JP2020150828A - Production method for powder composition and the powder composition - Google Patents

Production method for powder composition and the powder composition Download PDF

Info

Publication number
JP2020150828A
JP2020150828A JP2019051715A JP2019051715A JP2020150828A JP 2020150828 A JP2020150828 A JP 2020150828A JP 2019051715 A JP2019051715 A JP 2019051715A JP 2019051715 A JP2019051715 A JP 2019051715A JP 2020150828 A JP2020150828 A JP 2020150828A
Authority
JP
Japan
Prior art keywords
raw material
powder composition
mass
material liquid
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019051715A
Other languages
Japanese (ja)
Inventor
吉原 弘之
Hiroyuki Yoshihara
弘之 吉原
徳親 西田
Norichika Nishida
徳親 西田
龍司 寺田
Ryuji Terada
龍司 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2019051715A priority Critical patent/JP2020150828A/en
Publication of JP2020150828A publication Critical patent/JP2020150828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

To provide a production method for a powder composition including a milk protein concentrate (MPC) and excellent in flavor and solubility.SOLUTION: A production method for a powder composition includes a process of preparing a raw material liquid by blending a milk protein concentrate, lactose, whey mineral and water, and a process of pulverizing the raw material liquid to obtain the powder composition. In the method, the raw material liquid is preferably pulverized by a spray dry method, and also the method includes preferably a process of heat-sterilizing the raw material liquid at a temperature of 60 to 160°C. The process of preparing the raw material liquid may include the process of firstly preparing the raw material liquid having a solid content of less than 20 mass%, and then concentrating the raw material liquid having the solid content of less than 20 mass% until the solid content becomes at least 20 mass%. In the process of preparing the raw material liquid, it is preferable to blend the whey mineral in the range in which a sodium content per 100 g of powder composition becomes 200 to 1,000 mg.SELECTED DRAWING: None

Description

本発明は、粉末組成物の製造方法及び粉末組成物に関する。 The present invention relates to a method for producing a powder composition and a powder composition.

脱脂粉乳、乳清パウダー、乳タンパク質濃縮物(Milk Protein Concentrate)(以下「MPC」ともいう。)、乳清タンパク質濃縮物(Whey Protein Concentrate)(以下、「WPC」とも記す。)等の乳タンパク質含有原料は、種々の用途に用いられ、例えばタンパク質の摂取量を高めることを目的とした食品や飲料の原料として用いられる。 Milk proteins such as skim milk powder, whey powder, milk protein concentrate (hereinafter also referred to as "MPC"), and whey protein concentrate (hereinafter also referred to as "WPC"). The contained raw material is used for various purposes, for example, as a raw material for foods and beverages for the purpose of increasing protein intake.

特許文献1には、水不溶性カルシウムの水への分散性を改善するために、不溶性カルシウムと乳糖と乳清タンパク質とを所定の割合で含む原料を水に分散し、噴霧乾燥する方法が提案されている。前記原料としては、WPCとミルクカルシウムとの混合物や、脱乳糖乳清とミルクカルシウムとの混合物が用いられている。 Patent Document 1 proposes a method in which a raw material containing insoluble calcium, lactose and whey protein in a predetermined ratio is dispersed in water and spray-dried in order to improve the dispersibility of water-insoluble calcium in water. ing. As the raw material, a mixture of WPC and milk calcium or a mixture of lactose whey and milk calcium is used.

特許文献2には、乳タンパク質含有原料を使用しながら、また乳脂を含有しないにも係らず、飲食品に対し良好な乳風味を付与することができる乳風味付与材として、乳タンパク質含有原料及び乳清ミネラルを所定の質量比で含み、油脂を実質的に含有しない乳風味付与材が提案されている。 Patent Document 2 describes a milk protein-containing raw material and as a milk flavor-imparting material capable of imparting a good milk flavor to foods and drinks while using a milk protein-containing raw material and without containing milk fat. A milk flavoring material containing whey minerals in a predetermined mass ratio and substantially free of fats and oils has been proposed.

特開2000−50843号公報Japanese Unexamined Patent Publication No. 2000-50843 特開2016−77253号公報Japanese Unexamined Patent Publication No. 2016-77253

前記した乳タンパク質含有原料のうちMPCは、従来汎用されている脱脂粉乳や乳清パウダーに比べて風味に劣る。また、MPCは、水に溶解するが、脱脂粉乳や乳清パウダーに比べて溶解性に劣り、食品や飲料の原料としての使い勝手が良くない。例えばパン生地の調製時にMPCを添加すると、MPCがパン生地になじみにくい。
なお、特許文献1に、MPCは記載されていない。特許文献2では、MPCの溶解性を改善することについて検討されていない。
Among the milk protein-containing raw materials described above, MPC is inferior in flavor to skim milk powder and whey powder that have been widely used in the past. Further, although MPC is soluble in water, it is inferior in solubility to skim milk powder and whey powder, and is not easy to use as a raw material for foods and beverages. For example, if MPC is added during the preparation of bread dough, the MPC does not easily become familiar with the bread dough.
Note that MPC is not described in Patent Document 1. Patent Document 2 does not study improving the solubility of MPC.

本発明の一態様は、MPCを含み、風味及び溶解性に優れた粉末組成物及びその製造方法を提供することを目的とする。 One aspect of the present invention is to provide a powder composition containing MPC and having excellent flavor and solubility and a method for producing the same.

[1]乳タンパク質濃縮物と乳糖と乳清ミネラルと水とを混合して原料液を調製する工程、及び前記原料液を粉末化して粉末組成物を得る工程を含む、粉末組成物の製造方法。
[2]前記原料液を噴霧乾燥法により粉末化する、[1]の粉末組成物の製造方法。
[3]前記原料液を60〜160℃にて加熱殺菌する工程を含む、[1]又は[2]の粉末組成物の製造方法。
[4]前記原料液を調製する工程で、固形分含量が20質量%未満の原料液を調製し、
前記固形分含量が20質量%未満の原料液を、固形分含量が少なくとも20質量%になるまで濃縮する工程を含む、[1]〜[3]のいずれかの粉末組成物の製造方法。
[5]前記原料液を調製する工程で、前記乳清ミネラルを、前記粉末組成物100g当たりのナトリウム含量が200〜1000mgとなる範囲で混合する、[1]〜[4]のいずれかの粉末組成物の製造方法。
[6]乳タンパク質濃縮物と乳糖と乳清ミネラルとを含み、
100g当たりのナトリウム含量が200〜1000mgである、粉末組成物。
[1] A method for producing a powder composition, which comprises a step of mixing a milk protein concentrate, lactose, whey mineral and water to prepare a raw material solution, and a step of pulverizing the raw material solution to obtain a powder composition. ..
[2] The method for producing a powder composition according to [1], wherein the raw material liquid is powdered by a spray drying method.
[3] The method for producing a powder composition according to [1] or [2], which comprises a step of heat sterilizing the raw material liquid at 60 to 160 ° C.
[4] In the step of preparing the raw material solution, a raw material solution having a solid content of less than 20% by mass is prepared.
The method for producing a powder composition according to any one of [1] to [3], which comprises a step of concentrating the raw material liquid having a solid content of less than 20% by mass until the solid content becomes at least 20% by mass.
[5] The powder according to any one of [1] to [4], wherein in the step of preparing the raw material liquid, the whey mineral is mixed in a range where the sodium content per 100 g of the powder composition is 200 to 1000 mg. Method for producing the composition.
[6] Contains milk protein concentrate, lactose and whey minerals
A powder composition having a sodium content of 200-1000 mg per 100 g.

本発明の粉末組成物の製造方法によれば、MPCを含み、風味及び溶解性に優れた粉末組成物を製造できる。
本発明の粉末組成物は、MPCを含み、風味及び溶解性に優れる。
According to the method for producing a powder composition of the present invention, a powder composition containing MPC and having excellent flavor and solubility can be produced.
The powder composition of the present invention contains MPC and is excellent in flavor and solubility.

本発明においては、以下の測定方法を用いる。
脂肪含量(質量%)は、レーゼ・ゴットリーブ法により測定する。
タンパク質含量(質量%)は、燃焼法により測定する。
灰分含量(質量%)は、直接灰化法により測定する。
水分含量(質量%)は、直接加熱乾燥法により測定する。
炭水化物含量(質量%)は、全ての成分の合計から前記4成分(脂肪、タンパク質、灰分及び水分)の合計を減じて決定する(算出式:100−(脂肪、タンパク質、灰分及び水分の4成分の合計値))。
固形分含量(質量%)は、水分含量以外の含量として、直接加熱乾燥法により測定された水分含量から算出する(算出式:100−水分含量=固形分含量)。
灰分を構成する各ミネラルの含量は、誘導結合プラズマ(ICP)発光分析法により測定する。
In the present invention, the following measurement method is used.
The fat content (% by mass) is measured by the Leese-Gottlieb method.
The protein content (% by mass) is measured by the combustion method.
The ash content (% by mass) is measured by the direct ashing method.
The water content (% by mass) is measured by the direct heat drying method.
The carbohydrate content (% by mass) is determined by subtracting the total of the above four components (fat, protein, ash and water) from the total of all components (calculation formula: 100- (four components of fat, protein, ash and water). Total value of)).
The solid content (mass%) is calculated from the water content measured by the direct heating and drying method as a content other than the water content (calculation formula: 100-water content = solid content).
The content of each mineral constituting the ash is measured by inductively coupled plasma (ICP) emission spectrometry.

≪粉末組成物の製造方法≫
本発明の粉末組成物の製造方法は、MPCと乳糖と乳清ミネラルと水とを混合して原料液を調製する工程(調製工程)、及び前記原料液を粉末化して粉末組成物を得る工程(粉末化工程)を含む。
≪Manufacturing method of powder composition≫
The method for producing a powder composition of the present invention is a step of mixing MPC, lactose, whey mineral and water to prepare a raw material solution (preparation step), and a step of pulverizing the raw material solution to obtain a powder composition. (Powdering step) is included.

本発明の粉末組成物の製造方法は、必要に応じて、調製工程の後、粉末化工程の前に、原料液を60〜160℃にて加熱殺菌する工程(加熱殺菌工程)を含むことができる。
本発明の粉末組成物の製造方法は、必要に応じて、調製工程の後、粉末化工程の前に、原料液を濃縮する工程(濃縮工程)を含むことができる。
濃縮工程を含む場合、調製工程では、固形分含量が20質量%未満の原料液を調製し、濃縮工程で、この原料液を、固形分含量が少なくとも20質量%になるまで濃縮する。
加熱殺菌工程及び濃縮工程の両方を含む場合、加熱殺菌工程は、濃縮工程の前に行ってもよく、濃縮工程の後に行ってもよい。
If necessary, the method for producing a powder composition of the present invention may include a step of heat sterilizing the raw material liquid at 60 to 160 ° C. (heat sterilization step) after the preparation step and before the powdering step. it can.
If necessary, the method for producing a powder composition of the present invention can include a step of concentrating the raw material liquid (concentration step) after the preparation step and before the powdering step.
When the concentration step is included, the raw material solution having a solid content of less than 20% by mass is prepared in the preparation step, and the raw material solution is concentrated until the solid content is at least 20% by mass in the concentration step.
When both the heat sterilization step and the concentration step are included, the heat sterilization step may be performed before the concentration step or after the concentration step.

<調製工程>
調製工程では、MPCと乳糖と乳清ミネラルと水とを混合する。必要に応じて、MPC、乳糖、乳清ミネラル及び水とともに、他の原料を混合してもよい。
<Preparation process>
In the preparation step, MPC, lactose, whey minerals and water are mixed. If desired, other ingredients may be mixed with MPC, lactose, whey minerals and water.

MPCとしては、市販品を用いてもよく、公知の製造方法により製造したものを用いてもよい。MPCは、TMP(Total Milk Protein)と呼ばれることもある。MPCは、哺乳動物の乳由来であることが好ましく、ウシ、ヒツジ、ヤギ等の乳由来であることがより好ましく、ウシの乳由来であることがさらに好ましい。
MPCは、乳、脱脂乳等の乳製品を限外ろ過膜で膜分離処理し、得られたリテンテート(乳タンパク質の濃縮画分)を粉末化することにより製造される。
As the MPC, a commercially available product may be used, or one manufactured by a known manufacturing method may be used. MPC is sometimes called TMP (Temporary Milk Protein). The MPC is preferably derived from mammalian milk, more preferably derived from bovine, sheep, goat or other milk, and even more preferably derived from bovine milk.
MPC is produced by membrane-separating dairy products such as milk and skim milk with an ultrafiltration membrane and pulverizing the obtained retainate (concentrated fraction of milk protein).

乳、脱脂乳等の乳製品には、乳タンパク質としてミセル性カゼイン(Micellar Casein)及び乳清タンパク質が含まれ、その他、脂肪、乳糖、ミネラル等が含まれる。ミセル性カゼインとは、ミセル構造を形成しているカゼインをいい、特に乳中においてみられるミセル構造を維持しているカゼインをいう。
前記乳製品を限外ろ過膜で膜分離処理すると、ミセル性カゼイン及び乳清タンパク質のいずれも限外ろ過膜を透過せず、それよりもサイズの小さい他の成分(乳糖、ミネラル、水分等)は限外ろ過膜を透過するので、乳タンパク質の含量が高められる。限外ろ過膜の孔径は、一般に100nm以下であり、特には1〜100nmであり、より特には1〜10nmである。
膜分離処理される乳製品としては、乳タンパク質の含量がより高いMPCが得られる点で、脱脂乳が好ましい。脱脂乳としては、生乳を脱脂することにより得られる脱脂乳、当該脱脂乳を濃縮した脱脂濃縮乳、脱脂粉乳の溶解液、または脱塩処理した脱脂乳が用いられてよいが、これらに限定されない。
Dairy products such as milk and defatted milk contain micellar casein and whey protein as milk proteins, and also include fat, lactose, minerals and the like. Micellar casein refers to casein that forms a micellar structure, and particularly refers to casein that maintains the micellar structure found in milk.
When the dairy product is membrane-separated with an ultrafiltration membrane, neither micellar casein nor whey protein permeates the ultrafiltration membrane, and other components (lactose, minerals, water, etc.) having a smaller size. Permeates the ultrafiltration membrane, increasing the milk protein content. The pore size of the ultrafiltration membrane is generally 100 nm or less, particularly 1 to 100 nm, and more particularly 1 to 10 nm.
As the dairy product to be membrane-separated, skim milk is preferable in that MPC having a higher milk protein content can be obtained. As the skim milk, skim milk obtained by degreasing raw milk, skim concentrated milk obtained by concentrating the skim milk, a solution of skim milk powder, or skim milk after desalting treatment may be used, but is not limited thereto. ..

得られるリテンテートは、乳タンパク質としてミセル性カゼイン及び乳清タンパク質を含み、リテンテート中のミセル性カゼイン:乳清タンパク質の質量比は、膜分離処理前の乳製品中のそれらの比とほぼ同じである。このリテンテートを粉末化したMPCも同様に、乳タンパク質としてミセル性カゼイン及び乳清タンパク質を含み、MPC中のミセル性カゼイン:乳清タンパク質の質量比は、膜分離処理前の乳製品中のそれらの比とほぼ同じである。 The resulting retain contains micellar casein and whey protein as milk proteins, and the mass ratio of micellar casein: whey protein in the retain is about the same as those in the dairy product before the membrane separation treatment. .. MPCs powdered from this retainate also contain micellar casein and whey protein as milk proteins, and the mass ratio of micellar casein: whey protein in the MPC is that of those in the dairy product before the membrane separation treatment. It is almost the same as the ratio.

膜分離処理前の乳製品(乳、脱脂乳等)中のミセル性カゼイン:乳清タンパク質の質量比は一般には約8:2(乳タンパク質中のミセル性カゼインの割合が約80質量%)である。したがって、MPCの乳タンパク質中のミセル性カゼインの割合は一般に約80質量%(例えば70〜85質量%)である。
MPCの固形分比率での乳タンパク質の含量は一般に約80質量%(例えば70〜88質量%)である。
乳タンパク質中のミセル性カゼインの割合が約80質量%であり、且つ固形分比率での乳タンパク質の含量を約90質量%(例えば88質量%超95質量%以下)にさらに高めた濃縮物は、MPCの一種ではあるが、一般に乳タンパク質単離物(Milk Protein Isolate)、MPIと呼ばれる。本発明におけるMPCは、MPIを包含する。
乳タンパク質中のミセル性カゼインの割合は、ISO17997−1(IDF29−1)(Milk−Determination of casein−nitrogen content−Indirect method(Reference method))に基づき決定できる。
The mass ratio of micellar casein: whey protein in dairy products (milk, defatted milk, etc.) before membrane separation is generally about 8: 2 (the ratio of micellar casein in milk protein is about 80% by mass). is there. Therefore, the proportion of micellar casein in the milk protein of MPC is generally about 80% by weight (eg 70-85% by weight).
The content of milk protein in terms of solid content of MPC is generally about 80% by weight (eg 70-88% by weight).
Concentrates in which the proportion of micelle casein in milk protein is about 80% by mass and the content of milk protein in solids ratio is further increased to about 90% by mass (for example, more than 88% by mass and 95% by mass or less). , A type of MPC, but is commonly referred to as milk protein isolate (Milk Protein Isolate), MPI. The MPC in the present invention includes MPI.
The proportion of micellar casein in milk protein can be determined based on ISO17997-1 (IDF29-1) (Milk-Determination of casein-nitrogen method (Reference method)).

乳糖は、チーズホエーや酸カゼイン等を出発原料として、乳中に含まれる乳糖を精製して純度を高めたものであり、市販品を使用することができる。 Lactose is obtained by purifying lactose contained in milk to increase its purity by using cheese whey, acid casein or the like as a starting material, and a commercially available product can be used.

乳清ミネラルは、乳清から蛋白質や乳糖等の成分を除去して灰分(ミネラル)を濃縮した原料である。すなわち、乳清ミネラルは、乳(乳清)由来のミネラルを含む。乳清ミネラルは、水分、脂肪、乳清タンパク質、アミノ酸、乳糖、有機酸等を含んでいてもよい。 Whey mineral is a raw material in which components such as protein and lactose are removed from whey to concentrate ash (mineral). That is, whey minerals include minerals derived from milk (whey). The whey mineral may contain water, fat, whey protein, amino acids, lactose, organic acids and the like.

乳清ミネラルの組成の一例を以下に示す。各含量は、乳清ミネラルの総質量に対する割合である。
水分含量:0〜5質量%、脂肪含量:0〜5質量%、タンパク質含量:6〜30質量%、炭水化物含量:40〜80質量%、灰分:10〜30質量%。
An example of the composition of whey minerals is shown below. Each content is a percentage of the total mass of whey minerals.
Moisture content: 0-5% by mass, fat content: 0-5% by mass, protein content: 6-30% by mass, carbohydrate content: 40-80% by mass, ash content: 10-30% by mass.

乳清ミネラルのミネラル含量の一例を以下に示す。各含量は、乳清ミネラル100g当たりの質量である。
Na含量:500〜3000mg/100g、K含量:500〜8000mg/100g、Ca含量:500〜3000mg/100g、Mg含量:50〜4000mg/100g、P含量:50〜3000mg/100g、Cl含量:500〜4000mg/100g。
An example of the mineral content of whey minerals is shown below. Each content is a mass per 100 g of whey mineral.
Na content: 500-3000 mg / 100 g, K content: 500-8000 mg / 100 g, Ca content: 500-3000 mg / 100 g, Mg content: 50-4000 mg / 100 g, P content: 50-3000 mg / 100 g, Cl content: 500- 4000mg / 100g.

乳清ミネラルとしては、市販品を用いてもよく、公知の製造方法(例えば特開2016−77253号公報に記載の方法)により製造したものを用いてもよい。 As the whey mineral, a commercially available product may be used, or one produced by a known production method (for example, the method described in JP-A-2016-77253) may be used.

他の原料としては、例えばホエイパウダー、WPC、WPI等が挙げられる。 Examples of other raw materials include whey powder, WPC, WPI and the like.

MPC、乳糖、乳清ミネラル及び他の原料の混合比率は、製造する粉末組成物の風味、溶解性等を考慮して適宜設定できる。また、水の混合比率は、調製する原料液の固形分含量を考慮して適宜設定できる。 The mixing ratio of MPC, lactose, whey minerals and other raw materials can be appropriately set in consideration of the flavor, solubility and the like of the powder composition to be produced. Further, the mixing ratio of water can be appropriately set in consideration of the solid content content of the raw material liquid to be prepared.

乳清ミネラルは、粉末組成物100g当たりのナトリウム含量が200〜1000mgとなる範囲で混合することが好ましく、200〜800mgとなる範囲で混合することがより好ましく、250〜600mgとなる範囲で混合することがさらに好ましい。粉末組成物100g当たりのナトリウム含量が前記範囲内であれば、粉末組成物が適度なコク味と適度な塩味とを有し、風味がより優れる。 The whey minerals are preferably mixed in the range of 200 to 1000 mg of sodium per 100 g of the powder composition, more preferably in the range of 200 to 800 mg, and mixed in the range of 250 to 600 mg. Is even more preferable. When the sodium content per 100 g of the powder composition is within the above range, the powder composition has an appropriate richness and an appropriate salty taste, and the flavor is more excellent.

原料液中、MPCと乳糖と乳清ミネラルとの合計使用(添加)量は、MPC、乳糖、乳清ミネラル及び他の原料の合計使用量100質量部に対し、50質量部以上であることが好ましく、60質量部以上であることがより好ましく、70質量部以上であることがさらに好ましく、80質量部以上であることがさらに好ましく、90質量部以上であることがさらに好ましい。
さらに、原料液中、乳糖と乳清ミネラルとの合計使用量は、MPCと乳糖と乳清ミネラルとの合計使用量100質量部に対し、58.0〜98.0質量部が好ましく、60.0〜98.0質量部がより好ましく、60.0〜95.0質量部がさらに好ましい。乳糖と乳清ミネラルとの合計量が前記範囲の下限値以上であれば、粉末組成物の風味及び溶解性がより優れる。乳糖と乳清ミネラルとの合計量が前記範囲の上限値以下であれば、粉末組成物中のタンパク質含量が充分に高く、タンパク質の摂取量を高めることを目的とした食品や飲料の原料として有用である。
他の原料の使用量は、MPCと乳糖と乳清ミネラルとの合計使用量100質量部に対し、例えば0〜50質量部である。
The total amount of MPC, lactose, and whey minerals used (added) in the raw material liquid may be 50 parts by mass or more with respect to 100 parts by mass of the total amount of MPC, lactose, whey minerals, and other raw materials used. It is more preferably 60 parts by mass or more, further preferably 70 parts by mass or more, further preferably 80 parts by mass or more, and further preferably 90 parts by mass or more.
Further, the total amount of lactose and whey minerals used in the raw material liquid is preferably 58.0 to 98.0 parts by mass with respect to 100 parts by mass of the total amount of MPC, lactose and whey minerals used. 0 to 98.0 parts by mass is more preferable, and 60.0 to 95.0 parts by mass is further preferable. When the total amount of lactose and whey mineral is at least the lower limit of the above range, the flavor and solubility of the powder composition are more excellent. When the total amount of lactose and whey mineral is not more than the upper limit of the above range, the protein content in the powder composition is sufficiently high, and it is useful as a raw material for foods and beverages for the purpose of increasing protein intake. Is.
The amount of other raw materials used is, for example, 0 to 50 parts by mass with respect to 100 parts by mass of the total amount of MPC, lactose, and whey minerals used.

原料液中、乳清ミネラルの乳糖に対する質量比(以下、「乳清ミネラル/乳糖」とも記す。)は、0.1〜2.5が好ましく、0.15〜2.0がより好ましく、0.2〜1.5がさらに好ましく、0.4〜1.3がさらに好ましい。乳清ミネラル/乳糖が前記範囲内であれば、乳糖と乳清ミネラルとの合計量と、粉末組成物100g当たりのナトリウム含量とを前記した好ましい範囲内としやすい。 The mass ratio of whey mineral to lactose in the raw material liquid (hereinafter, also referred to as "whey mineral / lactose") is preferably 0.1 to 2.5, more preferably 0.15 to 2.0, and 0. .2-1.5 is more preferred, and 0.4-1.3 is even more preferred. When the whey mineral / lactose is within the above range, the total amount of lactose and whey mineral and the sodium content per 100 g of the powder composition are likely to be within the above-mentioned preferable range.

調製工程で調製する原料液の固形分含量は30質量%未満が好ましく、20質量%未満がより好ましく、15質量%未満がさらに好ましい。調製工程で調製する原料液の固形分含量が前記上限値以下であれば、殺菌時にタンパク質が凝集しにくい。
調製工程で調製する原料液の固形分含量は、5質量%以上が好ましく、8質量%以上がより好ましい。原料液の固形分含量が前記下限値以上であれば、濃縮時の効率がよい。
The solid content of the raw material liquid prepared in the preparation step is preferably less than 30% by mass, more preferably less than 20% by mass, and even more preferably less than 15% by mass. When the solid content of the raw material solution prepared in the preparation step is not more than the above upper limit value, proteins are unlikely to aggregate during sterilization.
The solid content of the raw material liquid prepared in the preparation step is preferably 5% by mass or more, more preferably 8% by mass or more. When the solid content of the raw material liquid is at least the above lower limit, the efficiency at the time of concentration is good.

<加熱殺菌工程>
加熱殺菌工程では、原料液を60〜160℃で加熱殺菌する。加熱殺菌温度は、70℃以上が好ましく、100℃以上がより好ましく、120℃以上がさらに好ましい。また、150℃以下が好ましく、140℃以下がより好ましい。加熱殺菌温度は、100〜150℃が特に好ましく、120〜140℃が最も好ましい。
加熱殺菌時間は、加熱殺菌温度、殺菌方法等に応じて適宜調整できる。
殺菌方法としては、バッチ式殺菌、プレート式殺菌等の間接加熱法でもよく、インジェクション式殺菌、インフュージョン式殺菌等の直接加熱法でもよい。
原料液は、乳等省令で規定される牛乳の殺菌方法に準じて、62〜65℃の間の温度で30分間加熱殺菌するか、又はこれと同等以上の殺菌効果を有する条件で加熱殺菌することが好ましい。例えばUHT殺菌の場合、120〜150℃で1〜120秒間程度、好ましくは130〜145℃で2〜30秒間程度の条件である。レトルト殺菌法の場合には、110〜130℃で10〜30分程度、好ましくは120〜125℃で10〜20分間程度の条件である。
<Heat sterilization process>
In the heat sterilization step, the raw material liquid is sterilized by heating at 60 to 160 ° C. The heat sterilization temperature is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 120 ° C. or higher. Further, 150 ° C. or lower is preferable, and 140 ° C. or lower is more preferable. The heat sterilization temperature is particularly preferably 100 to 150 ° C., most preferably 120 to 140 ° C.
The heat sterilization time can be appropriately adjusted according to the heat sterilization temperature, the sterilization method, and the like.
The sterilization method may be an indirect heating method such as batch sterilization or plate sterilization, or a direct heating method such as injection sterilization or infusion sterilization.
The raw material liquid is sterilized by heating at a temperature between 62 and 65 ° C. for 30 minutes according to the milk sterilization method specified by the Ordinance of the Ministry of Milk, etc., or under conditions having a sterilizing effect equal to or higher than this. Is preferable. For example, in the case of UHT sterilization, the conditions are 120 to 150 ° C. for about 1 to 120 seconds, preferably 130 to 145 ° C. for about 2 to 30 seconds. In the case of the retort sterilization method, the conditions are 110 to 130 ° C. for about 10 to 30 minutes, preferably 120 to 125 ° C. for about 10 to 20 minutes.

<濃縮工程>
濃縮工程では、固形分含量が20質量%未満の原料液を、固形分含量が少なくとも20質量%になるまで濃縮する。原料液は、固形分含量が少なくとも30質量%になるまで濃縮することが好ましく、固形分含量が少なくとも35質量%になるまで濃縮することがより好ましい。
原料液の濃縮は、減圧濃縮法、膜濃縮等の公知の方法により行うことができる。
<Concentration process>
In the concentration step, the raw material liquid having a solid content of less than 20% by mass is concentrated until the solid content is at least 20% by mass. The raw material liquid is preferably concentrated to a solid content of at least 30% by mass, more preferably to a solid content of at least 35% by mass.
The raw material liquid can be concentrated by a known method such as a vacuum concentration method or a membrane concentration method.

<粉末化工程>
粉末化工程では、原料液(調製工程で得た原料液、加熱殺菌工程で加熱殺菌した原料液、又は濃縮工程で濃縮した原料液(濃縮液))を、粉末化する。
原料液を粉末化する際には、原料液を乾燥する。原料液の乾燥は、公知の乾燥法により行うことができる。乾燥温度は、例えば140〜180℃である。
原料液を粉末化する方法としては、原料液を噴霧乾燥法により乾燥する方法が好ましい。噴霧乾燥法では、例えば、原料液をスプレードライヤーで噴霧し、熱風乾燥する。
噴霧乾燥法以外の方法で原料液を乾燥し、得られた固形物を粉砕する等により原料液を粉末化してもよい。
<Powdering process>
In the powdering step, the raw material liquid (raw material liquid obtained in the preparation step, raw material liquid heat sterilized in the heat sterilization step, or raw material liquid concentrated in the concentration step (concentrated liquid)) is pulverized.
When the raw material liquid is pulverized, the raw material liquid is dried. The raw material liquid can be dried by a known drying method. The drying temperature is, for example, 140 to 180 ° C.
As a method for pulverizing the raw material liquid, a method of drying the raw material liquid by a spray drying method is preferable. In the spray drying method, for example, the raw material liquid is sprayed with a spray dryer and dried with hot air.
The raw material liquid may be pulverized by drying the raw material liquid by a method other than the spray drying method and pulverizing the obtained solid matter.

上記のようにして、粉末組成物が得られる。
得られる粉末組成物は、乳タンパク質濃縮物と乳糖と乳清ミネラルとを含む粒子を含む。前記粒子は、原料液から水分の少なくとも一部を除去したものである。
前記粉末組成物の水分含量は、例えば0.1〜6.0質量%である。
As described above, the powder composition is obtained.
The resulting powder composition comprises particles containing a milk protein concentrate and lactose and whey minerals. The particles are obtained by removing at least a part of water from the raw material liquid.
The water content of the powder composition is, for example, 0.1 to 6.0% by mass.

≪粉末組成物≫
本発明の粉末組成物は、MPCと乳糖と乳清ミネラルとを含む。粉末組成物は、水分、他の原料をさらに含んでいてもよい。
MPC、乳清ミネラル、他の原料はそれぞれ前記したとおりである。
≪Powder composition≫
The powder composition of the present invention contains MPC, lactose and whey minerals. The powder composition may further contain water and other raw materials.
MPC, whey minerals and other ingredients are as described above.

本発明の粉末組成物100g当たりのナトリウム含量は200〜1000mgであり、200〜900mgが好ましく、300〜850mgがより好ましい。粉末組成物100g当たりのナトリウム含量が前記範囲内であれば、粉末組成物が適度なコク味と適度な塩味とを有し、風味がより優れる。 The sodium content per 100 g of the powder composition of the present invention is 200 to 1000 mg, preferably 200 to 900 mg, and more preferably 300 to 850 mg. When the sodium content per 100 g of the powder composition is within the above range, the powder composition has an appropriate richness and an appropriate salty taste, and the flavor is more excellent.

粉末組成物は、総タンパク質中のMPC由来のタンパク質が、固形換算で、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、40質量%以上であることがさらに好ましく、50質量%以上であることがさらに好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることがさらに好ましい。上限は、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。粉末組成物の総タンパク質中のMPC由来のタンパク質は、例えば、固形換算で10〜95質量%であってもよく、10〜90質量%であってもよく、50〜90質量%であってもよく、60〜90質量%であってもよく、80〜90質量%であってもよい。 In the powder composition, the MPC-derived protein in the total protein is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more in terms of solids. , 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, still more preferably 70% by mass or more. The upper limit is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. The protein derived from MPC in the total protein of the powder composition may be, for example, 10 to 95% by mass, 10 to 90% by mass, or 50 to 90% by mass in terms of solids. It may be 60 to 90% by mass, and may be 80 to 90% by mass.

粉末組成物は、総灰分中の乳清ミネラル由来の灰分が、固形換算で、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることがさらに好ましく、80質量%以上であることがさらに好ましい。上限は、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下がさらに好ましい。粉末組成物の総灰分質中の乳清ミネラル由来の灰分は、固形換算で、例えば、50〜99質量%であってもよく、50〜98質量%であってもよく、50〜97質量%であってもよい。 In the powder composition, the whey mineral-derived ash content in the total ash content is more preferably 50% by mass or more, further preferably 60% by mass or more, and 70% by mass or more in terms of solids. Is more preferable, and 80% by mass or more is further preferable. The upper limit is preferably 99% by mass or less, more preferably 98% by mass or less, and further preferably 97% by mass or less. The ash content derived from whey minerals in the total ash content of the powder composition may be, for example, 50 to 99% by mass, 50 to 98% by mass, or 50 to 97% by mass in terms of solids. It may be.

粉末組成物の脂肪含量は、例えば0.1〜2質量%である。
粉末組成物のタンパク質含量は、例えば10〜40質量%である。
粉末組成物の炭水化物含量は、例えば50〜80質量%である。
粉末組成物の灰分含量は、例えば3〜6質量%である。
粉末組成物の水分含量は、例えば1〜6質量%である。
The fat content of the powder composition is, for example, 0.1 to 2% by mass.
The protein content of the powder composition is, for example, 10-40% by mass.
The carbohydrate content of the powder composition is, for example, 50-80% by weight.
The ash content of the powder composition is, for example, 3 to 6% by mass.
The water content of the powder composition is, for example, 1 to 6% by mass.

本発明の粉末組成物は、脱脂粉乳や乳清パウダー等の乳原料と同様に、乳風味を呈する原料として、種々の食品へ利用することができる。 The powder composition of the present invention can be used in various foods as a raw material exhibiting a milky flavor, similar to milk raw materials such as skim milk powder and whey powder.

以下に、実施例を用いて本発明をさらに詳しく説明する。ただし本発明はこれら実施例に限定されるものではない。本実施例において百分率は、特に断りのない限り、質量による表示である。なお、後述する例1〜9のうち例1、9は比較例、例2〜8は実施例である。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these examples. In this embodiment, the percentage is expressed by mass unless otherwise specified. Of Examples 1 to 9 described later, Examples 1 and 9 are comparative examples, and Examples 2 to 8 are examples.

<例1〜8>
(1.粉末組成物の製造)
表1に記載した原料配合割合のとおり、MPC(ミライ社製、乳脂肪含量1.0%、乳タンパク質含量78%、炭水化物(乳糖)含量9.5%、灰分含量7.0%、水分含量4.5%)、乳糖(グランビア社製、純度94.5%)、及び乳清ミネラル(BMI社製、脂肪含量1.6%、タンパク質(乳清タンパク質)含量26.2%、炭水化物(乳糖)含量51.5%、灰分含量17.4%、水分含量3.3%)を、固形分含量が10%になるように水で溶解した後、120℃にてプレート殺菌して、組成の異なる8種類の原料液を調製した。
次に、減圧濃縮法により、各原料液を固形分含量42%になるまで濃縮して得た濃縮液をスプレードライヤーにて噴霧して熱風乾燥し、粉末組成物を得た。
<Examples 1 to 8>
(1. Production of powder composition)
According to the raw material blending ratios shown in Table 1, MPC (manufactured by Mirai, milk fat content 1.0%, milk protein content 78%, carbohydrate (lactose) content 9.5%, ash content 7.0%, water content 4.5%), lactose (Granvia, purity 94.5%), and whey minerals (BMI, fat content 1.6%, protein (whey protein) content 26.2%, carbohydrates (lactose) ) Content 51.5%, ash content 17.4%, water content 3.3%) was dissolved in water so that the solid content content was 10%, and then plate sterilized at 120 ° C. to form the composition. Eight different raw material solutions were prepared.
Next, each raw material solution was concentrated to a solid content of 42% by a vacuum concentration method, and the obtained concentrate was sprayed with a spray dryer and dried with hot air to obtain a powder composition.

(2.風味評価)
前記(1.粉末組成物の製造)で製造した粉末組成物について、粉末組成物を10%に溶解した水溶液を摂取することにより風味評価を実施した。例1〜5については、組成が同等の脱脂粉乳(森永乳業株式会社製)をコントロールサンプルとして使用し、例6〜8については、組成が同等の乳清パウダー(森永乳業株式会社製)をコントロールサンプルとして使用した。
風味評価は、コク味及び塩味の官能特性について、以下の評価基準に基づいてコントロールサンプルとの一対比較法により行った。評価結果は、粉乳製品に関して5年以上の開発経験を有し、複数回の評価経験を通じて評価基準の統一が図られている評価者5名が2回ずつ実施した評価結果の平均値として算出した。評価結果を表1に示す。
(2. Flavor evaluation)
The flavor of the powder composition produced in (1. Production of powder composition) was evaluated by ingesting an aqueous solution in which the powder composition was dissolved at 10%. For Examples 1 to 5, skim milk powder with the same composition (manufactured by Morinaga Milk Industry Co., Ltd.) is used as a control sample, and for Examples 6 to 8, whey powder with the same composition (manufactured by Morinaga Milk Industry Co., Ltd.) is controlled. Used as a sample.
The flavor was evaluated by a paired comparison method with a control sample for the sensory characteristics of richness and saltiness based on the following evaluation criteria. The evaluation results were calculated as the average value of the evaluation results conducted twice by five evaluators who have more than five years of development experience in milk powder products and who have unified the evaluation criteria through multiple evaluation experiences. .. The evaluation results are shown in Table 1.

[風味評価基準]
5点:コントロールサンプルと同等の官能特性であり、コントロールサンプルの代替品として十分許容できる。
4点:コントロールサンプルとほぼ同等の官能特性であり、コントロールサンプルの代替品として十分許容できる。
3点:コントロールサンプルと僅かに異なる官能特性であるが、コントロールサンプルの代替品として許容できる風味差である。
2点:コントロールサンプルと異なる官能特性であり、コントロールサンプルの代替品として許容することは難しい。
1点:コントロールサンプルと明らかに異なる官能特性であり、コントロールサンプルの代替品とはなり得ない。
[Flavor evaluation criteria]
5 points: It has the same sensory characteristics as the control sample, and is sufficiently acceptable as a substitute for the control sample.
4 points: The sensory characteristics are almost the same as those of the control sample, and it is sufficiently acceptable as a substitute for the control sample.
3 points: Although the sensory characteristics are slightly different from those of the control sample, the flavor difference is acceptable as a substitute for the control sample.
2 points: It has different sensory properties from the control sample, and it is difficult to accept it as a substitute for the control sample.
1 point: It has a sensory property that is clearly different from that of the control sample, and cannot be a substitute for the control sample.

Figure 2020150828
Figure 2020150828

表1に記載のとおり、風味評価の結果、例2〜8の粉末組成物はそれぞれ、乳清ミネラルを添加しなかった例1の粉末組成物に比べて、風味に優れていた。粉末組成物100g当たりのナトリウム量が200〜1000mgの範囲内となるように乳清ミネラルを添加した例3〜4、6〜8の風味が特に優れていた。 As shown in Table 1, as a result of the flavor evaluation, each of the powder compositions of Examples 2 to 8 was superior in flavor to the powder composition of Example 1 to which no whey mineral was added. The flavors of Examples 3 to 4, 6 to 8 in which whey mineral was added so that the amount of sodium per 100 g of the powder composition was in the range of 200 to 1000 mg were particularly excellent.

(3.溶解性評価)
例3と同じ原料配合割合で、MPCと乳糖と乳清ミネラルとを混合して例9のサンプルを調製した。すわなち、例9に係るサンプルは、粉末原料を混合しただけの混合物であり、前記(1.粉末組成物の製造)に記載の溶解、加熱殺菌、濃縮、及び噴霧乾燥を実施していないサンプルである。
例3及び例9の粉末組成物について、以下の手順で溶解性評価を実施した。
500mL容量の容器に入った水360gを60℃に保温し、そこに粉末組成物40gを投入した。全ての粉末組成物に水が湿潤するまでに要した時間を測定した。また、湿潤後の液40mLを3000rpmで5分間遠心分離し、沈殿量を測定した。評価結果を表2に示す。
(3. Solubility evaluation)
The sample of Example 9 was prepared by mixing MPC, lactose and whey mineral in the same raw material mixing ratio as in Example 3. That is, the sample according to Example 9 is a mixture in which powder raw materials are simply mixed, and the dissolution, heat sterilization, concentration, and spray drying described in (1. Production of powder composition) are not carried out. This is a sample.
Solubility evaluation was carried out for the powder compositions of Example 3 and Example 9 according to the following procedure.
360 g of water in a container having a capacity of 500 mL was kept at 60 ° C., and 40 g of the powder composition was put therein. The time required for the water to wet all the powder compositions was measured. In addition, 40 mL of the wet solution was centrifuged at 3000 rpm for 5 minutes, and the amount of precipitation was measured. The evaluation results are shown in Table 2.

Figure 2020150828
Figure 2020150828

表2に記載のとおり、例3の粉末組成物は、例9の混合物と比較して、水に湿潤するまでの時間が半分程度に短く、沈殿量も明らかに少なくなることが確認された。すなわち、例3の粉末組成物は、例9の混合物に比較して、優れた溶解性を示すことが確認された。
この溶解性評価の結果から、MPCと乳糖と乳清ミネラルとを溶解してから噴霧乾燥することによって、溶解性に優れた粉末組成物が得られることが確認された。
As shown in Table 2, it was confirmed that the powder composition of Example 3 had a shorter time to wet with water by about half and the amount of precipitation was clearly smaller than that of the mixture of Example 9. That is, it was confirmed that the powder composition of Example 3 exhibited excellent solubility as compared with the mixture of Example 9.
From the result of this solubility evaluation, it was confirmed that a powder composition having excellent solubility can be obtained by dissolving MPC, lactose and whey mineral and then spray-drying.

Claims (6)

乳タンパク質濃縮物と乳糖と乳清ミネラルと水とを混合して原料液を調製する工程、及び前記原料液を粉末化して粉末組成物を得る工程を含む、粉末組成物の製造方法。 A method for producing a powder composition, which comprises a step of mixing a milk protein concentrate, lactose, whey mineral and water to prepare a raw material liquid, and a step of pulverizing the raw material liquid to obtain a powder composition. 前記原料液を噴霧乾燥法により粉末化する、請求項1に記載の粉末組成物の製造方法。 The method for producing a powder composition according to claim 1, wherein the raw material liquid is powdered by a spray drying method. 前記原料液を60〜160℃にて加熱殺菌する工程を含む、請求項1又は2に記載の粉末組成物の製造方法。 The method for producing a powder composition according to claim 1 or 2, which comprises a step of heat sterilizing the raw material liquid at 60 to 160 ° C. 前記原料液を調製する工程で、固形分含量が20質量%未満の原料液を調製し、
前記固形分含量が20質量%未満の原料液を、固形分含量が少なくとも20質量%になるまで濃縮する工程を含む、請求項1〜3のいずれか一項に記載の粉末組成物の製造方法。
In the step of preparing the raw material solution, a raw material solution having a solid content of less than 20% by mass is prepared.
The method for producing a powder composition according to any one of claims 1 to 3, which comprises a step of concentrating the raw material liquid having a solid content of less than 20% by mass until the solid content becomes at least 20% by mass. ..
前記原料液を調製する工程で、前記乳清ミネラルを、前記粉末組成物100g当たりのナトリウム含量が200〜1000mgとなる範囲で混合する、請求項1〜4のいずれか一項に記載の粉末組成物の製造方法。 The powder composition according to any one of claims 1 to 4, wherein in the step of preparing the raw material liquid, the whey mineral is mixed in a range where the sodium content per 100 g of the powder composition is in the range of 200 to 1000 mg. Manufacturing method of things. 乳タンパク質濃縮物と乳糖と乳清ミネラルとを含み、
100g当たりのナトリウム含量が200〜1000mgである、粉末組成物。
Contains milk protein concentrate, lactose and whey minerals,
A powder composition having a sodium content of 200-1000 mg per 100 g.
JP2019051715A 2019-03-19 2019-03-19 Production method for powder composition and the powder composition Pending JP2020150828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051715A JP2020150828A (en) 2019-03-19 2019-03-19 Production method for powder composition and the powder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051715A JP2020150828A (en) 2019-03-19 2019-03-19 Production method for powder composition and the powder composition

Publications (1)

Publication Number Publication Date
JP2020150828A true JP2020150828A (en) 2020-09-24

Family

ID=72556331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051715A Pending JP2020150828A (en) 2019-03-19 2019-03-19 Production method for powder composition and the powder composition

Country Status (1)

Country Link
JP (1) JP2020150828A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111860A (en) * 1993-10-20 1995-05-02 Morinaga Milk Ind Co Ltd Milk protein composition containing regulated mineral ingredient
JPH1198972A (en) * 1997-09-25 1999-04-13 Snow Brand Milk Prod Co Ltd Nutrient composition for infant
JP2002501764A (en) * 1998-02-03 2002-01-22 キシロフィン オイ Skim milk powder substitute
JP2003180244A (en) * 2001-12-21 2003-07-02 Pokka Corp Method of production for high quality dry milk
JP2013528046A (en) * 2010-06-13 2013-07-08 株式会社明治 Solid milk and method for producing the same
WO2015048646A1 (en) * 2013-09-30 2015-04-02 Abbott Laboratories Protein powder
JP2015529092A (en) * 2012-09-21 2015-10-05 ロケット フレールRoquette Freres Aggregation of at least one plant protein and at least one milk protein
JP2016077253A (en) * 2014-10-21 2016-05-16 株式会社Adeka Milk flavor-imparting agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111860A (en) * 1993-10-20 1995-05-02 Morinaga Milk Ind Co Ltd Milk protein composition containing regulated mineral ingredient
JPH1198972A (en) * 1997-09-25 1999-04-13 Snow Brand Milk Prod Co Ltd Nutrient composition for infant
JP2002501764A (en) * 1998-02-03 2002-01-22 キシロフィン オイ Skim milk powder substitute
JP2003180244A (en) * 2001-12-21 2003-07-02 Pokka Corp Method of production for high quality dry milk
JP2013528046A (en) * 2010-06-13 2013-07-08 株式会社明治 Solid milk and method for producing the same
JP2015529092A (en) * 2012-09-21 2015-10-05 ロケット フレールRoquette Freres Aggregation of at least one plant protein and at least one milk protein
WO2015048646A1 (en) * 2013-09-30 2015-04-02 Abbott Laboratories Protein powder
JP2016077253A (en) * 2014-10-21 2016-05-16 株式会社Adeka Milk flavor-imparting agent

Similar Documents

Publication Publication Date Title
EP1133238B1 (en) Method for preparing a protein composition and an infant formula containing same
JP3638301B2 (en) Milk composition and method for producing the same
KR101179808B1 (en) Milk material excelling in flavor and property and process for producing the same
RU2732833C2 (en) Method for humanisation of skimmed milk of animals
JP2017093443A (en) Milk-based product and method for preparing the same
RU2007116096A (en) MILK SERUM PROTEINS AS NANOPARTICLES
EP0469206A1 (en) Hypoallergenic milk products and process of making
JP4701472B2 (en) Method for producing milk calcium composition
US20070059399A1 (en) Production of protein composition from a dairy stream and its use as an ingredient in the manufacture of a cheese
CN103763930A (en) Acid-stable creamer or whitener composition
JP2009297017A (en) Thick milk and emulsifier for thick milk
JP2020150828A (en) Production method for powder composition and the powder composition
JP3619319B2 (en) Method for producing calcium-enriched milk beverage
JP5457580B1 (en) Manufacturing method of coffee creamer
JP2000032910A (en) Milk of high heat stability and milk-containing beverage and food product
JP5723729B2 (en) Whitener manufacturing method
Gupta Advances in Membrane Processing for Production of Novel Dairy Ingredients
CN104582508B (en) A method for the preparation of a serum protein concentrate
WO2013187519A1 (en) Method for manufacturing modified whey composition, modified whey composition, and method for manufacturing calcium-enriched modified whey composition
JP4382836B2 (en) Mineral agent and method for producing the same
JP6963472B2 (en) How to make coffee drinks
US20140322424A1 (en) Method for Producing Non-Dairy Coffee Creamer with Enhanced Milk Flavor and Taste Containing Milk or Skim Milk and Having Stability in Feathering
JP5081883B2 (en) Method for producing calcium-reinforced whey-containing composition
SU1664238A1 (en) Composition for koumiss and method for it preparation
JPH1175707A (en) Dried powder of iron casein complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523