JP2020151674A - Supercritical fluid dispersion method - Google Patents

Supercritical fluid dispersion method Download PDF

Info

Publication number
JP2020151674A
JP2020151674A JP2019053466A JP2019053466A JP2020151674A JP 2020151674 A JP2020151674 A JP 2020151674A JP 2019053466 A JP2019053466 A JP 2019053466A JP 2019053466 A JP2019053466 A JP 2019053466A JP 2020151674 A JP2020151674 A JP 2020151674A
Authority
JP
Japan
Prior art keywords
dispersion
supercritical fluid
flow path
orifice
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019053466A
Other languages
Japanese (ja)
Other versions
JP7295554B2 (en
Inventor
恵一 佐野
Keiichi Sano
恵一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jokoh Co Ltd
Original Assignee
Jokoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jokoh Co Ltd filed Critical Jokoh Co Ltd
Priority to JP2019053466A priority Critical patent/JP7295554B2/en
Publication of JP2020151674A publication Critical patent/JP2020151674A/en
Application granted granted Critical
Publication of JP7295554B2 publication Critical patent/JP7295554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

To provide a supercritical fluid dispersion method having both excellent fluidity during processing and easiness of separation after processing, by using supercritical fluid for fluid to be mixed with an object to be processed.SOLUTION: A supercritical fluid dispersion method includes the first supercritical fluid dispersion step for obtaining the first dispersion by dispersing an object to be processed into supercritical fluid, and the second supercritical fluid dispersion step for obtaining the second dispersion by pressurizing and supplying the first dispersion to an orifice homogenizer part having a small-diameter passage part, and by miniaturizing the object to be processed in the first dispersion, and further includes, after the second supercritical fluid dispersion step, an isolation step for isolating a microminiaturization object of the object to be processed by removing the supercritical fluid from the second dispersion.SELECTED DRAWING: Figure 1

Description

本発明は、超臨界流体分散方法に関し、特に被処理物を超臨界流体中に分散させて微小化する方法に関する。 The present invention relates to a supercritical fluid dispersion method, and more particularly to a method of dispersing an object to be treated in a supercritical fluid to reduce the size.

被処理物の微小化方法としては、従前、乾式または湿式の粉砕機が使用されている従前の乾式または湿式の粉砕機では、少量の微小化には不向きであった。発明者は、以前より被処理物と流体を混合した混合物を細管内に加圧しながら流動させることにより、効率的な少量の被処理物の微小化を実現してきた(例えば、特許文献1参照)。 As a method for miniaturizing the object to be treated, a conventional dry or wet pulverizer in which a dry or wet pulverizer is used has not been suitable for pulverizing a small amount. The inventor has long realized efficient miniaturization of a small amount of the object to be processed by flowing the mixture of the object to be processed and the fluid while pressurizing the inside of the capillary tube (see, for example, Patent Document 1). ..

混合物の細管内の流動に際し、処理効率の点から高速で流動させる必要があり、混合物は非常に高圧にして流動されていた。特に、水、有機溶媒の場合、被処理物と流体を混合した混合物の状態では高粘度となり流動性の低下が生じやすい。そのため、圧送用のポンプには高出力が要求され、装置自体の規模は大きくなりやすい。また配管は混合物の流動時の圧力負荷を受けるため、耐圧施工等が必要である。そこで、微小化のための設備負担は大きい。 When flowing the mixture in the capillary tube, it was necessary to flow it at a high speed from the viewpoint of processing efficiency, and the mixture was flowed at a very high pressure. In particular, in the case of water or an organic solvent, the viscosity becomes high in the state of a mixture of the object to be treated and the fluid, and the fluidity tends to decrease. Therefore, a high output is required for the pump for pumping, and the scale of the device itself tends to be large. In addition, since the piping receives a pressure load when the mixture flows, pressure-resistant construction is required. Therefore, the equipment burden for miniaturization is large.

さらに、微小化の処理を終えて微小化された被処理物と溶媒となる流体の混合物から、目的の微小化された被処理物を分離する必要がある。水、有機溶媒の使用では、蒸発等の事後的な分離の処理が必要な場合もある。 Further, it is necessary to separate the target miniaturized object to be treated from the mixture of the miniaturized object to be treated and the fluid serving as a solvent after the miniaturization process is completed. The use of water and organic solvents may require ex post separation treatment such as evaporation.

特開2018−100474号公報Japanese Unexamined Patent Publication No. 2018-100474

そこで、発明者は、被処理物と混合した流体の良好な流動性を維持しつつ、処理後の分離の容易な被処理物の微小化の方法が望まれていた。本発明は前記の点に鑑みなされたものであり、被処理物と混合する流体に超臨界流体を用いることにより、処理時の良好な流動性と処理後の分離の容易さを兼ね備える超臨界流体分散方法を提供する。 Therefore, the inventor has desired a method for miniaturizing the object to be treated, which can be easily separated after the treatment, while maintaining good fluidity of the fluid mixed with the object to be treated. The present invention has been made in view of the above points, and by using a supercritical fluid as the fluid to be mixed with the object to be treated, a supercritical fluid having both good fluidity during treatment and ease of separation after treatment. Provide a distribution method.

すなわち、第1の形態は、被処理物を超臨界流体中に分散させて第1分散物を得る第1超臨界流体分散工程と、第1分散物を、小径流路部を備えてなるオリフィスホモジナイザ部へ加圧供給し第1分散物中の被処理物を微小化して第2分散物を得る第2超臨界流体分散工程と、を備えることを特徴とする。 That is, the first form is a first supercritical fluid dispersion step of dispersing an object to be treated in a supercritical fluid to obtain a first dispersion, and an orifice in which the first dispersion is provided with a small-diameter flow path portion. It is characterized by comprising a second supercritical fluid dispersion step of pressurizing and supplying to the homogenizer portion to miniaturize the object to be treated in the first dispersion to obtain a second dispersion.

第2の形態は、第2超臨界流体分散工程において、第1分散物がオリフィスホモジナイザ部を通過後、通過後の第1分散物が再度オリフィスホモジナイザ部を通過することを繰り返して第2分散物が調製されることを特徴とする。 In the second embodiment, in the second supercritical fluid dispersion step, after the first dispersion passes through the orifice homogenizer portion, the first dispersion after passing passes through the orifice homogenizer portion again, and the second dispersion is repeatedly used. Is prepared.

第3の形態は、第2超臨界流体分散工程の後、第2分散物から超臨界流体を除去し被処理物の微小化物を単離する単離工程が加えられることを特徴とする。 The third embodiment is characterized in that after the second supercritical fluid dispersion step, an isolation step of removing the supercritical fluid from the second dispersion and isolating microparticles of the object to be treated is added.

第4の形態は、超臨界流体が、二酸化炭素の超臨界流体であることを特徴とする。 The fourth form is characterized in that the supercritical fluid is a supercritical fluid of carbon dioxide.

第5の形態は、オリフィスホモジナイザ部は、複数の流入側流路部と、複数の流出側流路部と、複数の流入側流路部を単一に集合させる集合部と、集合部の下流に接続されたオリフィス流路部と、オリフィス流路部の下流に接続されオリフィス流路部を分岐させ複数の流出側流路部と接続する分岐部と、を備えることを特徴とする。 In the fifth form, the orifice homogenizer portion is composed of a plurality of inflow side flow path portions, a plurality of outflow side flow path portions, a gathering portion that singly aggregates a plurality of inflow side flow path portions, and a downstream portion of the assembly portion. It is characterized by including an orifice flow path portion connected to the above, and a branch portion connected to the downstream side of the orifice flow path portion to branch the orifice flow path portion and connect to a plurality of outflow side flow path portions.

本発明の超臨界流体分散方法によると、被処理物を超臨界流体中に分散させて第1分散物を得る第1超臨界流体分散工程と、第1分散物を、小径流路部を備えてなるオリフィスホモジナイザ部へ加圧供給し第1分散物中の被処理物を微小化して第2分散物を得る第2超臨界流体分散工程と、を備えるため、被処理物を微小化する処理時の良好な流動性と処理後の溶媒となる流体の分離の容易さを兼ね備えことができる。 According to the supercritical fluid dispersion method of the present invention, the first supercritical fluid dispersion step of dispersing the object to be treated in the supercritical fluid to obtain the first dispersion, and the first dispersion are provided with a small-diameter flow path portion. A process of miniaturizing the object to be treated is provided with a second supercritical fluid dispersion step of pressurizing and supplying to the orifice homogenizer portion to obtain a second dispersion by miniaturizing the object to be processed in the first dispersion. It can have both good fluidity at the time and easy separation of the fluid that becomes the solvent after the treatment.

超臨界流体分散方法を実施する第1実施形態の超臨界流体分散装置の全体構成図である。It is an overall block diagram of the supercritical fluid dispersion apparatus of 1st Embodiment which carries out the supercritical fluid dispersion method. オリフィスホモジナイザ部の主要部縦断面図である。It is a vertical cross-sectional view of the main part of an orifice homogenizer part. オリフィスホモジナイザ部の主要部横断面図である。It is sectional drawing of the main part of the orifice homogenizer part. 第1実施形態の超臨界流体分散装置の可動時の第1概略説明図である。It is 1st schematic explanatory drawing at the time of movement of the supercritical fluid dispersion apparatus of 1st Embodiment. 第1実施形態の超臨界流体分散装置の可動時の第2概略説明図である。It is a 2nd schematic explanatory drawing at the time of movement of the supercritical fluid dispersion apparatus of 1st Embodiment. 第2実施形態の超臨界流体分散装置の可動時の第1概略説明図である。It is 1st schematic explanatory drawing at the time of movement of the supercritical fluid dispersion apparatus of 2nd Embodiment. 第2実施形態の超臨界流体分散装置の可動時の第2概略説明図である。It is a 2nd schematic explanatory drawing at the time of movement of the supercritical fluid dispersion apparatus of 2nd Embodiment. 第2実施形態の超臨界流体分散装置の可動時の第3概略説明図である。It is a 3rd schematic explanatory drawing at the time of movement of the supercritical fluid dispersion apparatus of 2nd Embodiment.

本発明の超臨界流体分散方法を説明するに際し、図1の超臨界流体分散装置1(第1実施形態)の全体構成図を用いながら説明する。むろん、図示の装置はひとつの実施形態の開示であるため、本発明の超臨界流体分散方法を実現する構成は図示の形態に限定されない。 In explaining the supercritical fluid dispersion method of the present invention, it will be described with reference to the overall configuration diagram of the supercritical fluid dispersion device 1 (first embodiment) of FIG. Of course, since the illustrated device is a disclosure of one embodiment, the configuration for realizing the supercritical fluid dispersion method of the present invention is not limited to the illustrated embodiment.

図示の超臨界流体分散装置1では、原料タンク30、分岐ブロック40、オリフィスホモジナイザ部10、ポンプ部50を備え、原料タンク30に流体貯留タンク60が接続される。そして、最終的に処理を終えた被処理物はドレイン部90から回収される。 The illustrated supercritical fluid dispersion device 1 includes a raw material tank 30, a branch block 40, an orifice homogenizer section 10, and a pump section 50, and a fluid storage tank 60 is connected to the raw material tank 30. Then, the finally processed object to be treated is recovered from the drain portion 90.

被処理物を貯留する原料タンク30と、その下流の分岐ブロック40は配管部81を介して設置される。原料タンク30は被処理物を貯留する耐圧容器であり、後出の超臨界流体の流通時の温度、圧力を維持可能な容器である。さらに、原料タンク30には、攪拌機31が設けられ、被処理物と超臨界流体は混合されて分散物となる。 The raw material tank 30 for storing the object to be processed and the branch block 40 downstream of the raw material tank 30 are installed via the piping section 81. The raw material tank 30 is a pressure-resistant container for storing an object to be processed, and is a container capable of maintaining the temperature and pressure at the time of circulation of the supercritical fluid described later. Further, the raw material tank 30 is provided with a stirrer 31, and the object to be treated and the supercritical fluid are mixed to form a dispersion.

図示の実施形態の超臨界流体分散装置1では、原料タンク30が超臨界流体の温度及び圧力条件を維持する。原料タンク30には加温器(ヒータ)等が設置される。なお、分散物の流動時の圧力は、流体貯留タンク60から圧送ポンプ61により供給される超臨界流体の供給圧力を通じて制御される。配管部81には逆止弁70と切替弁71が設置される。分岐ブロック40側から原料タンク30側への逆流は逆止弁70と切替弁71により規制される。 In the supercritical fluid dispersion device 1 of the illustrated embodiment, the raw material tank 30 maintains the temperature and pressure conditions of the supercritical fluid. A warmer (heater) or the like is installed in the raw material tank 30. The pressure of the dispersion during flow is controlled through the supply pressure of the supercritical fluid supplied from the fluid storage tank 60 by the pressure pump 61. A check valve 70 and a switching valve 71 are installed in the piping section 81. The backflow from the branch block 40 side to the raw material tank 30 side is regulated by the check valve 70 and the switching valve 71.

ポンプ部50は分岐ブロック40と配管部82により接続される。また、オリフィスホモジナイザ部10は配管部83により分岐ブロック40と接続される。さらに、オリフィスホモジナイザ部10は配管部84により原料タンク30と接続される。ドレイン部90側には配管部86が設けられる。また、図示のとおり、各配管部には切替弁72,73,74が接続される。各切替弁はポンプ部50の動作時の流体の流路を規制する。各切替弁は電磁弁、手動弁の適宜である。配管部81,82,83,84,85,86は、保温性、耐圧性に優れた中空管体であり、被処理物と超臨界流体の混合により生じた分散物が温度及び圧力を維持しながら流動する。 The pump section 50 is connected to the branch block 40 by a piping section 82. Further, the orifice homogenizer portion 10 is connected to the branch block 40 by the piping portion 83. Further, the orifice homogenizer portion 10 is connected to the raw material tank 30 by the piping portion 84. A piping portion 86 is provided on the drain portion 90 side. Further, as shown in the figure, switching valves 72, 73, 74 are connected to each piping section. Each switching valve regulates the flow path of the fluid during the operation of the pump unit 50. Each switching valve is a solenoid valve or a manual valve as appropriate. The piping portions 81, 82, 83, 84, 85, 86 are hollow pipe bodies having excellent heat retention and pressure resistance, and the dispersion generated by mixing the object to be treated and the supercritical fluid maintains the temperature and pressure. It flows while flowing.

分岐ブロック40の構造は特段限定されないものの、金属等の耐圧材料から形成され、内部にT字状の流路が形成された部材である。または、分岐ブロック40は公知の三方弁等でも良い。 Although the structure of the branch block 40 is not particularly limited, it is a member formed of a pressure-resistant material such as metal and having a T-shaped flow path formed inside. Alternatively, the branch block 40 may be a known three-way valve or the like.

ポンプ部50は構造体内にピストン51を備えており、一般にピストンポンプと称される。ピストン51の後退時(後出の図3参照)、ポンプ部50のハウジング52内に被処理物と超臨界流体との混合により生じた分散物が流入する。ピストン51の前進時(後出の図4参照)、被処理物と超臨界流体の分散物はポンプ部50から吐出されてオリフィスホモジナイザ部10に流入する。ピストン51の前進及び後退は、油圧駆動またはサーボモータ等により制御される。被処理物と超臨界流体の分散物はオリフィスホモジナイザ部10を通過後、原料タンク30に流入する。 The pump unit 50 includes a piston 51 in the structure, and is generally called a piston pump. When the piston 51 is retracted (see FIG. 3 below), the dispersion generated by the mixing of the object to be processed and the supercritical fluid flows into the housing 52 of the pump portion 50. When the piston 51 moves forward (see FIG. 4 below), the dispersion of the object to be processed and the supercritical fluid is discharged from the pump section 50 and flows into the orifice homogenizer section 10. The forward and backward movements of the piston 51 are controlled by hydraulic drive, a servomotor or the like. The dispersion of the object to be treated and the supercritical fluid passes through the orifice homogenizer portion 10 and then flows into the raw material tank 30.

原料タンク30の上流に超臨界流体を貯留する流体貯留タンク60が設置され、配管部85により接続される。超臨界流体を圧送する圧送ポンプ61は配管部85に設置され、超臨界流体は流体貯留タンク60から原料タンク30へ供給される。 A fluid storage tank 60 for storing supercritical fluid is installed upstream of the raw material tank 30, and is connected by a piping portion 85. The pressure feeding pump 61 for pumping the supercritical fluid is installed in the piping portion 85, and the supercritical fluid is supplied from the fluid storage tank 60 to the raw material tank 30.

オリフィスホモジナイザ部10を通過して微小化(粉砕)が進行した被処理物と超臨界流体の分散物は、最終的にドレイン部90から超臨界流体分散装置1の外部に流出する。 The dispersion of the object to be treated and the supercritical fluid that has passed through the orifice homogenizer portion 10 and has been miniaturized (pulverized) finally flows out from the drain portion 90 to the outside of the supercritical fluid dispersion device 1.

オリフィスホモジナイザ部10について、図2の主要部縦断面図及び図3の主要部横断面図を用いてその構造を説明する。図2のA−A線における横断面が図3(a)であり、図2のB−B線における横断面が図3(b)であり、図2のC−C線における横断面が図3(c)である。 The structure of the orifice homogenizer portion 10 will be described with reference to the vertical sectional view of the main portion of FIG. 2 and the cross-sectional view of the main portion of FIG. The cross section taken along the line AA of FIG. 2 is shown in FIG. 3A, the cross section taken along the line BB of FIG. 2 is shown in FIG. 3B, and the cross section taken along the line CC of FIG. 2 is shown in FIG. 3 (c).

オリフィスホモジナイザ部10は、第1ブロック21と第2ブロック22、そして第1ブロック21と第2ブロック22の間に介装される第3ブロック23により形成される。第1ブロック21において、複数の流入側流路部11,12が形成される(図2及び図3(a)参照)。また、第2ブロック22においても、複数の流出側流路部18,19が形成される。 The orifice homogenizer portion 10 is formed by a first block 21, a second block 22, and a third block 23 interposed between the first block 21 and the second block 22. In the first block 21, a plurality of inflow side flow path portions 11 and 12 are formed (see FIGS. 2 and 3A). Further, also in the second block 22, a plurality of outflow side flow path portions 18 and 19 are formed.

第1ブロック21と第3ブロック23との接合面に意図的に第1空隙部14が形成される。この第1空隙部14が複数の流入側流路部11,12を単一に集合させる集合部13となる(図2及び図3(b)参照)。集合部13(第1空隙部14)の下流側は第3ブロック23となり、同第3ブロック23内にオリフィス流路部15が形成される(図2及び図3(c)参照)。 The first gap portion 14 is intentionally formed on the joint surface between the first block 21 and the third block 23. The first gap portion 14 serves as a gathering portion 13 that singly aggregates a plurality of inflow side flow path portions 11 and 12 (see FIGS. 2 and 3 (b)). The downstream side of the collecting portion 13 (first gap portion 14) becomes the third block 23, and the orifice flow path portion 15 is formed in the third block 23 (see FIGS. 2 and 3 (c)).

オリフィス流路部15の下流側においても、第3ブロック23と第2ブロック22との接合面にも意図的に第2空隙部16が形成される。この第2空隙部16がオリフィス流路部15を分岐させて複数の流出側流路部18,19と接続する分岐部17となる。 Also on the downstream side of the orifice flow path portion 15, the second gap portion 16 is intentionally formed on the joint surface between the third block 23 and the second block 22. The second gap 16 serves as a branch 17 that branches the orifice flow path 15 and connects to a plurality of outflow side flow paths 18 and 19.

流入側流路部11,12及び流出側流路部18,19の内直径(D1)は相互に同一であり、オリフィス流路部15の内直径(D2)よりも大きく形成される。具体的には、内直径(D1)は、内直径(D2)の5ないし7倍である。また、第1空隙部14の距離(D3)は内直径(D1)と同等に規定される。従って、オリフィス流路部15は小径流路部である。 The inner diameters (D1) of the inflow side flow paths 11 and 12 and the outflow side flow paths 18 and 19 are the same as each other, and are formed larger than the inner diameter (D2) of the orifice flow path portion 15. Specifically, the inner diameter (D1) is 5 to 7 times the inner diameter (D2). Further, the distance (D3) of the first gap portion 14 is defined in the same manner as the inner diameter (D1). Therefore, the orifice flow path portion 15 is a small diameter flow path portion.

次に、オリフィスホモジナイザ部10を用いた際の作用を説明する。被処理物を超臨界流体中に分散させた分散物(圧送流体)は流入側流路部11,12を経由して集合部13(第1空隙部14)に侵入する。ここで、オリフィス流路部15は流入側流路部11,12よりも狭小であるため、分散物の流量は低下する。そして、分散物(圧送流体)の圧力変化が生じ、それぞれの流入側流路部から流入した分散物は集合部13において衝突する。このときの分散物中の被処理物同士は衝突時のエネルギーにより破砕される。このように、分散物が流入側流路部11,12からオリフィス流路部15へ流動するごとに、分散物中の被処理物同士の衝突が進み、結果として分散物は粉砕される。 Next, the operation when the orifice homogenizer portion 10 is used will be described. The dispersion (pumping fluid) in which the object to be treated is dispersed in the supercritical fluid invades the collecting portion 13 (first void portion 14) via the inflow side flow path portions 11 and 12. Here, since the orifice flow path portion 15 is narrower than the inflow side flow path portions 11 and 12, the flow rate of the dispersion is reduced. Then, a pressure change of the dispersion (pumping fluid) occurs, and the dispersions flowing in from the respective inflow side flow paths collide with each other at the collecting portion 13. The objects to be treated in the dispersion at this time are crushed by the energy at the time of collision. In this way, each time the dispersion flows from the inflow side flow path portions 11 and 12 to the orifice flow path portion 15, the objects to be processed in the dispersion proceed to collide with each other, and as a result, the dispersion is crushed.

図示の流入側流路部及び流入側流路部はともに2つである。むろん、流入側流路部及び流入側流路部の形成数は1以上である。ただし、分散物中の被処理物の衝突を促すため、流入側流路部及び流入側流路部の形成数は2以上であることがさらに望ましい。図示のオリフィスホモジナイザ部10は、流入側及び流出側はともに対称形である。そこで、説明の便宜状流入側及び流出側としている。流入側と流出側が対称形であるため、オリフィスホモジナイザ部10はいずれの向きからの流入においても機能し得る。従って、分散物が流出側流路部18,19から流入してオリフィス流路部15通過し流入側流路部11,12より流出する場合もある。 There are two inflow side flow paths and two inflow side flow paths in the figure. Of course, the number of inflow side flow paths and inflow side flow paths is 1 or more. However, in order to promote collision of the object to be processed in the dispersion, it is more desirable that the number of formed inflow side flow paths and inflow side flow paths is 2 or more. The illustrated orifice homogenizer portion 10 has a symmetrical shape on both the inflow side and the outflow side. Therefore, for convenience of explanation, the inflow side and the outflow side are used. Since the inflow side and the outflow side are symmetrical, the orifice homogenizer portion 10 can function in the inflow from any direction. Therefore, the dispersion may flow in from the outflow side flow paths 18 and 19, pass through the orifice flow path portion 15, and flow out from the inflow side flow paths 11 and 12.

これより、第1実施形態の超臨界流体分散装置1を用い、本発明の超臨界流体分散方法を説明する。はじめに、被処理物は超臨界流体中に分散されて「第1分散物」となる(「第1超臨界流体分散工程」)。分散は原料タンク30で行われる。 From this, the supercritical fluid dispersion method of the present invention will be described using the supercritical fluid dispersion device 1 of the first embodiment. First, the object to be treated is dispersed in the supercritical fluid to become a "first dispersion" ("first supercritical fluid dispersion step"). Dispersion is performed in the raw material tank 30.

微小化の対象である被処理物は、例えば、セルロース、グラファイト、グラフェン、カーボンナノチューブ、複合金属酸化物(スピネル、ペロブスカイト等の結晶質)等の多岐にわたる物質である。被処理物同士の衝突を通じて微小化することにより、事後的に樹脂等に混合する際の均一な分散性が高まる。そのため、素材の性能向上が見込まれる。 The object to be treated to be miniaturized is a wide variety of substances such as cellulose, graphite, graphene, carbon nanotubes, and composite metal oxides (crystals such as spinel and perovskite). By reducing the size through collisions between the objects to be processed, uniform dispersibility when mixed with a resin or the like after the fact is enhanced. Therefore, the performance of the material is expected to improve.

この分散方法において使用される超臨界流体は二酸化炭素または水である。特に、二酸化炭素は、常温、常圧下において気化するため超臨界流体として好ましい。また、極性を有する分子ではあるものの、水と比較して極性に伴う反応性は弱い。超臨界流体が二酸化炭素の場合、ドレイン部90からの放出後、二酸化炭素のみが常温、常圧下において気化する。このため、分散後の分離は極めて容易である。 The supercritical fluid used in this dispersion method is carbon dioxide or water. In particular, carbon dioxide is preferable as a supercritical fluid because it vaporizes at normal temperature and pressure. In addition, although it is a polar molecule, its reactivity with polarity is weaker than that of water. When the supercritical fluid is carbon dioxide, only carbon dioxide evaporates at room temperature and normal pressure after being released from the drain portion 90. Therefore, separation after dispersion is extremely easy.

ここで、超臨界流体は、各物質に特有の温度、圧力条件により液体と気体の区別がつかない状態となった流体である。具体的に、二酸化炭素の臨界温度は304.1K、臨界圧力は7.38MPaであり、水の臨界温度は647.3K、臨界圧力は22.12MPaであり、エタンの臨界温度は305.3K、臨界圧力は4.87MPaであり、プロパンの臨界温度は369.8K、臨界圧力は4.25MPaである。 Here, the supercritical fluid is a fluid in which a liquid and a gas cannot be distinguished due to the temperature and pressure conditions peculiar to each substance. Specifically, the critical temperature of carbon dioxide is 304.1K, the critical pressure is 7.38MPa, the critical temperature of water is 647.3K, the critical pressure is 22.12MPa, and the critical temperature of ethane is 305.3K. The critical pressure is 4.87 MPa, the critical temperature of propane is 369.8 K, and the critical pressure is 4.25 MPa.

超臨界流体は、通常状態の水、有機溶媒等と比較して高い流動性を備える。このことから被処理物を混合後の第1分散物の粘度低下が予想される。従って、配管部内、特には小径流路部を有するオリフィスホモジナイザ部10へ加圧供給時の圧送時の抵抗軽減が期待される。 The supercritical fluid has high fluidity as compared with water, an organic solvent, etc. in a normal state. From this, it is expected that the viscosity of the first dispersion after mixing the object to be treated will decrease. Therefore, it is expected to reduce the resistance at the time of pressure feeding in the piping portion, particularly to the orifice homogenizer portion 10 having the small diameter flow path portion.

超臨界流体には、二酸化炭素、水の他に、エタン、プロパン、エチレン等の有機分子を使用することも可能である。二酸化炭素と水は極性を有する分子である。そのため、超臨界流体分散装置1において処理を続ける間に、超臨界の条件により被処理物が極性分子により攻撃(反応)を受ける可能性もある。これに対し、エタン、プロパン、エチレンは、非極性の分子である。そのため、超臨界の条件が持続するとしても被処理物との反応性は乏しい。そこで、被処理物の性質を考慮して超臨界流体の種類は選択される。 In addition to carbon dioxide and water, organic molecules such as ethane, propane, and ethylene can be used as the supercritical fluid. Carbon dioxide and water are polar molecules. Therefore, while the treatment is continued in the supercritical fluid dispersion device 1, the object to be treated may be attacked (reacted) by polar molecules depending on the supercritical conditions. In contrast, ethane, propane and ethylene are non-polar molecules. Therefore, even if the supercritical condition persists, the reactivity with the object to be treated is poor. Therefore, the type of supercritical fluid is selected in consideration of the properties of the object to be treated.

第1分散物は、小径流路部を有するオリフィスホモジナイザ部10へ加圧供給される。加圧供給は、ポンプ部50内のピストン51の押圧力により行われる。第1分散物がオリフィスホモジナイザ部10に流入して当該オリフィスホモジナイザ部10を通過する。ここで、前述の説明のとおり、第1分散物中の被処理物は、オリフィスホモジナイザ部10の流路内において衝突した際の衝撃エネルギーにより、当初よりも微小化が促進する。こうして第1分散物がオリフィスホモジナイザ部10を通過することにより「第2分散物」が得られる(「第2超臨界流体分散工程」)。第2分散物は、第1分散物と比較して分子鎖長の縮小、結晶構造の崩壊等により、被処理物の微小化が進行した状態の分散物である。 The first dispersion is pressurized and supplied to the orifice homogenizer portion 10 having the small diameter flow path portion. The pressurization is supplied by the pressing force of the piston 51 in the pump unit 50. The first dispersion flows into the orifice homogenizer section 10 and passes through the orifice homogenizer section 10. Here, as described above, the object to be treated in the first dispersion is miniaturized more than the initial state due to the impact energy when it collides in the flow path of the orifice homogenizer portion 10. In this way, the first dispersion passes through the orifice homogenizer portion 10 to obtain a "second dispersion" ("second supercritical fluid dispersion step"). The second dispersion is a dispersion in which the miniaturization of the object to be treated has progressed due to the reduction of the molecular chain length, the collapse of the crystal structure, and the like as compared with the first dispersion.

第2超臨界流体分散工程の後、第2分散物は配管部86を経由してドレイン部90から放出される。超臨界流体に二酸化炭素を使用した場合、二酸化炭素の超臨界流体はドレイン部90へ放出された第2分散物から蒸発により容易に除去される。結果、被処理物の微小化物は単離される(「単離工程」)。超臨界流体に水を使用した場合、被処理物の微小化物の単離のため、蒸発器(図示せず)等が別途ドレイン部90に装備される。エタン、プロパン、エチレン等が超臨界流体である場合、これらは常温、常圧下では可燃性の気体であるため専用の回収器(図示せず)等が別途ドレイン部90に装備される。 After the second supercritical fluid dispersion step, the second dispersion is discharged from the drain portion 90 via the piping portion 86. When carbon dioxide is used as the supercritical fluid, the supercritical fluid of carbon dioxide is easily removed by evaporation from the second dispersion released to the drain portion 90. As a result, microproducts of the object to be treated are isolated (“isolation step”). When water is used as the supercritical fluid, an evaporator (not shown) or the like is separately equipped in the drain portion 90 in order to isolate microparticles of the object to be treated. When ethane, propane, ethylene and the like are supercritical fluids, since they are flammable gases at room temperature and normal pressure, a dedicated recovery device (not shown) or the like is separately equipped in the drain portion 90.

単離工程は、超臨界流体の溶媒から微小化された被処理物(微小化物)を分離する際に加えられる工程である。例えば、セルロースの被処理物と超臨界流体の水が混合された状態において、微小化後においても微小化物を分離する必要が無い場合、つまり、湿潤な混合状態が所望されているときには、単離工程は省略される。 The isolation step is a step added when separating the micronized object to be treated (micronized product) from the solvent of the supercritical fluid. For example, in a state where a cellulose object to be treated and water of a supercritical fluid are mixed, when it is not necessary to separate the micromaterials even after miniaturization, that is, when a moist mixed state is desired, isolation is performed. The process is omitted.

図4及び図5の概略説明図を用い、第1実施形態の超臨界流体分散装置1における流体の経路を説明する。はじめに、ポンプ部50のピストン51が後退し(図4の白抜き矢印方向)、ハウジング52内が減圧する。そこで、原料タンク30内の第1分散物は配管部81、分岐ブロック40、配管部82を通じてポンプ部50のハウジング52内に流入する(図4参照)。このとき、第1分散物の流動する方向は原料タンク30から分岐ブロック40へ向かう正流方向であるため、逆止弁70と弁開放状態の切替弁71を通過可能である。 The fluid path in the supercritical fluid dispersion device 1 of the first embodiment will be described with reference to the schematic explanatory views of FIGS. 4 and 5. First, the piston 51 of the pump unit 50 retracts (in the direction of the white arrow in FIG. 4), and the inside of the housing 52 is depressurized. Therefore, the first dispersion in the raw material tank 30 flows into the housing 52 of the pump section 50 through the piping section 81, the branch block 40, and the piping section 82 (see FIG. 4). At this time, since the flow direction of the first dispersion is the forward flow direction from the raw material tank 30 to the branch block 40, the check valve 70 and the switching valve 71 in the valve open state can pass through.

次に、ポンプ部50のピストン51が前進し(図5の白抜き矢印方向)、ハウジング52内の第1分散物はポンプ部50から押出される。そして、第1分散物は配管部82、分岐ブロック40、配管部83を通過してオリフィスホモジナイザ部10に流入する。ポンプ部50の押出力により、第1分散物は小径流路部を備えたオリフィスホモジナイザ部10を通過することができる(図5参照)。 Next, the piston 51 of the pump section 50 advances (in the direction of the white arrow in FIG. 5), and the first dispersion in the housing 52 is extruded from the pump section 50. Then, the first dispersion passes through the piping section 82, the branch block 40, and the piping section 83 and flows into the orifice homogenizer section 10. Due to the push output of the pump unit 50, the first dispersion can pass through the orifice homogenizer unit 10 provided with the small diameter flow path portion (see FIG. 5).

第1分散物はオリフィスホモジナイザ部10を通過することにより微小化が進み第2分散物となる。そして、第2分散物は配管部84、切替弁73を経由して原料タンク30へ流入する。続いて、再度、原料タンク30内の第1分散物(混入後の第2分散物)はポンプ部50のハウジング52内に流入し(図4参照)、ポンプ部50の押出力により、第1分散物(混入後の第2分散物)はオリフィスホモジナイザ部10を通過する(図5参照)。 As the first dispersion passes through the orifice homogenizer portion 10, it becomes smaller and becomes the second dispersion. Then, the second dispersion flows into the raw material tank 30 via the piping portion 84 and the switching valve 73. Subsequently, the first dispersion (second dispersion after mixing) in the raw material tank 30 flows into the housing 52 of the pump unit 50 again (see FIG. 4), and the first dispersion is caused by the push output of the pump unit 50. The dispersion (second dispersion after mixing) passes through the orifice homogenizer portion 10 (see FIG. 5).

こうして、第1分散物はオリフィスホモジナイザ部10を通過後、第1分散物が再度オリフィスホモジナイザ部10を通過することを繰り返して第2分散物が調製される。即ち、オリフィスホモジナイザ部10における被処理物の相互の衝突回数が増加して、より微小化が促進する。被処理物の微小化が十分に進行した時点において、第2分散物は配管部86の先のドレイン部90から放出される(図5中の破線矢印を参照。)。 In this way, after the first dispersion passes through the orifice homogenizer section 10, the first dispersion passes through the orifice homogenizer section 10 again to prepare the second dispersion. That is, the number of collisions between the objects to be processed in the orifice homogenizer portion 10 increases, and the miniaturization is further promoted. When the miniaturization of the object to be processed has progressed sufficiently, the second dispersion is discharged from the drain portion 90 at the tip of the piping portion 86 (see the broken line arrow in FIG. 5).

さらに、図6,図7,図8の概略説明図を用い、第2実施形態の超臨界流体分散装置2における流体の経路を説明する。第2実施形態の超臨界流体分散装置2は、配管部84に中間タンク35を設置している。その他の構成は第1実施形態の超臨界流体分散装置1と同様であるため、説明を省略する。 Further, the fluid path in the supercritical fluid dispersion device 2 of the second embodiment will be described with reference to the schematic explanatory views of FIGS. 6, 7, and 8. In the supercritical fluid dispersion device 2 of the second embodiment, an intermediate tank 35 is installed in the piping portion 84. Since other configurations are the same as those of the supercritical fluid dispersion device 1 of the first embodiment, the description thereof will be omitted.

はじめに、ポンプ部50のピストン51が後退しハウジング52内が減圧する。そこで、原料タンク30内の第1分散物は配管部81、分岐ブロック40、配管部82を通じてポンプ部50のハウジング52内に流入する(図6参照)。このとき、第1分散物の流動する方向は正流方向であるため、逆止弁70と弁開放状態の切替弁71を通過可能である。 First, the piston 51 of the pump unit 50 retracts to reduce the pressure inside the housing 52. Therefore, the first dispersion in the raw material tank 30 flows into the housing 52 of the pump section 50 through the piping section 81, the branch block 40, and the piping section 82 (see FIG. 6). At this time, since the flow direction of the first dispersion is the forward flow direction, the check valve 70 and the switching valve 71 in the valve open state can pass through.

次に、ポンプ部50のピストン51が前進してハウジング52内の第1分散物はポンプ部50から押出される。そして、第1分散物は配管部82、分岐ブロック40、配管部83を通過してオリフィスホモジナイザ部10に流入する。ポンプ部50の押出力により、第1分散物は小径流路部を備えたオリフィスホモジナイザ部10を通過することができる(図6参照)。第2分散物はオリフィスホモジナイザ部10通過することにより微小化が進み第2分散物となる。そして、第2実施形態の超臨界流体分散装置2においては、第2分散物は中間タンク35へ流入する。 Next, the piston 51 of the pump unit 50 advances and the first dispersion in the housing 52 is extruded from the pump unit 50. Then, the first dispersion passes through the piping section 82, the branch block 40, and the piping section 83 and flows into the orifice homogenizer section 10. Due to the push output of the pump unit 50, the first dispersion can pass through the orifice homogenizer unit 10 provided with the small diameter flow path portion (see FIG. 6). As the second dispersion passes through the orifice homogenizer portion 10, it becomes smaller and becomes the second dispersion. Then, in the supercritical fluid dispersion device 2 of the second embodiment, the second dispersion flows into the intermediate tank 35.

中間タンク35が原料タンク30と別に備えられているため、微小化の進んだ第2分散物と原料タンク30内の処理前の被処理物との混合は回避される。第2実施形態の超臨界流体分散装置2の場合、バッチ処理による方式が好適である。中間タンク35には、超臨界流体の臨界温度及び臨界圧力を維持するための加温器、加圧器等が適宜備えられる(図示せず)。 Since the intermediate tank 35 is provided separately from the raw material tank 30, mixing of the second dispersion with advanced miniaturization and the object to be treated in the raw material tank 30 before treatment is avoided. In the case of the supercritical fluid dispersion device 2 of the second embodiment, the method by batch processing is preferable. The intermediate tank 35 is appropriately provided with a warmer, a pressurizer, and the like for maintaining the critical temperature and pressure of the supercritical fluid (not shown).

続いて、ポンプ部50におけるピストン51の後退により、ハウジング52内は負圧になる。そこで、中間タンク35内の第2分散物は、図7とは逆にオリフィスホモジナイザ部10の流出側流路部18,19から流入し、流入側流路部11,12から流出する。そして、配管部83、分岐ブロック40、配管部82を通過してポンプ部50のハウジング52内に流入する(図8参照)。この後、ポンプ部50のピストン51の押出力により、第2分散物は再びオリフィスホモジナイザ部10を通過する(図6参照)。 Subsequently, due to the retreat of the piston 51 in the pump portion 50, the inside of the housing 52 becomes a negative pressure. Therefore, the second dispersion in the intermediate tank 35 flows in from the outflow side flow path portions 18 and 19 of the orifice homogenizer portion 10 and outflows from the inflow side flow path portions 11 and 12, contrary to FIG. Then, it passes through the piping section 83, the branch block 40, and the piping section 82 and flows into the housing 52 of the pump section 50 (see FIG. 8). After that, due to the push output of the piston 51 of the pump section 50, the second dispersion passes through the orifice homogenizer section 10 again (see FIG. 6).

第2実施形態の超臨界流体分散装置2では、第1分散物がオリフィスホモジナイザ部10を通過後、いったん中間タンク35に貯留され、再度オリフィスホモジナイザ部10を逆向きに通過することを繰り返して第2分散物が調製される。特に、オリフィスホモジナイザ部10は上流側及び下流側が共通構造であるため、このような流動の向きを逆転させる使い方が可能となる。むろん、配管部の構成から、中間タンク35に貯留された第2分散物を原料タンク30に戻し入れることも可能である。 In the supercritical fluid dispersion device 2 of the second embodiment, after the first dispersion has passed through the orifice homogenizer section 10, it is temporarily stored in the intermediate tank 35 and again passes through the orifice homogenizer section 10 in the reverse direction. Two dispersions are prepared. In particular, since the orifice homogenizer portion 10 has a common structure on the upstream side and the downstream side, it can be used to reverse the direction of such flow. Of course, it is also possible to return the second dispersion stored in the intermediate tank 35 to the raw material tank 30 due to the configuration of the piping portion.

本発明の超臨界流体分散方法は、溶媒に超臨界流体を用いることにより高い流動性を確保して被処理物を分散させて流動、粉砕できる。このため、流路中の流動性は良好となり、従前の圧送時の負荷を軽減することができて有望である。 In the supercritical fluid dispersion method of the present invention, by using a supercritical fluid as a solvent, high fluidity can be ensured and the object to be treated can be dispersed, flowed and pulverized. For this reason, the fluidity in the flow path becomes good, and it is promising that the load during the conventional pumping can be reduced.

1,2 超臨界流体分散装置
10 オリフィスホモジナイザ部
11,12 流入側流路部
13 集合部
14 第1空隙部
15 オリフィス流路部
16 第2空隙部
17 分岐部
18,19 流出側流路部
21 第1ブロック
22 第2ブロック
23 第3ブロック
30 原料タンク
35 中間タンク
40 分岐ブロック
50 ポンプ部
51 ピストン
52 ハウジング
60 流体貯留タンク
61 圧送ポンプ
70 逆止弁
71,72,73,74 切替弁
81,82,83,84,85 配管部
90 ドレイン部
1,2 Supercritical fluid disperser 10 Orifice homogenizer part 11, 12 Inflow side flow path part 13 Assembly part 14 First gap part 15 Orifice flow path part 16 Second void part 17 Branch part 18, 19 Outflow side flow path part 21 1st block 22 2nd block 23 3rd block 30 Raw material tank 35 Intermediate tank 40 Branch block 50 Pump part 51 Piston 52 Housing 60 Fluid storage tank 61 Pressure feed pump 70 Check valve 71, 72, 73, 74 Switching valve 81, 82 , 83, 84, 85 Piping section 90 Drain section

Claims (5)

被処理物を超臨界流体中に分散させて第1分散物を得る第1超臨界流体分散工程と、
前記第1分散物を、小径流路部を備えてなるオリフィスホモジナイザ部へ加圧供給し前記第1分散物中の被処理物を微小化して第2分散物を得る第2超臨界流体分散工程と、
を備えることを特徴とする超臨界流体分散方法。
The first supercritical fluid dispersion step of dispersing the object to be treated in the supercritical fluid to obtain the first dispersion, and
A second supercritical fluid dispersion step of pressurizing and supplying the first dispersion to an orifice homogenizer portion provided with a small-diameter flow path portion to miniaturize the object to be treated in the first dispersion to obtain a second dispersion. When,
A supercritical fluid dispersion method comprising.
前記第2超臨界流体分散工程において、前記第1分散物が前記オリフィスホモジナイザ部を通過後、通過後の前記第1分散物が再度前記オリフィスホモジナイザ部を通過することを繰り返して前記第2分散物が調製される請求項1に記載の超臨界流体分散方法。 In the second supercritical fluid dispersion step, after the first dispersion passes through the orifice homogenizer portion, the first dispersion after passing passes through the orifice homogenizer portion again repeatedly, and the second dispersion The supercritical fluid dispersion method according to claim 1, wherein the above is prepared. 前記第2超臨界流体分散工程の後、前記第2分散物から前記超臨界流体を除去し被処理物の微小化物を単離する単離工程が加えられる請求項1または2に記載の超臨界流体分散方法。 The supercritical according to claim 1 or 2, wherein after the second supercritical fluid dispersion step, an isolation step of removing the supercritical fluid from the second dispersion and isolating microparticles of the object to be treated is added. Fluid dispersion method. 前記超臨界流体が、二酸化炭素の超臨界流体である請求項1ないし3のいずれか1項に記載の超臨界流体分散方法。 The supercritical fluid dispersion method according to any one of claims 1 to 3, wherein the supercritical fluid is a supercritical fluid of carbon dioxide. 前記オリフィスホモジナイザ部は、
複数の流入側流路部と、
複数の流出側流路部と、
前記複数の流入側流路部を単一に集合させる集合部と、
前記集合部の下流に接続されたオリフィス流路部と、
前記オリフィス流路部の下流に接続され前記オリフィス流路部を分岐させ前記複数の流出側流路部と接続する分岐部と、
を備える請求項1ないし4のいずれか1項に記載の超臨界流体分散方法。
The orifice homogenizer portion
With multiple inflow side flow paths
With multiple outflow side flow paths
A gathering part that collects the plurality of inflow side flow path parts in a single unit
An orifice flow path portion connected to the downstream of the gathering portion and
A branching portion connected to the downstream of the orifice flow path portion, branching the orifice flow path portion, and connecting to the plurality of outflow side flow path portions.
The supercritical fluid dispersion method according to any one of claims 1 to 4.
JP2019053466A 2019-03-20 2019-03-20 Supercritical fluid dispersion method Active JP7295554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019053466A JP7295554B2 (en) 2019-03-20 2019-03-20 Supercritical fluid dispersion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019053466A JP7295554B2 (en) 2019-03-20 2019-03-20 Supercritical fluid dispersion method

Publications (2)

Publication Number Publication Date
JP2020151674A true JP2020151674A (en) 2020-09-24
JP7295554B2 JP7295554B2 (en) 2023-06-21

Family

ID=72557032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019053466A Active JP7295554B2 (en) 2019-03-20 2019-03-20 Supercritical fluid dispersion method

Country Status (1)

Country Link
JP (1) JP7295554B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445962B2 (en) 2020-02-07 2024-03-08 株式会社常光 Secondary battery positive electrode material and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994473A (en) * 1995-09-29 1997-04-08 Yukihiko Karasawa Method for crushing solid grain and device therefor
JPH09201521A (en) * 1996-01-29 1997-08-05 Jiinasu:Kk Finely granulating apparatus and finely granulating method
JPH1142428A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Atomization
CN1621185A (en) * 2004-12-10 2005-06-01 华东理工大学 Method and apparatus for preparing superfine powder by super high pressure supercritical fluid micro jetting technology
JP2011136290A (en) * 2009-12-28 2011-07-14 Kao Corp Method for operating high pressure homogenizer
JP2017035647A (en) * 2015-08-07 2017-02-16 株式会社大川原製作所 Atomizing apparatus and atomizing method
JP2018047407A (en) * 2016-09-20 2018-03-29 株式会社常光 Atomization unit, atomization device, and atomization method
JP2018100474A (en) * 2018-03-15 2018-06-28 株式会社常光 Apparatus for producing cellulose nanofiber and method for producing cellulose nanofiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994473A (en) * 1995-09-29 1997-04-08 Yukihiko Karasawa Method for crushing solid grain and device therefor
JPH09201521A (en) * 1996-01-29 1997-08-05 Jiinasu:Kk Finely granulating apparatus and finely granulating method
JPH1142428A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Atomization
CN1621185A (en) * 2004-12-10 2005-06-01 华东理工大学 Method and apparatus for preparing superfine powder by super high pressure supercritical fluid micro jetting technology
JP2011136290A (en) * 2009-12-28 2011-07-14 Kao Corp Method for operating high pressure homogenizer
JP2017035647A (en) * 2015-08-07 2017-02-16 株式会社大川原製作所 Atomizing apparatus and atomizing method
JP2018047407A (en) * 2016-09-20 2018-03-29 株式会社常光 Atomization unit, atomization device, and atomization method
JP2018100474A (en) * 2018-03-15 2018-06-28 株式会社常光 Apparatus for producing cellulose nanofiber and method for producing cellulose nanofiber

Also Published As

Publication number Publication date
JP7295554B2 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP6386657B2 (en) System and method for utilizing an integrated pressure exchange manifold in hydraulic fracturing
DE102010044532B4 (en) ejector
CN103521128B (en) Supercritical fluid is utilized to prepare the device of ultrafine dust
US10335747B2 (en) Adhesive-air infuser device and method of using the same
JPH11156173A (en) Preparation of emulsion
US20150292524A1 (en) Jet pump
JP2020151674A (en) Supercritical fluid dispersion method
DE102009024712A1 (en) ejector
US11206853B2 (en) Apparatus and method for generating and mixing ultrafine gas bubbles into a high gas concentration aqueous solution
DE112015004054T5 (en) Liquid ejector and ejector refrigeration cycle
JP6609620B2 (en) Method and apparatus for destroying biomass cells
EP2667116B1 (en) Method and device for cooling
JP5806988B2 (en) Separation method
US20200109218A1 (en) Method for producing cellulose nanofiber and apparatus for producing cellulose nanofiber
US7901639B2 (en) Reaction apparatus
US20170312674A1 (en) Systems for the processing of compounds
EP3106217B1 (en) Device and method for cooling and atomizing liquid or paste-like substances
KR102253067B1 (en) Supercritical device comprising a plurality of extractors and separators
AU2013251106B2 (en) Method for emulsion treatment
JP6831303B2 (en) Interaction method and interaction device
JP4925348B2 (en) Method and apparatus for producing gas hydrate
AT406954B (en) METHOD FOR GRANULATING AND CRUSHING LIQUID SLAG AND DEVICE FOR CARRYING OUT THIS METHOD
US11826716B2 (en) Hydraulic mud shearing system
Green Jet pumps and ejectors
EP4339544A1 (en) Heat exchanger device and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7295554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150