JP2020152616A - Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth - Google Patents

Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth Download PDF

Info

Publication number
JP2020152616A
JP2020152616A JP2019053880A JP2019053880A JP2020152616A JP 2020152616 A JP2020152616 A JP 2020152616A JP 2019053880 A JP2019053880 A JP 2019053880A JP 2019053880 A JP2019053880 A JP 2019053880A JP 2020152616 A JP2020152616 A JP 2020152616A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
crucible
single crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019053880A
Other languages
Japanese (ja)
Inventor
彰 寺島
Akira Terajima
彰 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019053880A priority Critical patent/JP2020152616A/en
Publication of JP2020152616A publication Critical patent/JP2020152616A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a seed crystal capable of easily growing a prism-shape single crystal having a side surface of a specific crystal orientation in a growth of an iron gallium alloy single crystal by a VB method and a VGF method, an installation method of the seed crystal, and a crucible for single crystal growth.SOLUTION: A seed crystal is for growing a single crystal by a VB method or a VGF method, the seed crystal being pillar shape. A top surface of the seed crystal is an inclined plane, the inclined plane inclining to a specific crystal orientation.SELECTED DRAWING: Figure 3

Description

本発明は、単結晶の育成に用いる種結晶および種結晶の設置方法、単結晶育成用坩堝(以下、「坩堝」ともいう)に関する。 The present invention relates to a seed crystal used for growing a single crystal, a method for setting the seed crystal, and a crucible for growing a single crystal (hereinafter, also referred to as "crucible").

近年、IoT(Internet of Things)の発展に伴い、小型電子機器の電源として、エネルギーハーベスティング技術の一方式である振動発電が注目されている。 In recent years, with the development of IoT (Internet of Things), vibration power generation, which is a method of energy harvesting technology, has attracted attention as a power source for small electronic devices.

振動発電は、環境中に存在する力学的エネルギーを電力に変換して利用する発電方法である。振動発電の方式として圧電式、磁石可動式、静電気式等が提案されているが、高効率、低コストの発電方式として、磁歪材料を用いた振動発電方式が特許文献1に示されている。 Vibration power generation is a power generation method that converts mechanical energy existing in the environment into electric power and uses it. Piezoelectric type, movable magnet type, electrostatic type and the like have been proposed as a method of vibration power generation, but Patent Document 1 shows a vibration power generation method using a magnetic strain material as a high-efficiency and low-cost power generation method.

磁歪材料としては、高い磁歪特性を有し、材料が比較的安価で機械加工が可能である鉄ガリウム合金が有望視されている。そして、磁化容易方向である<100>方向の方位集積度を高める観点から、鉄ガリウム合金単結晶の製造技術の開発が求められている。 As the magnetostrictive material, an iron-gallium alloy having high magnetostrictive characteristics, which is relatively inexpensive and can be machined, is regarded as promising. Then, from the viewpoint of increasing the azimuth integration degree in the <100> direction, which is the direction in which magnetization is easy, development of a manufacturing technique for an iron-gall alloy single crystal is required.

単結晶成長方法としては、引き上げ法(チョクラルスキー法)が特許文献2に示されている。しかし、単結晶は円柱状に成長するため、これを板状に加工する際に工数が増加する、単結晶合金の加工ロスが生じるという問題があった。 As a single crystal growth method, a pulling method (Czochralski method) is shown in Patent Document 2. However, since the single crystal grows in a columnar shape, there is a problem that the number of man-hours increases when the single crystal is processed into a plate shape and a processing loss of the single crystal alloy occurs.

これに対し、角柱形状の坩堝と種結晶を用いて垂直ブリッジマン法(以下「VB法」ともいう)、垂直温度勾配凝固法(以下「VGF法」ともいう)を行い、側面が特定の結晶方位となるような角柱形状の単結晶を育成する方法が、特許文献3に示されている。 On the other hand, a vertical bridgeman method (hereinafter, also referred to as "VB method") and a vertical temperature gradient solidification method (hereinafter, also referred to as "VGF method") are performed using a prismatic pit and a seed crystal, and a crystal having a specific side surface is performed. Patent Document 3 shows a method for growing a prismatic single crystal having an orientation.

特開2014−18006号公報Japanese Unexamined Patent Publication No. 2014-18006 特開2016−28831号公報Japanese Unexamined Patent Publication No. 2016-28831 特開2014−76915号公報Japanese Unexamined Patent Publication No. 2014-76915

しかし、特許文献3記載の方法では、坩堝を角柱形状にする際、坩堝の定径部の側面と種結晶を設置する細径部の側面が同一の方向となるように高い精度で加工する必要があった。また、坩堝の定径部の側面と種結晶の側面が平行となるように種結晶を設置する必要があるため、種結晶の設置にも高い精度が求められていた。 However, in the method described in Patent Document 3, when the crucible is formed into a prismatic shape, it is necessary to process it with high accuracy so that the side surface of the fixed diameter portion of the crucible and the side surface of the small diameter portion on which the seed crystal is placed are in the same direction. was there. Further, since it is necessary to install the seed crystal so that the side surface of the constant diameter portion of the crucible and the side surface of the seed crystal are parallel to each other, high accuracy is required for the installation of the seed crystal.

本発明は、このような事情に鑑み、VB法、VGF法による鉄ガリウム合金単結晶の育成において、側面が特定の結晶方位となるような角柱形状の単結晶を簡便に育成することができる種結晶および種結晶の設置方法、単結晶育成用坩堝を提供することを目的とする。 In view of these circumstances, the present invention is a seed capable of easily growing a prismatic single crystal having a specific crystal orientation on the side surface in growing an iron-gallium alloy single crystal by the VB method or the VGF method. It is an object of the present invention to provide a method for installing crystals and seed crystals, and a single crystal growing pit.

本発明の一態様は、VB法あるいはVGF法により単結晶を育成するための種結晶であって、前記種結晶は円柱形状であり、前記種結晶の上面は傾斜面であり、前記傾斜面は特定の結晶方位に傾斜することを特徴とする。 One aspect of the present invention is a seed crystal for growing a single crystal by the VB method or the VGF method, the seed crystal has a cylindrical shape, the upper surface of the seed crystal is an inclined surface, and the inclined surface is an inclined surface. It is characterized by inclining to a specific crystal orientation.

VB法やVGF法により単結晶を育成する際に、種結晶の傾斜面の方向と坩堝の定径部の所定の方向が一致するように、種結晶を坩堝に設置することができるため、角柱形状の単結晶の側面方向を特定の結晶方位にすることができ、板状部材切り出し加工における結晶方位出しの手間、および、加工による重量ロスを低減することができる。 When growing a single crystal by the VB method or the VGF method, the seed crystal can be placed in the pit so that the direction of the inclined surface of the seed crystal and the predetermined direction of the constant diameter portion of the pit coincide with each other. The side surface direction of the single crystal of the shape can be set to a specific crystal orientation, and the labor of crystal orientation in the plate-shaped member cutting process and the weight loss due to the process can be reduced.

このとき、前記種結晶は、鉄ガリウム合金の単結晶としてもよい。 At this time, the seed crystal may be a single crystal of an iron-gallium alloy.

鉄ガリウム合金は体心立方構造を有するため、上下面及びすべての側面が(100)面である角柱形状の単結晶を育成することができる。 Since the iron-gallium alloy has a body-centered cubic structure, it is possible to grow a prismatic single crystal whose upper and lower surfaces and all side surfaces are (100) surfaces.

このとき、前記結晶方位は、単結晶の成長方向と垂直な<100>方向としてもよい。 At this time, the crystal orientation may be the <100> direction perpendicular to the growth direction of the single crystal.

このようにすれば、上下面及びすべての側面が(100)面である角柱形状の単結晶を育成することができる。 In this way, it is possible to grow a prismatic single crystal in which the upper and lower surfaces and all the side surfaces are (100) surfaces.

本発明の一態様は、VB法あるいはVGF法により坩堝を用いて単結晶を育成するための種結晶の設置方法であって、前記坩堝の定径部の断面は正方形であり、前記種結晶は円柱形状であり、前記種結晶の上面は傾斜面であり、前記傾斜面は特定の結晶方位に傾斜し、前記坩堝の細径部に前記種結晶を設置し、前記種結晶の上面から反射した光線の反射位置を用いて、前記坩堝の定径部の所定の方向と前記結晶方位が一致するように前記種結晶を設置することを特徴とする。 One aspect of the present invention is a method for setting a seed crystal for growing a single crystal using a pit by the VB method or the VGF method, wherein the cross section of the fixed diameter portion of the pit is square, and the seed crystal is It has a cylindrical shape, the upper surface of the seed crystal is an inclined surface, the inclined surface is inclined in a specific crystal orientation, the seed crystal is placed in a small diameter portion of the pit, and the seed crystal is reflected from the upper surface of the seed crystal. It is characterized in that the seed crystal is placed so that the predetermined direction of the constant diameter portion of the pit and the crystal orientation coincide with each other by using the reflection position of the light beam.

VB法やVGF法により単結晶を育成する際に、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向が一致するよう種結晶を坩堝に設置することができるため、角柱形状の単結晶の側面方向を特定の結晶方位にすることができる。そして、板状部材切り出し加工における結晶方位出しの手間、および、加工による重量ロスを低減することができる。 When growing a single crystal by the VB method or the VGF method, the seed crystal can be placed in the pit so that the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic pit are aligned with each other. The side surface direction of the single crystal can be set to a specific crystal orientation. Then, it is possible to reduce the labor of crystal orientation in the plate-shaped member cutting process and the weight loss due to the process.

このとき、前記種結晶は、鉄ガリウム合金の単結晶としてもよい。 At this time, the seed crystal may be a single crystal of an iron-gallium alloy.

鉄ガリウム合金は体心立方構造を有するため、上下面及びすべての側面が(100)面である角柱形状の単結晶を育成することができる。 Since the iron-gallium alloy has a body-centered cubic structure, it is possible to grow a prismatic single crystal whose upper and lower surfaces and all side surfaces are (100) surfaces.

このとき、前記坩堝の種結晶を設置する細径部は円筒状の井戸状としてもよい。 At this time, the small-diameter portion in which the seed crystal of the crucible is placed may have a cylindrical well shape.

円柱形状の種結晶を、鉛直方向を軸に容易に回転することができるため、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向を容易に一致させることができる。 Since the cylindrical seed crystal can be easily rotated about the vertical direction, the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic crucible can be easily matched.

このとき、前記結晶方位は、単結晶の成長方向と垂直な<100>方向であり、前記坩堝の定径部の所定の方向と前記結晶方位のずれが1°以内としてもよい。 At this time, the crystal orientation is the <100> direction perpendicular to the growth direction of the single crystal, and the deviation between the predetermined direction of the constant diameter portion of the crucible and the crystal orientation may be within 1 °.

このようにすれば、角柱形状の単結晶を板状部材に加工する際、切り出し加工における結晶方位出しの手間、および、加工による重量ロスを低減することができる。 In this way, when processing a prismatic single crystal into a plate-shaped member, it is possible to reduce the labor of crystal orientation in the cutting process and the weight loss due to the processing.

本発明の一態様は、VB法あるいはVGF法により単結晶を育成するための坩堝であって、前記坩堝の定径部の断面は正方形であり、前記坩堝の種結晶を設置する細径部の断面は円形であることを特徴とする。 One aspect of the present invention is a crucible for growing a single crystal by the VB method or the VGF method, the cross section of the fixed diameter portion of the crucible is square, and the small diameter portion on which the seed crystal of the crucible is placed. The cross section is characterized by being circular.

VB法やVGF法により単結晶を育成する際に、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向が一致するよう種結晶を坩堝に設置することができるため、角柱形状の単結晶の側面方向を特定の結晶方位にすることができる。そして、板状部材切り出し加工における結晶方位出しの手間、および、加工による重量ロスを低減することができる。 When growing a single crystal by the VB method or the VGF method, the seed crystal can be placed in the pit so that the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic pit are aligned with each other. The side surface direction of the single crystal can be set to a specific crystal orientation. Then, it is possible to reduce the labor of crystal orientation in the plate-shaped member cutting process and the weight loss due to the process.

このとき、前記種結晶は、鉄ガリウム合金の単結晶としてもよい。 At this time, the seed crystal may be a single crystal of an iron-gallium alloy.

鉄ガリウム合金は体心立方構造を有するため、上下面及びすべての側面が(100)面である角柱形状の単結晶を育成することができる。 Since the iron-gallium alloy has a body-centered cubic structure, it is possible to grow a prismatic single crystal whose upper and lower surfaces and all side surfaces are (100) surfaces.

本発明によれば、VB法やVGF法により単結晶を育成する際に、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向が一致するよう種結晶を坩堝に設置することができるため、角柱形状の単結晶の側面方向を特定の結晶方位にすることができる。そして、板状部材切り出し加工における結晶方位出しの手間、および、加工による重量ロスを低減することができる。 According to the present invention, when a single crystal is grown by the VB method or the VGF method, the seed crystal can be placed in the pit so that the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic pit coincide with each other. Therefore, the side surface direction of the prismatic single crystal can be set to a specific crystal orientation. Then, it is possible to reduce the labor of crystal orientation in the plate-shaped member cutting process and the weight loss due to the process.

図1は、本発明の一実施形態に係る鉄ガリウム合金単結晶インゴットを育成する単結晶育成装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a single crystal growing device for growing an iron-gall alloy single crystal ingot according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る種結晶を設置する坩堝の形状例を示す斜視図である。FIG. 2 is a perspective view showing an example of the shape of a crucible in which a seed crystal according to an embodiment of the present invention is installed. 図3は、本発明の一実施形態に係る種結晶の形状例を示す斜視図である。FIG. 3 is a perspective view showing a shape example of a seed crystal according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る種結晶の傾斜面の結晶方位と、種結晶の上面での光反射を示す概略斜視図である。FIG. 4 is a schematic perspective view showing the crystal orientation of the inclined surface of the seed crystal and the light reflection on the upper surface of the seed crystal according to the embodiment of the present invention. 図5は、本発明の一実施形態に係る種結晶の設置方法を説明する概略斜視図である。FIG. 5 is a schematic perspective view illustrating a method of installing a seed crystal according to an embodiment of the present invention.

以下、本発明の一実施形態にかかる鉄ガリウム合金の種結晶および種結晶の設置方法、単結晶育成用坩堝について説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。 Hereinafter, a seed crystal of an iron-gall alloy, a method for installing the seed crystal, and a crucible for growing a single crystal according to an embodiment of the present invention will be described. The present invention is not limited to the following examples, and can be arbitrarily modified without departing from the gist of the present invention.

鉄ガリウム合金は、高い磁歪特性を有し、材料が比較的安価で引張強度が鉄と同程度で割れにくく加工し易いため、磁歪式振動発電に用いられる磁歪材料として注目されている。また、磁歪式振動発電に用いられる板状部材は長手方向、側面方向とも<100>のときに磁歪式振動発電の効率が高くなる。このため、<100>方向の方位集積度を高め、磁歪材料としての特性を高めるためには、多結晶よりも単結晶の使用が有利である。鉄ガリウム合金の板状部材は、結晶成長法により種結晶から単結晶を成長させてインゴットを作製し、このインゴットを上記の特定方位に切り出することで作製される。 Iron-gallium alloys are attracting attention as magnetostrictive materials used for magnetostrictive vibration power generation because they have high magnetostrictive characteristics, the material is relatively inexpensive, the tensile strength is about the same as iron, and they are hard to crack and easy to process. Further, the plate-shaped member used for the magnetostrictive vibration power generation has a high efficiency of the magnetostrictive vibration power generation when both the longitudinal direction and the side surface direction are <100>. Therefore, in order to increase the degree of azimuth integration in the <100> direction and enhance the characteristics as a magnetostrictive material, it is advantageous to use a single crystal rather than a polycrystal. The plate-shaped member of the iron-gallium alloy is produced by growing a single crystal from a seed crystal by a crystal growth method to produce an ingot, and cutting the ingot in the above specific orientation.

鉄ガリウム合金の単結晶成長方法としては、引き上げ法(チョクラルスキー法)(特許文献2)、VB法、VGF法が用いられている。 As a method for growing a single crystal of an iron-gallium alloy, a pulling method (Czochralski method) (Patent Document 2), a VB method, and a VGF method are used.

しかし、引き上げ法では単結晶は円柱状に成長するため、これを板状に加工する際に工数が増加する、単結晶合金の加工ロスが生じるという問題があった。具体的には、得られるインゴットが円柱状である場合は、X線回折装置を用いて円柱状のインゴット側面の<100>にオリフラを設け、このオリフラを基準に上記結晶方位で板状部材に加工するため、加工の手間と加工時の重量ロスが多いという問題を生じていた。 However, in the pulling method, since the single crystal grows in a columnar shape, there is a problem that the number of man-hours increases when the single crystal is processed into a plate shape and a processing loss of the single crystal alloy occurs. Specifically, when the obtained ingot is columnar, an orifla is provided on <100> on the side surface of the columnar ingot using an X-ray diffractometer, and the plate-shaped member is formed in the above crystal orientation with reference to this orifra. Since it is processed, there is a problem that it takes a lot of labor and weight loss during processing.

これに対しVB法は、結晶成長方向の温度勾配を小さくできるため、低転位密度の単結晶が容易に得られるという優れた特長を有している。また、単結晶の外形は坩堝の形状によって決まり、坩堝の側面内璧形状に倣って育成される。例えば、坩堝における細径部及び定径部について、その結晶成長方向の断面形状を四角形とすることで、上面及び側面結晶方位を特定方向に制御した角柱形状の単結晶インゴットを作製することができる(特許文献3)。 On the other hand, the VB method has an excellent feature that a single crystal having a low dislocation density can be easily obtained because the temperature gradient in the crystal growth direction can be reduced. In addition, the outer shape of the single crystal is determined by the shape of the crucible, and it is grown according to the shape of the inner wall of the side surface of the crucible. For example, by making the cross-sectional shape of the small-diameter portion and the constant-diameter portion in the crucible a quadrangular shape in the crystal growth direction, it is possible to produce a prismatic single crystal ingot in which the upper surface and side crystal orientations are controlled in specific directions. (Patent Document 3).

鉄ガリウム合金では、角柱形状の単結晶の上面および四つの側面が(100)面となるようにすれば、板状部材への切り出し加工における結晶面の方位出しや側面加工が不要となるほか、加工による重量ロスも減少するため、加工コストの低減が期待できる。そして、特許文献3の方法を用いる場合、長手方向の端面および側面が(100)面となるように種結晶を作製し、細径部に種結晶を設置すればよい。 In the iron-gallium alloy, if the upper surface and the four side surfaces of the prismatic single crystal are (100) planes, it is not necessary to orient the crystal planes and side surface processing in the cutting process to the plate-shaped member. Since weight loss due to processing is also reduced, reduction in processing cost can be expected. Then, when the method of Patent Document 3 is used, a seed crystal may be prepared so that the end face and the side surface in the longitudinal direction are (100) planes, and the seed crystal may be placed in the small diameter portion.

しかしながら、坩堝を角柱形状にする際、坩堝の定径部の側面と種結晶を設置する細径部の側面が同一の方向となるように高い精度で加工する必要があった。また、坩堝の定径部の側面と種結晶の側面が平行となるように種結晶を設置する必要があるため、種結晶の設置にも高い精度が求められていた。鉄ガリウム合金単結晶を育成する場合は、坩堝材としてアルミナを用いているため、一辺が10mm程度である細径部の断面形状を精度よく四角形に加工とすることは、高度の技術が必要であった。 However, when the crucible is made into a prismatic shape, it is necessary to process it with high accuracy so that the side surface of the fixed diameter portion of the crucible and the side surface of the small diameter portion where the seed crystal is placed are in the same direction. Further, since it is necessary to install the seed crystal so that the side surface of the constant diameter portion of the crucible and the side surface of the seed crystal are parallel to each other, high accuracy is required for the installation of the seed crystal. When growing an iron-gallium alloy single crystal, alumina is used as a crucible material, so it requires advanced technology to accurately process the cross-sectional shape of a small diameter part with a side of about 10 mm into a quadrangle. there were.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。そして、細径部を円筒状とし、種結晶を円柱形状としつつも、細径部の側面が(100)面となるように種結晶の向きを制御できれば、細径部を角筒状とし、種結晶を角柱形状とすることなく、各側面が全て(100)面の角柱形状の単結晶インゴットを作製することができることに着目した。 The present inventors have made extensive studies to solve the above-mentioned problems. Then, if the orientation of the seed crystal can be controlled so that the side surface of the small diameter portion becomes the (100) plane while the small diameter portion has a cylindrical shape and the seed crystal has a cylindrical shape, the small diameter portion has a prismatic shape. It was noted that a single crystal ingot having a prismatic shape with all (100) planes on each side surface can be produced without forming the seed crystal into a prismatic shape.

しかし、種結晶の直径は小さいため、種結晶に方位を示す目印やオリフラを設けても精度よく種結晶を設置することには限界があった。 However, since the diameter of the seed crystal is small, there is a limit to the accurate installation of the seed crystal even if the seed crystal is provided with a mark indicating the orientation or the orientation flare.

本発明者らは、VB法及びVGF法において、単結晶の育成の際、種結晶の上部は原料と共に融解させることに着目した。そして、種結晶の上面形状は必ずしも融液液面に対し平行な形状である必要はないことに着目し、種結晶の上面を傾斜形状とし、その傾斜方向を<100>方向と一致させることで、精度よく種結晶を設置できることを見出した。そして本発明者らは、かかる知見から本発明を完成するに至った。以下詳細に説明する。 In the VB method and the VGF method, the present inventors have focused on melting the upper part of the seed crystal together with the raw material when growing the single crystal. Focusing on the fact that the upper surface shape of the seed crystal does not necessarily have to be parallel to the melt surface, the upper surface of the seed crystal is made an inclined shape, and the inclined direction is made to coincide with the <100> direction. , I found that the seed crystal can be installed with high accuracy. Then, the present inventors have completed the present invention from such findings. This will be described in detail below.

本発明の一実施形態に係る鉄ガリウム合金の種結晶、種結晶の設置方法を用いて、VB法又はVGF法により、各側面が全て(100)面の角柱形状の単結晶インゴットを育成する。 Using the iron-gallium alloy seed crystal and the seed crystal setting method according to the embodiment of the present invention, a prismatic single crystal ingot having all (100) planes on each side surface is grown by the VB method or the VGF method.

VB法又はVGF法は、坩堝の底部(以下、細径部と呼ぶ)に種結晶を設置し、その上部に原料をチャージする。次に、チャージした原料の全量および種結晶の上部1/3程度を融解させる。そして、温度降下、または坩堝の下方移動により、種結晶の位置から徐々に融液を固化させることで、単結晶を所望の結晶方位に成長させる方法である。 In the VB method or the VGF method, a seed crystal is placed at the bottom of the crucible (hereinafter referred to as a small diameter portion), and a raw material is charged at the top thereof. Next, the entire amount of the charged raw material and the upper 1/3 of the seed crystal are melted. Then, the single crystal is grown in a desired crystal orientation by gradually solidifying the melt from the position of the seed crystal by the temperature drop or the downward movement of the crucible.

本発明の一実施形態に係る鉄ガリウム合金は、ガリウム含有量が17at%以上20at%以下であることが好ましい。ガリウム含有量がこの範囲であることにより、鉄ガリウム合金は、高い磁歪特性を得ることができる。ガリウム含有量が17at%未満のとき、またガリウム含有量が20at%を超えるときでは、鉄ガリウム合金は高い磁歪特性を得ることが困難となる。 The iron-gallium alloy according to the embodiment of the present invention preferably has a gallium content of 17 at% or more and 20 at% or less. When the gallium content is in this range, the iron-gallium alloy can obtain high magnetostrictive characteristics. When the gallium content is less than 17 at% and when the gallium content exceeds 20 at%, it becomes difficult for the iron-gallium alloy to obtain high magnetostrictive characteristics.

ここで、鉄ガリウム合金は、体心立方格子構造を有しており、ミラー指数における方向指数のうち第1〜第3の<100>軸が等価であり、ミラー指数における面指数のうち第1〜第3の{100}面が等価(すなわち、(100)、(010)および(001)は等価)であることを基本とするものである。 Here, the iron-gallium alloy has a body-centered cubic lattice structure, the first to third <100> axes of the directional indexes in the Miller index are equivalent, and the first of the plane indexes in the Miller index is equivalent. It is based on the fact that the third {100} plane is equivalent (that is, (100), (010) and (001) are equivalent).

(単結晶育成装置)
本発明の一実施形態に係る鉄ガリウム合金の種結晶、種結晶の設置方法をより具体的に説明するべく、当該種結晶、種結晶の設置方法を用いる育成装置の一例として、まずは図1に示す単結晶育成装置について説明する。
(Single crystal growing device)
In order to more specifically explain the seed crystal and the seed crystal setting method of the iron gallium alloy according to the embodiment of the present invention, as an example of a growing device using the seed crystal and the seed crystal setting method, first, FIG. The single crystal growing apparatus shown will be described.

図1は、本発明の一実施形態に係る鉄ガリウム合金単結晶インゴットを育成する単結晶育成装置の概略断面図である。この図1では、単結晶育成装置100における坩堝10と鉄ガリウム合金種結晶(以下、「種結晶」ともいう)16、原料となる鉄とガリウムの混合物17との位置関係を模式的に示している。 FIG. 1 is a schematic cross-sectional view of a single crystal growing device for growing an iron-gall alloy single crystal ingot according to an embodiment of the present invention. In FIG. 1, the positional relationship between the crucible 10 in the single crystal growing apparatus 100, the iron-gallium alloy seed crystal (hereinafter, also referred to as “seed crystal”) 16, and the raw material iron-gallium mixture 17 is schematically shown. There is.

単結晶育成装置100は、断熱材11、上段ヒーター12a、中段ヒーター12b、下段ヒーター12cで構成される抵抗加熱ヒーター12、可動用ロッド13、坩堝受け14、熱電対15、真空ポンプ18および、チャンバー19を備えている。チャンバー19内の上部が高温、下部が低温となる温度分布を実現可能な構成となっており、VB法やVGF法等の一方向凝固結晶成長法により、鉄とガリウムの混合物17の融解物を坩堝10中で種結晶16の上部より徐々に固化させることで、鉄ガリウム合金の単結晶インゴットを育成することができる。 The single crystal growing device 100 includes a heat insulating material 11, an upper heater 12a, a middle heater 12b, a resistance heating heater 12 composed of a lower heater 12c, a movable rod 13, a crucible receiver 14, a thermocouple 15, a vacuum pump 18, and a chamber. It has 19. The structure is such that the upper part of the chamber 19 has a high temperature and the lower part has a low temperature, and a melt of a mixture 17 of iron and gallium 17 is obtained by a unidirectional solidification crystal growth method such as the VB method or the VGF method. A single crystal ingot of an iron-gall alloy can be grown by gradually solidifying from the upper part of the seed crystal 16 in the crucible 10.

図1に示すように単結晶育成装置100では、断熱材11の内側にカーボン製の抵抗加熱ヒーター12が配置される。鉄ガリウム合金の単結晶インゴットの育成時に、抵抗加熱ヒーター12によりホットゾーンが形成される。抵抗加熱ヒーター12は、上段ヒーター12a、中段ヒーター12bおよび下段ヒーター12cとで構成され、これらのヒーター12a〜12cへの投入電力を調整することにより、ホットゾーン内の温度勾配を制御することが可能となっている。なお、ホットゾーン内に温度勾配をつけることができれば、単結晶育成装置100の加熱方法は、特に制限はない。 As shown in FIG. 1, in the single crystal growing apparatus 100, a carbon resistance heating heater 12 is arranged inside the heat insulating material 11. A hot zone is formed by the resistance heating heater 12 when growing a single crystal ingot of an iron-gallium alloy. The resistance heating heater 12 is composed of an upper heater 12a, a middle heater 12b, and a lower heater 12c, and the temperature gradient in the hot zone can be controlled by adjusting the input power to these heaters 12a to 12c. It has become. The heating method of the single crystal growing apparatus 100 is not particularly limited as long as a temperature gradient can be provided in the hot zone.

抵抗加熱ヒーター12の内側には、坩堝10が配置され、上下方向に移動可能な可動用ロッド13が設けられた坩堝受け14(支持台)に載置されている。坩堝10内の下部に、鉄ガリウム合金種結晶16が充填され、この鉄ガリウム合金種結晶16の上に、原料として粒子状やフレーク状等の、鉄とガリウムの混合物17が充填される。 A crucible 10 is arranged inside the resistance heating heater 12, and is placed on a crucible receiver 14 (support stand) provided with a movable rod 13 that can move in the vertical direction. The lower part of the crucible 10 is filled with an iron-gallium alloy seed crystal 16, and the iron-gallium alloy seed crystal 16 is filled with a mixture 17 of iron and gallium as a raw material, such as particles or flakes.

単結晶育成装置100には、チャンバー19と真空ポンプ18が設置されており、チャンバー19内を真空雰囲気に調整して鉄ガリウム合金の単結晶インゴットを育成することができる。さらに、アルゴンや窒素等の不活性ガスをチャンバー19へ導入することができ、チャンバー19内を不活性雰囲気にも調整できる。 A chamber 19 and a vacuum pump 18 are installed in the single crystal growing apparatus 100, and the inside of the chamber 19 can be adjusted to a vacuum atmosphere to grow a single crystal ingot of an iron-gall alloy. Further, an inert gas such as argon or nitrogen can be introduced into the chamber 19, and the inside of the chamber 19 can be adjusted to an inert atmosphere.

坩堝10の材質は、鉄ガリウム合金と化学的反応性が低く、高融点材料であるアルミナが好ましい。また、マグネシア、熱分解窒化ホウ素(Pyrolitic Boron Nitride)でもよい。 The material of the crucible 10 is preferably alumina, which has low chemical reactivity with the iron-gallium alloy and is a high melting point material. Further, magnesia and pyrolytic boron nitride may be used.

坩堝10は、上述したように単結晶育成装置100内で可動用ロッド13が設けられた坩堝受け14上に載置され、可動用ロッド13を上下させることにより、坩堝10を育成炉内で上下させることができる。また、坩堝10には、坩堝の温度をモニタリングできる熱電対15が取り付けられている。 As described above, the crucible 10 is placed on the crucible receiver 14 provided with the movable rod 13 in the single crystal growing device 100, and by moving the movable rod 13 up and down, the crucible 10 is moved up and down in the growing furnace. Can be made to. Further, a thermocouple 15 capable of monitoring the temperature of the crucible is attached to the crucible 10.

(角柱形状の単結晶の育成用坩堝)
本発明の一実施形態に係る種結晶を設置する坩堝を、図2を用いて説明する。図2は、本発明の一実施形態に係る種結晶を設置する坩堝の形状例を示す斜視図である。図2に示すように角柱形状の坩堝10を使用することにより、上述の単結晶育成装置にて坩堝形状に倣った角柱形状の単結晶インゴットを育成する。このとき、角柱形状の単結晶は、成長軸方向の面が<100>であり、かつ角柱形状の単結晶の側面が全て(100)面であるように育成される。
(Crucible for growing prismatic single crystals)
A crucible in which a seed crystal according to an embodiment of the present invention is installed will be described with reference to FIG. FIG. 2 is a perspective view showing an example of the shape of a crucible in which a seed crystal according to an embodiment of the present invention is installed. By using the prism-shaped crucible 10 as shown in FIG. 2, a prism-shaped single crystal ingot that imitates the crucible shape is grown by the above-mentioned single crystal growing device. At this time, the prismatic single crystal is grown so that the plane in the growth axis direction is <100> and the side surfaces of the prismatic single crystal are all (100) planes.

坩堝10は、種結晶を設置する井戸状の細径部10a、該細径部から上方に向けて直径が大きくなる逆四角錐台形の管状の増径部10b、および該増径部から上方に結晶成長部として続く角筒状の定径部10cを有する。増径部10bの側面は、水平方向に対して30〜60度の角度を有する。この角度は40〜50度の角度が好ましい。この角度が40度より小さいと増径部が無駄に長くなりコスト高になる。50度より大きいと育成した結晶が多結晶化する問題が発生しやすくなる。好ましくは45度前後である。また、細径部10aの断面は円状の形状を有している。そして、増径部10bの断面は、細径部10aとの接点から定径部10cとの接点の間で、円状から正方形の形状に変化する。そして、定径部10cの断面は正方形の形状を有している。また、坩堝10は、それぞれの断面形状の中心点が同一となるような形状を有している。細径部10a及び定径部10cの大きさ、高さは種結晶や、育成する単結晶の大きさ、高さにより適宜決定される。また、増径部10bの大きさ、高さは、上記の角度を満たすよう適宜決定される。 The 坩 堝 10 has a well-shaped small diameter portion 10a on which a seed crystal is placed, an inverted quadrangular pyramid trapezoidal tubular diameter-increasing portion 10b whose diameter increases upward from the small-diameter portion, and upward from the diameter-increasing portion. It has a square tubular fixed diameter portion 10c that continues as a crystal growth portion. The side surface of the diameter-increasing portion 10b has an angle of 30 to 60 degrees with respect to the horizontal direction. This angle is preferably an angle of 40 to 50 degrees. If this angle is smaller than 40 degrees, the diameter-increasing portion becomes unnecessarily long and the cost increases. If the temperature is higher than 50 degrees, the problem of polycrystallization of the grown crystals tends to occur. It is preferably around 45 degrees. Further, the cross section of the small diameter portion 10a has a circular shape. Then, the cross section of the increased diameter portion 10b changes from a circular shape to a square shape between the contact point with the small diameter portion 10a and the contact point with the fixed diameter portion 10c. The cross section of the fixed diameter portion 10c has a square shape. Further, the crucible 10 has a shape such that the center points of the respective cross-sectional shapes are the same. The size and height of the small diameter portion 10a and the fixed diameter portion 10c are appropriately determined depending on the size and height of the seed crystal and the single crystal to be grown. Further, the size and height of the diameter-increasing portion 10b are appropriately determined so as to satisfy the above angles.

定径部10cの断面を正方形の形状とし、後述するように種結晶の傾斜面の結晶方位が角柱形状の坩堝の所定の方向と一致するよう調整することで、上面及び全側面が(100)面である角柱形状の単結晶インゴットを育成することができる。また、細径部10aの断面を円状にする、つまり細径部10aを円筒状の井戸状にすることで、後述する種結晶を、鉛直方向を軸に回転させることが容易になり、種結晶の傾斜面の結晶方位を容易に調整することができる。そして、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向を容易に一致させることができる。なお、本願において坩堝、定径部10cの所定の方向とは、断面が正方形である坩堝の定径部の正方形の中心を通り、一辺と垂直に交わる方向で、定径部10cの側面の1辺における両側2つの角から同一の距離になる一辺の中央となる方向をいう。 The cross section of the fixed diameter portion 10c is a square shape, and the upper surface and all side surfaces are (100) by adjusting the crystal orientation of the inclined surface of the seed crystal to coincide with the predetermined direction of the prismatic pit, as described later. It is possible to grow a prismatic single crystal ingot that is a surface. Further, by making the cross section of the small diameter portion 10a circular, that is, making the small diameter portion 10a cylindrical well, it becomes easy to rotate the seed crystal described later about the vertical direction, and the seed can be easily rotated. The crystal orientation of the inclined surface of the crystal can be easily adjusted. Then, the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic crucible can be easily matched. In the present application, the predetermined direction of the fixed diameter portion 10c of the pit is a direction that passes through the center of the square of the fixed diameter portion of the pit having a square cross section and intersects one side perpendicularly, and is one of the side surfaces of the fixed diameter portion 10c. The direction of the center of one side that is the same distance from the two corners on both sides of the side.

(種結晶)
本発明の一実施形態に係る種結晶を、図3を用いて説明する。図3は、本発明の一実施形態に係る種結晶の形状例を示す斜視図である。種結晶16は円柱形状であり、種結晶16の結晶成長方向にある2つの端面のうち、1つの面が傾斜形状を有している。
(Seed crystal)
A seed crystal according to an embodiment of the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing a shape example of a seed crystal according to an embodiment of the present invention. The seed crystal 16 has a cylindrical shape, and one of the two end faces in the crystal growth direction of the seed crystal 16 has an inclined shape.

種結晶16は円柱形状であるため、上述したように、鉛直方向を軸に回転させることが容易になり、種結晶の傾斜面の結晶方位を容易に調整することができる。そして、種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向を容易に一致させることができる。 Since the seed crystal 16 has a cylindrical shape, as described above, it is easy to rotate the seed crystal about the vertical direction, and the crystal orientation of the inclined surface of the seed crystal can be easily adjusted. Then, the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic crucible can be easily matched.

そして、傾斜の方向は図3に示すように、長手方向と垂直な<100>方向に設定する。この<100>の方向を、坩堝の定径部の所定の方向と一致するよう調整することで、上面及び全側面が(100)面である角柱形状の単結晶インゴットを育成することができる。傾斜の角度θは坩堝の内径や坩堝の長さ等により適宜調整されるが、5°〜20°が好ましい。後述するが、本発明では種結晶の上方からレーザー光等を反射させたときの反射光を視認して種結晶の傾斜面の結晶方位と角柱形状の坩堝の所定の方向に調整している。傾斜角度が5°より小さい場合は、反射光が入射光と近いため坩堝上部で視認できない。傾斜角度が20°より大きいと、反射光が坩堝側面の深い位置に反射されるため反射光のズレを確認し難くなる。また、傾斜面の表面は、レーザー光等を反射させて坩堝上部で視認できる程度の面であれば特に限定はないが、傾斜面は光が散乱することなく反射するように鏡面状に加工することが好ましい。なお種結晶16の大きさについては特に制限はない。 Then, as shown in FIG. 3, the direction of inclination is set in the <100> direction perpendicular to the longitudinal direction. By adjusting the direction of <100> so as to coincide with a predetermined direction of the fixed diameter portion of the crucible, it is possible to grow a prismatic single crystal ingot whose upper surface and all side surfaces are (100) planes. The angle θ of inclination is appropriately adjusted depending on the inner diameter of the crucible, the length of the crucible, and the like, but is preferably 5 ° to 20 °. As will be described later, in the present invention, the reflected light when the laser beam or the like is reflected from above the seed crystal is visually recognized, and the crystal orientation of the inclined surface of the seed crystal and the predetermined direction of the prismatic pit are adjusted. When the inclination angle is smaller than 5 °, the reflected light is close to the incident light and cannot be visually recognized at the upper part of the crucible. If the inclination angle is larger than 20 °, the reflected light is reflected at a deep position on the side surface of the crucible, so that it is difficult to confirm the deviation of the reflected light. The surface of the inclined surface is not particularly limited as long as it reflects laser light or the like and can be visually recognized at the upper part of the crucible, but the inclined surface is processed into a mirror surface so that the light is reflected without being scattered. Is preferable. The size of the seed crystal 16 is not particularly limited.

次に、本発明の一実施形態に係る種結晶の上方からレーザー光等を反射させたときの反射光について、図4を用いて詳細に説明する。図4は、本発明の一実施形態に係る種結晶の傾斜面の結晶方位と、種結晶の上面での光反射を示す概略斜視図である。 Next, the reflected light when the laser beam or the like is reflected from above the seed crystal according to the embodiment of the present invention will be described in detail with reference to FIG. FIG. 4 is a schematic perspective view showing the crystal orientation of the inclined surface of the seed crystal and the light reflection on the upper surface of the seed crystal according to the embodiment of the present invention.

種結晶上面16aの傾斜の方向は、図4に示すように、長手方向と垂直な<100>方向に設定する。そして、種結晶16の上方から種結晶16の長手方向に平行に、レーザー光等を種結晶上面16aに入射する。反射光は、種結晶16の長手方向と傾斜角θをなす方向に反射する。また、種結晶上面16aの傾斜の方向は長手方向と垂直な<100>方向であるため、図4に示すように、反射光は長手方向と垂直な<100>方向に沿って反射する。 As shown in FIG. 4, the direction of inclination of the upper surface 16a of the seed crystal is set to the <100> direction perpendicular to the longitudinal direction. Then, a laser beam or the like is incident on the upper surface 16a of the seed crystal from above the seed crystal 16 in parallel with the longitudinal direction of the seed crystal 16. The reflected light is reflected in the direction forming the inclination angle θ with the longitudinal direction of the seed crystal 16. Further, since the inclination direction of the upper surface 16a of the seed crystal is the <100> direction perpendicular to the longitudinal direction, the reflected light is reflected along the <100> direction perpendicular to the longitudinal direction as shown in FIG.

そして、図4に示すように、入射光と反射光のなす平面は、2つの<100>方向からなる平面である(100)面を形成する。また、長手方向及び傾斜方向と垂直な<100>方向と、長手方向からなる平面も同様に(100)面を形成する。また、鉄ガリウム合金は体心立方構造を有し、軸角は全て90°であるため、これらの(100)面を形成することができる。なお種結晶上面16aを予め<100>方向に傾斜させることで、簡単に反射光を長手方向と垂直な<100>方向に沿って反射させることができる。 Then, as shown in FIG. 4, the plane formed by the incident light and the reflected light forms a (100) plane which is a plane composed of two <100> directions. Further, a plane formed by the <100> direction perpendicular to the longitudinal direction and the inclined direction and the longitudinal direction also forms the (100) plane. Further, since the iron-gallium alloy has a body-centered cubic structure and all the axial angles are 90 °, these (100) planes can be formed. By tilting the upper surface 16a of the seed crystal in the <100> direction in advance, the reflected light can be easily reflected along the <100> direction perpendicular to the longitudinal direction.

種結晶上面16aの傾斜の方向である<100>方向を、断面が正方形である坩堝の定径部の正方形の中心を通り、一辺と垂直に交わる方向と一致させることで、坩堝の定径部の四辺は全て、長手方向と垂直な<100>方向となり、定径部の側面は全て(100)面を形成する。 By matching the <100> direction, which is the direction of inclination of the upper surface 16a of the seed crystal, with the direction that passes through the center of the square of the fixed diameter portion of the pit whose cross section is square and intersects perpendicularly with one side, the fixed diameter portion of the pit. All four sides are in the <100> direction perpendicular to the longitudinal direction, and all the side surfaces of the constant diameter portion form a (100) plane.

(種結晶の設置方法)
本発明の一実施形態に係る種結晶の設置方法を、図5を用いて説明する。図5は、本発明の一実施形態に係る種結晶の設置方法を説明する概略斜視図である。
(How to install seed crystals)
A method for installing a seed crystal according to an embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic perspective view illustrating a method of installing a seed crystal according to an embodiment of the present invention.

まず坩堝10の細径部10aに、傾斜面を上にして種結晶16を設置する。次に、坩堝上方の光源20から種結晶16の長手方向に平行に、レーザー光等を種結晶16の上面に照射する。反射光は、図5に示すように、種結晶の長手方向と垂直な<100>方向に反射する。そして、坩堝上部で反射光を視認する。レーザー光以外でも反射光が視認できれば光の種類に限定はない。またレーザー光の位置は、坩堝軸に合わせることが好ましいが、必要に応じて傾かせてもよい。レーザー光等を基に種結晶16の方位と坩堝本体部の位置を合わせることができればその方法は特に限定はない。 First, the seed crystal 16 is placed on the small diameter portion 10a of the crucible 10 with the inclined surface facing up. Next, the upper surface of the seed crystal 16 is irradiated with laser light or the like from the light source 20 above the crucible in parallel with the longitudinal direction of the seed crystal 16. As shown in FIG. 5, the reflected light is reflected in the <100> direction perpendicular to the longitudinal direction of the seed crystal. Then, the reflected light is visually recognized at the upper part of the crucible. There is no limit to the type of light as long as the reflected light can be visually recognized other than the laser light. The position of the laser beam is preferably aligned with the crucible axis, but may be tilted if necessary. The method is not particularly limited as long as the orientation of the seed crystal 16 and the position of the crucible body can be aligned based on laser light or the like.

また、反射光が、坩堝10の定径部10c側面の1辺と垂直に交わる点、つまり、定径部10cの側面の1辺における両側2つの角から同一の距離になる1辺の中央を、基準位置として設定する。種結晶16の傾斜面の方向が定径部10c断面の各辺と平行のとき、反射光は基準位置に一致する。 Further, the point where the reflected light intersects perpendicularly with one side of the fixed diameter portion 10c side surface of the crucible 10, that is, the center of one side that is the same distance from the two corners on both sides of one side of the fixed diameter portion 10c. , Set as a reference position. When the direction of the inclined surface of the seed crystal 16 is parallel to each side of the fixed diameter portion 10c cross section, the reflected light coincides with the reference position.

反射光の位置と坩堝上部の基準位値にズレがある場合、種結晶16をズレが解消するように回転させる。回転する方法は、特に限定はない。例えば、坩堝10の外側より磁石等を用いて回転させてもよい。また、坩堝上方より種結晶を挟持して回転させてもよい。なお、この場合、種結晶の長さは細径部より長いことが好ましい。細径部の上端より突き出た部分を挟持し回転させることが可能となる。上記の方法により、種結晶16の傾斜面の結晶方位と坩堝の所定の方向の位置合わせを簡単に設定することができる。そして、上面及び全側面が(100)面である角柱形状の単結晶インゴットを育成することができる。 If there is a discrepancy between the position of the reflected light and the reference position value at the top of the crucible, the seed crystal 16 is rotated so that the misalignment disappears. The method of rotation is not particularly limited. For example, it may be rotated from the outside of the crucible 10 by using a magnet or the like. Further, the seed crystal may be sandwiched and rotated from above the crucible. In this case, the length of the seed crystal is preferably longer than that of the small diameter portion. It is possible to sandwich and rotate the portion protruding from the upper end of the small diameter portion. By the above method, the alignment of the crystal orientation of the inclined surface of the seed crystal 16 and the predetermined direction of the crucible can be easily set. Then, it is possible to grow a prismatic single crystal ingot whose upper surface and all side surfaces are (100) planes.

以下、本発明について、実施例を挙げてさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

ガリウム含有量18at%の鉄ガリウム単結晶から、長手方向が<100>、すなわち長手方向と垂直な方向に(100)面を有する円柱形状の種結晶を用意した。種結晶は、高さ30mm、直径10mmφの円柱形状であり、円柱の上面は、長手方向と垂直な<100>の方向に対して15°の傾斜を設け、傾斜面は光が散乱することなく反射するように鏡面状に加工した。 From an iron gallium single crystal having a gallium content of 18 at%, a columnar seed crystal having a (100) plane in the longitudinal direction <100>, that is, in the direction perpendicular to the longitudinal direction was prepared. The seed crystal has a cylindrical shape with a height of 30 mm and a diameter of 10 mmφ, and the upper surface of the cylinder is provided with an inclination of 15 ° with respect to the <100> direction perpendicular to the longitudinal direction, and the inclined surface does not scatter light. It was processed into a mirror surface so that it would be reflected.

次に、坩堝として、厚さ3mm、細径部の内寸がφ10mm、高さ30mmの下端が閉じた円筒状の井戸状、増径部が半頂角45°の略逆四角錐台形形状、定径部が内寸50mm×50mm角の角筒状、全体の高さ200mmの緻密質アルミナ製坩堝を準備し、細径部に種結晶を設置した。そして、種結晶の長手方向に平行なレーザー光を、細径部に設置した種結晶の上面に照射し、レーザー光の反射光が、坩堝の定径部側面の1辺と垂直に交わるように、すなわち、定径部側面の1辺における両側2つの角から同一の距離になる1辺の中央にレーザー光が位置するよう磁石を用いて種結晶を回転させて、レーザー光の反射方向を調整した。この後、ガリウム含有量が18at%となるように、鉄とガリウムの混合物を坩堝にチャージし、VB法により鉄ガリウム合金の単結晶を育成した。得られた単結晶の直胴部側面の1辺の結晶方位をX線回折装置で測定したところ、<100>とのずれは、結晶育成方向に対し、平行方向で0.58°であった。 Next, as a crucible, a cylindrical well shape with a thickness of 3 mm, an inner diameter of a small diameter part of φ10 mm, a height of 30 mm with a closed lower end, and a substantially inverted quadrangular pyramid trapezoidal shape with a half-diameter angle of 45 °. A crucible made of dense alumina having a fixed diameter portion of 50 mm × 50 mm square and a total height of 200 mm was prepared, and seed crystals were placed in the small diameter portion. Then, a laser beam parallel to the longitudinal direction of the seed crystal is irradiated on the upper surface of the seed crystal installed in the small diameter portion so that the reflected light of the laser beam intersects one side of the side surface of the fixed diameter portion of the pit perpendicularly. That is, the direction of reflection of the laser beam is adjusted by rotating the seed crystal using a magnet so that the laser beam is located at the center of one side that is the same distance from the two corners on both sides of the side surface of the fixed diameter portion. did. After that, a mixture of iron and gallium was charged in the crucible so that the gallium content was 18 at%, and a single crystal of the iron-gallium alloy was grown by the VB method. When the crystal orientation of one side of the side surface of the straight body of the obtained single crystal was measured by an X-ray diffractometer, the deviation from <100> was 0.58 ° in the direction parallel to the crystal growth direction. ..

同様の手順で単結晶の育成をさらに9度行い、それぞれの単結晶の結晶方位を確認した。その結果を表1に示す。表1は、鉄ガリウム合金単結晶の側面の結晶方位と、<100>方向とのずれを測定した結果である。 The single crystals were grown 9 times in the same procedure, and the crystal orientation of each single crystal was confirmed. The results are shown in Table 1. Table 1 shows the results of measuring the deviation between the crystal orientation of the side surface of the iron-gallium alloy single crystal and the <100> direction.

Figure 2020152616
Figure 2020152616

いずれの結晶においても、<100>とのずれは1°以内であることが確認できた。このように、鉄ガリウム単結晶を、直胴部断面形状が四角形の角柱形状に育成して、四角形の1辺は<100>の結晶方位が確保されることが分かる。このため、結晶側面である(100)面に沿って切り出し加工を実施することができる。その結果、X線回折装置で育成結晶の結晶面測定やオリフラ加工を新たにする必要がなくなり、加工による重量ロスも低減した。 It was confirmed that the deviation from <100> was within 1 ° in all the crystals. As described above, it can be seen that the iron gallium single crystal is grown into a prismatic shape having a quadrangular cross-sectional shape of the straight body, and the crystal orientation of <100> is secured on one side of the quadrangle. Therefore, the cutting process can be performed along the (100) plane which is the crystal side surface. As a result, it is not necessary to renew the crystal plane measurement and the orientation flat processing of the grown crystal with the X-ray diffractometer, and the weight loss due to the processing is also reduced.

なお、上記のように本発明の一実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although one embodiment of the present invention and each embodiment have been described in detail as described above, those skilled in the art will be able to make many modifications that do not substantially deviate from the novel matters and effects of the present invention. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、単結晶育成に用いる種結晶および種結晶の設置方法、坩堝の構成も本発明の一実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the seed crystal used for growing the single crystal, the method for installing the seed crystal, and the structure of the crucible are not limited to those described in one embodiment of the present invention and each embodiment, and various modifications can be carried out.

10 坩堝、10a 細径部、10b 増径部、10c 定径部、11 断熱材、12 抵抗加熱ヒーター、12a 上段ヒーター、12b 中段ヒーター、12c 下段ヒーター、13 可動用ロッド、14 坩堝受け、15 熱電対、16 種結晶、16a 種結晶上面、17 鉄とガリウムの混合物、18 真空ポンプ、19 チャンバー、20 光源、100 単結晶育成装置 10 crucible, 10a small diameter part, 10b diameter increase part, 10c fixed diameter part, 11 heat insulating material, 12 resistance heating heater, 12a upper heater, 12b middle heater, 12c lower heater, 13 movable rod, 14 crucible receiver, 15 thermocouple Pair, 16 seed crystals, 16a seed crystal top surface, 17 iron and gallium mixture, 18 vacuum pump, 19 chambers, 20 light sources, 100 single crystal growth device

Claims (9)

VB法あるいはVGF法により単結晶を育成するための種結晶であって、
前記種結晶は円柱形状であり、
前記種結晶の上面は傾斜面であり、
前記傾斜面は特定の結晶方位に傾斜することを特徴とする種結晶。
A seed crystal for growing a single crystal by the VB method or the VGF method.
The seed crystal has a cylindrical shape and has a cylindrical shape.
The upper surface of the seed crystal is an inclined surface,
The seed crystal is characterized in that the inclined surface is inclined in a specific crystal orientation.
前記種結晶は、鉄ガリウム合金の単結晶であることを特徴とする請求項1に記載の種結晶。 The seed crystal according to claim 1, wherein the seed crystal is a single crystal of an iron-gallium alloy. 前記結晶方位は、単結晶の成長方向と垂直な<100>方向であることを特徴とする、請求項1又は2に記載の種結晶。 The seed crystal according to claim 1 or 2, wherein the crystal orientation is in the <100> direction perpendicular to the growth direction of the single crystal. VB法あるいはVGF法により坩堝を用いて単結晶を育成するための種結晶の設置方法であって、
前記坩堝の定径部の断面は正方形であり、
前記種結晶は円柱形状であり、
前記種結晶の上面は傾斜面であり、
前記傾斜面は特定の結晶方位に傾斜し、
前記坩堝の細径部に前記種結晶を設置し、
前記種結晶の上面から反射した光線の反射位置を用いて、前記坩堝の定径部の所定の方向と前記結晶方位が一致するように前記種結晶を設置することを特徴とする種結晶の設置方法。
It is a method of setting a seed crystal for growing a single crystal using a crucible by the VB method or the VGF method.
The cross section of the fixed diameter portion of the crucible is square,
The seed crystal has a cylindrical shape and has a cylindrical shape.
The upper surface of the seed crystal is an inclined surface,
The inclined surface is inclined to a specific crystal orientation,
The seed crystal is placed in the small diameter portion of the crucible,
Installation of the seed crystal, which is characterized in that the seed crystal is installed so that the predetermined direction of the constant diameter portion of the pit and the crystal orientation coincide with each other by using the reflection position of the light beam reflected from the upper surface of the seed crystal. Method.
前記種結晶は、鉄ガリウム合金の単結晶であることを特徴とする請求項4に記載の種結晶の設置方法。 The method for installing a seed crystal according to claim 4, wherein the seed crystal is a single crystal of an iron-gallium alloy. 前記坩堝の種結晶を設置する細径部は円筒状の井戸状であることを特徴とする請求項4又は5に記載の種結晶の設置方法。 The method for installing a seed crystal according to claim 4 or 5, wherein the small-diameter portion for installing the seed crystal of the crucible has a cylindrical well shape. 前記結晶方位は、単結晶の成長方向と垂直な<100>方向であり、
前記坩堝の定径部の所定の方向と前記結晶方位のずれが1°以内であることを特徴とする、請求項4乃至6の何れか1項に記載の種結晶の設置方法。
The crystal orientation is the <100> direction perpendicular to the growth direction of the single crystal.
The method for installing a seed crystal according to any one of claims 4 to 6, wherein the deviation between the predetermined direction of the constant diameter portion of the crucible and the crystal orientation is within 1 °.
VB法あるいはVGF法により単結晶を育成するための坩堝であって、
前記坩堝の定径部の断面は正方形であり、
前記坩堝の種結晶を設置する細径部の断面は円形であることを特徴とする単結晶育成用坩堝。
A crucible for growing a single crystal by the VB method or the VGF method.
The cross section of the fixed diameter portion of the crucible is square,
A crucible for growing a single crystal, characterized in that the cross section of the small diameter portion on which the seed crystal of the crucible is placed is circular.
前記単結晶は、鉄ガリウム合金の単結晶であることを特徴とする請求項8に記載の単結晶育成用坩堝。 The crucible for growing a single crystal according to claim 8, wherein the single crystal is a single crystal of an iron-gallium alloy.
JP2019053880A 2019-03-20 2019-03-20 Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth Pending JP2020152616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019053880A JP2020152616A (en) 2019-03-20 2019-03-20 Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053880A JP2020152616A (en) 2019-03-20 2019-03-20 Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth

Publications (1)

Publication Number Publication Date
JP2020152616A true JP2020152616A (en) 2020-09-24

Family

ID=72557712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053880A Pending JP2020152616A (en) 2019-03-20 2019-03-20 Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth

Country Status (1)

Country Link
JP (1) JP2020152616A (en)

Similar Documents

Publication Publication Date Title
CN101962798B (en) Method and equipment for producing sapphire single crystal
US8882077B2 (en) Seed layers and process of manufacturing seed layers
JP5728097B2 (en) Method for preparing a garnet-type doped single crystal having a diameter of up to 500 mm
US10131999B2 (en) Method for producing a silicon ingot having symmetrical grain boundaries
US8500905B2 (en) Kyropoulos sapphire single crystal growing apparatus using elliptic crucible
CN107881550B (en) Melt method crystal growth method of large-size crystal
Kurlov et al. Shaped crystal growth
Lu et al. Effect of vibrational stirring on the quality of Bridgman-grown CdTe
US20200105997A1 (en) Magnetostriction element and method of manufacture of magnetostriction element
CN104088014A (en) Rod-like sapphire crystal growing equipment and rod-like sapphire crystal growing method
Wu et al. In situ synthesis of melt-grown mullite ceramics using directed laser deposition
CN112466407A (en) Method for obtaining large-size chalcopyrite single crystals based on CGSim software simulation
Wang et al. Preparation and microstructure of large-sized directionally solidified Al2O3/Y3Al5O12 eutectics with the seeding technique
CN108495957A (en) Single-crystal silicon carbide substrate
JP2020152616A (en) Seed crystal used for single crystal growth, installation method of seed crystal, and crucible for single crystal growth
JP7394332B2 (en) Growing method and processing method for single crystal ingot of iron gallium alloy, single crystal ingot of iron gallium alloy
WO2014034794A1 (en) Solid electrolyte single crystal having perovskite structure and method for producing same
JP2020200209A (en) Method of manufacturing seed crystal used for single crystal growth
Arai et al. Spherical sapphire single-crystal synthesis by aerodynamic levitation with high growth rate
JP2022045089A (en) Processing method of single crystal ingot of iron gallium alloy
PT115438B (en) METHOD AND APPLIANCE FOR THE PRODUCTION OF TEXTURED MATERIALS THROUGH ZONE FUSION WITH LASER (LFZ) WITH APPLICATION OF AN EXTERNAL MAGNETIC FIELD
JP2016216287A (en) Method of manufacturing sic single crystal
Narushima et al. High‐temperature morphological evolution of lithographically introduced cavities in silicon carbide
Kusuma et al. The Growth and Growth Mechanism of Congruent LiNbO 3 Single Crystals by Czochralski Method
CN109868508A (en) A method of control solid liquid interface growing large-size FeGa magnetostriction monocrystalline