JP2020150862A - Methods for detecting idh-1 genetic polymorphisms - Google Patents

Methods for detecting idh-1 genetic polymorphisms Download PDF

Info

Publication number
JP2020150862A
JP2020150862A JP2019052995A JP2019052995A JP2020150862A JP 2020150862 A JP2020150862 A JP 2020150862A JP 2019052995 A JP2019052995 A JP 2019052995A JP 2019052995 A JP2019052995 A JP 2019052995A JP 2020150862 A JP2020150862 A JP 2020150862A
Authority
JP
Japan
Prior art keywords
nucleic acid
idh
primer
probe
gene polymorphism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019052995A
Other languages
Japanese (ja)
Other versions
JP7392270B2 (en
Inventor
曽家 義博
Yoshihiro Soya
義博 曽家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2019052995A priority Critical patent/JP7392270B2/en
Publication of JP2020150862A publication Critical patent/JP2020150862A/en
Application granted granted Critical
Publication of JP7392270B2 publication Critical patent/JP7392270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide methods for detecting IDH-1 genetic polymorphisms in samples.SOLUTION: An IDH-1 genetic polymorphism is detected by using a pair primer set designed to specifically amplify a region including a polymorphism site on IDH-1 gene. To detect monobasic mutation in codon 132 of IDH-1 gene which is often observed in glioma etc., a nucleic acid primer set comprising primers of specific base sequences or base sequences complementary thereto is used. In a preferable embodiment, a nucleic acid probe of a specific base sequence or a base sequence complementary thereto is used.SELECTED DRAWING: None

Description

本発明は、IDH−1遺伝子上の一塩基多型(single nucleotide polymorphism:以下、略して「SNP」という場合がある)を検出する方法、並びにこの方法に用いるためのプライマー、プローブ、又はそれらのセット、及びそれらを含む遺伝子多型検査キット等に関する。 The present invention relates to a method for detecting a single nucleotide polymorphism (single nucleotide polymorphism: hereinafter, sometimes abbreviated as "SNP") on the IDH-1 gene, and a primer, a probe, or a primer, a probe, or a method thereof for use in this method. The present invention relates to a set and a gene polymorphism test kit containing them.

IDH−1(イソクエン酸デヒドロゲナーゼ−1)は、クエン酸回路にてイソクエン酸とα−ケトグルタル酸を相互変換する酸化還元酵素として知られている。IDH−1遺伝子に突然変異(例えば、IDH−1遺伝子のコドン132におけるSNP変異)が起こると、α−ケトグルタル酸がD−2−ヒドロキシグルタル酸に変換され、これにより生じたD−2−ヒドロキシグルタル酸が、神経膠腫、急性骨髄性白血病、骨髄異形成症候群、骨髄増殖性腫瘍等のがん化(癌化)を引き起こすといわれている。
神経膠腫(グリオーマ)は、脳の神経細胞を支える神経膠細胞から生じる悪性腫瘍の総称である。そして、この神経膠腫のうち、特に星細胞腫、乏突起神経膠腫では、IDH−1遺伝子の点突然変異が高頻度に認められることが知られている。
2016年にWHOの脳腫瘍診断体系が改訂され、神経膠腫に関しては従来の組織学(形態学)的分類(第4版,2007年)中心から、遺伝子異常に基づいた分類(改訂第4版,2016年)へと変遷してきた。日本でも2018年に改訂された脳腫瘍取扱い規約(第4版)に、IDH1/2遺伝子解析を含む診断アルゴリズムが掲載され、遺伝子多型の検出が神経膠腫の診断において有用な検査とされている。このように、IDH−1の一塩基多型の検出が、神経膠腫を診断する上で臨床的に非常に重要な意義を持っている。
IDH-1 (isocitrate dehydrogenase-1) is known as an oxidoreductase that mutually converts isocitric acid and α-ketoglutaric acid in the citric acid cycle. When a mutation occurs in the IDH-1 gene (for example, an SNP mutation at codon 132 of the IDH-1 gene), α-ketoglutaric acid is converted to D-2-hydroxyglutaric acid, which results in D-2-hydroxy. Glutaric acid is said to cause canceration (canceration) of glioma, acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasm and the like.
Glioma is a general term for malignant tumors that arise from glial cells that support nerve cells in the brain. Among these gliomas, it is known that point mutations of the IDH-1 gene are frequently observed in astrocytomas and oligodendrogliomas.
In 2016, the WHO brain tumor diagnostic system was revised, and for glioma, the conventional histological (morphological) classification (4th edition, 2007) was changed to a classification based on genetic abnormalities (revised 4th edition,). It has changed to 2016). In Japan as well, a diagnostic algorithm including IDH1 / 2 gene analysis was published in the Brain Tumor Handling Regulations (4th edition) revised in 2018, and detection of gene polymorphism is a useful test for diagnosing glioma. .. Thus, the detection of single nucleotide polymorphisms in IDH-1 has clinically very important significance in diagnosing glioma.

これまでに、IDH−1酵素の遺伝子上の一塩基多型(SNP)が報告されている。そして、GenBank アクセッション番号KM366108の塩基配列(即ち、上記IDH−1のゲノムDNA配列)上の199番目に存在するコドン132の一塩基多型として、この塩基がA(アデニン)のアレルと、T(チミン)のアレルとが存在することが知られている。 So far, single nucleotide polymorphisms (SNPs) on the gene of IDH-1 enzyme have been reported. Then, as a single nucleotide polymorphism of codon 132 existing at the 199th position on the base sequence of GenBank accession number KM366108 (that is, the genomic DNA sequence of IDH-1), this base is an allele of A (adenine) and T. It is known that there is a (thymine) allele.

従来、これらの遺伝子多型を検出する手段としてはシークエンス法が知られている。しかし、シークエンス法では、特殊な装置が必要であること、手技が煩雑であること、時間を要することから一般的にはあまり実施されていない。また、IDH−1遺伝子多型を検出し、ヒトにおける多型性神経膠芽腫(GBM腫瘍)を特徴決定する検査方法等が知られている(特許文献1)。しかし、簡便で信頼性の高い判定を可能にする、更なる有用なIDH−1遺伝子多型の検出方法の開発が求められている。 Conventionally, a sequencing method has been known as a means for detecting these gene polymorphisms. However, the sequence method is not generally practiced because it requires a special device, the procedure is complicated, and it takes time. In addition, a test method for detecting an IDH-1 gene polymorphism and characterizing polymorphic glioblastoma (GBM tumor) in humans is known (Patent Document 1). However, there is a need for the development of a more useful IDH-1 gene polymorphism detection method that enables simple and highly reliable determination.

国際公開WO2010/028099号パンフレットInternational Publication WO2010 / 028099 Pamphlet

本発明は、上記の課題に鑑みなされたものであり、IDH−1遺伝子多型を検出できる、更なる有用な新規手法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a further useful novel method capable of detecting an IDH-1 gene polymorphism.

本発明者らは上記課題に鑑み鋭意検討した結果、IDH−1遺伝子の多型部位を含む領域を特異的に増幅し得るように設計された一対の特定のプライマーセットを用いることにより、IDH−1の遺伝多型を検出できることを見出し、本発明を完成させるに至った。本発明の方法では、上記特定のプライマーセットに、特定の塩基配列を有するプローブを組み合わせて用いることにより更に高感度にIDH−1遺伝子多型を検出することが可能である。すなわち、本発明は以下のような構成からなる。 As a result of diligent studies in view of the above problems, the present inventors have obtained IDH- by using a pair of specific primer sets designed to specifically amplify a region containing a polymorphic site of the IDH-1 gene. We have found that one genetic polymorphism can be detected, and have completed the present invention. In the method of the present invention, the IDH-1 gene polymorphism can be detected with higher sensitivity by using the specific primer set in combination with a probe having a specific base sequence. That is, the present invention has the following configuration.

[項1] 試料中のIDH−1遺伝子多型を検出する方法であって、以下の工程:
(1)以下の(I)または(II)のいずれか1つ以上の核酸プライマーを含む一対のプライマーセットを用意する工程:
(I)配列番号2で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー、
(II)配列番号3で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー;
(2)試料中の被検核酸および前記プライマーセットを含む反応液において、被検核酸を増幅する工程;
(3)工程(2)によって得られた核酸増幅産物と、該核酸増幅産物の一部と複合体を形成せしめるように設計されたプローブとをハイブリダイズさせ複合体を形成せしめる工程;及び
(4)工程(3)で得られた複合体を検出する工程、
を包含する方法。
[項2] 前記工程(3)で用いるプローブが、配列番号4に示される塩基配列又はその相補的な塩基配列からなる核酸プローブである、項1に記載のIDH−1遺伝子多型の検出方法。
[項3] 前記工程(1)で用いる一対のプライマーセットが、フォワードプライマーとして前記(I)で示される核酸プライマー、及び、リバースプライマーとして前記(II)で示される核酸プライマーを含む、項1又は2に記載のIDH−1遺伝子多型の検出方法。
[項4] 前記工程(2)において、配列番号1と95%以上相同な塩基配列で示される核酸配列の一部領域を増幅する、項1〜3のいずれかに記載のIDH−1遺伝子多型の検出方法。
[項5] 前記工程(3)で用いるプローブにおいて末端のシトシンが蛍光色素で標識されている、項1〜4のいずれかに記載のIDH−1遺伝子多型の検出方法。
[項6] 前記工程(2)における核酸増幅を、α型DNAポリメラーゼ及びその変異体からなる群より選択される少なくとも1つのDNAポリメラーゼを含む反応液中で行う、項1〜5のいずれかに記載のIDH−1遺伝子多型の検出方法。
[項7] 試料として、血液から抽出したDNAを含む試料又は血液希釈試料を使用する、項1〜6のいずれかに記載のIDH−1遺伝子多型の検出方法。
[項8] 配列番号2で示される塩基配列又はその相補的な塩基配列からなるプライマーと、配列番号3で示される塩基配列又はその相補的な塩基配列からなるプライマーとからなる、IDH−1遺伝子多型を検出するためのプライマーセット。
[項9] 配列番号4で示される塩基配列又はその相補的な塩基配列からなる、IDH−1遺伝子多型を検出するためのプローブ。
[項10] 項8に記載のプライマーセットと、項9に記載のプローブとを含む、IDH−1遺伝子多型を検出するためのプライマー・プローブのセット。
[項11] 項8に記載のプライマーセット、項9に記載のプローブ、又は項10に記載のプライマー・プローブのセットのいずれかを含む、遺伝子多型検出キット。
[Item 1] A method for detecting an IDH-1 gene polymorphism in a sample, wherein the following steps:
(1) A step of preparing a pair of primer sets containing one or more of the following nucleic acid primers (I) or (II):
(I) A nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 2 or a base sequence complementary thereto.
(II) Nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 3 or its complementary base sequence;
(2) A step of amplifying the test nucleic acid in the reaction solution containing the test nucleic acid in the sample and the primer set;
(3) A step of hybridizing the nucleic acid amplification product obtained in step (2) with a probe designed to form a complex with a part of the nucleic acid amplification product to form a complex; and (4). ) Step of detecting the complex obtained in step (3),
A method of including.
[Item 2] The method for detecting an IDH-1 gene polymorphism according to Item 1, wherein the probe used in the step (3) is a nucleic acid probe consisting of the base sequence shown in SEQ ID NO: 4 or a base sequence complementary thereto. ..
[Item 3] Item 1 or the pair of primers set used in the step (1) includes the nucleic acid primer shown in (I) as a forward primer and the nucleic acid primer shown in (II) as a reverse primer. 2. The method for detecting an IDH-1 gene polymorphism according to 2.
[Item 4] The IDH-1 gene polymorphism according to any one of Items 1 to 3, which amplifies a part of the nucleic acid sequence represented by the nucleotide sequence homologous to SEQ ID NO: 1 by 95% or more in the step (2). How to detect the type.
[Item 5] The method for detecting an IDH-1 gene polymorphism according to any one of Items 1 to 4, wherein the terminal cytosine is labeled with a fluorescent dye in the probe used in the step (3).
[Item 6] Item 1 to Item 5, wherein the nucleic acid amplification in the step (2) is carried out in a reaction solution containing at least one DNA polymerase selected from the group consisting of α-type DNA polymerase and its mutant. The method for detecting an IDH-1 gene polymorphism described above.
[Item 7] The method for detecting an IDH-1 gene polymorphism according to any one of Items 1 to 6, wherein a sample containing DNA extracted from blood or a diluted blood sample is used as the sample.
[Item 8] The IDH-1 gene, which comprises a primer consisting of the base sequence shown in SEQ ID NO: 2 or a complementary base sequence thereof, and a primer consisting of the base sequence shown in SEQ ID NO: 3 or a complementary base sequence thereof. Primer set for detecting polymorphisms.
[Item 9] A probe for detecting an IDH-1 gene polymorphism, which comprises the base sequence shown in SEQ ID NO: 4 or a base sequence complementary thereto.
[Item 10] A set of primer probes for detecting an IDH-1 gene polymorphism, which comprises the primer set according to item 8 and the probe according to item 9.
[Item 11] A gene polymorphism detection kit comprising any of the primer set according to item 8, the probe according to item 9, or the primer / probe set according to item 10.

本発明によれば、簡便にIDH−1遺伝子多型を特異的に検出することが可能となる。更に、本発明の検出方法では、野生型と変異型を識別して検出することが可能であるため、信頼性の高い判定結果を得ることができる。 According to the present invention, it is possible to easily and specifically detect an IDH-1 gene polymorphism. Further, in the detection method of the present invention, since the wild type and the mutant type can be discriminated and detected, a highly reliable determination result can be obtained.

実施例1における融解曲線分析時の蛍光強度変化量を示す(IDH−1の遺伝子型が野生型である場合)。グラフ縦軸は蛍光強度変化量、横軸は温度を示す。The amount of change in fluorescence intensity at the time of melting curve analysis in Example 1 is shown (when the genotype of IDH-1 is wild type). The vertical axis of the graph shows the amount of change in fluorescence intensity, and the horizontal axis shows the temperature. 実施例1における融解曲線分析時の蛍光強度変化量を示す(IDH−1の遺伝子型が変異型である場合)。グラフ縦軸は蛍光強度変化量、横軸は温度を示す。The amount of change in fluorescence intensity at the time of melting curve analysis in Example 1 is shown (when the genotype of IDH-1 is a mutant type). The vertical axis of the graph shows the amount of change in fluorescence intensity, and the horizontal axis shows the temperature. 実施例2における融解曲線分析時の蛍光強度変化量を示す(ヒト血液希釈試料を用いた場合)。グラフ縦軸は蛍光強度変化量、横軸は温度を示す。The amount of change in fluorescence intensity at the time of melting curve analysis in Example 2 is shown (when a human blood diluted sample is used). The vertical axis of the graph shows the amount of change in fluorescence intensity, and the horizontal axis shows the temperature. 実施例3における融解曲線分析時の蛍光強度変化量を示す(IDH−1遺伝子のコドン132における変異バリアントの評価結果)。グラフ縦軸は蛍光強度変化量、横軸は温度を示す。The amount of change in fluorescence intensity at the time of melting curve analysis in Example 3 is shown (evaluation result of mutation variant at codon 132 of IDH-1 gene). The vertical axis of the graph shows the amount of change in fluorescence intensity, and the horizontal axis shows the temperature.

(1.IDH−1遺伝子多型を検出する方法)
特定の実施形態において、本発明は、試料中のIDH−1遺伝子多型を検出する方法に関する。より詳細には、本発明の方法は、少なくとも以下の(1)〜(4)の工程:
(1)以下の(I)または(II)のいずれか1つ以上の核酸プライマーを含む一対のプライマーセットを用意する工程:
(I)配列番号2で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー、
(II)配列番号3で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー;
(2)試料中の被検核酸および前記プライマーセットを含む反応液において、被検核酸を増幅する工程;
(3)工程(2)によって得られた核酸増幅産物と、該核酸増幅産物の一部と複合体を形成せしめるように設計されたプローブとをハイブリダイズさせ複合体を形成せしめる工程;及び
(4)工程(3)で得られた複合体を検出する工程、
を包含することを特徴とする。即ち本発明はIDH−1酵素の遺伝子多型の検出において、より信頼性の高い判定結果を得るために、標的とする多型部位の核酸増幅に特定塩基配列の核酸プライマーを含むプライマーセットを用いることを大きな特徴の一つとする。
(1. Method for detecting IDH-1 gene polymorphism)
In certain embodiments, the present invention relates to methods of detecting IDH-1 gene polymorphisms in a sample. More specifically, the method of the present invention comprises at least the following steps (1) to (4):
(1) A step of preparing a pair of primer sets containing one or more of the following nucleic acid primers (I) or (II):
(I) A nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 2 or a base sequence complementary thereto.
(II) Nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 3 or its complementary base sequence;
(2) A step of amplifying the test nucleic acid in the reaction solution containing the test nucleic acid in the sample and the primer set;
(3) A step of hybridizing the nucleic acid amplification product obtained in step (2) with a probe designed to form a complex with a part of the nucleic acid amplification product to form a complex; and (4). ) Step of detecting the complex obtained in step (3),
It is characterized by including. That is, the present invention uses a primer set containing a nucleic acid primer having a specific base sequence for nucleic acid amplification of a target polymorphism site in order to obtain a more reliable determination result in the detection of a gene polymorphism of IDH-1 enzyme. That is one of the major features.

[プライマーセット]
本発明のIDH−1の遺伝子多型検出方法で用いる、前記(1)に記載のプライマーセットとしては、以下の(I)または(II)のいずれか1つ以上の核酸プライマーを含むプライマーセットを用いる。
(I)CGGTCTTCAGAGAAGCCATTATCTGで示される塩基配列(配列番号2)若しくはこれに相補的な塩基配列からなる核酸プライマー。
(II)CACATTATTGCCAACATGACTTACで示される塩基配列(配列番号3)若しくはこれに相補的な塩基配列からなる核酸プライマー。
[Primer set]
As the primer set according to (1) above, which is used in the method for detecting a gene polymorphism of IDH-1 of the present invention, a primer set containing any one or more of the following nucleic acid primers (I) or (II) is used. Use.
(I) A nucleic acid primer consisting of the base sequence (SEQ ID NO: 2) represented by CGGTCTTCAGAGAAGCCATTATTTG or a base sequence complementary thereto.
(II) A nucleic acid primer consisting of the base sequence (SEQ ID NO: 3) represented by CACATTATTGCCAACATGACTTAC or a base sequence complementary thereto.

上記(I)において規定した配列番号2は、ヒトIDH−1遺伝子のゲノム配列の例である配列番号1の塩基配列の一部に相当する。また、上記(II)において規定した配列番号3は、上記配列番号1の塩基配列に対して相補的な塩基配列の一部に相当する。本発明では、フォワードプライマー又はリバースプライマーとして、配列番号2又は配列番号3の塩基配列に相補的な塩基配列から構成されるプライマーを用いることもできる。より高感度にIDH−1遺伝子多型を検出することが可能であるという観点から、好ましくは、フォワードプライマーとして、上記(I)で示される核酸プライマーを用い、リバースプライマーとして上記(II)で示される核酸プライマーを用いるのがよく、フォワードプライマーとして配列番号2の塩基配列から構成されるプライマーを用い、リバースプライマーとして配列番号3の塩基配列から構成されるプライマーを用いるのが更に好ましく、これらの配列番号2及び3の塩基配列から構成されるプライマーを組み合わせたプライマーセットとして用いることがとりわけ好ましい。 SEQ ID NO: 2 defined in (I) above corresponds to a part of the base sequence of SEQ ID NO: 1, which is an example of the genomic sequence of the human IDH-1 gene. Further, SEQ ID NO: 3 defined in (II) above corresponds to a part of the base sequence complementary to the base sequence of SEQ ID NO: 1. In the present invention, as the forward primer or the reverse primer, a primer composed of a base sequence complementary to the base sequence of SEQ ID NO: 2 or SEQ ID NO: 3 can also be used. From the viewpoint that the IDH-1 gene polymorphism can be detected with higher sensitivity, the nucleic acid primer shown in (I) above is preferably used as the forward primer, and the nucleic acid primer shown in (II) above is preferably used as the reverse primer. It is preferable to use a nucleic acid primer, a primer composed of the nucleotide sequence of SEQ ID NO: 2 as a forward primer, and a primer composed of the nucleotide sequence of SEQ ID NO: 3 as a reverse primer, more preferably these sequences. It is particularly preferable to use it as a primer set in which primers composed of the base sequences of Nos. 2 and 3 are combined.

本発明のプライマーセットは、融解曲線解析で信頼性の高い判定結果を得ることができるように、IDH−1遺伝子上の多型部位を含む領域を特異的に増幅し得るように設計されている。ここで、上記「多型部位」とは、上述のように、GenBankアクセッション番号KM366108の塩基配列上の199番目に存在する多型部位(即ち、IDH−1のコドン132における遺伝子多型のゲノムDNA配列部位)を意味する。具体的に、IDH-1遺伝子のコドン132における変異バリアントとしては、例えば、R132H、R132L、R132G、R132S、R132C等が挙げられる。本発明によれば、高感度にIDH-1遺伝子多型を検出できるので、これらの各種の変異バリアントを鑑別することができる。つまり、上記本発明のプライマーセットを用いることによって多型を含む領域を特異的に増幅させることが可能である。 The primer set of the present invention is designed to specifically amplify a region containing a polymorphic site on the IDH-1 gene so that a highly reliable determination result can be obtained in melting curve analysis. .. Here, the above-mentioned "polymorphism site" means the polymorphism site existing at the 199th position on the base sequence of GenBank accession number KM366108 (that is, the genome of the gene polymorphism at codon 132 of IDH-1) as described above. DNA sequence site). Specifically, examples of the mutation variant at codon 132 of the IDH-1 gene include R132H, R132L, R132G, R132S, and R132C. According to the present invention, since IDH-1 gene polymorphisms can be detected with high sensitivity, these various mutation variants can be differentiated. That is, by using the primer set of the present invention, it is possible to specifically amplify the region containing the polymorphism.

より具体的には、本発明のプライマーセットを用いることにより、例えば、配列番号1と95%以上相同な塩基配列で示される核酸配列の一部領域を増幅することができる。好ましい実施形態では、本発明のプライマーセットは、好ましくは配列番号1と97%以上相同な塩基配列で示される核酸配列の一部領域、より好ましくは配列番号1と98%以上相同な塩基配列で示される核酸配列の一部領域、更に好ましくは配列番号1と99%以上相同な塩基配列で示される核酸配列の一部領域を増幅するために用いられる。 More specifically, by using the primer set of the present invention, for example, a partial region of the nucleic acid sequence represented by a base sequence homologous to SEQ ID NO: 1 by 95% or more can be amplified. In a preferred embodiment, the primer set of the present invention preferably has a partial region of a nucleic acid sequence represented by a nucleotide sequence that is 97% or more homologous to SEQ ID NO: 1, and more preferably a nucleotide sequence that is 98% or more homologous to SEQ ID NO: 1. It is used to amplify a part of the nucleic acid sequence shown, more preferably a part of the nucleic acid sequence shown by a base sequence homologous to SEQ ID NO: 1 by 99% or more.

[被検核酸]
本発明のIDH−1の遺伝子多型検出方法に用いられる、被検核酸を含みうる試料は特に制限されない。例えば、ヒトを始めとする哺乳動物から採取した血液、口腔粘膜擦過物などのゲノムDNAを含む生体試料が挙げられる。試料の採取方法、DNAやRNA等の核酸の調製方法等は、制限されず、従来公知の方法が採用できる。血液の場合、pH7.5以上の溶液に1〜10%程度に希釈することで本発明の検出法に供することが可能である。後述の実施例にも示されるように、本発明の方法によれば、このような血液希釈試料から直接的に融解曲線解析により簡便にIDH-1遺伝子多型を検出することができる。
[Test nucleic acid]
The sample that can contain the test nucleic acid used in the method for detecting the gene polymorphism of IDH-1 of the present invention is not particularly limited. For example, a biological sample containing genomic DNA such as blood collected from mammals such as humans and oral mucosal scrapes can be mentioned. The method for collecting a sample, the method for preparing nucleic acids such as DNA and RNA, and the like are not limited, and conventionally known methods can be adopted. In the case of blood, it is possible to use it for the detection method of the present invention by diluting it with a solution having a pH of 7.5 or more to about 1 to 10%. As shown in Examples described later, according to the method of the present invention, IDH-1 gene polymorphism can be easily detected by melting curve analysis directly from such a diluted blood sample.

[核酸増幅法]
続いて、試薬に混合されたゲノムDNAを鋳型として、上述のプライマーセットを用いて、PCR等の核酸増幅法によって、検出目的の多型部位を含む塩基配列を増幅させる。なお、PCR等の条件は、特に制限されず、従来公知の方法により行うことができる。
[Nucleic acid amplification method]
Subsequently, using the genomic DNA mixed with the reagent as a template, the nucleotide sequence containing the polymorphism site of interest is amplified by a nucleic acid amplification method such as PCR using the above-mentioned primer set. The conditions such as PCR are not particularly limited and can be carried out by a conventionally known method.

本発明のIDH−1の遺伝子多型の検出方法において、核酸の増幅工程に用いられる具体的な核酸増幅方法は特に限定されず、適宜公知の方法を用いることができる。例えば、PCR(Polymerase Chain Reaction)法があげられる。なお、増幅反応の条件は特に制限されず、従来公知の方法により行うことができる。 In the method for detecting a gene polymorphism of IDH-1 of the present invention, the specific nucleic acid amplification method used in the nucleic acid amplification step is not particularly limited, and a known method can be used as appropriate. For example, the PCR (Polymerase Chain Reaction) method can be mentioned. The conditions of the amplification reaction are not particularly limited, and can be carried out by a conventionally known method.

PCR法は、試料核酸、4種類のデオキシヌクレオシド三リン酸、一対のプライマー及び耐熱性DNAポリメラーゼの存在下で、変性、アニーリング、伸長の3工程からなるサイクルを繰り返すことにより、上記一対のプライマーで挟まれる試料核酸の領域を指数関数的に増幅させる方法である。すなわち、変性工程で試料の核酸を変性し、続くアニーリング工程において各プライマーと、それぞれに相補的な一本鎖試料核酸上の領域とをハイブリダイズさせ、続く伸長工程で、各プライマーを起点としてDNAポリメラーゼの働きにより鋳型となる各一本鎖試料核酸に相補的なDNA鎖を伸長させ、二本鎖DNAとする。この1サイクルにより、1本の二本鎖DNAが2本の二本鎖DNAに増幅される。従って、このサイクルをn回繰り返せば、理論上上記一対のプライマーで挟まれた試料DNAの領域は2n倍に増幅される。増幅されたDNA領域は大量に存在するので、電気泳動等の方法により容易に検出できる。よって、遺伝子増幅法を用いれば、従来では検出不可能であった、極めて微量(1分子でも可)の試料核酸をも検出することが可能であり、非常に広く用いられている技術である。 The PCR method uses the above pair of primers by repeating a cycle consisting of three steps of denaturation, annealing, and extension in the presence of sample nucleic acid, four types of deoxynucleoside triphosphates, a pair of primers, and a heat-resistant DNA polymerase. This is a method of exponentially amplifying the region of the sample nucleic acid sandwiched between them. That is, the nucleic acid of the sample is denatured in the denaturation step, each primer is hybridized with the region on the single-stranded sample nucleic acid complementary to each primer in the subsequent annealing step, and the DNA is DNA starting from each primer in the subsequent extension step. By the action of the polymerase, a DNA strand complementary to each single-stranded sample nucleic acid serving as a template is extended to obtain double-stranded DNA. By this one cycle, one double-stranded DNA is amplified into two double-stranded DNAs. Therefore, if this cycle is repeated n times, the region of the sample DNA sandwiched between the pair of primers is theoretically amplified 2n times. Since the amplified DNA region exists in a large amount, it can be easily detected by a method such as electrophoresis. Therefore, by using the gene amplification method, it is possible to detect even an extremely small amount (even one molecule) of sample nucleic acid, which was previously undetectable, and this is a very widely used technique.

増幅反応としては、最初の熱変形工程が80〜100℃で10秒〜15分、繰り返しの熱変形工程が80〜100℃で0.5〜300秒、アニーリンクが40〜80℃で1〜300秒、伸長反応工程が60〜85℃で1〜300秒程度行い、この繰り返しを30〜70回繰り返すことが好ましい。 As for the amplification reaction, the first thermal deformation step is 80 to 100 ° C. for 10 seconds to 15 minutes, the repeated thermal deformation step is 80 to 100 ° C. for 0.5 to 300 seconds, and Annie Link is 40 to 80 ° C. for 1 to 1 to. It is preferable that the extension reaction step is carried out at 60 to 85 ° C. for about 1 to 300 seconds for 300 seconds, and this repetition is repeated 30 to 70 times.

核酸増幅にPCR法を用いる場合、DNAポリメラーゼには、α型DNAポリメラーゼを用いることが好ましい。その理由を以下に説明する。 When the PCR method is used for nucleic acid amplification, it is preferable to use α-type DNA polymerase as the DNA polymerase. The reason will be explained below.

本発明のIDH−1遺伝子多型検出方法において、プローブを含む反応系でIDH−1の核酸配列を増幅する場合、核酸増幅工程中に該核酸プローブが試料のIDH−1核酸配列またはそれらの増幅産物と結合しうる。核酸増幅工程中にIDH−1の核酸配列と結合した該核酸プローブは、核酸プライマーとDNAポリメラーゼによる核酸増幅反応を阻害する。 In the IDH-1 gene polymorphism detection method of the present invention, when the nucleic acid sequence of IDH-1 is amplified in a reaction system containing a probe, the nucleic acid probe is used as the sample IDH-1 nucleic acid sequence or amplification thereof during the nucleic acid amplification step. Can combine with the product. The nucleic acid probe bound to the nucleic acid sequence of IDH-1 during the nucleic acid amplification step inhibits the nucleic acid amplification reaction by the nucleic acid primer and DNA polymerase.

Taq DNA PolymeraseなどPolI型のDNAポリメラーゼは5’−3’エキソヌクレアーゼ活性を持つことが知られている。この活性のため、核酸増幅反応中に鋳型となるIDH−1核酸配列と結合した核酸がある場合、該結合核酸はエキソヌクレアーゼ活性によって分解されてしまう。このため、反応系中の該核酸プローブが減少し核酸検出工程に問題が生じる可能性がある。従って、PolI型DNAポリメラーゼを用いて本発明を実施することは好ましくない。 Pol I-type DNA polymerases such as Taq DNA Polymerase are known to have 5'-3'exonuclease activity. Due to this activity, if there is a nucleic acid bound to the IDH-1 nucleic acid sequence as a template during the nucleic acid amplification reaction, the bound nucleic acid is degraded by the exonuclease activity. Therefore, the number of the nucleic acid probes in the reaction system may decrease, which may cause a problem in the nucleic acid detection step. Therefore, it is not preferable to carry out the present invention using Pol I-type DNA polymerase.

他方、KOD DNA polymerase(超好熱始原菌Thermococcus kodakaraensis KOD1由来)、Pfu DNA polymeraseなどα型のDNAポリメラーゼは5’−3’エキソヌクレアーゼ活性を持たず、3’−5’エキソヌクレアーゼ活性を持つ。従って、α型DNAポリメラーゼを用いれば上記問題を解決できるのみならず、3’−5’エキソヌクレアーゼ活性により核酸増幅工程において高い正確性が発揮される。 On the other hand, α-type DNA polymerases such as KOD DNA polymerase (derived from Thermococcus kodakaransis KOD1) and Pfu DNA polymerase do not have 5'-3'exonuclease activity and have 3'-5'exonuclease activity. Therefore, not only can the above problem be solved by using α-type DNA polymerase, but high accuracy is exhibited in the nucleic acid amplification step due to the 3'-5'exonuclease activity.

通常、α型DNAポリメラーゼは3’→5’エキソヌクレアーゼ活性のため、核酸増幅速度はPolI型酵素と比較して低い傾向がある。しかし、KOD DNA Polymeraseはα型DNAポリメラーゼでありながらDNA合成活性が高く100塩基/秒以上のDNA合成速度を有し伸長効率が優れている。従って、本発明の実施にはα型DNAポリメラーゼの中でも、KOD DNA Polymerase(東洋紡製、商標)を用いることが好ましい。 Normally, since α-type DNA polymerase has 3'→ 5'exonuclease activity, the nucleic acid amplification rate tends to be lower than that of Pol I-type enzyme. However, although KOD DNA Polymerase is an α-type DNA polymerase, it has high DNA synthesis activity, a DNA synthesis rate of 100 bases / sec or more, and excellent elongation efficiency. Therefore, it is preferable to use KOD DNA Polymerase (Toyobo, Trademark) among α-type DNA polymerases for carrying out the present invention.

さらに、α型DNAポリメラーゼを変異させて100塩基/秒以上のデオキシリボ核酸合成速度を達成させた変異型、ウラシルやイノシン等の塩基類縁体に対して耐性を持つように改変された変異型(例えば、WO2014/051031等を参照)、あるいは、野生型および/または変異型の組み合わせにより当該性能を達成させたDNAポリメラーゼ組成物も、α型DNAポリメラーゼとしてのDNA合成活性及び/又は3’→5’エキソヌクレアーゼ活性を失っていない限り、本発明の実施に適したDNAポリメラーゼとして用いることができる。 Furthermore, a variant in which an α-type DNA polymerase is mutated to achieve a deoxyribonucleic acid synthesis rate of 100 bases / sec or more, and a variant modified to have resistance to base relatives such as uracil and inosin (for example). , WO2014 / 051031 etc.), or a DNA polymerase composition that achieved the performance by a combination of wild type and / or mutant type also has DNA synthesizing activity as α-type DNA polymerase and / or 3'→ 5'. As long as it does not lose its exonuclease activity, it can be used as a DNA polymerase suitable for carrying out the present invention.

例えば、α型DNAポリメラーゼとして、KOD DNA Polymerase(東洋紡製、商標)、KOD−Plus−(東洋紡製、商標)、KOD−plus−Ver.2(東洋紡製、商標)、KOD−Plus−Neo(東洋紡製、商標)、KOD FX(東洋紡製、商標)、KOD FX Neo(東洋紡製、商標)、KOD−Multi&Epi−(東洋紡製、商標)、KOD Dash(東洋紡製、商標:KOD Exo(−))、PrimeSTAR HS DNAポリメラーゼ(タカラバイオ製、商標)、PfuTurbo DNAポリメラーゼ(アジレント・テクノロジー)などの市販のDNAポリメラーゼも好適に利用できる。 For example, as α-type DNA polymerase, KOD DNA Polymerase (Toyobo, trademark), KOD-Plus- (Toyobo, trademark), KOD-plus-Ver. 2 (Toyobo, trademark), KOD-Plus-Neo (Toyobo, trademark), KOD FX (Toyobo, trademark), KOD FX Neo (Toyobo, trademark), KOD-Multi & Epi- (Toyobo, trademark), Commercially available DNA polymerases such as KOD Dash (Toyobo, trademark: KOD Exo (-)), PrimeSTAR HS DNA polymerase (Takara Bio, trademark), PfuTurbo DNA polymerase (Agilent Technology) can also be preferably used.

また、さらに好適には、増幅反応における非特異的な反応を低減するためα型ポリメラーゼに対する抗体を用いること、または化学修飾により低温におけるポリメラーゼの活性をブロックさせることが望ましい。 Further, more preferably, it is desirable to use an antibody against α-type polymerase in order to reduce the non-specific reaction in the amplification reaction, or to block the activity of the polymerase at low temperature by chemical modification.

[プローブと増幅産物との複合体形成]
本発明のIDH−1遺伝子多型検出法においては、工程(3)として、工程(2)で得られた核酸増幅産物の一部と複合体を形成せしめるように設計されたプローブを用いることを一つの特徴とする。増幅された領域内の多型領域を含む配列に相補的な塩基配列から構成される蛍光標識オリゴヌクレオチドをプローブとして用いることによって、多型部位の塩基に応じた融解曲線解析で特徴的な波形を得ることが可能となるので好ましい。このような蛍光標識オリゴヌクレオチドを核酸プローブとして用いることによって、正確な識別判定が困難な一塩基多型のIDH−1遺伝子多型を簡便かつ信頼性高く検出することができる。
[Complex formation of probe and amplification product]
In the IDH-1 gene polymorphism detection method of the present invention, as step (3), a probe designed to form a complex with a part of the nucleic acid amplification product obtained in step (2) is used. It is one of the features. By using a fluorescently labeled oligonucleotide composed of a base sequence complementary to the sequence containing the polymorphic region in the amplified region as a probe, a characteristic waveform can be obtained by melting curve analysis according to the base of the polymorphic site. It is preferable because it can be obtained. By using such a fluorescently labeled oligonucleotide as a nucleic acid probe, it is possible to easily and reliably detect a single nucleotide polymorphism IDH-1 gene polymorphism for which accurate discrimination and determination are difficult.

上記蛍光標識オリゴヌクレオチドを用いる方法は、Qプローブ法として報告されており一塩基多型の解析にも応用されている。しかし、IDH−1の遺伝子多型(なかでも、IDH-1のコドン132における一塩基多型)を検出する場合、「検出目的の多型部位を含み、且つIDH−1を特異的に増幅させることが可能であり、しかも、Qプローブ法が応用可能な増幅長を与えるプライマー」を設計することが非常に困難であった。 The method using the fluorescently labeled oligonucleotide has been reported as a Q probe method and has been applied to the analysis of single nucleotide polymorphisms. However, when detecting a gene polymorphism of IDH-1 (among others, a single nucleotide polymorphism at codon 132 of IDH-1), "the polymorphism site to be detected is contained and IDH-1 is specifically amplified. It has been very difficult to design a "primer that gives an amplification length to which the Q probe method can be applied".

本発明のIDH−1遺伝子多型検出方法で用いる、前記(3)に記載のプローブとしては、CATAAGCATGACGACCTATGATGで示される塩基配列(配列番号4)又はこれに相補的な塩基配列から構成される核酸プローブが例示される。より高感度に検出可能という観点から、配列番号4に示される塩基配列から構成される核酸プローブを用いることが好ましい。このプローブ内のシトシンに蛍光色素を標識することにより(例えば、末端のシトシンを蛍光色素で標識することにより)、Qプローブ法に使用することができる。 The probe according to (3) above used in the IDH-1 gene polymorphism detection method of the present invention is a nucleic acid probe composed of the base sequence (SEQ ID NO: 4) represented by CATAAGCATGACGACCATATGATG or a base sequence complementary thereto. Is exemplified. From the viewpoint of more sensitive detection, it is preferable to use a nucleic acid probe composed of the nucleotide sequence shown in SEQ ID NO: 4. By labeling the cytosine in the probe with a fluorescent dye (for example, by labeling the terminal cytosine with a fluorescent dye), it can be used in the Q probe method.

本発明では、工程(2)で得られる核酸増幅産物の塩基配列の一部と相補的な塩基配列から構成される核酸プローブを用いるため、アニーリングが可能となる適切な条件下で工程(2)の核酸増幅産物と上記核酸プローブを共存させることで、両成分の複合体を形成させることができる。相補的な塩基配列を有する増幅産物と核酸プローブをアニーリングさせるために適切な温度や時間等の条件は、当業者により適宜設定され得る。ここで、核酸増幅産物を含む試料に核酸プローブを添加して複合体形成を可能とするタイミングは、特に制限されず、例えば、前述の核酸増幅反応前、核酸増幅反応途中および核酸増幅反応後のいずれであってもよい。中でも、増幅反応と、後述の検出反応とを連続的に行うことができるため、増幅反応前に添加することが好ましい。このように核酸増幅反応の前に前記プローブを添加する場合は、例えば、後述のように、その3’末端に、蛍光色素を付加したり、リン酸基を付加したりすることが好ましい。 In the present invention, since a nucleic acid probe composed of a base sequence complementary to a part of the base sequence of the nucleic acid amplification product obtained in the step (2) is used, the step (2) is under appropriate conditions that enable annealing. By coexisting the nucleic acid amplification product of No. 1 and the above nucleic acid probe, a complex of both components can be formed. Conditions such as temperature and time suitable for annealing the amplification product having a complementary base sequence and the nucleic acid probe can be appropriately set by those skilled in the art. Here, the timing at which the nucleic acid probe is added to the sample containing the nucleic acid amplification product to enable complex formation is not particularly limited, and for example, before the nucleic acid amplification reaction, during the nucleic acid amplification reaction, and after the nucleic acid amplification reaction described above. It may be either. Above all, since the amplification reaction and the detection reaction described later can be continuously carried out, it is preferable to add the mixture before the amplification reaction. When the probe is added before the nucleic acid amplification reaction in this way, it is preferable to add a fluorescent dye or a phosphate group to the 3'end of the probe, for example, as described later.

本発明において用いられる標識としては磁性体、電子伝達体、酵素、ビオチン、蛍光物質、ハプテン、抗原、抗体、放射性物質および発光団などがある。磁性体としては、酸化鉄、二酸化クロム、コバルト、フェライトなどが挙げられる。電子伝達体としては、フェロセン、PQQ、レドックス化合物が挙げられる。酵素としては、アルカリフォスファターゼ、ペルオキシダーゼなどが挙げられる。蛍光物質としては、例えば,Cy5(登録商標),Cy3(登録商標),FITC,ローダミン,ランタニド蛍光体,テキサスレッド,FAM,JOE,Cal Fluor Red 610(登録商標),Quasar 670(登録商標)、放射性同位体(例えば,32P,35S,3H,14C,125I,131I),高電子密度試薬(例えば金),酵素(例えば,西洋ワサビペルオキシダーゼ,ベータ−ガラクトシダーゼ,ルシフェラーゼ,アルカリホスファターゼ),比色標識(例えば金コロイド),磁気標識(例えば,Dynabeads(商標)),ビオチン,ジゴキシゲニン,または抗血清またはモノクローナル抗体が利用可能なハプテンおよび蛋白質が挙げられる。他の標識としては,それぞれ対応するレセプターまたはオリゴヌクレオチド相補体と複合体を形成しうるリガンドまたはオリゴヌクレオチドが挙げられる。標識は,検出すべき核酸中に直接取り込ませてもよく,または検出すべき核酸にハイブリダイズまたは結合するプローブ(例えばオリゴヌクレオチド)または抗体に結合させてもよい。
好ましい検出可能な標識は蛍光標識である。本明細書において用いる場合,“蛍光標識”とは,特定の波長(励起周波数)の光を吸収し,次により長い波長(放射周波数)の光を放出する分子を表す。本明細書において用いる場合,“ドナー蛍光団”との用語は,消光剤成分と近接している場合に,放出エネルギーを消光剤に供与ないし移動させる蛍光団を意味する。消光剤成分にエネルギーを供与した結果,ドナー蛍光団それ自体は,近接して配置された消光剤成分が存在しない場合よりも少ない特定の放出周波数の光を放出する。
Labels used in the present invention include magnetic substances, electron carriers, enzymes, biotins, fluorescent substances, haptens, antigens, antibodies, radioactive substances, luminescent groups and the like. Examples of the magnetic material include iron oxide, chromium dioxide, cobalt, ferrite and the like. Examples of the electron carrier include ferrocene, PQQ, and redox compounds. Examples of the enzyme include alkaline phosphatase and peroxidase. Examples of the fluorescent substance include Cy5 (registered trademark), Cy3 (registered trademark), FITC, Rhodamine, lanthanide phosphor, Texas Red, FAM, JOE, Cal Fluor Red 610 (registered trademark), Quasar 670 (registered trademark), and the like. Radioisotopes (eg 32P, 35S, 3H, 14C, 125I, 131I), high electron density reagents (eg gold), enzymes (eg horseradish peroxidase, beta-galactosidase, luciferase, alkaline phosphatase), colorimetric labeling (eg Examples include colloidal gold), magnetic labels (eg, Dynabeads ™), biotin, digoxigenin, or haptens and proteins for which anti-serum or monoclonal antibodies are available. Other labels include ligands or oligonucleotides that can form a complex with their respective receptors or oligonucleotide complements. The label may be incorporated directly into the nucleic acid to be detected, or it may be attached to a probe (eg, oligonucleotide) or antibody that hybridizes or binds to the nucleic acid to be detected.
A preferred detectable label is a fluorescent label. As used herein, a "fluorescent label" refers to a molecule that absorbs light of a particular wavelength (excitation frequency) and emits light of the next longer wavelength (radiation frequency). As used herein, the term "donor fluorophore" means a fluorophore that donates or transfers emitted energy to the quencher when in close proximity to the quencher component. As a result of energizing the quencher component, the donor fluorophore itself emits light at a specific emission frequency that is less than in the absence of the closely placed quencher component.

本明細書において用いる場合,“消光剤成分”との用語は,ドナー蛍光団の近傍に位置して,ドナーにより生成された放出エネルギーを取り込み,エネルギーを熱またはドナーの放出波長より長い波長の光として消散させる分子を意味する。後者の場合,消光剤はアクセプター蛍光団であると考えられる。消光成分は,近接(すなわち衝突)クエンチングにより,または蛍光共鳴エネルギー移動(“FRET”)により作用する。 As used herein, the term "quenching component" is located in the vicinity of the donor fluorophore and takes in the emitted energy produced by the donor and uses the energy as heat or light with a wavelength longer than the emitted wavelength of the donor. Means a molecule that is quenched as. In the latter case, the quencher is considered to be an acceptor fluorophore. The quenching component acts by proximity (ie, collision) quenching or by fluorescence resonance energy transfer (“FRET”).

好適な蛍光成分としては,当該技術分野において知られる下記の蛍光団が挙げられる:4−アセトアミド−4’−イソチオシアナトスチルベン−2,2’−ジスルホン酸,アクリジンおよび誘導体(アクリジン,アクリジンイソチオシアネート),Alexa Fluor(登録商標)350,Alexa Fluor(登録商標)488,Alexa Fluor(登録商標)546,Alexa Fluor(登録商標)555,Alexa Fluor(登録商標)568,Alexa Fluor(登録商標)594,Alexa Fluor(登録商標)647(Molecular Probe),5−(2’−アミノエチル)アミノナフタレン−1−スルホン酸(EDANS),4−アミノ−N−[3−ビニルスルホニル)フェニル]ナフタルイミド−3,5ジスルホネート(Lucifer Yellow VS),N−(4−アニリノ−1−ナフチル)マレイミド,アントラニルアミド,BODIPY(登録商標)CR−6G,BOPIPY(登録商標)530/550,BODIPY(登録商標)FL,ブリリアントイエロー,クマリンおよび誘導体(クマリン,7−アミノ−4−メチルクマリン(AMC,クマリン120),7−アミノ−4−トリフルオロメチルクマリン(クマリン151)),Cy2(登録商標),Cy3(登録商標),Cy3.5(登録商標),Cy5(登録商標),Cy5.5(登録商標),シアノシン,4’,6−ジアミニジノ−2−フェニルインドール(DAPI),5’,5”−ジブロモピロガロール−スルホネフタレイン(Bromopyrogallol Red),7−ジエチルアミノ−3−(4’−イソシアナトフェニル)−4−メチルクマリン,ジエチレントリアミン四酢酸,4,4’−ジイソチオシアナトジヒドロ−スチルベン−2,2’−ジスルホン酸,4,4’−ジイソチオシアナトスチルベン−2,2’−ジスルホン酸,塩化5−[ジメチルアミノ]ナフタレン−1−スルホニル(DNS,塩化ダンシル),4−(4’−ジメチルアミノフェニルアゾ)安息香酸(DABCYL),4−ジメチルアミノフェニルアゾフェニル−4’−イソチオシアネート(DABITC),Eclipse(商標)(Epoch Biosciences Inc.),エオシンおよび誘導体(エオシン,エオシンイソチオシアネート),エリスロシンおよび誘導体(エリスロシンB,エリスロシンイソチオシアネート),エチジウム,フルオレセインおよび誘導体(5−カルボキシフルオレセイン(FAM),5−(4,6−ジクロロトリアジン−2−イル)アミノフルオレセイン(DTAF),2’,7’−ジメトキシ−4’5’−ジクロロ−6−カルボキシフルオレセイン(JOE),フルオレセイン,フルオレセインイソチオシアネート(FITC),ヘキサクロロ−6−カルボキシフルオレセイン(HEX),QFITC(XRITC),テトラクロロフルオレセイン(TET)),フルオレスカミン,IR144,IR1446,マラカイトグリーンイソチオシアネート,4−メチルウンベリフェロン,オルトクレゾールフタレイン,ニトロチロシン,パラローザニリン,フェノールレッド,B−フィコエリスリン,R−フィコエリスリン,o−フタルジアルデヒド,Oregon Green(登録商標),ヨウ化プロピジウム,ピレンおよび誘導体(ピレン,酪酸ピレン,酪酸スクシンイミジル1−ピレン),QSY(登録商標)7,QSY(登録商標)9,QSY(登録商標)21,QSY(登録商標)35(Molecular Probe),リアクティブレッド4(Cibacron(登録商標)ブリリアントレッド3B−A),ローダミンおよび誘導体(6−カルボキシ−X−ローダミン(ROX),6−カルボキシローダミン(R6G),リサミンローダミンB塩化スルホニル,ローダミン(Rhod),ローダミンB,ローダミン123,ローダミングリーン,ローダミンXイソチオシアネート,スルホローダミンB,スルホローダミン101,スルホローダミン101の塩化スルホニル誘導体(テキサスレッド)),N,N,N’,N’−テトラメチル−6−カルボキシローダミン(TAMRA),テトラメチルローダミン,テトラメチルローダミンイソチオシアネート(TRITC),リボフラビン,ロゾール酸,テルビウムキレート誘導体。 Suitable fluorescent components include the following phosphors known in the art: 4-acetamido-4'-isothiocyanatostilben-2,2'-disulfonic acid, aclydin and derivatives (aclysin, aclysin isothiocyanate). ), Alexa Fluor (registered trademark) 350, Alexa Fluor (registered trademark) 488, Alexa Fluor (registered trademark) 546, Alexa Fluor (registered trademark) 555, Alexa Fluor (registered trademark) 568, Alexa Fluor (registered trademark) 594, Alexa Fluor® 647 (Molecular Probe), 5- (2'-aminoethyl) aminonaphthalene-1-sulfonic acid (EDANS), 4-amino-N- [3-vinylsulfonyl) phenyl] naphthalimide-3 , 5 Disulfonate (Lucifer Yellow VS), N- (4-anilino-1-naphthyl) maleimide, anthranilamide, BODIPY® CR-6G, BOPIPY® 530/550, BODIPY® FL , Brilliant Yellow, Cumarin and Derivatives (Cumarin, 7-Amino-4-Methyl Cumarin (AMC, Kumarin 120), 7-Amino-4-trifluoromethyl Cumarin (Cumarin 151)), Cy2®, Cy3® Trademarks), Cy3.5®, Cy5®, Cy5.5®, Cyanine, 4', 6-diaminidino-2-phenylindole (DAPI), 5', 5 "-dibromopyrogalol -Sulfonephthalein (Bromopyrogallol Red), 7-diethylamino-3- (4'-isosyanatophenyl) -4-methylcoumarin, diethylenetriamine tetraacetic acid, 4,4'-diisothiocyanatodihydro-stilben-2,2 '-Disulfonic acid, 4,4'-Diisothiocyanatostilben-2,2'-Disulfonic acid, 5- [dimethylamino] naphthalene-1-sulfonyl (DNS, dansyl chloride), 4- (4'-dimethyl) Aminophenylazo) benzoic acid (DABCYL), 4-dimethylaminophenylazophenyl-4'-isothiocyanate (DABITC), Eclipse ™ (Epoch Biosciences Inc.), eosin and derivatives (eosin, eosin isothiocyanate) , Erythrosin and derivatives (Erythrosin B, erythrosin isothiocyanate), ethidium, fluorescein and derivatives (5-carboxyfluoresane (FAM), 5- (4,6-dichlorotriazine-2-yl) aminofluoresane (DTAF), 2', 7'-Dimethoxy-4'5'-dichloro-6-carboxyfluorescein (JOE), fluorescein, fluorescein isothiocyanate (FITC), hexachloro-6-carboxyfluoresine (HEX), QFITC (XRITC), tetrachlorofluorescein (TET) ), Rhodamine, IR144, IR1446, Malachite Green Isothiocianate, 4-Methylumveriferone, Orthocresolphthalein, Nitrotyrosine, Pararosaniline, Phenol Red, B-Phoicoelyslin, R-Phycoerythrin, o -Phphthaldialdehyde, Rhodamine Green®, propidium iodide, pyrene and derivatives (pyrene, pyrene butyrate, succinimidyl butyrate 1-pyrene), QSY® 7, QSY® 9, QSY® ) 21, QSY® 35 (Molecular Probe), Reactive Red 4 (Cibacron® Brilliant Red 3B-A), Rhodamine and Derivatives (6-carboxy-X-Rhodamine (ROX), 6-carboxyrhodamine) (R6G), Rhodamine Rhodamine B sulfonyl chloride, Rhodamine (Rhod), Rhodamine B, Rhodamine 123, Rhodamine Green, Rhodamine X isothiocyanate, Rhodamine B, Rhodamine 101, sulfonyl chloride derivatives of Rhodamine 101 (Texas Red)) , N, N, N', N'-tetramethyl-6-carboxyrhodamine (TAMRA), tetramethylrhodamine, tetramethylrhodamine isothiocyanate (TRITC), riboflavin, rosolic acid, terbium chelate derivative.

適当な消光剤は,特定の蛍光団の蛍光スペクトルに基づいて選択する。有用な消光剤としては,例えば,the Black Hole(商標)消光剤であるBHQ−1,BHQ−2,およびBHQ−3(Biosearch Technologies,Inc.),およびATTOシリーズの消光剤(ATTO540Q,ATTO580Q,およびATTO612Q;Atto−TecGmbH)が挙げられる。 A suitable quencher is selected based on the fluorescence spectrum of a particular fluorophore. Useful quenchers include, for example, the Black Hole ™ quenchers BHQ-1, BHQ-2, and BHQ-3 (Biosarch Technologies, Inc.), and ATTO series quenchers (ATTO540Q, ATTO580Q, etc.). And ATTO612Q; Atto-TecGmbH).

検出可能な標識は,核酸中に取り込ませるか,会合させるか,またはコンジュゲートさせることができる。標識は,種々の長さのスペーサーアームにより結合させて,立体障害または他の有用なまたは望ましい特性に与える影響を低減させることができる(例えば,Mansfield,9 Mol.Cell.Probes 145−156(1995)を参照。)。ハプテンとしては、ビオチン、ジゴキシゲニンなどが挙げられる。放射性物質としては、32P、35Sなどが挙げられる。発光団としては、ルテニウム、エクオリンなどが挙げられる。該標識は、核酸検出反応に影響を与えることがなければなにを用いても良い。また反応に影響がなければオリゴヌクレオチドのどの位置に結合させてもよい。好ましくは、3’末端、5’末端部位である。 The detectable label can be incorporated into, associated with, or conjugated to the nucleic acid. The labels can be coupled by spacer arms of various lengths to reduce the effect on steric hindrance or other useful or desirable properties (eg, Mansfield, 9 Mol. Cell. Probes 145-156 (1995). ).). Examples of the hapten include biotin and digoxigenin. Examples of the radioactive substance include 32P and 35S. Examples of the luminous group include ruthenium and aequorin. The label may be used as long as it does not affect the nucleic acid detection reaction. Further, it may be bound to any position of the oligonucleotide as long as it does not affect the reaction. It is preferably a 3'end and a 5'end site.

前記プローブは、核酸増幅産物を含む液体試料に添加してもよいし、溶媒中で核酸増幅産物と混合してもよい。前記溶媒としては、特に制限されず、例えば、Tris−HCl等の緩衝液、KCl、MgCl、MgSO、グリセロール、有機溶媒等、従来公知のものがあげられる。反応液の調整の方法としては、具体的には、反応液25μlあたり、オリゴヌクレオチドが0.5〜50pmol、×10の緩衝液が0.5〜50μl、2mMのdNTPで0.5〜50μl、塩類が25mM濃度液で0.1〜30μl、DNAポリメラーゼが0.1〜30ng程度であることが好ましい。 The probe may be added to a liquid sample containing the nucleic acid amplification product or may be mixed with the nucleic acid amplification product in a solvent. The solvent is not particularly limited, and examples thereof include conventionally known solvents such as buffer solutions such as Tris-HCl, KCl, MgCl 2 , sulfonyl 4 , glycerol, and organic solvents. Specifically, as a method for preparing the reaction solution, 0.5 to 50 μl of oligonucleotide, 0.5 to 50 μl of × 10 buffer solution, and 0.5 to 50 μl of 2 mM dNTP per 25 μl of the reaction solution. It is preferable that the amount of salts is 0.1 to 30 μl in a 25 mM concentration solution and the amount of DNA polymerase is about 0.1 to 30 ng.

[検出方法]
本発明の方法では、工程(4)として、工程(3)で得られた核酸増幅産物の一部と核酸プローブとの複合体を検出する工程を包含する。ここで、検出方法としては、当該分野で公知の任意の手段で実施することができるが、一例として、単独でシグナルを示し且つハイブリッド形成によりシグナルを示さない標識化プローブ(例えば、グアニン消光プローブ)を使用することができる。このようなハイブリッド形成によりシグナルを消光する標識化プローブを使用した場合、一本鎖DNAとプローブとが解離している状態では蛍光を発しているが、温度の降下によりハイブリッドを形成すると、前記蛍光が減少(または消光)する。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の減少を測定すればよい。他方、単独でシグナルを示さず且つハイブリッド形成によりシグナルを示す標識化プローブを使用した場合、一本鎖DNAとプローブとが解離している状態では蛍光を発していないが、温度の降下によりハイブリッドを形成すると、蛍光を発するようになる。したがって、例えば、前記反応液の温度を徐々に降下させて、温度下降に伴う蛍光強度の増加を測定すればよい。
[Detection method]
In the method of the present invention, step (4) includes a step of detecting a complex of a part of the nucleic acid amplification product obtained in step (3) and a nucleic acid probe. Here, the detection method can be carried out by any means known in the art, but as an example, a labeled probe (for example, a guanine quenching probe) that shows a signal by itself and does not show a signal by hybrid formation. Can be used. When a labeled probe that quenches a signal by such hybrid formation is used, it fluoresces when the single-stranded DNA and the probe are dissociated, but when a hybrid is formed by a decrease in temperature, the fluorescence Decreases (or quenches). Therefore, for example, the temperature of the reaction solution may be gradually lowered to measure the decrease in fluorescence intensity accompanying the temperature drop. On the other hand, when a labeled probe that does not show a signal by itself and shows a signal by hybrid formation is used, it does not fluoresce when the single-stranded DNA and the probe are dissociated, but the hybrid is generated by a decrease in temperature. Once formed, it will fluoresce. Therefore, for example, the temperature of the reaction solution may be gradually lowered to measure the increase in fluorescence intensity accompanying the temperature drop.

前記解離工程における加熱温度は、前記増幅産物が解離できる温度であれば特に制限されないが、例えば、85〜100℃である。加熱時間も特に制限されないが、通常、0.5秒〜20分であり、好ましくは1秒〜10分である。 The heating temperature in the dissociation step is not particularly limited as long as the amplification product can be dissociated, but is, for example, 85 to 100 ° C. The heating time is also not particularly limited, but is usually 0.5 seconds to 20 minutes, preferably 1 second to 10 minutes.

また、解離した一本鎖DNAと前記標識化プローブとのハイブリダイズは、例えば、前記解離工程の後、前記解離工程における加熱温度を降下させることによって行うことができる。温度条件としては、例えば、35〜50℃であるが、限定されない。 Further, the hybridization of the dissociated single-stranded DNA and the labeled probe can be performed, for example, by lowering the heating temperature in the dissociation step after the dissociation step. The temperature condition is, for example, 35 to 50 ° C., but is not limited.

ハイブリダイズ工程の反応系(反応液)における各組成の体積や濃度は、特に制限されない。具体例としては、前記反応液の全量において、核酸増幅産物であるDNAの濃度は、例えば、0.01〜100μmol/Lであり、好ましくは0.1〜10μmol/Lである。前記標識化プローブの濃度は、前記核酸増幅産物であるDNAの添加量に応じて常法に従い適宜変動され得るが、例えば、前記反応液の全量において、0.01〜100μmol/Lであり、好ましくは0.01〜10μmol/Lである。 The volume and concentration of each composition in the reaction system (reaction solution) of the hybridization step are not particularly limited. As a specific example, the concentration of DNA, which is a nucleic acid amplification product, in the total amount of the reaction solution is, for example, 0.01 to 100 μmol / L, preferably 0.1 to 10 μmol / L. The concentration of the labeled probe can be appropriately varied according to a conventional method depending on the amount of DNA added as the nucleic acid amplification product. For example, the total amount of the reaction solution is preferably 0.01 to 100 μmol / L. Is 0.01 to 10 μmol / L.

蛍光強度の変動を測定する際の温度範囲は、特に制限されないが、例えば、開始温度が室温〜85℃であり、好ましくは25〜70℃であり、終了温度は、例えば、40〜105℃である。また、温度の上昇速度は、特に制限されないが、例えば、0.05〜20℃/秒であり、好ましくは0.08〜10℃/秒である。 The temperature range for measuring the fluctuation of fluorescence intensity is not particularly limited, but for example, the start temperature is room temperature to 85 ° C., preferably 25 to 70 ° C., and the end temperature is, for example, 40 to 105 ° C. is there. The rate of temperature rise is not particularly limited, but is, for example, 0.05 to 20 ° C./sec, preferably 0.08 to 10 ° C./sec.

また、本発明においては、目的の塩基部位における遺伝子型の決定のために、前記シグナルの変動を解析してTm(melting temperature)値として決定してもよい。 Further, in the present invention, in order to determine the genotype at the target base site, the fluctuation of the signal may be analyzed and determined as a Tm (melting temperature) value.

[プライマー、プローブ、検出キット]
別の実施形態として、本発明は、上記で説明したIDH−1の遺伝子多型を検出し得るプライマーセット、プローブ、または、該プライマーセットと該プローブとを組合せたセットを提供する。これらのプライマーセット、プローブ、プライマー・プローブのセットは、上記で説明したようなIDH−1遺伝子多型(特に、IDH-1遺伝子のコドン132における一塩基多型)を検出するために好適に用いることができる。
[Primer, probe, detection kit]
As another embodiment, the present invention provides a primer set or probe capable of detecting the gene polymorphism of IDH-1 described above, or a set of a combination of the primer set and the probe. These primer sets, probes, and primer-probe sets are suitably used for detecting IDH-1 gene polymorphisms as described above (particularly, single nucleotide polymorphisms at codon 132 of the IDH-1 gene). be able to.

更なる実施形態として、本発明は、これらのプライマーセット、プローブ、または、該プライマーセットと該プローブとを組合せたセットを少なくとも含む遺伝子多型検出キットを提供する。本発明のキットは、その構成において、プライマーセット、プローブ、または、該プライマーセットと該プローブとを組合せたセットを備えていること以外については特に限定されず、例えば、IDH−1のコドン132における一塩基多型以外の遺伝子多型(例えば、IDH−2のコドン172及び/又はコドン140における遺伝子多型等)を検出するためのプライマーセットやプローブを更に含んでもよいし、核酸の抽出・精製のための試薬、使用説明書等を更に含んでいてもよい。また、本発明の遺伝子多型検出キットは、IDH−1のコドン132における一塩基多型以外の遺伝子多型(例えば、IDH−2のコドン172及び/又はコドン140における遺伝子多型等)を検出するためのプライマーセットやプローブ等を含む他の遺伝子多型検出キットと一緒に用いられるものであってもよい。上記のような本発明の遺伝子多型検出キットは、当該キットに含まれるプライマー及び/又はプローブを、例えば当該分野で公知のPCR法に適用するようにして使用され得る。 As a further embodiment, the present invention provides a gene polymorphism detection kit containing at least these primer sets, probes, or a combination of the primer sets and the probes. The kit of the present invention is not particularly limited except that the kit includes a primer set, a probe, or a set of the primer set and the probe in combination, and is, for example, at codon 132 of IDH-1. It may further contain a primer set or probe for detecting a gene polymorphism other than a single nucleotide polymorphism (for example, a gene polymorphism at codon 172 and / or codon 140 of IDH-2), and extraction / purification of nucleic acid. May further include reagents, instructions for use, etc. Further, the gene polymorphism detection kit of the present invention detects gene polymorphisms other than single nucleotide polymorphisms at codon 132 of IDH-1 (for example, gene polymorphisms at codon 172 and / or codon 140 of IDH-2). It may be used together with other gene polymorphism detection kits including a primer set, a probe, and the like. The gene polymorphism detection kit of the present invention as described above can be used by applying the primers and / or probes contained in the kit to, for example, a PCR method known in the art.

また、上記のような本発明の検出キットが、IDH−1遺伝子多型以外の遺伝子多型を検出するためのプローブ(例えば、IDH−2遺伝子多型の検出プローブ)を備える場合、IDH−1遺伝子多型を検出するためのプローブの蛍光標識と、その他の遺伝子多型を検出するためのプローブ(例えば、IDH−2遺伝子多型の検出プローブ)の蛍光標識とが異なる蛍光波長を示すものにしておくことが好ましい。このように蛍光波長の異なる標識を用いることによって、発光する色の違いにより両方の遺伝子多型を同時に測定することが可能となる。 Further, when the detection kit of the present invention as described above includes a probe for detecting a gene polymorphism other than the IDH-1 gene polymorphism (for example, a detection probe for the IDH-2 gene polymorphism), IDH-1 The fluorescent label of the probe for detecting the gene polymorphism and the fluorescent label of the probe for detecting other gene polymorphisms (for example, the detection probe of the IDH-2 gene polymorphism) show different fluorescence wavelengths. It is preferable to keep it. By using labels having different fluorescence wavelengths in this way, it is possible to measure both gene polymorphisms at the same time due to the difference in the emitted color.

本明細書で用いられる酵素(例えば、DNAポリメラーゼ)の活性測定方法について、以下に説明する。例えば、本発明に用いられるDNAポリメラーゼが、α型DNAポリメラーゼとしての活性を失っていないものか否かは、下記の活性測定方法を参照して当業者により適宜確認され得る。 A method for measuring the activity of an enzyme (for example, DNA polymerase) used in the present specification will be described below. For example, whether or not the DNA polymerase used in the present invention has not lost its activity as an α-type DNA polymerase can be appropriately confirmed by those skilled in the art with reference to the activity measuring method below.

[DNA合成活性]
本発明において、DNA合成活性とは鋳型DNAにアニールされたオリゴヌクレオチドまたはポリヌクレオチドの3’−ヒドロキシル基にデオキシリボヌクレオシド5’−トリホスフェートのα−ホスフェートを共有結合せしめることにより、デオキシリボ核酸にデオキシリボヌクレオシド5’−モノホスフェートを鋳型依存的に導入する反応を触媒する活性をいう。
[DNA synthesis activity]
In the present invention, DNA synthesis activity refers to deoxyribonucleoside to deoxyribonucleoside by co-binding the α-phosphate of deoxyribonucleoside 5'-triphosphate to the 3'-hydroxyl group of an oligonucleotide or polynucleotide annealed to the template DNA. The activity of catalyzing the reaction of introducing 5'-monophosphate in a template-dependent manner.

その活性測定法は、酵素活性が高い場合には、保存緩衝液でサンプルを希釈して測定を行う。本発明では、下記A液25μl、B液およびC液各5μlおよび滅菌水10μlをエッペンドルフチューブに加えて攪拌混合した後、上記酵素液5μlを加えて75℃で10分間反応する。その後、氷冷し、E液50μl、D液100μlを加えて、攪拌後、さらに10分間氷冷する。この液をガラスフィルター(ワットマンGF/Cフィルター)で濾過し、D液及びエタノールで充分洗浄し、フィルターの放射活性を液体シンチレーションカウンター(パッカード社製)で計測し、鋳型DNAへのヌクレオチドの取り込みを測定する。酵素活性の1単位はこの条件下で30分あたり10nモルのヌクレオチドを酸不溶性画分に取り込む酵素量とする。
A: 40mM Tris−HCl(pH7.5)
16mM 塩化マグネシウム
15mM ジチオスレイトール
100μg/ml BSA
B: 2μg/μl 活性化仔牛胸腺DNA
C: 1.5mM dNTP(250cpm/pmol〔3H〕dTTP)
D: 20% トリクロロ酢酸(2mMピロリン酸ナトリウム)
E: 1μg/μl キャリアーDNA
In the activity measurement method, when the enzyme activity is high, the sample is diluted with a storage buffer solution for measurement. In the present invention, 25 μl of the following solution A, 5 μl each of the following solutions B and C and 10 μl of sterilized water are added to an Eppendorf tube and mixed by stirring, and then 5 μl of the above enzyme solution is added and reacted at 75 ° C. for 10 minutes. Then, it is ice-cooled, 50 μl of E solution and 100 μl of D solution are added, and after stirring, ice-cooled for another 10 minutes. This solution is filtered through a glass filter (Whatman GF / C filter), thoroughly washed with solution D and ethanol, the radioactivity of the filter is measured with a liquid scintillation counter (manufactured by Packard), and the nucleotides are incorporated into the template DNA. Measure. One unit of enzyme activity is the amount of enzyme that incorporates 10 n mol of nucleotides into the acid-insoluble fraction per 30 minutes under these conditions.
A: 40 mM Tris-HCl (pH 7.5)
16 mM Magnesium Chloride 15 mM Dithiothreitol 100 μg / ml BSA
B: 2 μg / μl activated calf thymus DNA
C: 1.5 mM dNTP (250 cpm / pmol [3H] dTTP)
D: 20% trichloroacetic acid (2 mM sodium pyrophosphate)
E: 1 μg / μl carrier DNA

[3’→5’エキソヌクレアーゼ活性]
本発明において、3’→5’エキソヌクレアーゼ活性とは、DNAの3’末端領域を切除し、5’−モノヌクレオチドを遊離する活性をいう。
その活性測定法は以下のとおりである。50μlの反応液(120mM Tris−HCl(pH8.8(25℃)),10mM KCl,6mM硫酸アンモニウム,1mM MgCl,0.1%TritonX−100,0.001%BSA,5μgトリチウムラベルされた大腸菌DNA)を1.5mlのエッペンドルフチューブに分注し、DNAポリメラーゼを加える。75℃で10分間反応させた後、氷冷によって反応を停止し、次にキャリアーとして、0.1%のBSAを50μl加え、さらに10%のトリクロロ酢酸、2%ピロリン酸ナトリウム溶液を100μl加え混合する。氷上で15分放置した後、12,000回転で10分間遠心し沈殿を分離する。上清100μlの放射活性を液体シンチレーションカウンター(パッカード社製)で計測し、酸可溶性画分に遊離したヌクレオチド量を測定する。
[3'→ 5'exonuclease activity]
In the present invention, the 3'→ 5'exonuclease activity refers to the activity of excising the 3'terminal region of DNA and releasing the 5'-mononucleotide.
The activity measurement method is as follows. 50 μl of reaction solution (120 mM Tris-HCl (pH 8.8 (25 ° C)), 10 mM KCl, 6 mM ammonium sulfate, 1 mM MgCl 2 , 0.1% TritonX-100, 0.001% BSA, 5 μg tritium-labeled E. coli DNA ) Is dispensed into a 1.5 ml Eppendorf tube and DNA polymerase is added. After reacting at 75 ° C. for 10 minutes, the reaction was stopped by ice cooling, then 50 μl of 0.1% BSA was added as a carrier, and 100 μl of 10% trichloroacetic acid and 2% sodium pyrophosphate solution were added and mixed. To do. After leaving it on ice for 15 minutes, centrifuge at 12,000 rpm for 10 minutes to separate the precipitate. The radioactivity of 100 μl of the supernatant is measured with a liquid scintillation counter (manufactured by Packard), and the amount of nucleotides released in the acid-soluble fraction is measured.

以下実施例をもって本発明を具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

実施例1 IDH−1遺伝子多型の検出
[IDH−1 一塩基多型の検出に用いるオリゴヌクレオチドの合成]
配列番号2,3,4に示される塩基配列を有するオリゴヌクレオチド(以下、オリゴ2、3、4と示す)を常法に従い合成したものを用意した。
オリゴ2は、配列番号1に示されるヒトゲノムIDH−1遺伝子のセンス鎖に対応するフォワードプライマーであり、オリゴ3はこのアンチセンス鎖に対応するリバースプライマーであり、これらのプライマーを組み合わせて増幅反応ためのオリゴヌクレオチドとして使用した。オリゴ4は、IDH−1遺伝子のコドン132における一塩基多型を検出するための核酸プローブとして使用され、3’末端を蛍光標識してグアニン消光プローブとした。
Example 1 Detection of IDH-1 gene polymorphism [Synthesis of oligonucleotides used for detection of IDH-1 single nucleotide polymorphism]
Oligonucleotides having the nucleotide sequences shown in SEQ ID NOs: 2, 3 and 4 (hereinafter referred to as oligos 2, 3 and 4) were synthesized according to a conventional method.
Oligo 2 is a forward primer corresponding to the sense strand of the human genome IDH-1 gene shown in SEQ ID NO: 1, and oligo 3 is a reverse primer corresponding to this antisense strand, and these primers are combined for an amplification reaction. Used as an oligonucleotide in. Oligo 4 was used as a nucleic acid probe for detecting single nucleotide polymorphisms at codon 132 of the IDH-1 gene, and the 3'end was fluorescently labeled to obtain a guanine quenching probe.

[IDH−1の遺伝子多型検出]
ヒト血液より抽出したDNA溶液をサンプルとして使用して、下記試薬を添加して、下記条件のPCR法での核酸増幅反応によりIDH−1遺伝子多型を検出した。
[Detection of gene polymorphism of IDH-1]
Using a DNA solution extracted from human blood as a sample, the following reagents were added, and IDH-1 gene polymorphism was detected by a nucleic acid amplification reaction by the PCR method under the following conditions.

[試薬]
以下の試薬を含む10μl溶液を調製した。
KODplus DNAポリメラーゼ 0.5U
オリゴ2 20pmol、
オリゴ3 6.25 pmol、
オリゴ4(3’末端をFITCにより標識) 6.25pmol、
×10緩衝液 1μl、
2mM dNTP 1μl、
25mM MgSO 2μl、
DNA溶液 100ng
[reagent]
A 10 μl solution containing the following reagents was prepared.
KODplus DNA polymerase 0.5U
Oligo 2 20 pmol,
Oligo 3 6.25 pmol,
Oligo 4 (labeled 3'end with FITC) 6.25 pmol,
× 10 buffer solution 1 μl,
2 mM dNTP 1 μl,
25mM MgSO 4 2μl,
DNA solution 100 ng

[増幅条件]
94℃・30秒、
97℃・1秒、
58℃・3秒、
63℃・5秒(60サイクル)
35℃で反応停止
35℃から75℃に温度上昇させながら蛍光検出した。温度上昇速度は0.09℃/秒とした。
[Amplification conditions]
94 ° C for 30 seconds,
97 ° C for 1 second,
58 ° C for 3 seconds,
63 ° C for 5 seconds (60 cycles)
Reaction stopped at 35 ° C. Fluorescence was detected while raising the temperature from 35 ° C. to 75 ° C. The temperature rise rate was 0.09 ° C./sec.

[融解曲線解析による検出]
融解曲線解析の結果、−dF(蛍光強度変化量)/dT(温度変化量)の最も大きな値を示す温度(Tm)は、51℃および61℃付近を示し、その時の蛍光強度変化量は下記の通りであった。結果を図1および図2に示す。
[Detection by melting curve analysis]
As a result of the melting curve analysis, the temperature (Tm) showing the largest value of −dF (fluorescence intensity change amount) / dT (temperature change amount) is around 51 ° C. and 61 ° C., and the fluorescence intensity change amount at that time is as follows. It was a street. The results are shown in FIGS. 1 and 2.

図1および図2のグラフから、IDH−1が存在する場合には、明らかなピークが得られることが確認された。図1で用いた試料と図2で用いた試料とは異なる遺伝子型を有しており、IDH−1の野生型(図1)と変異型(図2)のピーク温度が大きく異なるため、遺伝子多型の識別も容易に可能であった。従って、本発明により、簡便でありながら、信頼性の高い識別が可能になることが明らかとなった。 From the graphs of FIGS. 1 and 2, it was confirmed that a clear peak was obtained in the presence of IDH-1. The sample used in FIG. 1 and the sample used in FIG. 2 have different genotypes, and the peak temperatures of the wild type (Fig. 1) and the mutant type (Fig. 2) of IDH-1 are significantly different. It was also possible to easily identify polymorphisms. Therefore, it has been clarified that the present invention enables simple yet highly reliable identification.

実施例2 ヒト血液希釈試料を用いたIDH−1遺伝子多型検出
[PCR法による増幅反応]
ヒト血液を試料溶解液(東洋紡製)の緩衝液で50倍に希釈した試料液をサンプルとして使用して、下記試薬を添加して、下記条件のPCR法での核酸増幅反応によりIDH−1遺伝子多型を検出した。
Example 2 IDH-1 gene polymorphism detection using diluted human blood sample [amplification reaction by PCR method]
Using a sample solution obtained by diluting human blood 50 times with a buffer solution of a sample solution (manufactured by Toyobo) as a sample, the following reagents are added, and the IDH-1 gene is subjected to a nucleic acid amplification reaction by the PCR method under the following conditions. A polymorphism was detected.

[試薬]
以下の試薬を含む10μl溶液を調製した。
KODplus DNAポリメラーゼ 0.5U
オリゴ2 20pmol、
オリゴ3 6.25 pmol、
オリゴ4(3’末端をFITCにより標識) 6.25pmol、
×10緩衝液 1μl、
2mM dNTP 1μl、
25mM MgSO4 2μl、
ヒト血液50倍希釈試料液 2μL
[reagent]
A 10 μl solution containing the following reagents was prepared.
KODplus DNA polymerase 0.5U
Oligo 2 20 pmol,
Oligo 3 6.25 pmol,
Oligo 4 (labeled 3'end with FITC) 6.25 pmol,
× 10 buffer solution 1 μl,
2 mM dNTP 1 μl,
25 mM sulfonyl4 2 μl,
Human blood 50-fold diluted sample solution 2 μL

[増幅条件]
94℃・30秒、
97℃・1秒、
58℃・3秒、
63℃・5秒(60サイクル)
35℃で反応停止
35℃から75℃に温度上昇させながら蛍光検出した。温度上昇速度は0.09℃/秒とした。
[Amplification conditions]
94 ° C for 30 seconds,
97 ° C for 1 second,
58 ° C for 3 seconds,
63 ° C for 5 seconds (60 cycles)
Reaction stopped at 35 ° C. Fluorescence was detected while raising the temperature from 35 ° C. to 75 ° C. The temperature rise rate was 0.09 ° C./sec.

[融解曲線解析による検出]
融解曲線解析の結果、−dF(蛍光強度変化量)/dT(温度変化量)の最も大きな値を示す温度(Tm)は、60℃付近を示し、その時の蛍光強度変化量は下記の通りであった。この結果を図3に示す。この結果から、ヒト血液希釈液から直接的にIDH−1遺伝子多型を検出することも可能であることが確認された。
[Detection by melting curve analysis]
As a result of the melting curve analysis, the temperature (Tm) showing the largest value of −dF (fluorescence intensity change) / dT (temperature change) is around 60 ° C., and the fluorescence intensity change at that time is as follows. there were. The result is shown in FIG. From this result, it was confirmed that it is also possible to detect the IDH-1 gene polymorphism directly from the human blood diluent.

実施例3 IDH−1遺伝子多型(変異のバリアント)における変化
[PCR法による増幅反応]
シークエンス法によりIDH−1遺伝子のコドン132における変異バリアント(R132H、R132L、R132G、R132S、R132C)が判明している各種DNAを含む溶液及び野生型DNA(WT)を含む溶液をサンプルとして使用し、以下の評価を行った。具体的には、各々のDNA溶液に下記試薬を添加して、下記条件のPCR法での核酸増幅反応により融解曲線分析により評価を行った。
Example 3 Changes in IDH-1 gene polymorphism (mutation variant) [Amplification reaction by PCR method]
A solution containing various DNAs for which mutation variants (R132H, R132L, R132G, R132S, R132C) at codon 132 of the IDH-1 gene have been found by the sequence method and a solution containing wild-type DNA (WT) were used as samples. The following evaluations were made. Specifically, the following reagents were added to each DNA solution, and evaluation was performed by melting curve analysis by a nucleic acid amplification reaction by the PCR method under the following conditions.

[試薬]
以下の試薬を含む10μl溶液を調製した。
KODplus DNAポリメラーゼ 0.5U
オリゴ2 20pmol、
オリゴ3 6.25 pmol、
オリゴ4(3’末端をFITCにより標識) 6.25pmol、
×10緩衝液 1μl、
2mM dNTP 1μl、
25mM MgSO4 2μl、
ヒト血液50倍希釈試料液 2μL
[reagent]
A 10 μl solution containing the following reagents was prepared.
KODplus DNA polymerase 0.5U
Oligo 2 20 pmol,
Oligo 3 6.25 pmol,
Oligo 4 (labeled 3'end with FITC) 6.25 pmol,
× 10 buffer solution 1 μl,
2 mM dNTP 1 μl,
25 mM sulfonyl4 2 μl,
Human blood 50-fold diluted sample solution 2 μL

[増幅条件]
94℃・30秒、
97℃・1秒、
58℃・3秒、
63℃・5秒(60サイクル)
35℃で反応停止
35℃から75℃に温度上昇させながら蛍光検出した。温度上昇速度は0.09℃/秒とした。
[Amplification conditions]
94 ° C for 30 seconds,
97 ° C for 1 second,
58 ° C for 3 seconds,
63 ° C for 5 seconds (60 cycles)
Reaction stopped at 35 ° C. Fluorescence was detected while raising the temperature from 35 ° C. to 75 ° C. The temperature rise rate was 0.09 ° C./sec.

[融解曲線解析による検出]
融解曲線解析の結果を図4に示す。図4に示される結果から明らかなように、本発明によれば、−dF(蛍光強度変化量)/dT(温度変化量)の最も大きな値を示す温度(Tm)はIDH−1のコドン132における各種変異バリアントで異なり、各種変異を鑑別可能であることが分かる。従って、本発明により、高感度にIDH−1遺伝子多型を検出できることが明らかとなった。
[Detection by melting curve analysis]
The result of the melting curve analysis is shown in FIG. As is clear from the results shown in FIG. 4, according to the present invention, the temperature (Tm) showing the largest value of −dF (fluorescence intensity change amount) / dT (temperature change amount) is the codon 132 of IDH-1. It can be seen that the various mutation variants in the above are different and the various mutations can be distinguished. Therefore, according to the present invention, it has been clarified that the IDH-1 gene polymorphism can be detected with high sensitivity.

本発明により、IDH−1の一塩基多型を簡便に検出でき、臨床的にも信頼性が高いIDH−1遺伝子多型検出を行うことが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, a single nucleotide polymorphism of IDH-1 can be easily detected, and it is possible to detect an IDH-1 gene polymorphism with high clinical reliability.

Claims (11)

試料中のIDH−1遺伝子多型を検出する方法であって、以下の工程:
(1)以下の(I)または(II)のいずれか1つ以上の核酸プライマーを含む一対のプライマーセットを用意する工程:
(I)配列番号2で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー、
(II)配列番号3で示される塩基配列若しくはその相補的な塩基配列からなる核酸プライマー;
(2)試料中の被検核酸および前記プライマーセットを含む反応液において、被検核酸を増幅する工程;
(3)工程(2)によって得られた核酸増幅産物と、該核酸増幅産物の一部と複合体を形成せしめるように設計されたプローブとをハイブリダイズさせ複合体を形成せしめる工程;及び
(4)工程(3)で得られた複合体を検出する工程、
を包含する方法。
A method for detecting an IDH-1 gene polymorphism in a sample, wherein the following steps:
(1) A step of preparing a pair of primer sets containing one or more of the following nucleic acid primers (I) or (II):
(I) A nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 2 or a base sequence complementary thereto.
(II) Nucleic acid primer consisting of the base sequence shown in SEQ ID NO: 3 or its complementary base sequence;
(2) A step of amplifying the test nucleic acid in the reaction solution containing the test nucleic acid in the sample and the primer set;
(3) A step of hybridizing the nucleic acid amplification product obtained in step (2) with a probe designed to form a complex with a part of the nucleic acid amplification product to form a complex; and (4). ) Step of detecting the complex obtained in step (3),
A method of including.
前記工程(3)で用いるプローブが、配列番号4に示される塩基配列又はその相補的な塩基配列からなる核酸プローブである、請求項1に記載のIDH−1遺伝子多型の検出方法。 The method for detecting an IDH-1 gene polymorphism according to claim 1, wherein the probe used in the step (3) is a nucleic acid probe consisting of the base sequence shown in SEQ ID NO: 4 or a base sequence complementary thereto. 前記工程(1)で用いる一対のプライマーセットが、フォワードプライマーとして前記(I)で示される核酸プライマー、及び、リバースプライマーとして前記(II)で示される核酸プライマーを含む、請求項1又は2に記載のIDH−1遺伝子多型の検出方法。 The first or second claim, wherein the pair of primer sets used in the step (1) includes the nucleic acid primer shown in (I) as a forward primer and the nucleic acid primer shown in (II) as a reverse primer. IDH-1 gene polymorphism detection method. 前記工程(2)において、配列番号1と95%以上相同な塩基配列で示される核酸配列の一部領域を増幅する、請求項1〜3のいずれかに記載のIDH−1遺伝子多型の検出方法。 The detection of the IDH-1 gene polymorphism according to any one of claims 1 to 3, which amplifies a part of the nucleic acid sequence represented by the base sequence homologous to SEQ ID NO: 1 by 95% or more in the step (2). Method. 前記工程(3)で用いるプローブにおいて末端のシトシンが蛍光色素で標識されている、請求項1〜4のいずれかに記載のIDH−1遺伝子多型の検出方法。 The method for detecting an IDH-1 gene polymorphism according to any one of claims 1 to 4, wherein the terminal cytosine is labeled with a fluorescent dye in the probe used in the step (3). 前記工程(2)における核酸増幅を、α型DNAポリメラーゼ及びその変異体からなる群より選択される少なくとも1つのDNAポリメラーゼを含む反応液中で行う、請求項1〜5のいずれかに記載のIDH−1遺伝子多型の検出方法。 The IDH according to any one of claims 1 to 5, wherein the nucleic acid amplification in the step (2) is carried out in a reaction solution containing at least one DNA polymerase selected from the group consisting of α-type DNA polymerase and its mutant. -1 Method for detecting gene polymorphism. 試料として、血液から抽出したDNAを含む試料又は血液希釈試料を使用する、請求項1〜6のいずれかに記載のIDH−1遺伝子多型の検出方法。 The method for detecting an IDH-1 gene polymorphism according to any one of claims 1 to 6, wherein a sample containing DNA extracted from blood or a diluted blood sample is used as the sample. 配列番号2で示される塩基配列又はその相補的な塩基配列からなるプライマーと、配列番号3で示される塩基配列又はその相補的な塩基配列からなるプライマーとからなる、IDH−1遺伝子多型を検出するためのプライマーセット。 Detects IDH-1 gene polymorphism consisting of a primer consisting of the nucleotide sequence shown in SEQ ID NO: 2 or its complementary nucleotide sequence and a primer consisting of the nucleotide sequence shown in SEQ ID NO: 3 or its complementary nucleotide sequence. Primer set to do. 配列番号4で示される塩基配列又はその相補的な塩基配列からなる、IDH−1遺伝子多型を検出するためのプローブ。 A probe for detecting an IDH-1 gene polymorphism, which comprises the base sequence shown in SEQ ID NO: 4 or a base sequence complementary thereto. 請求項8に記載のプライマーセットと、請求項9に記載のプローブとを含む、IDH−1遺伝子多型を検出するためのプライマー・プローブのセット。 A set of primer probes for detecting an IDH-1 gene polymorphism, comprising the primer set according to claim 8 and the probe according to claim 9. 請求項8に記載のプライマーセット、請求項9に記載のプローブ、又は請求項10に記載のプライマー・プローブのセットのいずれかを含む、遺伝子多型検出キット。 A gene polymorphism detection kit comprising any of the primer set according to claim 8, the probe according to claim 9, or the primer / probe set according to claim 10.
JP2019052995A 2019-03-20 2019-03-20 Method for detecting IDH-1 gene polymorphism Active JP7392270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019052995A JP7392270B2 (en) 2019-03-20 2019-03-20 Method for detecting IDH-1 gene polymorphism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019052995A JP7392270B2 (en) 2019-03-20 2019-03-20 Method for detecting IDH-1 gene polymorphism

Publications (2)

Publication Number Publication Date
JP2020150862A true JP2020150862A (en) 2020-09-24
JP7392270B2 JP7392270B2 (en) 2023-12-06

Family

ID=72556389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019052995A Active JP7392270B2 (en) 2019-03-20 2019-03-20 Method for detecting IDH-1 gene polymorphism

Country Status (1)

Country Link
JP (1) JP7392270B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128399A (en) * 2014-01-09 2015-07-16 東洋紡株式会社 Method of detecting cyp3a5

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128399A (en) * 2014-01-09 2015-07-16 東洋紡株式会社 Method of detecting cyp3a5

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRAIN TUMOR PATHOL., vol. vol.34, p.91-97, JPN6023000986, 2017, ISSN: 0005081665 *
CANCER INVEST., vol. vol.34, p.12-15, JPN6023000987, 2016, ISSN: 0005081664 *
J. MOL. DIAGN., vol. vol.13, p.678-686, JPN7023000062, 2011, ISSN: 0005081666 *

Also Published As

Publication number Publication date
JP7392270B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP5112592B2 (en) Hybridization beacon and method for rapid detection and discrimination of sequences
CN101831496B (en) Multiplex quantitative nucleic acid amplification and melting assay
US7998673B2 (en) Hybridisation beacon and method of rapid sequence detection and discrimination
US6030115A (en) Method of measuring melting temperature of nucleic acid
WO2004059009A1 (en) A method of real-time detection of nucleic acid sequences
US20120045747A1 (en) Kit for detecting hepatitis b virus and method for detecting hepatitis b virus using the same
JP2024019433A (en) Multiplex pcr detection of alk, ret, and ros fusions
KR20040024556A (en) Detection system
US11753679B2 (en) Looped primer and loop-de-loop method for detecting target nucleic acid
US9284603B2 (en) Target sequence amplification method, polymorphism detection method, and reagents for use in the methods
KR20200087723A (en) DNA polymerase for detecting EGFR mutation and kit comprising the same
JP6277603B2 (en) Detection method of Bordetella pertussis
CN105705660B (en) Detection of single nucleotide polymorphisms using overlapping primers and melting probes
JP6435568B2 (en) Detection of Acinetobacter baumannii
JP5831093B2 (en) Probe for predicting therapeutic effect on chronic hepatitis C
JP7392270B2 (en) Method for detecting IDH-1 gene polymorphism
JP2015128399A (en) Method of detecting cyp3a5
JPWO2011077990A1 (en) C-kit gene polymorphism detection probe and use thereof
JP2014230510A (en) Method of detecting chlamydophila pneumoniae and chlamydophila psittaci
WO2010113452A1 (en) Method of distinguishing genotypes
JP2018088883A (en) Method of detecting epidermal growth factor receptor gene mutation
JP2013017395A (en) Probe for detecting genetic mutation relating to myeloproliferative disease, and method for detecting genetic mutation using the probe
JP5504676B2 (en) Genotype identification method
JP5568935B2 (en) Target base sequence identification method
JP2013074824A (en) Probe for detecting polymorphism of mdr1 gene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R151 Written notification of patent or utility model registration

Ref document number: 7392270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151