活性評価を行い、シキミグンバイ若虫が分泌する1-(2,6-dihydroxyphenyl)dodecan-1-oneの側鎖長と水酸基の位置に着目した構造活性相関研究を進めた。また、特には、メチシリン耐性黄色ブドウ球菌(MRSA)及びバンコマイシン耐性腸球菌(VRE)に対する効果を確かめた。 Against this background, we searched for antibacterial active substances using insects as a search source. In this study, we evaluated the antibacterial activity of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and side chains of 1- (2,6-dihydroxyphenyl) dodecan-1-one secreted by larvae of Shikimigunbai. We proceeded with structural activity correlation research focusing on the position of length and hydroxyl group. In particular, the effects on methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) were confirmed.

本発明の好ましい実施形態によると、下記の化合物1〜3の少なくとも一つを有効成分として含有する、メチシリン耐性黄色ブドウ球菌(MRSA)及びバンコマイシン耐性腸球菌(VRE)に対する抗菌剤、並びに抗真菌剤である。または、このような抗菌・抗真菌剤を用いた繊維製品である。
化合物1

化合物2

化合物3
According to a preferred embodiment of the present invention, an antibacterial agent and an antifungal agent against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) containing at least one of the following compounds 1 to 3 as an active ingredient. Is. Alternatively, it is a textile product using such an antibacterial / antifungal agent.
Compound 1

Compound 2

Compound 3

1.シキミグンバイ若虫分泌物とその類縁体
シキミグンバイStephanitis svensoniはカメムシ目 Hemipteraグンバイムシ科 Tingidaeの昆虫で、シキミIllicium anisatum.(マツブサ科)の葉を吸汁する害虫である。シキミグンバイ若虫は背面にあるとげから多くの興味深い化合物を分泌している。当研究室で若虫分泌物をヘキサンで抽出しガスクロマトグラフ質量分析計(GC-MS)で分析を行なったところ、decanal、dodecanal、2-undecanone、3-oxododecanal(houttuynin)、2,6-dihydroxyacetophenone、1-(2,6-dihydroxyphenyl)dodecan-1-one、5-hydroxy-2-alkylchromanone類、nonaicosaneを検出した (図I)。これらの中で5-hydroxy-2-alkylchromanone類はトサカグンバイ若虫分泌物にも見られるグンバイムシに特有の化合物である。3-Oxododecanalはドクダミから単離されており、抗菌性・抗ウイルス性・抗炎症作用が報告されている(L. Jinbing et al, 2009)。2,6-Dihydroxyacetophenoneはアリに対し忌避活性を持ち (本研究室で特許出願)、アスピリンより優れたプロスタグランジンH合成酵素阻害活性を持つ(Jurenka, R.A et al, 1989)。1-(2,6-Dihydroxyphenyl)dodecan-1-oneはグラム陽性菌であるトウモロコシ葉枯細菌病菌 Clavibacter michiganensisに対する著しい抗菌活性と線形動物 に成長阻害作用をもつことが報告されており(John W. Neal, JR., et al, 1995)、アスピリンに匹敵するプロスタグランジンH合成酵素阻害活性を持つ(Jurenka, R.A et al, 1989)。本章では芳香族ケトンとして2,6-dihydroxyacetophenoneおよび1-(2,6-dihydroxyphenyl)dodecan-1-oneを中心にこれら化合物の生物活性の解明の一端として、グラム陽性菌の黄色ブドウ球菌とグラム陰性菌の大腸菌に対する抗菌活性を検証した。1-(2,6-Dihydroxyphenyl)dodecan-1-oneについては真菌4種について抗真菌活性の検証も行った。
1. 1. Illicium anisatum secretions and their relatives Stephanitis svensoni is an insect of the order Hemiptera Tingidae, an insect that sucks the leaves of Illicium anisatum. Illicium anisatum nymphs secrete many interesting compounds from the thorns on the back. In our laboratory, worm secretions were extracted with hexane and analyzed with a gas chromatograph mass spectrometer (GC-MS). As a result, decanal, dodecanal, 2-undecanone, 3-oxododecanal (houttuynin), 2,6-dihydroxyacetophenone, 1- (2,6-dihydroxyphenyl) dodecan-1-one, 5-hydroxy-2-alkylchromanone, and nonaicosane were detected (Fig. I). Among these, 5-hydroxy-2-alkylchromanones are compounds peculiar to Tingidae, which are also found in the secretions of nymphs of Tingidae. 3-Oxododecanal has been isolated from Houttuynia cordata and has been reported to have antibacterial, antiviral and anti-inflammatory effects (L. Jinbing et al, 2009). 2,6-Dihydroxyacetophenone has a repellent activity against ants (patent pending in our laboratory) and has a prostaglandin H synthase inhibitory activity superior to that of aspirin (Jurenka, RA et al, 1989). It has been reported that 1- (2,6-Dihydroxyphenyl) dodecane-1-one has a remarkable antibacterial activity against the gram-positive bacterium Clavibacter michiganensis and a growth inhibitory effect on nematodes (John W. Neal, JR., Et al, 1995), prostaglandin H synthase inhibitory activity comparable to aspirin (Jurenka, RA et al, 1989). In this chapter, we will focus on 2,6-dihydroxyacetophenone and 1- (2,6-dihydroxyphenyl) dodecane-1-one as aromatic ketones, and as part of the elucidation of the biological activities of these compounds, Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria. The antibacterial activity of the bacterium against Escherichia coli was verified. For 1- (2,6-Dihydroxyphenyl) dodecane-1-one, the antifungal activity of 4 fungi was also verified.

<図I シキミグンバイ若虫分泌物のGCクロマトグラム>
<Fig. I GC chromatogram of Shikimigunbai nymph secretion>

1.1 試験化合物
・シキミ葉の精油およびヘキサン抽出物
・1-(2,6-dihydroxyphenyl)dodecan-1-oneおよび2,6-dihydroxyacetophenoneとその類縁体
・シキミグンバイ若虫分泌物のうち、3-oxododecanalを除く9化合物
1.1 Test compounds ・ Essential oil and hexane extract of Shikimi leaf ・ 1- (2,6-dihydroxyphenyl) dodecane-1-one and 2,6-dihydroxyacetophenone and their analogs ・ Of the Shikimigunbai larvae secretions, 3- 9 compounds except oxododecanal

以下に試験化合物の構造とその略称を示す(表I)。以後略称にて記述する. The structure of the test compound and its abbreviation are shown below (Table I). Hereinafter described by abbreviation.

<表I>
<Table I>

以下に2,6-DHA位置異性体と類似の化合物の略称を示し以後略称で記述する(表II). The abbreviations of compounds similar to the 2,6-DHA positional isomers are shown below and are described below by abbreviations (Table II).

<表II>
<Table II>

以下に試験に供したシキミグンバイ若虫分泌物のマススペクトルを示す(図II-1〜II-3)。 The mass spectrum of the nymph secretion of Illicium anisatum used in the test is shown below (Figs. II-1 to II-3).

<図II-1>
<Fig. II-1>

<図II-2>
<Fig. II-2>

<図II-3>
<Fig. II-3>

1.2 合成法
2,6-DH4、2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH14の合成
1.2 Synthesis method
Synthesis of 2,6-DH4, 2,6-DH6, 2,6-DH8, 2,6-DH10, 2,6-DH14

<中間体Aの合成>
CH2Cl2 (5 mL)を溶媒とし、1,3-cyclohexanedione 0.56 g (5 mmol)と任意のカルボン酸無水物(5 mmol)、pyridine (0.44 g, 5.57 mmol) を室温で30分間反応させた。溶媒を減圧濃縮し、hexane/diethylether (1 : 1) と冷却した1N塩酸で分液した後、無水Na2SO4で乾燥した。溶媒をエバポレーターで減圧濃縮した後、粗抽出物をシリカゲルカラムクロマトグラフィー[hexane/EtOAc (3 : 1)]で精製した。
<Synthesis of Intermediate A>
Using CH 2 Cl 2 (5 mL) as a solvent, 1,3-cyclohexanedione 0.56 g (5 mmol) was reacted with any carboxylic acid anhydride (5 mmol) and pyridine (0.44 g, 5.57 mmol) at room temperature for 30 minutes. It was. The solvent was concentrated under reduced pressure, separated by 1N hydrochloric acid cooled with hexane / diethylether (1: 1), and dried over anhydrous Na 2 SO 4 . The solvent was concentrated under reduced pressure on an evaporator and then the crude extract was purified by silica gel column chromatography [hexane / EtOAc (3: 1)].

A4 (R=3)
1H-NMR (CDCl3) δ5.91(1H, s), 2.55(2H, m), 2.46(4H, m), 2.07(2H, quin), 1.70(2H, m) 1.00(3H, t)
GC-MS 12.892 min 182(M+), 84, 71, 55, 43
A4 (R = 3)
1 1 H-NMR (CDCl 3 ) δ5.91 (1H, s), 2.55 (2H, m), 2.46 (4H, m), 2.07 (2H, quin), 1.70 (2H, m) 1.00 (3H, t)
GC-MS 12.892 min 182 (M + ), 84, 71, 55, 43

A6 (R=5)
1H-NMR (CDCl3) δ5.91(1H, s), 2.56(2H, t), 2.46(3H, m), 2.07(2H, quin), 1.70(2H, t), 1.33(5H, m), 0.91(3H, t)
GC-MS 15.159 min 210(M+), 99, 84, 71, 55, 43
A6 (R = 5)
1 1 H-NMR (CDCl 3 ) δ5.91 (1H, s), 2.56 (2H, t), 2.46 (3H, m), 2.07 (2H, quin), 1.70 (2H, t), 1.33 (5H, m) ), 0.91 (3H, t)
GC-MS 15.159 min 210 (M + ), 99, 84, 71, 55, 43

A8 (R=7)
1H-NMR (CDCl3) データなし
GC-MS 17.189 min, 238(M+), 127, 109, 57, 43
A8 (R = 7)
1 1 H-NMR (CDCl 3 ) No data
GC-MS 17.189 min, 238 (M + ), 127, 109, 57, 43

A10 (R=9)
1H-NMR (CDCl3) δ5.92(1H, s), 2.55(2H, m), 2.45(3H, m), 2.08(2H, quin), 1.29(12H, m) , 0.89(3H, t)
GC-MS 19.323 min 266(M+), 155, 113, 95, 85, 71, 57, 43
A10 (R = 9)
1 1 H-NMR (CDCl 3 ) δ5.92 (1H, s), 2.55 (2H, m), 2.45 (3H, m), 2.08 (2H, quin), 1.29 (12H, m), 0.89 (3H, t) )
GC-MS 19.323 min 266 (M + ), 155, 113, 95, 85, 71, 57, 43

A14 (R=13)
1H-NMR (CDCl3) δ5.92(1H, s), 2.49(2H, m), 2.39(3H, m), 1.67(2H, quin), 1.28(20H, m) , 0.90(3H, t)
GC-MS 30.815 min 322(M+), 211, 113, 97, 85, 71, 57, 43
A14 (R = 13)
1 1 H-NMR (CDCl 3 ) δ5.92 (1H, s), 2.49 (2H, m), 2.39 (3H, m), 1.67 (2H, quin), 1.28 (20H, m), 0.90 (3H, t) )
GC-MS 30.815 min 322 (M + ), 211, 113, 97, 85, 71, 57, 43

<中間体Bの合成>
生成物A (3.4 mmol) をCH3CN 15 mLに溶解し、Et3N 1 mLとacetonecyanohydrine 40 μLを加え、室温で12時間反応させた。溶媒を減圧濃縮し、hexane/EtOAc (1 : 1)と純水および希塩酸で分液した。無水Na2SO4で乾燥させた後、エバポレーターで減圧濃縮した。
<Synthesis of Intermediate B>
Product A (3.4 mmol) was dissolved in 15 mL of CH 3 CN, 1 mL of Et 3 N and 40 μL of acetone cyanohydrine were added, and the mixture was reacted at room temperature for 12 hours. The solvent was concentrated under reduced pressure and separated with hexane / EtOAc (1: 1) with pure water and dilute hydrochloric acid. After drying over anhydrous Na 2 SO 4 , the mixture was concentrated under reduced pressure using an evaporator.

B4 (R=3) GC-MS 12.410 min 182(M+), 167, 154, 139, 112, 69, 55, 43
B6 (R=5) GC-MS 14.830 min, 210(M+), 192, 181, 167, 154, 139
B8 (R=7) GC-MS 17.046 min 238(M+), 167, 154, 139
B10 (R=9) GC-MS 19.066 min 266(M+), 248, 167, 154, 139
B14 (R=13) GC-MS 22.605 min 322(M+), 304, 167, 154, 139
B4 (R = 3) GC-MS 12.410 min 182 (M + ), 167, 154, 139, 112, 69, 55, 43
B6 (R = 5) GC-MS 14.830 min, 210 (M + ), 192, 181, 167, 154, 139
B8 (R = 7) GC-MS 17.046 min 238 (M + ), 167, 154, 139
B10 (R = 9) GC-MS 19.066 min 266 (M + ), 248, 167, 154, 139
B14 (R = 13) GC-MS 22.605 min 322 (M + ), 304, 167, 154, 139

<目的物Cの合成>
生成物(2) (1.31 mmol) をAcOH 5 mLに溶解し、Hg(OAc)2 1.26 g (0.39 mmol)およびNaOAc 0.33 gを加え、120-125℃で沈殿が溶解するまで撹拌した (2-3時間)。反応後は室温まで冷却し、1N 塩酸を加え30分撹拌した。混合物をセライト濾過し、hexane/EtOAc ( 3: 1 )で洗浄した。水、飽和NaHCO3aq.、brineで洗浄し、有機層は無水Na2SO4で乾燥させた後、中性アルミナで濾過し、EtOAcで洗浄した。減圧濃縮後,のシリカゲルカラムクロマトグラフィー[hexane/EtOAc (5 : 1)]で精製した。分液した水層は中和した後、Hg廃液として適切に処理した。
<Synthesis of target C>
The product (2) (1.31 mmol) was dissolved in 5 mL of AcOH, Hg (OAc) 2 1.26 g (0.39 mmol) and NaOAc 0.33 g were added, and the mixture was stirred at 120-125 ° C. until the precipitate dissolved (2-). 3 hours). After the reaction, the mixture was cooled to room temperature, 1N hydrochloric acid was added, and the mixture was stirred for 30 minutes. The mixture was filtered through Celite and washed with hexane / EtOAc (3: 1). The organic layer was washed with water, saturated acrylamide 3 aq., Brine, dried over anhydrous Na 2 SO 4 , filtered through neutral alumina and washed with EtOAc. After concentration under reduced pressure, the product was purified by silica gel column chromatography [hexane / EtOAc (5: 1)]. The separated aqueous layer was neutralized and then appropriately treated as Hg waste liquid.

C4 (R=3)
1H-NMR (CDCl3) δ9.57(2H, br), 7.22(1H, t), 6.40(2H, d), 3.11(2H, t), 1.76(2H, quin), 1.00(3H, t)
GC-MS 15.107 min 180(M+), 165, 147, 137, 81
C4 (R = 3)
1 1 H-NMR (CDCl 3 ) δ9.57 (2H, br), 7.22 (1H, t), 6.40 (2H, d), 3.11 (2H, t), 1.76 (2H, quin), 1.00 (3H, t) )
GC-MS 15.107 min 180 (M + ), 165, 147, 137, 81

C6 (R=5)
1H-NMR (CDCl3) δ9.62(2H, br), 7.24(1H, t), 6.41(2H, d), 3.15(2H, t), 1.72(2H, quin), 1.38(4H, sext), 0.93(3H, t)
GC-MS 17.200 min 208(M+), 190, 165, 152, 137
C6 (R = 5)
1 1 H-NMR (CDCl 3 ) δ9.62 (2H, br), 7.24 (1H, t), 6.41 (2H, d), 3.15 (2H, t), 1.72 (2H, quin), 1.38 (4H, sext) ), 0.93 (3H, t)
GC-MS 17.200 min 208 (M + ), 190, 165, 152, 137

C8 (R=7)
1H-NMR (CDCl3) δ10.14(2H, br), 7.22(1H, t), 6.39(2H, d), 3.14(2H, t), 1.71(2H, d), 1.34(10H, sext), 0.93(3H, t)
GC-MS 19.148 min 236(M+), 218, 189, 175, 165, 152, 137
C8 (R = 7)
1 1 H-NMR (CDCl 3 ) δ10.14 (2H, br), 7.22 (1H, t), 6.39 (2H, d), 3.14 (2H, t), 1.71 (2H, d), 1.34 (10H, sext) ), 0.93 (3H, t)
GC-MS 19.148 min 236 (M + ), 218, 189, 175, 165, 152, 137

C10 (R=9)
1H-NMR (CDCl3) δ9.47(2H, br), 7.24(1H, t), 6.41(2H, d), 3.14(2H, t), 1.73(2H, quin), 1.34(12H, sext), 0.92(3H, t)
GC-MS 21.005 min, 264(M+), 246, 189, 165, 151, 137
C10 (R = 9)
1 1 H-NMR (CDCl 3 ) δ9.47 (2H, br), 7.24 (1H, t), 6.41 (2H, d), 3.14 (2H, t), 1.73 (2H, quin), 1.34 (12H, sext) ), 0.92 (3H, t)
GC-MS 21.005 min, 264 (M + ), 246, 189, 165, 151, 137

C14 (R=13)
1H-NMR (CDCl3) δ9.46(2H, br), 7.21(1H, t), 6.38(2H, d), 3.11(2H, t), 1.70(2H, quin), 1.28(20H, sext), 0.88(3H, t)
GC-MS 24.194 min 320(M+), 302, 189, 165, 152, 137
C14 (R = 13)
1 1 H-NMR (CDCl 3 ) δ9.46 (2H, br), 7.21 (1H, t), 6.38 (2H, d), 3.11 (2H, t), 1.70 (2H, quin), 1.28 (20H, sext) ), 0.88 (3H, t)
GC-MS 24.194 min 320 (M +), 302, 189, 165, 152, 137

<2,4-DH12の合成>
<Synthesis of 2,4-DH12>

(i) Resorcinol (220 mg、2 mmol) とlauric anhydride (773 mg、2.02 mmol) をナスフラスコに入れ、BF3・OEt2 (1.5 ml、11.9 mmol) を加えて室温で40時間反応させた。反応液に10% NaOAc (7 ml) を加えて一晩撹拌した。吸引ろ過した後、水でよく洗浄した。目的物はヘキサンに難溶なので、ヘキサンを加えてろ過を数回繰り返した。目的物 (300 mg、51%、Rf 0.23 for Hex:EtOAc (5:1)) が得られた。 (i) Resorcinol (220 mg, 2 mmol) and lauric anhydride (773 mg, 2.02 mmol) were placed in a eggplant flask, BF 3 · OEt 2 (1.5 ml, 11.9 mmol) was added, and the mixture was reacted at room temperature for 40 hours. 10% NaOAc (7 ml) was added to the reaction mixture, and the mixture was stirred overnight. After suction filtration, it was thoroughly washed with water. Since the target product is poorly soluble in hexane, hexane was added and filtration was repeated several times. The desired product (300 mg, 51%, Rf 0.23 for Hex: EtOAc (5: 1)) was obtained.

1H-NMR (CDCl3) δ 12.85(1H, s), 7.66(1H, d), 6.38(2H, q), 2.89(2H, t), 1.72(3H, t), 1.33(18H, m), 0.88(3H, t)
13C-NMR δ 205.34, 165.28, 162.28, 132.38, 113.95, 107.5, 103.60, 38.07, 31.91, 29.61, 29.49, 29.43, 29.39, 29.34, 24.92, 22.69, 14.12
GC-MS 22.820 min 292(M+), 274, 165, 137
1 1 H-NMR (CDCl 3 ) δ 12.85 (1H, s), 7.66 (1H, d), 6.38 (2H, q), 2.89 (2H, t), 1.72 (3H, t), 1.33 (18H, m) , 0.88 (3H, t)
13 C-NMR δ 205.34, 165.28, 162.28, 132.38, 113.95, 107.5, 103.60, 38.07, 31.91, 29.61, 29.49, 29.43, 29.39, 29.34, 24.92, 22.69, 14.12
GC-MS 22.820 min 292 (M + ), 274, 165, 137

<2,5-DH12の合成>
<Synthesis of 2,5-DH12>

上記(i)の方法でhydroquinone (220 mg、2 mmol)を原料として反応を行ったが、モノエステル (156 mg、27%)が得られた。目的物とモノエステルのRf値はほぼ同じである。catecholでも同様に反応が進みモノエステルが得られた。これらのモノエステルを合成中間体4-HP12および2-HP12として試験に供した。2,5-DHP12の合成法を(ii)に変更した。 The reaction was carried out using hydroquinone (220 mg, 2 mmol) as a raw material by the method (i) above, and a monoester (156 mg, 27%) was obtained. The Rf values of the target product and the monoester are almost the same. The reaction proceeded in the same manner with catechol, and a monoester was obtained. These monoesters were tested as synthetic intermediates 4-HP12 and 2-HP12. The synthesis method of 2,5-DHP12 was changed to (ii).

(ii) Hydroquinone (550 mg、5 mmol) とlauric acid (1.0 g、5 mmol) をナスフラスコに入れ、BF3・OEt2 (1。08 ml、8.5 mmol、d:1.12 g/ml) を80℃で滴下した。その温度で1時間反応させた後、140℃に昇温して2時間反応させた。110℃に冷却した後、5% Na2CO3 aq。(15 ml)を加えて30分間撹拌した。酢酸エチルで抽出した後、水とbrineで洗浄した。無水Na2SO4で乾燥後、溶媒を留去した。シリカゲルカラム(30 g)で精製したが目的物はモノエステルとRf値 (0.29)が同じであった(Hex:EtOAc (4:1))。淡黄色と黒色の固体が混ざっていたが、目的物は黒色(黒褐色)固体(200 mg)で10% EtOAc/Hexに溶けず、淡黄色固体は溶けたため溶解度の違いで分離した。 (ii) Place Hydroquinone (550 mg, 5 mmol) and lauric acid (1.0 g, 5 mmol) in an eggplant flask and add 80 BF 3 · OEt 2 (1.08 ml, 8.5 mmol, d: 1.12 g / ml). Dropped at ° C. After reacting at that temperature for 1 hour, the temperature was raised to 140 ° C. and the reaction was carried out for 2 hours. After cooling to 110 ° C, 5% Na 2 CO 3 aq. (15 ml) was added and the mixture was stirred for 30 minutes. After extraction with ethyl acetate, it was washed with water and brine. After drying over anhydrous Na 2 SO 4 , the solvent was distilled off. Purified on a silica gel column (30 g), the desired product had the same Rf value (0.29) as the monoester (Hex: EtOAc (4: 1)). The pale yellow and black solids were mixed, but the target product was a black (blackish brown) solid (200 mg) that was insoluble in 10% EtOAc / Hex, and the pale yellow solid was dissolved and separated due to the difference in solubility.

1H-NMR (CDCl3) δ11.99(1H, s), 7.28(1H, s), 7.04(1H, q), 6.91(1H, d), 4.73(1H, s), 2.95(2H, t), 1.75(1H, t), 1.66(1H, s), 1.34(18H, m), 0.90(3H, t)
13C-NMR δ206.45, 156.75, 147.3, 136.58, 124.65, 114.90, 38.47, 31.91, 29.62, 29.49, 29.43, 29.34, 29.31, 24.46, 22.69, 14.12
GC-MS 22.512 min 292(M+), 274, 189, 165, 152, 137
1 1 H-NMR (CDCl 3 ) δ11.99 (1H, s), 7.28 (1H, s), 7.04 (1H, q), 6.91 (1H, d), 4.73 (1H, s), 2.95 (2H, t) ), 1.75 (1H, t), 1.66 (1H, s), 1.34 (18H, m), 0.90 (3H, t)
13 C-NMR δ206.45, 156.75, 147.3, 136.58, 124.65, 114.90, 38.47, 31.91, 29.62, 29.49, 29.43, 29.34, 29.31, 24.46, 22.69, 14.12
GC-MS 22.512 min 292 (M + ), 274, 189, 165, 152, 137

<2,4.6-TH12の合成>
<Synthesis of 2,4.6-TH12>

上記(i)の方法でphloroglucinol (252 mg、2.61 mmol)を原料として反応を行ったが、目的物が得られずモノエステルのみが得られた。次に(ii)の方法で行ったが結果は同じであった。そこで合成法を(iii)に変更した。 The reaction was carried out using phloroglucinol (252 mg, 2.61 mmol) as a raw material by the method (i) above, but the desired product was not obtained and only the monoester was obtained. Next, the method (ii) was performed, but the result was the same. Therefore, the synthesis method was changed to (iii).

(iii) phloroglucinol (329 mg、2.61 mmol) とlauric anhydride (1.0 g、2.61 mmol) を無水THF (4 ml)に溶解し、窒素雰囲気下でBF3・OEt2 (0.82 ml、6.53 mmol) を室温で加えた。48時間反応させた後、酢酸エチルで希釈し、1M HClで3回洗浄した。brineで洗浄した後、無水Na2SO4で乾燥し、溶媒を留去した。シリカゲルカラム(20 g、30% EtOAc/Hex)で精製したが目的物はモノエステルとRf値 (0.45)が同じであった(Hex:EtOAc (1:1))。この2成分を分離するため、エステルをLiOHで加水分解することにした。 (iii) Phloroglucinol (329 mg, 2.61 mmol) and lauric anhydride (1.0 g, 2.61 mmol) were dissolved in anhydrous THF (4 ml), and BF 3 · OEt 2 (0.82 ml, 6.53 mmol) was added to room temperature under a nitrogen atmosphere. Added in. After reacting for 48 hours, it was diluted with ethyl acetate and washed 3 times with 1M HCl. After washing with brine, it was dried over anhydrous Na 2 SO 4 and the solvent was distilled off. Purification was performed on a silica gel column (20 g, 30% EtOAc / Hex), but the target product had the same Rf value (0.45) as the monoester (Hex: EtOAc (1: 1)). In order to separate these two components, we decided to hydrolyze the ester with LiOH.

混合物 (400 mg、1.3 mmol) をMeOH:H2O (3:1) に溶解し、0℃でLiOH・H2O (109 mg、2.6 mmol) を加え、室温で一晩反応させた。1M HClを加えておよそpH 2 に調整し、酢酸エチルで抽出し、brineで洗浄後、無水Na2SO4で乾燥した。溶媒を留去後、シリカゲルカラム(10 g、30% EtOAc/Hex)で精製し、目的物が150 mg (19%)得られた。 The mixture (400 mg, 1.3 mmol) was dissolved in MeOH: H 2 O (3: 1), LiOH · H 2 O (109 mg, 2.6 mmol) was added at 0 ° C., and the mixture was reacted overnight at room temperature. The pH was adjusted to about 2 by adding 1M HCl, extracted with ethyl acetate, washed with brine, and dried over anhydrous Na 2 SO 4 . After distilling off the solvent, purification was performed on a silica gel column (10 g, 30% EtOAc / Hex) to obtain 150 mg (19%) of the desired product.

1H-NMR (CDCl3) δ 5.82(2H, s), 3.04(2H, t), 1.64(5H, m), 1.30(20H, t), 0.91(3H, t)
13C-NMR δ 2.06.10, 164.58, 164.44, 103.98, 94.34, 70.28, 69.96, 48.28, 48.06, 47.85, 47.64, 47.42, 47.21, 47.00, 43.49, 31.71, 29.41, 29.40, 29.34, 29.32, 29.29, 29.13, 26.16, 26.04, 24.85
1 1 H-NMR (CDCl 3 ) δ 5.82 (2H, s), 3.04 (2H, t), 1.64 (5H, m), 1.30 (20H, t), 0.91 (3H, t)
13 C-NMR δ 2.06.10, 164.58, 164.44, 103.98, 94.34, 70.28, 69.96, 48.28, 48.06, 47.85, 47.64, 47.42, 47.21, 47.00, 43.49, 31.71, 29.41, 29.40, 29.34, 29.32, 29.29, 29.13 , 26.16, 26.04, 24.85

<化学分析>
1Hおよび13C核磁気共鳴(NMR)スペクトルはBruker Biospin AC-400M装置(1H : 400MHz、13C : 100MHz)を用い、重クロロホルム中のテトラメチルシラン(TMS)を内部標準として測定した。
<Chemical analysis>
1 H and 13 C nuclear magnetic resonance (NMR) spectra were measured using a Bruker Biospin AC-400M device ( 1 H: 400 MHz, 13 C: 100 MHz) using tetramethylsilane (TMS) in deuterated chloroform as an internal standard.

GC-MS分析では、5975 MSD四重極マスフィルター型質量分析計 (Agilent Technologies) に6890 Nガスクロマトグラフ(Agilent Technologies) を接続したものを用い、電子イオン化法 (70 eV) で測定した。キャピラリーカラムはHP-5MS (内径 : 0.25 mm、長さ:30 m、膜厚:0.25 μm、Agilent Technologies) を用い、2 分間60℃に保った後、10 ℃/min で290℃まで上昇させた後、その温度で5 分間保持した。 In the GC-MS analysis, a 5975 MSD quadrupole mass filter type mass spectrometer (Agilent Technologies) connected to a 6890 N gas chromatograph (Agilent Technologies) was used, and the measurement was performed by the electron ionization method (70 eV). The capillary column used HP-5MS (inner diameter: 0.25 mm, length: 30 m, film thickness: 0.25 μm, Agilent Technologies), kept at 60 ° C for 2 minutes, and then raised to 290 ° C at 10 ° C / min. , Held at that temperature for 5 minutes.

2.抗菌活性評価 2. 2. Antibacterial activity evaluation

2.1 予備的な評価用の菌の準備
<対象菌株>
黄色ブドウ球菌 Staphylococcus aureus (NBRC 12732)
大腸菌 Escherichia coli (NBRC 3972)
2.1 Preparation of bacteria for preliminary evaluation <Target strain>
Staphylococcus aureus (NBRC 12732)
Escherichia coli (NBRC 3972)

<培養条件>
黄色ブドウ球菌 37℃で1日
大腸菌 30℃で1日 (振とう培養時はともに300 rpm)
<Culture conditions>
Staphylococcus aureus 37 ° C for 1 day Escherichia coli 30 ° C for 1 day (both 300 rpm during shaking culture)

培地は以下の組成に調製した。
・液体培地
Tryptone 10 g
Yeast extract 2 g
MgSO4 1 g
Distilled water 1 L
・寒天培地
Tryptone 10 g
Yeast extract 2 g
MgSO4 1 g
Distilled water 1 L
Agar 15 g
The medium was prepared to have the following composition.
・ Liquid medium
Tryptone 10 g
Yeast extract 2 g
DDL 4 1 g
Distilled water 1 L
・ Agar medium
Tryptone 10 g
Yeast extract 2 g
DDL 4 1 g
Distilled water 1 L
Agar 15 g

<保存方法>
グリセロールストックを作成することで、-80℃での長期保存が可能。100 mLメディウム瓶に40%グリセロールを作成し(グリセロール/純水=20 mL/30 mL)、オートクレーブで120℃、15分間滅菌する。滅菌済クライオチューブに40%グリセロールと培養液を各300 μL入れ、グリセロールの終濃度が20%になるように調整する。クライオチューブにはグリセロールを先に入れ、培養液は滅菌済エッペンチューブに量り取ってからデカンテーションで入れる。菌使用時は室温に置いて解凍し、上記寒天培地に植菌した後、各培養温度で静置培養する (1日)。植菌後1週間程度は4℃で冷蔵保存し、使用することが可能だが、条件を均一化するため、出来る限り抗菌活性試験前日にグリセロールストックから起こして用いた。
<How to save>
By creating glycerol stock, long-term storage at -80 ° C is possible. Make 40% glycerol in a 100 mL medium bottle (glycerol / pure water = 20 mL / 30 mL) and sterilize in an autoclave at 120 ° C. for 15 minutes. Add 300 μL each of 40% glycerol and culture medium to a sterilized cryotube and adjust the final concentration of glycerol to 20%. Glycerol is placed in the cryotube first, and the culture medium is weighed into a sterile Eppen tube and then decanted. When using the bacteria, thaw them at room temperature, inoculate them on the above agar medium, and then incubate them at each culture temperature (1 day). It can be refrigerated and used at 4 ° C for about 1 week after inoculation, but in order to make the conditions uniform, it was used by raising it from the glycerol stock the day before the antibacterial activity test as much as possible.

2.2 ペーパーディスク法による予備的な評価 2.2 Preliminary evaluation by paper disc method

<材料>
ペーパーディスク(Toyo Roshi; 8 mm DIA、Thin)
滅菌シャーレ (アテクト; SLE 直径90mm×15mm)
<Material>
Paper disc (Toyo Roshi; 8 mm DIA, Thin)
Sterilized petri dish (Atect; SLE diameter 90mm x 15mm)

<方法>
阻止円の形成により、抗菌活性の有無を判断する。試験培地は、上記の液体培地で1日振とう培養した前培養を上記の寒天培地に混ぜて作成した。(比率は、寒天培地25 mL/シャーレ1枚に対し前培養0.5 mL.) 試験化合物を処理した8 mmペーパーディスクを試験培地に静置し、培養1日後に判断した。コントロールとしてmethanol、hexane、ethyl acetateのペーパーディスクも試験に供した。ペーパーディスクは溶媒を完全に乾燥させるため、ガラス板上で1時間以上風乾した(図III)。
<Method>
The presence or absence of antibacterial activity is determined by the formation of a blocking circle. The test medium was prepared by mixing the preculture, which was shake-cultured in the above liquid medium for one day, with the above agar medium. (The ratio was 25 mL of agar medium / 0.5 mL of preculture for 1 petri dish.) An 8 mm paper disk treated with the test compound was allowed to stand in the test medium and judged 1 day after culture. Paper discs of methanol, hexane, and ethyl acetate were also tested as controls. The paper disc was air-dried on a glass plate for at least 1 hour to allow the solvent to dry completely (Fig. III).

<図III> ペーパーディスク法による抗菌活性試験
<Fig. III> Antibacterial activity test by paper disc method

<結果>
ペーパーディスク法による試験結果は以下の表にまとめた。表には化合物名と試験回数、阻止円サイズ (mm)を記載した。表IIIおよび表IV中、括弧内には試行回数を示し、阻止円が形成されなかった場合には−と表記した。若虫分泌物のうち、阻止円が形成されたものについて試験化合物を組み合わせて試験を行い、単一の場合と比較検討を行った(グラフI)。活性のあった1-(2,6-dihydroxyphenyl)dodecan-1-oneおよび2,6-dihydroxyacetophenone類縁体に関しては平均誤差を算出し、平均値のグラフを作成した(グラフII・III)。
<Result>
The test results by the paper disc method are summarized in the table below. The table shows the compound name, the number of tests, and the size of the blocking circle (mm). In Table III and Table IV, the number of trials is shown in parentheses, and when a blocking circle is not formed, it is indicated as-. Among the larvae secretions, those in which a blocking circle was formed were tested by combining test compounds, and a comparative study was conducted with a single case (Graph I). For the active 1- (2,6-dihydroxyphenyl) dodecane-1-one and 2,6-dihydroxyacetophenone analogs, the average error was calculated and graphs of the average values were created (Graphs II and III).

<表III> シキミグンバイ若虫分泌物およびシキミ葉抽出物
<Table III> Shikimi Gunbai nymph secretion and Shikimi leaf extract

<グラフI>シキミグンバイ若虫の分泌する化合物の阻止円サイズ
<Graph I> Blocking circle size of compounds secreted by Illicium anisatum nymph

<表IV>2,6-DHP12および2,6-DHAとそれらの類縁体
<Table IV> 2,6-DHP12 and 2,6-DHA and their analogs

<グラフII> 類縁体の阻止円サイズ (対S.aureus)
<Graph II> Analog block size (vs. S. aureus)

<グラフIII> 類縁体の阻止円サイズ (対E. coli)
<Graph III> Analog block size (vs. E. coli)

2.3 最小発育阻止濃度の検討 2.3 Examination of minimum inhibitory concentration

<方法>
各濃度の試験化合物を添加した液体培地での対象菌の発育を観察し、各化合物の最小発育阻止濃度を決定した(図IV)。試験培地は、液体培地4.5 mL、前培養液100 μL、試験化合物DMSO溶液400 μLの計5 mLとした。前培養は、前述の液体培地で一晩行い、試験培地に添加する前にOD660 nmを測定した。前培養のOD660 nmは0.5程度が望ましい (0.6以上になるとODと菌体数が比例しない)とされるため、適切な培養時間の検討が必要である (初回の実験での前培養OD660 nmは2.498であり、かなり基準を超えている)。コントロールはDMSOのみを400 μL添加した。阻止濃度は24時間後のOD660 nmおよび寒天培地への植菌・観察によって判定する。初回の実験では、試験化合物による試験培地の濁度上昇を考慮しなかったため、菌体数の増加による純粋なOD660 nmを測定することができなかった。各培地のOD660 nmを培養開始前に測定しておく必要がある.
<Method>
The growth of the target bacteria in the liquid medium supplemented with the test compounds of each concentration was observed, and the minimum inhibitory concentration of each compound was determined (Fig. IV). The test medium was 4.5 mL of liquid medium, 100 μL of preculture solution, and 400 μL of test compound DMSO solution, for a total of 5 mL. Preculture was performed overnight in the liquid medium described above and OD 660 nm was measured prior to addition to the test medium. Since it is desirable that the OD 660 nm of the preculture is about 0.5 (OD and the number of cells are not proportional to each other when it is 0.6 or more), it is necessary to consider an appropriate culture time (preculture OD 660 in the first experiment). nm is 2.498, which is well above the standard). For control, 400 μL of DMSO alone was added. The inhibition concentration is determined by inoculation / observation on OD 660 nm and agar medium after 24 hours. In the first experiment, the increase in turbidity of the test medium due to the test compound was not taken into consideration, so it was not possible to measure pure OD 660 nm due to the increase in the number of cells. The OD 660 nm of each medium should be measured before the start of culture.

<図IV MIC法による抗菌活性試験>
<Fig. IV Antibacterial activity test by MIC method>

二回目の試験では培養開始前に各培地のOD660 nmを測定した。培養開始前測定用にエッペンチューブに1.5 mLとり、振とう培養は3.5 mLで行った。 In the second test, the OD of each medium was measured at 660 nm before the start of culture. 1.5 mL was placed in an Eppen tube for measurement before the start of culture, and shaking culture was performed at 3.5 mL.

<結果>
以下の表Vに2,6-DHA、2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH12を各濃度添加したS.aureus培養液を寒天培地に植菌した初回の実験結果をまとめた。コントロールでは正常に菌が生育した。
<Result>
Inoculate S. aureus culture medium containing 2,6-DHA, 2,6-DH6, 2,6-DH8, 2,6-DH10, and 2,6-DH12 at each concentration in Table V below into an agar medium. The results of the first experiment were summarized. Bacteria grew normally in the control.

<表V> 2,6-DH12とその類縁体の最小発育阻止濃度の検討(25〜800 μg/mL)
<Table V> Examination of minimum inhibitory concentration of 2,6-DH12 and its analogs (25-800 μg / mL)

以下の表VIでは2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH12のより低濃度での試験結果をまとめた。表内数字はOD660 nm、() 内には振とう培養前の濁度を示した。コントロールの培養後のOD660 nmは1.62 (培養前 0.25)、寒天培地に植菌したところ正常に生育した。 Table VI below summarizes the test results at lower concentrations of 2,6-DH6, 2,6-DH8, 2,6-DH10, and 2,6-DH12. The numbers in the table are OD 660 nm , and the numbers in parentheses are the turbidity before shaking culture. The OD of 660 nm after culturing the control was 1.62 (0.25 before culturing), and when inoculated on an agar medium, it grew normally.

<表VI> 2,6-DH12とその類縁体の最小発育阻止濃度の検討(1〜32 μg/mL)
<Table VI> Examination of the minimum inhibitory concentration of 2,6-DH12 and its analogs (1-32 μg / mL)

<考察>
本章では、アセトフェノン類縁体である2,6-dihydroxyacetophenone (2,6-DHA)および1-(2,6-dihydroxyphenyl)dodecan-1-one (2,6-DH12) を中心にこれら化合物の生物活性を機能解明する一端として、グラム陽性菌の黄色ブドウ球菌Staphylococcus aureusとグラム陰性菌の大腸菌 Escherichia coliに対する抗菌活性を検討した。手法は定性的試験としてペーパーディスク法、定量的試験として最小発育阻止濃度(MIC法) を採用した。
<Discussion>
In this chapter, the biological activities of these compounds, focusing on the acetphenone analogs 2,6-dihydroxyacetophenone (2,6-DHA) and 1- (2,6-dihydroxyphenyl) dodecan-1-one (2,6-DH12). As a part of elucidating the function, we investigated the antibacterial activity of Staphylococcus aureus, a gram-positive bacterium, and Escherichia coli, a gram-negative bacterium. The paper disc method was adopted as the qualitative test, and the minimum inhibitory concentration (MIC method) was adopted as the quantitative test.

ペーパーディスク法は、対象菌を混ぜ込んだ寒天培地上で、試験化合物による阻止円の形成によって抗菌活性の有無を判断する方法である。簡易的な抗菌活性評価が可能であるが、阻止円の大きさは化合物の物性に左右されるため抗菌活性の強さを反映するわけではないことに留意する必要がある。シキミグンバイ若虫分泌物を抽出し、ペーパーディスク法による抗菌活性試験を行ったところ、S.aureusに対して活性を示した(2018年は京都学園大学構内などのシキミでのシキミグンバイの発生が少なく、E。coliに対する試験は行えていない)。どの化合物が抗菌活性を示す主要な化合物かを検討するため若虫分泌物9化合物に対し、個別に試験を行ったところ、2,6-DHA、2,6-DH12、5-HCh7で阻止円が形成された。 The paper disc method is a method for determining the presence or absence of antibacterial activity by forming a blocking circle with a test compound on an agar medium mixed with the target bacteria. Although a simple antibacterial activity evaluation is possible, it should be noted that the size of the blocking circle depends on the physical properties of the compound and does not reflect the strength of the antibacterial activity. When the secretion of Staphylococcus aureus was extracted and the antibacterial activity test was performed by the paper disk method, it showed activity against S. aureus (in 2018, the occurrence of Staphylococcus aureus was low in Shikimi such as on the campus of Kyoto Gakuen University. , E. Not tested on coli). In order to investigate which compound is the main compound showing antibacterial activity, 9 compounds of larvae secretion were individually tested, and 2,6-DHA, 2,6-DH12, and 5-HCh7 blocked circles. Been formed.

2,6-DHAは300 μgでS.aureusおよびE.coliに対して活性を示し、2,6-DH12は30 μgで両菌に対して活性を示した。5-HCh7は300 μgの処理量でS.aureusにのみ活性を示した。5-HCh7は芳香族ケトンのフェノール性水酸基と側鎖間で環化したクロマノンであるが、このように環化するによって活性が低くなると推測される。これら3化合物を組み合わせて試験を行ったところ、S.aureusに対する試験では、2,6-DHA+2,6-DH12、2,6-DH12+5-HCh7、2,6-DHA+2,6-DH12 +5-HCh7が30 μgで阻止円を形成し、ほとんど同等の阻止円サイズとなった。2,6-DHA +5-HCh7の阻止円平均値が最も大きいという結果も得られたが、この結果は他の化合物のものと比べてばらつきが大きく、30 μgでは阻止円が形成されなかった。E。coliに対する試験では2,6-DHA+2,6-DH12は2,6-DH12のみとほぼ同等の阻止円サイズとなった。これらの結果から、シキミグンバイ若虫分泌物のうち,抗菌活性を示す主要な物質は、2,6-DH12であると考えられる。 2,6-DHA was active against S. aureus and E. coli at 300 μg, and 2,6-DH12 was active against both bacteria at 30 μg. 5-HCh7 showed activity only in S. aureus at a treatment dose of 300 μg. 5-HCh7 is a chromanone cyclized between the phenolic hydroxyl group of the aromatic ketone and the side chain, and it is speculated that such cyclization reduces the activity. When these three compounds were combined and tested, the test for S. aureus showed 2,6-DHA + 2,6-DH12, 2,6-DH12 + 5-HCh7, 2,6-DHA + 2,6. -DH12 + 5-HCh7 formed a blocking circle at 30 μg, resulting in almost the same blocking circle size. We also obtained the result that the average value of the blocking circles of 2,6-DHA + 5-HCh7 was the largest, but this result was more variable than that of other compounds, and no blocking circle was formed at 30 μg. .. E. In tests on coli, 2,6-DHA + 2,6-DH12 had a blocking circle size that was about the same as 2,6-DH12 alone. From these results, it is considered that the main substance showing antibacterial activity among the nymph secretions of Illicium anisatum is 2,6-DH12.

これらの化合物の由来を探るため、シキミグンバイの寄主植物であるシキミの葉についてヘキサン抽出と水蒸気蒸留を行い、得られた両抽出物の抗菌活性を検討した。ペーパーディスク法による抗菌活性試験ではどちらも阻止円を形成しなかった。GC-MS分析も行ったが、若虫分泌物と一致する化合物は検出されず、シキミの葉の成分中には若虫由来の抗菌活性成分が含まれないことが判明した(図V)。 In order to investigate the origin of these compounds, hexane extraction and steam distillation were performed on the leaves of Illicium anisatum, which is the host plant of Illicium anisatum, and the antibacterial activity of both extracts obtained was examined. Neither of them formed a blocking circle in the antibacterial activity test by the paper disc method. GC-MS analysis was also performed, but no compound consistent with larvae secretion was detected, and it was found that the components of the leaves of Shikimi did not contain antibacterial active components derived from larvae (Fig. V).

<図V>シキミ葉の抽出物のGCクロマトグラム
<Fig. V> GC chromatogram of the extract of Shikimi leaf

抗菌活性のあった2,6-DHAおよび2,6-DH12についてさらに知見を深めるため、これらの類縁体について合成品または標品を用い、ペーパーディスク法による抗菌活性試験を行った。側鎖の炭素鎖を伸長した化合物は、2,6-DHA、2,6-DH4、2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH12、2,6-DH14について検討を行った。30 μgの処理量では、S. aureusおよびE. coliの両菌について2,6-DH 4、6、8、10、12で阻止円が形成された。2,6-DHAおよび2,6-DH14では300 μgの処理で阻止円が形成された。このことから、側鎖の炭素鎖は4〜12で活性が強くなると推測した。 In order to further deepen the knowledge about 2,6-DHA and 2,6-DH12 that had antibacterial activity, antibacterial activity tests were conducted by the paper disc method using synthetic products or standard products for these analogs. Compounds with extended side chain carbon chains are 2,6-DHA, 2,6-DH4, 2,6-DH6, 2,6-DH8, 2,6-DH10, 2,6-DH12, 2,6. -Examined DH14. At a treated dose of 30 μg, inhibition circles were formed at 2,6-DH 4, 6, 8, 10, and 12 for both S. aureus and E. coli. At 2,6-DHA and 2,6-DH14, a blocking circle was formed by treatment with 300 μg. From this, it was speculated that the carbon chain of the side chain became more active at 4 to 12.

次に 2,6-DH12の位置異性体については、2,5-DH12、2,4-DH12、2,4,6-TH12を用いて検討を行った。ジオール両化合物は300 μgの処理でS. aureusに阻止円を形成し、2,5-DH12のみ300 μgの処理でE. coliに対して阻止円を形成した。30 μgでは阻止円を形成しないことから2,6-DH12より活性が弱いことがわかる。水酸基を追加したトリオール2,4,6-DH12は30 μgの処理でもS. aureusに対して活性を示したが、E. coliに対して活性は示さなかった。これらの結果から、抗菌活性を持つためには、まずは水酸基の位置が重要であると考えられる。さらに、水酸基の数も重要であり、活性を示すはずの2位と6位に水酸基を保持したにも関わらず4位に水酸基を付加した2,4,6-TH12がE. coliに対する活性を失った。2,6-DHAの位置異性体については、2,4-DHA、2,5-DHA、3,5-DHAで検討を行ったが、どの化合物も抗菌活性は見られなかった。水酸基が一つの2-HA、3-HA、4-HA およびtrifluoromethanesulfonateで2つの水酸基を保護した2,6-DHATfについても検討を行ったが、いずれも活性は見られなかった。これらのことから、2,6-DHAタイプの化合物は水酸基の置換位置・水酸基の減少・保護によって活性を示さなくなると考えられる。 Next, the positional isomers of 2,6-DH12 were examined using 2,5-DH12, 2,4-DH12, and 2,4,6-TH12. Both diol compounds formed a blocking circle in S. aureus when treated with 300 μg, and only 2,5-DH12 formed a blocking circle against E. coli when treated with 300 μg. It can be seen that the activity is weaker than 2,6-DH12 because 30 μg does not form a blocking circle. Triol 2,4,6-DH12 with added hydroxyl groups showed activity against S. aureus even when treated with 30 μg, but not against E. coli. From these results, it is considered that the position of the hydroxyl group is important in order to have antibacterial activity. Furthermore, the number of hydroxyl groups is also important, and 2,4,6-TH12, which has hydroxyl groups added at the 4-position even though it holds the hydroxyl groups at the 2- and 6-positions, which should show activity, has an activity against E. coli. lost. The positional isomers of 2,6-DHA were examined with 2,4-DHA, 2,5-DHA, and 3,5-DHA, but none of the compounds showed antibacterial activity. We also investigated 2,6-DHATf in which two hydroxyl groups were protected with 2-HA, 3-HA, 4-HA and trifluoromethanesulfonate, which had one hydroxyl group, but none of them showed activity. From these facts, it is considered that the 2,6-DHA type compound loses its activity due to the substitution position of the hydroxyl group, the reduction and protection of the hydroxyl group.

顕著な活性を示す2,6-DHA、2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH12についてさらに最小発育阻止濃度の検討を行い、定量的評価を試みた。各試験化合物の添加された液体培地で培養したS. aureusを寒天培地に塗布し、24時間後の生育状況を観察した。その結果、液体培地にDMSOのみを添加したコントロールと2,6-DHAの25、50、100、200 μg/mLで菌の生育が観察された。このことから、2,6-DHAの24時間最小発育阻止濃度は400μg/mLと推測される。その他の化合物については25 μg/mLでも発育が阻止されたことから、より低濃度での検討が必要であると考え、1、2、4 、8、16、32μg/mLの濃度に置ける発育阻止を観察した。前回と同様、寒天培地に植菌したところ、2,6-DH6では1〜32 μg/mL で生育を確認した。2,6-DH8では1〜4 μg/mLで、2,6-DH10では1および2μg/mLで、2,6-DH12では1〜4μg/mLで生育を確認した。2,6-DH6の結果は25 μg/mLで発育が阻害された初回の結果と矛盾するため今後試行回数を重ねる必要があるが、少なくとも50 μg/mLの濃度では発育が阻害された。2,6-DH8は8 μg/mL 、2,6-DH10は4μg/mL、2,6-DH12は8 μg/mLでそれぞれ発育が阻害された。これらの結果をまとめると、2,6-DH10が最も低濃度の4 μg/mL、2,6-DH8および2,6-DH12は同程度の8μg/mL、2,6-DH6は50μg/mL、2,6-DHAは400μg/mLで発育を阻止することが分かった。 For 2,6-DHA, 2,6-DH6, 2,6-DH8, 2,6-DH10, and 2,6-DH12, which show remarkable activity, the minimum inhibitory concentration was further investigated and a quantitative evaluation was attempted. It was. S. aureus cultured in a liquid medium to which each test compound was added was applied to an agar medium, and the growth condition after 24 hours was observed. As a result, the growth of the bacterium was observed with the control in which only DMSO was added to the liquid medium and 25, 50, 100, 200 μg / mL of 2,6-DHA. From this, it is estimated that the minimum inhibitory concentration of 2,6-DHA for 24 hours is 400 μg / mL. Since the growth of other compounds was inhibited even at 25 μg / mL, it was considered necessary to study at lower concentrations, and growth inhibition at concentrations of 1, 2, 4, 8, 16, and 32 μg / mL was considered. Was observed. When inoculated on an agar medium as in the previous time, growth was confirmed at 1 to 32 μg / mL for 2,6-DH6. Growth was confirmed at 1 to 4 μg / mL for 2,6-DH8, 1 and 2 μg / mL for 2,6-DH10, and 1 to 4 μg / mL for 2,6-DH12. The results of 2,6-DH6 were inconsistent with the initial results of growth inhibition at 25 μg / mL, so further trials are needed, but growth was inhibited at a concentration of at least 50 μg / mL. Growth was inhibited at 8 μg / mL for 2,6-DH8, 4 μg / mL for 2,6-DH10, and 8 μg / mL for 2,6-DH12. Summarizing these results, 2,6-DH10 has the lowest concentration of 4 μg / mL, 2,6-DH8 and 2,6-DH12 have similar concentrations of 8 μg / mL, and 2,6-DH6 has 50 μg / mL. , 2,6-DHA was found to inhibit growth at 400 μg / mL.

MIC試験における吸光度測定については、測定方法に改良の余地がある。初回の試験においてはDMSO溶液によって培地が着色されてしまい、培養後の濁度を測定することが困難であったため、培養前にも測定を行った。今回は培養前の吸光度はどのサンプルを添加した培地においてもほぼ同等でDMSO溶液を添加した際にも目立った着色や濁りは見られず、0.25前後であった。この培養後の測定では、吸光度はかなり低くても植菌すると発育するサンプルが存在したため、この試験でも吸光度を判断基準とせず、寒天培地への植菌によって最小発育阻止濃度を決定した。OD660nmの測定については今後測定方法の検討が必要である。 Regarding the absorbance measurement in the MIC test, there is room for improvement in the measurement method. In the first test, the medium was colored by the DMSO solution, and it was difficult to measure the turbidity after culturing. Therefore, the measurement was also performed before culturing. This time, the absorbance before culturing was almost the same in the medium to which any sample was added, and no noticeable coloring or turbidity was observed when the DMSO solution was added, which was around 0.25. In the measurement after culturing, there was a sample that grew when inoculated even if the absorbance was considerably low. Therefore, in this test as well, the minimum inhibitory concentration was determined by inoculation on an agar medium without using the absorbance as a criterion. For the measurement of OD 660 nm , it is necessary to study the measurement method in the future.

これらの化合物の作用機序については解明できていない。抗菌薬は、ペニシリン系などに代表される細菌細胞壁合成阻害、ポリミキシンBなどに代表される細菌細胞膜の傷害、アミノグリコシド系やテトラサイクリンなどに代表されるタンパク質の合成阻害、キロノン系などの核酸代謝阻害等、作用機序によって分類することができる(植松ら、シンプル薬理学)。今回対象としたS. aureusおよびE. coliはそれぞれグラム陽性菌とグラム陰性菌である。グラム陰性菌は細胞膜の外側に細胞壁があり、さらにその外側に外膜を持つ。グラム陰性菌の細胞壁は8 nm程度である。それに対し、グラム陽性菌は外膜を持たないかわり、細胞壁が250 nm程と非常に厚い。作用機序の特定については抗菌スペクトラムを検討する必要がある。 The mechanism of action of these compounds has not been elucidated. Antibacterial agents include inhibition of bacterial cell wall synthesis represented by penicillins, damage to bacterial cell membranes represented by polymyxin B, inhibition of protein synthesis represented by aminoglycosides and tetracyclines, inhibition of nucleic acid metabolism such as kilonones, etc. , Can be classified by mechanism of action (Uematsu et al., Simple pharmacology). The S. aureus and E. coli targeted this time are Gram-positive and Gram-negative bacteria, respectively. Gram-negative bacteria have a cell wall on the outside of the cell membrane and an outer membrane on the outside. The cell wall of Gram-negative bacteria is about 8 nm. On the other hand, Gram-positive bacteria do not have an adventitia, but have a very thick cell wall of about 250 nm. The antibacterial spectrum needs to be examined to identify the mechanism of action.

2.4 メチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌活性評価
上記の2,6-DH8、2,6-DH10及び2,6-DH12について、日本食品分析センター(一般財団法人)に依頼して、メチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌活性評価(最小発育阻止濃度の測定)を行なった(試験報告書 第19014456001-001号 平成31年02月28日 依頼者:京都学園大学)。この結果、非常に高い抗菌活性を有することが確かめられた。以下、試験報告書の内容を下記に記載する。
2.4 Evaluation of antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) For the above 2,6-DH8, 2,6-DH10 and 2,6-DH12, ask the Japan Food Research Laboratories (general foundation). Antibacterial activity evaluation (measurement of minimum inhibitory concentration) against methicillin-resistant Staphylococcus aureus (MRSA) was performed (Test Report No. 19014456001-001, February 28, 2019 Requester: Kyoto Gakuen University). As a result, it was confirmed that it has a very high antibacterial activity. The contents of the test report are described below.

<検体>
2,6-DH8、2,6-DH10及び2,6-DH12の8000μg/mLのエタノール溶液(平成31年02月06日に、発明者らから日本食品分析センターに提出)。
<試験概要>
検体を任意濃度添加した液体培地を96ウェルマイクロプレートに分注後(以下「感受性測定用プレート」という。)、試験菌液を接種した。培養後、菌の発育が阻止された濃度をもって最小発育阻止濃度とした。
<Sample>
8000 μg / mL ethanol solution of 2,6-DH8, 2,6-DH10 and 2,6-DH12 (submitted by the inventors to the Japan Food Research Laboratories on February 06, 2019).
<Examination outline>
A liquid medium to which a sample was added at an arbitrary concentration was dispensed into a 96-well microplate (hereinafter referred to as a “sensitivity measurement plate”), and then the test bacterial solution was inoculated. After culturing, the concentration at which the growth of the bacterium was inhibited was defined as the minimum inhibitory concentration.

<試験結果>
最小阻止発育濃度(MIC)(μg/mL)
2,6-DH8 2.5
2,6-DH10 1.25
2,6-DH12 1.25
<Test result>
Minimum inhibitory growth concentration (MIC) (μg / mL)
2,6-DH8 2.5
2,6-DH10 1.25
2,6-DH12 1.25

<試験条件>
・試験菌液
-試験菌:Staphylococcus aureus IID 1677(メチシリン耐性ブドウ球菌:MRSA)
-前培養:Mueller Hinton Agar (Difco)、35℃±1℃,18〜24時間
菌液調整溶液:生理食塩水
菌数:約10mL
・感受性測定用培地:Mueller Hinton Broth (Difco)
・感受性測定用プレート:検体原液の濃度を8000μg/mLとした。99.5%エタノールを用いて検体を2倍ずつ段階的に希釈した検体希釈溶液を調製した。次に、感受性測定用培地に対して、検体原液及びそれぞれの検体希釈溶液を1/99の量で添加し、96ウェルマイクロプレートに100μLずつ分注した。
・試験操作及び判定方法:感受性測定用プレートの各ウェルに試験菌液5μLを接種し、所定時間培養した後、菌の発育が阻止された最低濃度をもって、最小発育阻止濃度とした。
・感受性測定用プレート培養条件:35℃±1℃,18〜24時間
<Test conditions>
・ Test bacterial solution
-Test bacterium: Staphylococcus aureus IID 1677 (methicillin-resistant staphylococcus: MRSA)
- pre-culture: Mueller Hinton Agar (Difco), 35 ℃ ± 1 ℃, 18~24 hours bacterial suspension adjusted solution: Saline number of bacteria: about 10 7 mL
・ Sensitivity measurement medium: Mueller Hinton Broth (Difco)
-Sensitivity measurement plate: The concentration of the sample stock solution was set to 8000 μg / mL. A sample dilution solution was prepared by diluting the sample in steps of 2 times with 99.5% ethanol. Next, the stock solution of the sample and the diluted solution of each sample were added to the susceptibility measurement medium in an amount of 1/99, and 100 μL was dispensed into a 96-well microplate.
-Test operation and determination method: After inoculating 5 μL of the test bacterial solution into each well of the susceptibility measurement plate and culturing for a predetermined time, the minimum concentration at which the growth of the bacteria was inhibited was defined as the minimum inhibitory concentration.
・ Plate culture conditions for sensitivity measurement: 35 ° C ± 1 ° C, 18 to 24 hours

2.5 抗菌繊維製品及びその評価
2,6-DH12を溶解させたエタノール溶液(0.1%;質量体積パーセント濃度)に、サージカルマスク布片(1 cm X 1cm、ポリプロピレン不織布;アゼアス(株)のエージークリーン)に浸漬して、乾燥させることにより、抗菌繊維製品を作製した。得られたガーゼ布の乾燥後の重量を精密に測定することで、マスク布片の重量に対して約5.6%吸着されたことを確かめた。これと同様の方法で医療用のガーゼ布片(1 cm X 1cm、綿;川本産業の医療ガーゼ)についても試験した結果、ガーゼ布片の重量に対して約3.6%吸着されたことを確かめた。
2.5 Antibacterial textile products and their evaluation
Immerse in an ethanol solution (0.1%; mass volume percent concentration) in which 2,6-DH12 is dissolved in a surgical mask cloth piece (1 cm x 1 cm, polypropylene non-woven fabric; AG Clean of Azeas Co., Ltd.) and dry it. As a result, an antibacterial textile product was produced. By precisely measuring the weight of the obtained gauze cloth after drying, it was confirmed that about 5.6% was adsorbed with respect to the weight of the mask cloth piece. As a result of testing a medical gauze cloth piece (1 cm x 1 cm, cotton; Kawamoto Sangyo's medical gauze) by the same method, it was found that about 3.6% of the weight of the gauze cloth piece was adsorbed. I confirmed.

このように処理後のサージカルマスク布片、及び、処理しなかった元のサージカルマスク布片を、上記のペーパーディスク法に倣い非耐性の黄色ブドウ球菌を含む培地に静置し、24時間後の様子を観察したところ、処理後のサージカルマスク布片の周りは、黄色ブドウ球菌の生育が顕著に抑えられていた。上記の医療用のガーゼ布片でも同様に試験したところ、処理後のガーゼ布片の周りは、黄色ブドウ球菌の生育が顕著に抑えられていた。 The surgical mask cloth piece after the treatment and the original surgical mask cloth piece without the treatment were allowed to stand in a medium containing non-resistant Staphylococcus aureus according to the above paper disk method, and 24 hours later. As a result of observing the situation, the growth of Staphylococcus aureus was remarkably suppressed around the surgical mask cloth piece after the treatment. When the same test was performed on the above-mentioned medical gauze cloth pieces, the growth of Staphylococcus aureus was remarkably suppressed around the treated gauze cloth pieces.

2.5 バンコマイシン耐性腸球菌(VRE)に対する抗菌活性評価
上記の2,6-DH8、2,6-DH10及び2,6-DH12について、日本食品分析センター(一般財団法人)に依頼して、バンコマイシン耐性腸球菌(VRE)に対する抗菌活性評価(最小発育阻止濃度の測定)を行なった(試験報告書速報 受付番号19014456 平成31年03月22日 依頼者:京都学園大学)。この結果、非常に高い抗菌活性を有することが確かめられた。
2.5 Evaluation of antibacterial activity against vancomycin-resistant enterococci (VRE) For the above 2,6-DH8, 2,6-DH10 and 2,6-DH12, we requested the Japan Food Research Laboratories (general foundation) to perform vancomycin. Antibacterial activity evaluation (measurement of minimum inhibitory concentration) against resistant enterococci (VRE) was performed (test report bulletin reception number 19014456 March 22, 2019 Requester: Kyoto Gakuen University). As a result, it was confirmed that it has a very high antibacterial activity.

<検体>
2,6-DH8、2,6-DH10及び2,6-DH12の8000μg/mLのエタノール溶液(発明者らから日本食品分析センターに提出)。
<試験概要>
検体を任意濃度添加した液体培地を96ウェルマイクロプレートに分注後(以下「感受性測定用プレート」という。)、試験菌液を接種した。培養後、菌の発育が阻止された濃度をもって最小発育阻止濃度とした。
<Sample>
8000 μg / mL ethanol solution of 2,6-DH8, 2,6-DH10 and 2,6-DH12 (submitted by the inventors to the Japan Food Research Laboratories).
<Examination outline>
A liquid medium to which a sample was added at an arbitrary concentration was dispensed into a 96-well microplate (hereinafter referred to as a “sensitivity measurement plate”), and then the test bacterial solution was inoculated. After culturing, the concentration at which the growth of the bacterium was inhibited was defined as the minimum inhibitory concentration.

<試験結果>
最小阻止発育濃度(MIC)(μg/mL)
2,6-DH8 5.0
2,6-DH10 2.5
2,6-DH12 2.5
<Test result>
Minimum inhibitory growth concentration (MIC) (μg / mL)
2,6-DH8 5.0
2,6-DH10 2.5
2,6-DH12 2.5

<試験条件>
試験菌をEnterococcus faecium(バンコマイシン耐性腸球菌:VRE)とした他は、上記「2.4 メチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌活性評価」中の試験条件と同様とした。
<Test conditions>
The test conditions were the same as in "2.4 Evaluation of antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA)" except that the test bacterium was Enterococcus faecium (vancomycin-resistant enterococcus: VRE).

2.6 真菌4種に対する抗真菌活性評価
上記の2,6-DH12を含む複数種の化合物について、衛生微生物研究センター(株)に依頼して、4種の真菌(カビ)に対する抗真菌活性(防カビ性)の評価を行なった(試験検査報告書:試験依頼番号2019D-BT-096、2019年3月15日 試験依頼者:京都学園大学バイオ環境学部)。この結果、非常に高い抗真菌活性を有することが確かめられた。以下、試験報告書の内容のうち、2,6-DH12に関する部分を下記に記載する。
2.6 Evaluation of antifungal activity against 4 types of fungi For multiple types of compounds including the above 2,6-DH12, we requested the Sanitary Microbial Research Center Co., Ltd. to perform antifungal activity against 4 types of fungi (molds). (Antifungal property) was evaluated (Test inspection report: Test request number 2019D-BT-096, March 15, 2019 Test requester: Faculty of Bioenvironment, Kyoto Gakuen University). As a result, it was confirmed that it has a very high antifungal activity. Below, the part related to 2,6-DH12 in the contents of the test report is described below.

<試験目的>
検体の抗カビ力を、抗菌製品技術評議会 シェーク法を基に一部試験条件を変更し調べる。
<検体>
2,6-DH12
<試験カビ>
Aspergillus brasiliensis NBRC 105649
Penicillium citrinum NBRC 6352
Alternaria alternate NBRC 106339
Fusarium oxysporum NBRC 31631
<Purpose of test>
The antifungal activity of the sample will be investigated by changing some test conditions based on the antibacterial product technology council shake method.
<Sample>
2,6-DH12
<Test mold>
Aspergillus brasiliensis NBRC 105649
Penicillium citrinum NBRC 6352
Alternaria alternate NBRC 106339
Fusarium oxysporum NBRC 31631

<試験方法>
・試験胞子液の調製
試験カビはポテトデキストロース寒天培地(PDA)に接種し、25℃で7〜14 日間培養後 0.05%Tween80 添加滅菌水を用いて胞子を収穫し、リン酸緩衝生理食塩水を用いて胞子数が 105CFU/mL になるように調製したものを試験胞子液とした。
・試験試料の調製
検体10mgとジメチルスルホキシド 3mLを混和したものを試験試料とした。
・振とう処理及び生菌数測定
試験胞子液を遠沈管へ10mLずつ分注し、そこへ試験試料を0.2mL接種した。その後、25℃、150rpmで 24時間振とう処理を行った。処理後、振とう液の10倍希釈系列を、生理食塩水を用いて調製し、中和剤添加サブローデキストロース寒天培地(SDLPA)へ接種した。接種した SDLPAは 22.5±2.5℃、3〜5日培養し、形成された集落数を数え、生菌数を算出した。
<Test method>
・ Preparation of test spore solution The test mold was inoculated on potato dextrose agar medium (PDA), cultured at 25 ° C for 7 to 14 days, spores were harvested using 0.05% Tween80-added sterile water, and phosphate buffered saline was added. what number of spores was adjusted to 10 5 CFU / mL was tested spore solution used.
-Preparation of test sample A mixture of 10 mg of sample and 3 mL of dimethyl sulfoxide was used as the test sample.
・ Shaking treatment and measurement of viable cell count 10 mL each of the test spore solution was dispensed into a centrifuge tube, and 0.2 mL of the test sample was inoculated therein. Then, it was shaken at 25 ° C. and 150 rpm for 24 hours. After the treatment, a 10-fold dilution series of the shaking solution was prepared using physiological saline and inoculated into a neutralizing agent-added Saburo dextrose agar medium (SDLPA). The inoculated SDLPA was cultured at 22.5 ± 2.5 ° C for 3 to 5 days, the number of colonies formed was counted, and the viable cell count was calculated.

<試験結果>
・Aspergillus brasiliensisに対する抗カビ試験成績(生菌数測定結果(CFU/mL))
平均値 各試験片値
2,6-DH12 1.0×102 2.7×102
1.0×101
3.0×101
コントロール 7.3×104 7.7×104
7.7×104
6.4×104
<Test result>
・ Antifungal test results for Aspergillus brasiliensis (live cell count measurement results (CFU / mL))
Average value Each test piece value
2,6-DH12 1.0 × 10 2 2.7 × 10 2
1.0 × 10 1
3.0 × 10 1
Control 7.3 × 10 4 7.7 × 10 4
7.7 × 10 4
6.4 × 10 4

・Penicillium citrinumに対する抗カビ試験成績(生菌数測定結果(CFU/mL))
平均値 各試験片値
2,6-DH12 1.3×102
3.0×101
1.0×101
コントロール 2.5×106 1.6×106
2.4×106
3.4×106
・ Antifungal test results for Penicillium citrinum (live cell count measurement results (CFU / mL))
Average value Each test piece value
2,6-DH12 1.3 × 10 2
3.0 × 10 1
1.0 × 10 1
Control 2.5 × 10 6 1.6 × 10 6
2.4 × 10 6
3.4 × 10 6

・Alternaria alternataに対する抗カビ試験成績(生菌数測定結果(CFU/mL))
平均値 各試験片値
2,6-DH12 2.0×101 2.0×101

4.0×101
コントロール 1.1×104 1.7×104
1.2×104
4.0×104
・ Antifungal test results for Alternaria alternata (live cell count measurement results (CFU / mL))
Average value Each test piece value
2,6-DH12 2.0 × 10 1 2.0 × 10 1

4.0 × 10 1
Control 1.1 × 10 4 1.7 × 10 4
1.2 × 10 4
4.0 × 10 4

・Fusarium oxysporumに対する抗カビ試験成績(生菌数測定結果(CFU/mL))
平均値 各試験片値
2,6-DH12 4.3×105 5.0×105
7.0×105
1.0×105
コントロール 3.5×106 3.0×106
2.7×106
4.8×106
・ Antifungal test results against Fusarium oxysporum (live cell count measurement results (CFU / mL))
Average value Each test piece value
2,6-DH12 4.3 × 10 5 5.0 × 10 5
7.0 × 10 5
1.0 × 10 5
Control 3.5 × 10 6 3.0 × 10 6
2.7 × 10 6
4.8 x 10 6

3.総合考察(まとめ)
以上のように、シキミグンバイ若虫の外分泌物とその類縁体の抗菌活性について検討を行った。以下にその構造活性相関研究について考察する。
3. 3. Comprehensive consideration (summary)
As described above, the antibacterial activity of the exocrine secretion of Illicium anisatum and its analogs was investigated. The structure-activity relationship study will be considered below.

シキミグンバイStephanitis svensoniはカメムシ目 Hemipteraグンバイムシ科 Tingidaeの昆虫で、シキミIllicium anisatum.の吸汁性害虫である。本昆虫の若虫はdecanal、dodecanal、2-undecanone、3-oxododecanal(houttuynin)、2,6-dihydroxyacetophenone、1-(2,6-dihydroxyphenyl)dodecan-1-one、5-hydroxy-2-alkylchromanone類、nonaicosaneを分泌している 。これらの中で5-hydroxy-2-alkylchromanone類はトサカグンバイ若虫分泌物にも見られるグンバイムシに特有の化合物である。3-oxododecanalはドクダミから単離されており、抗菌性・抗ウイルス性・抗炎症作用が報告されている(L. Jinbing et al, 2009)。2,6-Dihydroxyacetophenoneはアリに対し忌避活性を持ち (本研究室で特許出願)、アスピリンより優れたプロスタグランジンH合成酵素阻害活性を持つ(Jurenka, R.A et al, 1989)。1-(2,6-dihydroxyphenyl)dodecan-1-oneはグラム陽性菌であるトウモロコシ葉枯細菌病菌 Clavibacter michiganensisに対する抗菌活性と線形動物 に成長阻害作用をもつことが報告されており(John W. Neal, JR., et al, 1995)、アスピリンに匹敵するプロスタグランジンH合成酵素阻害活性を持つ(Jurenka, R.A et al, 1989)。 Stephanitis svensoni is an insect of the family Tingidae of the order Hemiptera, Tingidae, and is a sucking pest of Illicium anisatum. The nymphs of this insect are decanal, dodecanal, 2-undecanone, 3-oxododecanal (houttuynin), 2,6-dihydroxyacetophenone, 1- (2,6-dihydroxyphenyl) dodecan-1-one, 5-hydroxy-2-alkylchromanone, etc. It secretes nonaicosane. Among these, 5-hydroxy-2-alkylchromanones are compounds peculiar to Tingidae, which are also found in the secretions of nymphs of Tingidae. 3-oxododecanal has been isolated from Houttuynia cordata and has been reported to have antibacterial, antiviral and anti-inflammatory effects (L. Jinbing et al, 2009). 2,6-Dihydroxyacetophenone has a repellent activity against ants (patent pending in our laboratory) and has a prostaglandin H synthase inhibitory activity superior to that of aspirin (Jurenka, R.A et al, 1989). It has been reported that 1- (2,6-dihydroxyphenyl) dodecane-1-one has antibacterial activity against the gram-positive bacterium Clavibacter michiganensis and growth inhibitory effect on nematodes (John W. Neal). , JR., Et al, 1995), prostaglandin H synthase inhibitory activity comparable to aspirin (Jurenka, RA et al, 1989).

アセトフェノン類縁体である2,6- dihydroxyacetophenone (2,6-DHA) および1-(2,6-dihydroxyphenyl)dodecan-1-one (2,6-DH12)を中心にこれら化合物の生物活性の機能を解明する一端として、グラム陽性菌の黄色ブドウ球菌 Staphylococcus aureusとグラム陰性菌の大腸菌Escherichia coliに対する抗菌活性を検討した。手法は定性的試験としてペーパーディスク法、定量的試験として最小発育阻止濃度(MIC法)を採用した。若虫分泌物9化合物に対し試験を行ったところ、2,6-DHA、2,6-DH12、5-HCh7で阻止円が形成された。2,6-DHAは300μgでS.aureusおよびE.coliに活性を示し、2,6-DH12は30μgで両菌に対して活性を示した。5-HCh7は300 μgの処理量でS.aureusにのみ活性を示した。5-HCh7はアセトフェノン類が環化したものであるが、このように環化によって活性が低くなると推測される。これら3化合物を組み合わせて試験を行ったところ、シキミグンバイ若虫分泌物のうち抗菌活性を示す主要な物質は、2,6-DHP12であると考えられる。これらの化合物の由来を探るため、シキミグンバイが食草とするシキミの葉についてhexane抽出物と精油の抗菌活性を検討したが、どちらも阻止円を形成せず、 GC-MS分析でも若虫分泌物と一致するピークは検出されないことから、シキミグンバイ若虫はこれらの抗菌活性成分を生合成していると推測する。 The biological activity of these compounds, centered on the acetophenone analogs 2,6-dihydroxyacetophenone (2,6-DHA) and 1- (2,6-dihydroxyphenyl) dodecan-1-one (2,6-DH12) As part of the elucidation, the antibacterial activity of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli was investigated. As a method, the paper disc method was adopted as a qualitative test, and the minimum inhibitory concentration (MIC method) was adopted as a quantitative test. When tested on 9 compounds of larvae secretion, blocking circles were formed at 2,6-DHA, 2,6-DH12, and 5-HCh7. 2,6-DHA was active against S. aureus and E. coli at 300 μg, and 2,6-DH12 was active against both bacteria at 30 μg. 5-HCh7 showed activity only in S. aureus at a treatment dose of 300 μg. 5-HCh7 is a cyclized acetophenone, and it is presumed that the activity is reduced by cyclization in this way. When a test was conducted in combination with these three compounds, it is considered that 2,6-DHP12 is the main substance showing antibacterial activity among the secretions of Illicium anisatum. In order to investigate the origin of these compounds, the antibacterial activity of hexane extract and essential oil was examined for the leaves of Shikimi, which is eaten by Shikimi Gunbai, but neither formed a blocking circle, and GC-MS analysis also showed larvae secretions. Since no peak consistent with is detected, it is speculated that the young worms of Illicium anisatum are biosynthesizing these antibacterial active ingredients.

抗菌活性のあった2,6-DHAおよび2,6-DH12についてさらに知見を深めるため、これらの類縁体について抗菌活性試験を行った。2,6-DHAの側鎖の炭素鎖を伸長させた2,6-DHA、2,6-DH4、2,6-DH6、2,6-DH8、2,6-DH10、2,6-DH12、2,6-DH14について検討を行ったところ、炭素鎖が4〜12で活性が強くなると推測した。2,6-DH12の位置異性体は、2,5-DH12、2,4-DH12、2,4,6-THP12について検討を行ったが、2種のジオール体ともに2,6-DH12より活性が弱く、水酸基を追加したトリオール2,4,6-DH12はS。aureusに対しては2,6-DH12と同等の活性を持つものの、E。coliに対しては活性を失った。2,6-DHAの位置異性体では2,4-DHA、2,5-DHA、3,5-DHAを、また水酸基が一つの2-HA、3-HA、4-HAおよびtrifluoromethanesulfonateで水酸基を保護した2,6-DHATfを用いて検討を行ったが、すべての化合物で活性は見られなかった。このことから、2,6-DH12および2,6-DHAは水酸基の置換位置・水酸基の減少・保護によって活性が著しく弱くなることが考えられる。 In order to further deepen the knowledge of 2,6-DHA and 2,6-DH12 that had antibacterial activity, antibacterial activity tests were conducted on these analogs. 2,6-DHA, 2,6-DH4, 2,6-DH6, 2,6-DH8, 2,6-DH10, 2,6-DH12 with the carbon chain of the side chain of 2,6-DHA extended , 2,6-DH14 was examined, and it was speculated that the activity became stronger when the carbon chain was 4 to 12. As for the positional isomer of 2,6-DH12, 2,5-DH12, 2,4-DH12, 2,4,6-THP12 were examined, but both diols were more active than 2,6-DH12. Triol 2,4,6-DH12 with a weak hydroxyl group is S. Although it has the same activity as 2,6-DH12 against aureus, it is E. Lost activity against coli. For position isomers of 2,6-DHA, 2,4-DHA, 2,5-DHA, 3,5-DHA, and 2-HA, 3-HA, 4-HA, and trifluoromethanesulfonate, which have one hydroxyl group, form hydroxyl groups. The study was conducted using protected 2,6-DHATf, but no activity was observed in all compounds. From this, it is considered that the activities of 2,6-DH12 and 2,6-DHA are significantly weakened by the substitution position of the hydroxyl group, the reduction and protection of the hydroxyl group.

最小発育阻止濃度の検討による定量的評価では、試験化合物濃度を25〜800μg/mLに設定した初回の試験において、液体培地にDMSOのみを添加したコントロールと2,6-DHAの25、50、100、200μg/mLで菌の生育が観察された。このことから、2,6-DHAの24時間最小発育阻止濃度は400μg/mLと決定できた。その他の化合物については25μg/mLでも発育が阻止されたことから、より低濃度での検討を行った。この試験によって2,6-DH10が最も低濃度の4 μg/mL、2,6-DH8および2,6-DH12は同程度の8μg/mL、2,6-DH6は少なくとも50μg/mLで発育を阻止することが分かった。ここでMIC値がある程度幅をもった数値であることは念頭に置かなければならない。測定する菌の種類や薬剤機序による発育状態の差が生じるため、種々の要因で変動する可能性を含んでいる数値であることを考慮するべきである(田村ら、MICの測定の制度上の問題点)。これらの化合物の作用機序については解明できていないため、今後、詳細に検討する必要がある. In the quantitative evaluation by examining the minimum inhibitory concentration, in the initial test in which the test compound concentration was set to 25 to 800 μg / mL, the control in which only DMSO was added to the liquid medium and 25, 50, 100 of 2,6-DHA were used. Bacterial growth was observed at 200 μg / mL. From this, it was determined that the minimum inhibitory concentration of 2,6-DHA for 24 hours was 400 μg / mL. As for other compounds, growth was inhibited even at 25 μg / mL, so lower concentrations were investigated. In this test, 2,6-DH10 grew at the lowest concentration of 4 μg / mL, 2,6-DH8 and 2,6-DH12 grew at the same level of 8 μg / mL, and 2,6-DH6 grew at at least 50 μg / mL. Turned out to block. It must be kept in mind here that the MIC value is a numerical value with a certain range. Since there are differences in the growth state depending on the type of bacteria to be measured and the drug mechanism, it should be considered that the numerical value includes the possibility of fluctuation due to various factors (Tamura et al., MIC measurement system). Problems). The mechanism of action of these compounds has not been elucidated and needs to be investigated in detail in the future.

本研究により、特には、2,6-DH8、2,6-DH10および2,6-DH12が、メチシリン耐性黄色ブドウ球菌やバンコマイシン耐性腸球菌に対しても、高い抗菌活性を有することが確かめられた。また2,6-DH12は真菌Aspergillus brasiliensis、Penicillium citrinum、Alternaria alternataに対して抗真菌活性を示した。これにより、皮膚外用剤、化粧料、及び、手や指などに塗布する消毒剤や制菌剤、抗真菌剤、並びに防カビ剤などとしての応用の可能性があり、これらは、いずれも本願発明における抗菌・抗真菌剤ということができる。また、患者や医療従事者などが着用するマスク、エプロン、衣服などとして、さらには、シーツ、布団カバー、枕カバーなどの寝具材として、または、履物の中敷やカーテンなどとしての、抗菌繊維製品及び抗真菌繊維製品を得ることができる。特には、複数種の耐性菌、及び、真菌に対して、いずれも活性を示すことから、有用性及び利便性が非常に高い。 This study confirmed that 2,6-DH8, 2,6-DH10 and 2,6-DH12 have high antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. It was. In addition, 2,6-DH12 showed antifungal activity against the fungi Aspergillus brasiliensis, Penicillium citrinum, and Alternaria alternata. This has the potential to be applied as an external preparation for skin, cosmetics, and disinfectants, antibacterial agents, antifungal agents, and fungicides applied to hands and fingers, all of which are of the present application. It can be said to be an antibacterial / antifungal agent in the invention. In addition, antibacterial textile products used as masks, aprons, clothes, etc. worn by patients and medical professionals, as bedding materials such as sheets, duvet covers, pillowcases, or as footwear inlays and curtains. And antifungal textile products can be obtained. In particular, since all of them are active against a plurality of types of resistant bacteria and fungi, their usefulness and convenience are very high.

このように全生物の半数を占めるともいわれる昆虫の分泌物は、抗菌作用ペプチドをはじめ、人間にとって有用な生物活性物質の探索源となりうる。また、新規の抗菌活性物質を求めて、海洋微生物などのこれまで手つかずであった微生物資源の利用が注目されているが、昆虫の生息環境中の微生物も探索資源として十分に利用可能である。例えば昆虫に寄生する菌類としては冬虫夏草が有名であるが、コウモリガの幼虫に寄生するCordyceps sinensisや,チョウ目の幼虫に寄生するサナギタケCodryceps militarisからは抗菌活性物質としてコルジセピンが発見されている(Y.-J.Ahn、2000)。ただし、冬虫夏草においても、創薬資源の一つと認知されたにすぎず、現状は昆虫に関わる微生物はほとんど未利用である(小林ら、2014)。こういった昆虫由来の微生物をターゲットとした有用物質の探索がさらに発展していくことを期待している。 Insect secretions, which are said to account for half of all living organisms, can be a source of search for bioactive substances useful for humans, including antibacterial peptides. In addition, the use of previously untouched microbial resources such as marine microorganisms is attracting attention in search of new antibacterial active substances, but microorganisms in the habitat of insects can also be sufficiently used as search resources. For example, Cordyceps sinensis, which parasitizes ghost moth larvae, and Cordyceps militaris, which parasitizes Lepidoptera larvae, have found cordycepin as an antibacterial active substance, although Cordyceps sinensis is famous as a fungus that parasitizes insects (Y. -J.Ahn, 2000). However, even in Cordyceps sinensis, it is only recognized as one of the drug discovery resources, and at present, microorganisms related to insects are almost unused (Kobayashi et al., 2014). We hope that the search for useful substances targeting these insect-derived microorganisms will further develop.

4.参考文献
David J. Maloney, Jing-Zhen Deng, Shelley R. Starck, Zhijie Gao, and Sidney M. Hecht (+)-Myristinin A, a Naturally Occurring DNA Polymerase β Inhibitor and Potent DNA-Damaging Agent (2005) JACS, 127, 4140-4141.
4. References
David J. Maloney, Jing-Zhen Deng, Shelley R. Starck, Zhijie Gao, and Sidney M. Hecht (+)-Myristinin A, a Naturally Occurring DNA Polymerase β Inhibitor and Potent DNA-Damaging Agent (2005) JACS, 127, 4140-4141.

江波義成 病原糸状菌を食べるダニを利用して苗立枯れ症を防ぐ (2003) 東北農業研究センターたより8 Yoshinari Enami Preventing seedling wilt by using mites that eat pathogenic fungi (2003) News from Tohoku Agricultural Research Center 8

古川誠一, 山川 稔(2004) 昆虫の抗菌性ペプチドによる生体防御とその応用化学と生物 Vol. 42, No. 1. Seiichi Furukawa, Minoru Yamakawa (2004) Insect antibacterial peptide defense of living organisms and their applied chemistry and biology Vol. 42, No. 1.

石井良和 (2018) ワンヘルスアプローチに基づく感染制御の重要性 The chemical times NO.4(通巻250号) 特集 感染制御-薬剤耐性(AMR) p2-6 Yoshikazu Ishii (2018) Importance of Infection Control Based on One Health Approach The chemical times NO.4 (Vol. 250) Special Feature Infection Control-Drug Resistance (AMR) p2-6

James E. Oriver, Kenneth R. Wilzer, Rolland M.Waters Synthesis of 1-(2,6-dihydroxyphenyl)-1-alkanones and Benzophenone by aromatization of 2-Acyl-3-hydroxy-2-cyclohexene-1-ones with Mercuric Acetate (1990) Synthesis 1990, 1117-1119. James E. Oriver, Kenneth R. Wilzer, Rolland M. Waters Synthesis of 1- (2,6-dihydroxyphenyl) -1-alkanones and Benzophenone by aromatization of 2-Acyl-3-hydroxy-2-cyclohexene-1-ones with Mercuric Acetate (1990) Synthesis 1990, 1117-1119.

Jinbing Liu, Rihui Cao, Qifeng Wu, Chunming Ma, Zihou Wang, Wenlie Peng, Huacan Soug Synthesis and antibacterial evaluation of novel 4-alkyl substituted phenyl β-aldehyde ketone derivatives (2009) European Journal of Medicinal Chemistry 44, 1737-1744. Jinbing Liu, Rihui Cao, Qifeng Wu, Chunming Ma, Zihou Wang, Wenlie Peng, Huacan Soug Synthesis and antibacterial evaluation of novel 4-alkyl substituted phenyl β-aldehyde ketone derivatives (2009) European Journal of Medicinal Chemistry 44, 1737-1744.

John W. Neal, Jr., James E. Oliver, Raymond H. Fetterer In Vitro Antimicrobial and Nematocidal Activity of Acetgenins Identified from Exocrine Secretions of Stephanitis and Corythucha Lace Bugs Numphs (Heteroptera: Tingidae) (1995) Ann. Entomol. Soc. Am. 88(4), 496-501. John W. Neal, Jr., James E. Oliver, Raymond H. Fetterer In Vitro Antimicrobial and Nematocidal Activity of Acetgenins Identified from Exocrine Secretions of Stephanitis and Corythucha Lace Bugs Numphs (Heteroptera: Tingidae) (1995) Ann. Entomol. Soc. Am. 88 (4), 496-501.

小林 秀昭, 竹石 桂一, 安達 勇光 (2014) 昆虫由来微生物に注目した有用物質の探索 生化学 第86巻. 第5号. Pp 570-577 Hideaki Kobayashi, Keiichi Takeishi, Yumitsu Adachi (2014) Search for useful substances focusing on insect-derived microorganisms Biochemistry Vol. 86. No. 5. Pp 570-577

岡部貴美子 日本における食用きのこ害虫 (2006) 「森林総合研究所研究報告」(Bulletin of FFPRI), Vol. 5, No. 2(No.399), 119-133 Kimiko Okabe Edible Mushroom Pests in Japan (2006) "Forest Research and Management Organization Research Report" (Bulletin of FFPRI), Vol. 5, No. 2 (No. 399), 119-133

Russell A. Jurenka, John W. Neal, Jr., Ralph, W. Howard, James E. Oliver, Gray J. Blomquist In Vitro Inhibition Of Prostaglandin H Synthate By Compounds From The Exocrine Secretions Of Lace Bugs (1989) Comp. Biochem. Physiol. 93C(2), 253-2555 Russell A. Jurenka, John W. Neal, Jr., Ralph, W. Howard, James E. Oliver, Gray J. Blomquist In Vitro Inhibition Of Prostaglandin H Synthate By Compounds From The Exocrine Secretions Of Lace Bugs (1989) Comp. Biochem . Physiol. 93C (2), 253-2555

Sydney A. Villaume, Jian Fu, Dr. Ines N'Go, Hui Liang, Huayong Lou, Laurent Kremer, Weidong Pan, Stephane P. Vincent Natural and Synthetic Flavonoids as Potent Mycobacterium tuberculosis UGM Inhibitors (2017) Chemistry -A European Journal, 23(43), 10423-10429. Sydney A. Villaume, Jian Fu, Dr. Ines N'Go, Hui Liang, Huayong Lou, Laurent Kremer, Weidong Pan, Stephane P. Vincent Natural and Synthetic Flavonoids as Potent Mycobacterium tuberculosis UGM Inhibitors (2017) Chemistry -A European Journal, 23 (43), 10423-10429.

Science of Synthesis, 31a, 441-467, 2007; Chem Abstr., 150, 259653w (2009). Science of Synthesis, 31a, 441-467, 2007; Chem Abstr., 150, 259653w (2009).

田村俊, 池戸正成 MIC測定上の問題点 (2011) 日本化学療法学会雑誌 Shun Tamura, Masanari Ikenobe Problems in MIC measurement (2011) Journal of Japan Society of Chemotherapy

植松 俊彦, 野村 隆英, 石川直久 シンプル薬理学 改訂第3版p216〜272 Toshihiko Uematsu, Takahide Nomura, Naohisa Ishikawa Simple Pharmacology Revised 3rd Edition p216-272

Young-Joon Ahn, Suck-Joon Park, Sang-Gil Lee, Sang-Cheol Shin, Don-Ha Choi Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp.(2000) J. Agric. Food Chem., 48(7), 2744-2748. Young-Joon Ahn, Suck-Joon Park, Sang-Gil Lee, Sang-Cheol Shin, Don-Ha Choi Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. (2000) J. Agric. Food Chem. , 48 (7), 2744-2748.

Claims (5)

下記の化合物1〜3の少なくとも一つを有効成分として含有する、メチシリン耐性黄色ブドウ球菌またはバンコマイシン耐性腸球菌に対する抗菌剤。
化合物1
2,6-DH8
化合物2
2,6-DH10
化合物3
2,6-DH12
An antibacterial agent against methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci, which contains at least one of the following compounds 1 to 3 as an active ingredient.
Compound 1
2,6-DH8
Compound 2
2,6-DH10
Compound 3
2,6-DH12
上記化合物1〜3のトータルの濃度が、2μg/mL以上である、請求項1に記載の抗菌剤。 The antibacterial agent according to claim 1, wherein the total concentration of the compounds 1 to 3 is 2 μg / mL or more. 下記の化合物1〜3の少なくとも一つを有効成分として含有する、抗真菌剤。
化合物1
2,6-DH8
化合物2
2,6-DH10
化合物3
2,6-DH12
An antifungal agent containing at least one of the following compounds 1 to 3 as an active ingredient.
Compound 1
2,6-DH8
Compound 2
2,6-DH10
Compound 3
2,6-DH12
請求項1の抗菌剤を吸着または含有する、マスクまたはその他の抗菌用の繊維製品。 A mask or other antibacterial textile product that adsorbs or contains the antibacterial agent of claim 1. 請求項3の抗真菌剤を吸着または含有する、マスクまたはその他の抗真菌用の繊維製品。
A mask or other antifungal textile product that adsorbs or contains the antifungal agent of claim 3.
JP2019055710A 2019-03-22 2019-03-22 Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof Pending JP2020152704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019055710A JP2020152704A (en) 2019-03-22 2019-03-22 Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055710A JP2020152704A (en) 2019-03-22 2019-03-22 Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof

Publications (1)

Publication Number Publication Date
JP2020152704A true JP2020152704A (en) 2020-09-24

Family

ID=72557818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055710A Pending JP2020152704A (en) 2019-03-22 2019-03-22 Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof

Country Status (1)

Country Link
JP (1) JP2020152704A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338481A (en) * 2001-02-28 2002-11-27 Toshiro Watanabe Silver-based antimicrobial agent
JP2003034637A (en) * 2001-07-19 2003-02-07 Soda Aromatic Co Ltd Antibacterial agent and antibacterial product using the same
JP2018058776A (en) * 2016-10-03 2018-04-12 エーザイフード・ケミカル株式会社 Antibacterial agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338481A (en) * 2001-02-28 2002-11-27 Toshiro Watanabe Silver-based antimicrobial agent
JP2003034637A (en) * 2001-07-19 2003-02-07 Soda Aromatic Co Ltd Antibacterial agent and antibacterial product using the same
JP2018058776A (en) * 2016-10-03 2018-04-12 エーザイフード・ケミカル株式会社 Antibacterial agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEAL, J.W., ET AL., ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA, vol. 88, no. 4, JPN6023003246, 1995, pages 496 - 501, ISSN: 0005097804 *
高原千尋ほか: "シキミグンバイ若虫分泌物に含まれる抗菌活性物質の探索", 日本農芸化学会2018年度大会講演要旨集, vol. 講演番号:3A18p10, JPN6023003247, 5 March 2018 (2018-03-05), ISSN: 0005097803 *

Similar Documents

Publication Publication Date Title
Segaran et al. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir
Gunatilaka Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence
Niu et al. Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia
Ahluwalia et al. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties
Fomsgaard et al. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals––a review
Hernandez et al. Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae)
Mondol et al. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against Phytophthora capsici zoospores
Chizzali et al. Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestica cv.‘Holsteiner Cox’and Pyrus communis cv.‘Conference’
Sharma et al. Nematicidal potential of Streptomyces antibioticus strain M7 against Meloidogyne incognita
Shcherbakova et al. Studying the ability of thymol to improve fungicidal effects of tebuconazole and difenoconazole against some plant pathogenic fungi in seed or foliar treatments
Nirma et al. Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest
Islam et al. Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores
Nguyen et al. Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from Amphirosellinia nigrospora JS‐1675 against various plant pathogenic bacteria and fungi
Das et al. Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation
Molina et al. Laurel extracts inhibit Quorum sensing, virulence factors and biofilm of foodborne pathogens
Chauhan et al. Phyto-fungicides: Structure activity relationships of the thymol derivatives against Rhizoctonia solani
Mondol et al. Macrocyclic trichothecenes from Myrothecium roridum strain M10 with motility inhibitory and zoosporicidal activities against Phytophthora nicotianae
Hassan et al. Eco-friendly larvicide of Amphora coffeaeformis and Scenedesmus obliquus microalgae extracts against Culex pipiens
Alarjani et al. Antimicrobial resistance profile of Staphylococcus aureus and its in-vitro potential inhibition efficiency
Hernández‐López et al. In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae, a lethal disease affecting honeybees worldwide
Neves et al. Anti-Phytophthora cinnamomi activity of Phlomis purpurea plant and root extracts
Kumari et al. Tenuazonic Acid: A potent mycotoxin
Ragavendran et al. Cladophialophora bantiana metabolites are efficient in the larvicidal and ovicidal control of Aedes aegypti, and Culex quinquefasciatus and have low toxicity in zebrafish embryo
Hu et al. Insecticidal activities of secondary metabolites of endophytic Pencillium sp. in Derris elliptica Benth
JP2020152704A (en) Antibacterial agents against drug-resistant staphylococcus aureus or vancomycin-resistant enterococcus and antifungal agents comprising stephanitis svensoni-derived polyketide or synthetic analogs thereof

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240409