JP2020150316A - Optical transmitter receiver and optical transmission and reception method - Google Patents

Optical transmitter receiver and optical transmission and reception method Download PDF

Info

Publication number
JP2020150316A
JP2020150316A JP2019043979A JP2019043979A JP2020150316A JP 2020150316 A JP2020150316 A JP 2020150316A JP 2019043979 A JP2019043979 A JP 2019043979A JP 2019043979 A JP2019043979 A JP 2019043979A JP 2020150316 A JP2020150316 A JP 2020150316A
Authority
JP
Japan
Prior art keywords
optical
signal
carrier component
optical signal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019043979A
Other languages
Japanese (ja)
Other versions
JP6993369B2 (en
Inventor
昇太 石村
Shota Ishimura
昇太 石村
アブデルモウラ ベッカリ
Bekkali Abdelmoula
アブデルモウラ ベッカリ
西村 公佐
Kosuke Nishimura
公佐 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Research Inc filed Critical KDDI Research Inc
Priority to JP2019043979A priority Critical patent/JP6993369B2/en
Publication of JP2020150316A publication Critical patent/JP2020150316A/en
Application granted granted Critical
Publication of JP6993369B2 publication Critical patent/JP6993369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

To obtain an optical transmitter receiver capable of obtaining an uplink optical signal, from which downlink high frequency modulation signal components are completely removed, without complicating the structure on the optical receiver side, in optical transmission.SOLUTION: In an optical transmitter receiver where broadband optical signal, generated by an OLT 10 by using a WDM-PON using multiple wavelengths, is transmitted by means of an optical fiber 20 and received by multiple ONUs 30, the ONU 30 includes a signal branch part 311 for branching the optical signal into a carrier component and multiple signal components by dividing the optical signal into a path imparted with a differential delay τ and a path imparted with a phase rotation φ, a signal multiplexer 312 performing signal multiplexing again of the carrier component and multiple signal components, and a return branch part 313 using only the carrier component of the optical signal as the optical signal for uplink.SELECTED DRAWING: Figure 1

Description

本発明は、光ファイバを利用した波長多重による伝送システムに関し、特に、光ファイバを用いた公衆網において、受動素子により光信号を分岐・合流させ、一本の光ファイバ回線を複数の加入者で共有するPassive optical network(以下、「PON」と表記する)の広帯域信号化(多重化)に適した光送受信装置及び光送受信方法に関する。 The present invention relates to a transmission system using wavelength division multiplexing using an optical fiber, and particularly in a public network using an optical fiber, an optical signal is branched and merged by a passive element, and one optical fiber line is connected by a plurality of subscribers. The present invention relates to an optical transmission / reception device and an optical transmission / reception method suitable for wideband signalization (multiplexing) of a shared Passive optical network (hereinafter referred to as “PON”).

現在、通信事業者の基地局から各家庭まで光ファイバを敷設するFTTH回線などで用いられるPONは、光ファイバ網の途中に分岐装置を介在させ、単一の波長を利用した時分割多重化により複数ユーザで共有することが行われている。将来的には使用可能な帯域を拡大するため、複数波長を用いるWDM−PONの使用が検討されている。 Currently, PONs used in FTTH lines that lay optical fibers from base stations of telecommunications carriers to each household are time-division multiplexed using a single wavelength with a branching device interposed in the middle of the optical fiber network. It is shared by multiple users. In order to expand the usable band in the future, the use of WDM-PON using a plurality of wavelengths is being studied.

一般的に知られているWDM−PONの問題点としては、ONU(Optical Network Unit:ユーザ側の光回線終端装置)からOLT(Optical Line Terminal:収容局側の光回線終端装置)への通信を意味する上り用における波長光源の安定性が挙げられる。WDM−PONにおけるOLT側では、様々なパワーで到達する各ONU側からの信号を正確に受け取る必要があるため、上下の通信で波長が正確に制御されている必要がある。しかしながら、ONUは物理的にOLTと離れて配置されているため、互いの波長を正確に制御することは困難であった。 A generally known problem with WDM-PON is communication from ONU (Optical Network Unit: optical line terminal on the user side) to OLT (Optical Line Terminal: optical line terminal on the accommodation station side). The stability of the wavelength light source for uplink is mentioned. Since it is necessary for the OLT side in WDM-PON to accurately receive signals from each ONU side arriving at various powers, it is necessary that the wavelength is accurately controlled in the vertical communication. However, since the ONUs are physically separated from the OLT, it is difficult to accurately control the wavelengths of each other.

この問題を解決するため、反射型半導体光増幅器(Reflective semiconductor optical amplifier:RSOA)を用いて、下り用の光信号を上り用の光信号に再利用する手法が知られている。この方法によって、上りの波長は下りの波長と同一になるため、上りの波長を把握でき上述した問題が解決可能となる。しかし、この手法を用いた場合、下り信号においては、上り信号用に再利用する光のキャリア成分のみならず変調成分も含んでいるため、正確に制御を行うには変調成分も抑圧しなければならないという問題点がある。 In order to solve this problem, a method of reusing a downlink optical signal as an uplink optical signal by using a reflective semiconductor optical amplifier (RSOA) is known. By this method, since the upstream wavelength becomes the same as the downstream wavelength, the upstream wavelength can be grasped and the above-mentioned problem can be solved. However, when this method is used, since the downlink signal contains not only the carrier component of the light reused for the uplink signal but also the modulation component, the modulation component must be suppressed in order to perform accurate control. There is a problem that it does not become.

下り用の光信号を上り信号用に再利用する場合に、変調成分を抑圧する手法としてRSOAの飽和領域を意図的に用いることで、下りの変調成分を抑圧することが非特許文献1に開示されている。 Non-Patent Document 1 discloses that when the downlink optical signal is reused for the uplink signal, the downlink modulation component is suppressed by intentionally using the saturation region of RSOA as a method for suppressing the modulation component. Has been done.

また、非特許文献2では、RSOAの構造を2セクション型にすることにより帯域拡大が実現可能なことが開示されている。 Further, Non-Patent Document 2 discloses that bandwidth expansion can be realized by making the structure of RSOA a two-section type.

S. O Duill et al, "Efficient modulation cancellation using reflective SOAs," Opt. Express 20, B587-B594 (2012).S. O Duill et al, "Efficient modulation cancellation using reflective SOAs," Opt. Express 20, B587-B594 (2012). P. Zhou et al,"Two-section RSOA with enhanced modulation-cancelling effect for self-seeded colorless WDM transmitter," in Proceedings of European Conference on Optical Communication (ECOC), paper M.2.E (2016).P. Zhou et al, "Two-section RSOA with enhanced modulation-cancelling effect for self-seeded colorless WDM transmitter," in Proceedings of European Conference on Optical Communication (ECOC), paper M.2.E (2016).

しかしながら、非特許文献1に記載の手法によれば、変調帯域が犠牲になり、広帯域信号への適用が難しいという課題が存在する。例えば、FTTH回線の受信側について、各家庭のユーザの他に基地局をWDM−PONで収容するような場合、Radio−over Fiber(RoF)技術とWDM−PONを併用する可能性もある。RoFとWDM−PONを併用する状況においては、RoFのRF信号は通常数十GHzに達するため、この手法を適用することは困難である。 However, according to the method described in Non-Patent Document 1, there is a problem that the modulation band is sacrificed and it is difficult to apply it to a wide band signal. For example, on the receiving side of an FTTH line, when a base station is accommodated by WDM-PON in addition to users in each home, Radio-over Fiber (RoF) technology and WDM-PON may be used together. In the situation where RoF and WDM-PON are used in combination, it is difficult to apply this method because the RF signal of RoF usually reaches several tens of GHz.

非特許文献2で提案されたRSOAの構造を2セクション型にすることにより帯域拡大を実現する場合は、デバイス作成が複雑になりコスト増を招くという問題が生じる。 When the bandwidth expansion is realized by making the structure of RSOA proposed in Non-Patent Document 2 into a two-section type, there arises a problem that device creation becomes complicated and costs increase.

本発明は上記実情に鑑みて提案されたもので、広帯域信号化(多重化)されたWDM−PONの使用に適した光送受信装置及び光送受信方法を提供することを目的としている。 The present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide an optical transmission / reception device and an optical transmission / reception method suitable for use of a wideband signalized (multiplexed) WDM-PON.

上記目的を達成するため本発明の請求項1に係る光送受信装置は、複数波長を用いたWDM−PONの使用により光送信器(OLT10)で生成した広帯域の光信号を光ファイバ(20)で伝送し複数の光受信器(ONU30)で受光する光送受信装置であって、前記光受信器(ONU30)が次の各部を備えたことを特徴としている。
前記光信号に対して、遅延差τを与えたパスと、位相回転φを与えたパスとに分けることで、前記光信号をキャリア成分と複数の信号成分とに分岐する信号分岐部(311)。
前記光信号のキャリア成分のみを上り用の光信号として利用する帰還分岐部(313)。
In order to achieve the above object, the optical transmitter / receiver according to claim 1 of the present invention uses an optical fiber (20) to transmit a wideband optical signal generated by an optical transmitter (OLT10) by using WDM-PON using a plurality of wavelengths. It is an optical transmitter / receiver that transmits and receives light from a plurality of optical receivers (ONU30), and is characterized in that the optical receiver (ONU30) includes the following parts.
A signal branching portion (311) that branches the optical signal into a carrier component and a plurality of signal components by dividing the optical signal into a path to which a delay difference τ is given and a path to which a phase rotation φ is given. ..
A feedback branching portion (313) that uses only the carrier component of the optical signal as an uplink optical signal.

請求項2は、請求項1の光送受信装置において、
前記遅延差τ及び前記位相回転φは、前記キャリア成分の角周波数をωC、前記信号成分の変調周波数をωRFとした場合に、
τ=π/ωRF
φ=−ωCτ
を満足することを特徴としている。
2. The optical transmitter / receiver according to claim 1
The delay difference τ and the phase rotation φ are obtained when the angular frequency of the carrier component is ωC and the modulation frequency of the signal component is ωRF.
τ = π / ωRF
φ = −ωCτ
It is characterized by satisfying.

請求項3は、請求項1の光送受信装置において、
前記光受信器(ONU30)は反射型半導体光増幅器(33)を備え、
前記反射型半導体光増幅器(33)により前記光信号のキャリア成分を上り用の光信号として帰還させることを特徴としている。
A third aspect of the present invention is the optical transmission / reception device according to the first aspect.
The optical receiver (ONU30) includes a reflective semiconductor optical amplifier (33).
The reflection type semiconductor optical amplifier (33) is characterized in that the carrier component of the optical signal is fed back as an uplink optical signal.

請求項4は、請求項1乃至請求項3に記載の光送受信装置において、
前記光受信器(ONU30)は基地局であることを特徴としている。
4. The optical transmitter / receiver according to claim 1 to 3.
The optical receiver (ONU30) is a base station.

請求項5は、複数波長を用いたWDM−PONの使用により光送信器で生成した広帯域の光信号を光ファイバで伝送し複数の光受信器で受光する光送受信方法であって、
強度変調のみを行って伝送される光信号をキャリア成分と信号成分とに分岐し、
前記信号成分とキャリア成分を再度合波し受信側信号とするとともに、
前記光信号のキャリア成分のみを上り用の光信号として帰還させて利用する
ことを特徴としている。
A fifth aspect of the present invention is an optical transmission / reception method in which a wide band optical signal generated by an optical transmitter by using WDM-PON using a plurality of wavelengths is transmitted by an optical fiber and received by a plurality of optical receivers.
The optical signal transmitted by performing only intensity modulation is branched into a carrier component and a signal component, and then
The signal component and the carrier component are combined again to form a receiving side signal, and at the same time,
It is characterized in that only the carrier component of the optical signal is fed back and used as an upstream optical signal.

本発明によれば、下り用の光信号のキャリア成分のみを分岐して上り用の光信号として利用することで、光受信器側の構造を複雑にすることなく、下り用の高周波変調信号成分を完全に除去することができるので、複数波長を用いるWDM−PONに適した光送受信システムとすることができる。 According to the present invention, by branching only the carrier component of the downlink optical signal and using it as the uplink optical signal, the downlink high-frequency modulated signal component is used without complicating the structure on the optical receiver side. Can be completely removed, so that an optical transmission / reception system suitable for WDM-PON using a plurality of wavelengths can be obtained.

本発明の光送受信装置のシステム構成を示すブロック図である。It is a block diagram which shows the system structure of the optical transmission / reception device of this invention.

本発明の光送受信装置を用いた光伝送システム(光伝送方法)について、図1を参照して説明する。
光伝送システムは、多重波長の光信号を送信する収容側のOLT10と、多重波長の光信号を伝送する光ファイバ20と、WDMスプリッタ21により波長に応じて分岐された各光信号を受信する複数のユーザ側のONU30と、を備えて構成されている。OLT10側からは、WDM−PONを用いたRoF伝送を想定しており、ある波長の信号がOLT10から基地局として機能するONU30へ送信される場合、信号はWDMスプリッタ21で抽出された後に各ONU30へと到達する。
An optical transmission system (optical transmission method) using the optical transmission / reception device of the present invention will be described with reference to FIG.
The optical transmission system includes an OLT 10 on the accommodating side that transmits an optical signal of multiple wavelengths, an optical fiber 20 that transmits an optical signal of multiple wavelengths, and a plurality of optical signals that receive each optical signal branched according to the wavelength by a WDM splitter 21. It is configured to include an ONU 30 on the user side of the above. From the OLT10 side, RoF transmission using WDM-PON is assumed, and when a signal of a certain wavelength is transmitted from the OLT 10 to the ONU30 functioning as a base station, the signal is extracted by the WDM splitter 21 and then each ONU30. To reach.

OLT10は、強度変調のみが行われた両側波帯信号を送信する送信器11と、サーキュレータ12を介して上り信号を受信する受信器としてのフォトダイオード(PD)13を備えている。送信器11から送信される多重波長の両側波帯信号は、光ファイバ20に伝送される。伝送される両側波帯信号Ein(t)は、数1の関数で表せる。 The OLT 10 includes a transmitter 11 that transmits a two-sided band signal that has been subjected to intensity modulation only, and a photodiode (PD) 13 as a receiver that receives an uplink signal via a circulator 12. The multi-wavelength double-sided band signal transmitted from the transmitter 11 is transmitted to the optical fiber 20. The transmitted two-sided band signal Ein (t) can be represented by a function of Equation 1.

ただし、Acは光のキャリア成分の、ARFは変調信号成分の振幅を表している。また、数1では変調信号として正弦波信号を仮定しているが、帯域成分を持つ信号であっても、その周波数幅に対して変調周波数が十分に大きければ、近似的に数1を用いて表せる。 However, Ac represents the carrier component of light, and ARF represents the amplitude of the modulated signal component. Further, in Equation 1, a sine wave signal is assumed as the modulation signal, but even if the signal has a band component, if the modulation frequency is sufficiently large with respect to the frequency width, Equation 1 is approximately used. Can be represented.

ONU30は、光信号を分岐させる非対称マッハツェンダー干渉計31と、光電変換器としてのフォトダイオード(PD)32と、上り用の光信号を帰還させる反射型半導体光増幅器33とを備えている。 The ONU 30 includes an asymmetric Mach-Zehnder interferometer 31 that branches an optical signal, a photodiode (PD) 32 as a photoelectric converter, and a reflective semiconductor optical amplifier 33 that feeds back an optical signal for uplink.

非対称マッハツェンダー干渉計31は、光信号に対して、遅延差τを与えたパスと、位相回転φを与えたパスとに分けることで、前記光信号をキャリア成分と変調成分(信号成分)とに分岐する信号分岐部311と、キャリア成分と変調成分と再度の合波を行う信号合波部312と、光信号のキャリア成分のみを上り用の光信号として利用する帰還分岐部313を備えている。
また、分岐されたキャリア成分の波長を検出することで、非対称マッハツェンダー干渉計31における角周波数ωC、変調周波数ωRFの値を後述する適正値に調整する制御系を備えている。信号合波部312で合成された光信号が下り用の光信号としてフォトダイオード(PD)32に入力されて電気信号に変換される。
The asymmetric Mach-Zehnder interferometer 31 divides the optical signal into a path to which a delay difference τ is given and a path to which a phase rotation φ is given, thereby dividing the optical signal into a carrier component and a modulation component (signal component). It is provided with a signal branching section 311 that branches into a signal branching section 311, a signal joining section 312 that re-merges a carrier component and a modulation component, and a feedback branching section 313 that uses only the carrier component of the optical signal as an uplink optical signal. There is.
Further, it is provided with a control system that adjusts the values of the angular frequency ωC and the modulation frequency ωRF in the asymmetric Mach-Zehnder interferometer 31 to appropriate values described later by detecting the wavelength of the branched carrier component. The optical signal synthesized by the signal combiner 312 is input to the photodiode (PD) 32 as a downlink optical signal and converted into an electric signal.

各パスの光ファイバに対しては、遅延差τ、位相回転φを調整するための電極あるいは温度変化部が設置されている。位相回転φは、電極への印加電圧あるいはヒータなどによる温度調整により光ファイバの屈折率を変化させて光路長を変化させることで調整する。遅延差τは、あらかじめ変調周波数ωRFに応じた遅延差を光回路上に与えておくことで実現されるが、ωRFに応じた遅延差に厳密に一致させるため、同光回路上にはφと同様に、微調整用の電極あるいは温度変化部が備えられている。 An electrode or a temperature changing portion for adjusting the delay difference τ and the phase rotation φ is installed in the optical fiber of each path. The phase rotation φ is adjusted by changing the refractive index of the optical fiber by adjusting the voltage applied to the electrodes or the temperature by a heater or the like to change the optical path length. The delay difference τ is realized by giving a delay difference according to the modulation frequency ωRF on the optical circuit in advance, but in order to exactly match the delay difference according to ωRF, φ is displayed on the optical circuit. Similarly, an electrode for fine adjustment or a temperature changing part is provided.

信号分岐部311で分岐された信号成分E1(t)とキャリア成分E2(t)は、それぞれ数2及び数3の関数で表せる。 The signal component E1 (t) and the carrier component E2 (t) branched by the signal branching portion 311 can be represented by the functions of the equation 2 and the equation 3, respectively.

光信号はOLT10側から光ファイバ(伝送路)20を通過し、ONU30側へと導かれる。両側波帯信号は、搬送波を信号波電流で振幅変調するときスペクトラムのうえで搬送波の両側に側波帯が生じ、これを搬送波とともに伝送するものである。マルチキャリア伝送では、このような複数の両側波帯信号が同時に搬送される。 The optical signal passes through the optical fiber (transmission line) 20 from the OLT 10 side and is guided to the ONU 30 side. A two-sided band signal is one in which sidebands are generated on both sides of a carrier wave on the spectrum when the carrier wave is amplitude-modulated with a signal wave current, and this is transmitted together with the carrier wave. In multicarrier transmission, such a plurality of double-sided band signals are simultaneously conveyed.

本発明では、分岐された光信号のキャリア成分のみを上り用の光信号として帰還させれば、複雑な回路を用いることなく高周波変調信号成分が完全に除去された上り用の光信号が得られることに着目したものである。
ONU30で受信した光信号は非対称マッハツェンダー干渉計31に導かれ、信号分岐部311において、上側パスでは下側パスに対して遅延差τが与えられ、かつ下側パスでは位相回転φが与えられるように構成している。
その後、上側と下側のパスは2×2カプラに導かれるが、この際に「τ」及び「φ」が以下の条件(1)(2)を満たすと、2×2カプラの片側の出力から光信号のキャリア成分のみが、もう片側の出力から信号成分のみが出力される。
In the present invention, if only the carrier component of the branched optical signal is fed back as an uplink optical signal, an uplink optical signal in which the high-frequency modulation signal component is completely removed can be obtained without using a complicated circuit. It focuses on that.
The optical signal received by the ONU 30 is guided to the asymmetric Mach-Zehnder interferometer 31, and in the signal branching portion 311, a delay difference τ is given to the lower pass in the upper pass, and a phase rotation φ is given in the lower pass. It is configured as follows.
After that, the upper and lower paths are led to the 2x2 coupler. At this time, if "τ" and "φ" satisfy the following conditions (1) and (2), the output of one side of the 2x2 coupler Only the carrier component of the optical signal is output from, and only the signal component is output from the output on the other side.

τ=π/ωRF 式(1)
φ=−ωCτ 式(2)
τ = π / ωRF equation (1)
φ = −ωCτ equation (2)

式中、ωCは光信号のキャリアの角周波数を、ωRFは光信号の信号成分の変調周波数をそれぞれ意味している。 In the equation, ωC means the angular frequency of the carrier of the optical signal, and ωRF means the modulation frequency of the signal component of the optical signal.

この構成を実現するためには、非対称マッハツェンダー干渉計31において、式(1)及び式(2)を満足する遅延差τ及び位相回転φとなるように調整する必要があり、そのために、角周波数ωC及び変調周波数ωRFを検出する。角周波数ωCは信号分岐部311で得られたキャリア成分の波長から検出部され、変調周波数ωRFはフォトダイオード(PD)32の出力となる電気信号(RFパワー)からそれぞれ検出される。 In order to realize this configuration, it is necessary to adjust the asymmetric Mach-Zehnder interferometer 31 so that the delay difference τ and the phase rotation φ satisfy the equations (1) and (2), and therefore the angle. Detect frequency ωC and modulation frequency ωRF. The angular frequency ωC is detected from the wavelength of the carrier component obtained at the signal branching unit 311, and the modulation frequency ωRF is detected from the electric signal (RF power) output from the photodiode (PD) 32.

キャリアの角周波数ωCは、キャリア成分から波長から検出されるもので、例えばスペクトラムアナライザで電圧がピークとなる周波数を検出し、角周波数ωCとする。 The angular frequency ωC of the carrier is detected from the wavelength from the carrier component. For example, a spectrum analyzer detects the frequency at which the voltage peaks and sets it as the angular frequency ωC.

変調周波数ωRFは、PD32で受信した後の電気信号である出力RFパワーからの出力が最大となる周波数を検出し、変調周波数ωRFとする。 The modulation frequency ωRF detects the frequency at which the output from the output RF power, which is an electric signal after being received by the PD 32, is maximized, and is set as the modulation frequency ωRF.

検出された角周波数ωC及び変調周波数ωRFから、式(1)(2)により「τ」「φ」が決まるので、遅延差τ及び位相回転φが所定の値となるように制御系での制御が行われる。この制御は、信号分岐部311以降の各パスを挟む位置に設置された電極への印加電圧を調整したり、周囲温度を変化させることなどで各パスの光ファイバの屈折率を調整することで行われる。 Since "τ" and "φ" are determined by the equations (1) and (2) from the detected angular frequency ωC and modulation frequency ωRF, control by the control system so that the delay difference τ and the phase rotation φ become predetermined values. Is done. This control is performed by adjusting the voltage applied to the electrodes installed at positions sandwiching each path after the signal branching portion 311 and adjusting the refractive index of the optical fiber of each path by changing the ambient temperature. Will be done.

ONU30は、帰還分岐部313の先に反射型半導体光増幅器(RSOA)33が接続されている。反射型半導体光増幅器は、反射部(ミラー)と、変調部と、増幅部を備え、帰還分岐部313を介して分岐されたキャリア成分を反射部で反射させ、折り返しの信号に変調するとともに増幅された信号が上り用(ONUからOLT)の光信号となる。
分離されたキャリア成分は、2つに分岐された後、一方は光サーキュレータ34を通過後、反射型半導体光増幅器33へと導かれ、他方は信号合波部312で変調成分と再合波された後、フォトダイオード(PD)32で検出される。ここで検出される光信号は、通常のキャリア(キャリア成分)と両側波帯(変調成分)を含む信号である。
In the ONU 30, a reflective semiconductor optical amplifier (RSOA) 33 is connected to the tip of the feedback branching portion 313. The reflection type semiconductor optical amplifier includes a reflection unit (mirror), a modulation unit, and an amplification unit. The carrier component branched via the feedback branching unit 313 is reflected by the reflection unit, modulated into a folded signal, and amplified. The signal is an optical signal for uplink (ONU to OLT).
The separated carrier components are branched into two, one is passed through the optical circulator 34 and then led to the reflective semiconductor optical amplifier 33, and the other is recombined with the modulation component at the signal combiner 312. After that, it is detected by the photodiode (PD) 32. The optical signal detected here is a signal including a normal carrier (carrier component) and a bilateral band (modulation component).

他方、反射型半導体光増幅器33へと導かれた光は、キャリア成分のみを保有しているため、そのキャリアを用いて上り用データストリームで変調した後、サーキュレータ35を通過してOLT10側に伝送される。
この例では、反射型半導体光増幅器(RSOA)33を使用したが、分岐されたキャリア成分が直接上り用の(反射及び増幅が行われない)光信号としてOLT10側へ帰還させる構成であってもよい。
On the other hand, since the light guided to the reflective semiconductor optical amplifier 33 has only the carrier component, it is modulated by the upstream data stream using the carrier, and then passed through the circulator 35 and transmitted to the OLT 10 side. Will be done.
In this example, a reflective semiconductor optical amplifier (RSOA) 33 is used, but even if the branched carrier component is directly fed back to the OLT 10 side as an optical signal for uplink (not reflected and amplified). Good.

上述した光送受信装置によれば、非対称マッハツェンダー干渉計31の信号分岐部311において、遅延差τを与えた上側パスと、位相回転φを与えた下側パスとに分岐し、τ=π/ωRF、φ=−ωCτを満たすことで、光信号をキャリア成分と信号成分とに分けることができる。 According to the above-mentioned optical transmitter / receiver, the signal branching portion 311 of the asymmetric Mach-Zehnder interferometer 31 branches into an upper path to which a delay difference τ is given and a lower path to which a phase rotation φ is given, and τ = π /. By satisfying ωRF and φ = −ωCτ, the optical signal can be divided into a carrier component and a signal component.

そして、信号成分とキャリア成分を信号合波部312で再度の合波を行って受光側での光信号を得るとともに、帰還分岐部313を介してキャリア成分を上り用の光信号として利用することができ、複雑な回路を用いることなく、高周波成分が完全に除去された上り用の光信号を得ることができる。 Then, the signal component and the carrier component are recombined at the signal combine section 312 to obtain an optical signal on the light receiving side, and the carrier component is used as an uplink optical signal via the feedback branch section 313. It is possible to obtain an optical signal for uplink in which high frequency components are completely removed without using a complicated circuit.

なお、上述した光送受信装置のシステムでは、キャリア成分と信号成分との再度の合波を行う信号合波部312を設け、合波信号を光電変換器(フォトダイオード32)に入力するように構成しているが、例えば、非対称マッハツェンダー干渉計31でキャリア成分と信号成分とに分岐した後に、キャリア成分を破棄して新たにローカル光と合波するようにしても良い。 In the system of the optical transmitter / receiver described above, a signal merging section 312 for re-merging the carrier component and the signal component is provided, and the combined wave signal is input to the photoelectric converter (photodiode 32). However, for example, after branching into a carrier component and a signal component with the asymmetric Mach-Zehnder interferometer 31, the carrier component may be discarded and a new wave may be combined with the local light.

10…OLT(光送信器)、 11…送信器、 20…光ファイバ、 30…ONU(光受信器)、 31…非対称マッハツェンダー干渉計、 32…フォトダイオード(光電変換器)、 33…反射型半導体光増幅器(RSOA)、 311…信号分岐部、 312…信号合波部、 313…帰還分岐部。 10 ... OLT (optical transmitter), 11 ... transmitter, 20 ... optical fiber, 30 ... ONU (optical receiver), 31 ... asymmetric Mach-Zehnder interferometer, 32 ... photodiode (photoelectric converter), 33 ... reflective type Semiconductor optical amplifier (RSOA), 311 ... signal branching section, 312 ... signal combining section, 313 ... feedback branching section.

Claims (5)

複数波長を用いたWDM−PONの使用により光送信器で生成した広帯域の光信号を光ファイバで伝送し複数の光受信器で受光する光送受信装置であって、
前記光受信器は、
前記光信号に対して、遅延差τを与えたパスと、位相回転φを与えたパスとに分けることで、前記光信号をキャリア成分と複数の信号成分とに分岐する信号分岐部と、
前記光信号のキャリア成分のみを上り用の光信号として利用する帰還分岐部と、
を備えたことを特徴とする光送受信装置。
An optical transmitter / receiver that transmits a wideband optical signal generated by an optical transmitter by using WDM-PON using multiple wavelengths via an optical fiber and receives it by multiple optical receivers.
The optical receiver
A signal branching portion that branches the optical signal into a carrier component and a plurality of signal components by dividing the optical signal into a path that gives a delay difference τ and a path that gives a phase rotation φ.
A feedback branch that uses only the carrier component of the optical signal as an uplink optical signal,
An optical transmitter / receiver characterized by being equipped with.
前記遅延差τ及び前記位相回転φは、前記キャリア成分の角周波数をωC、前記信号成分の変調周波数をωRFとした場合に、
τ=π/ωRF
φ=−ωCτ
を満足する請求項1に記載の光送受信装置。
The delay difference τ and the phase rotation φ are obtained when the angular frequency of the carrier component is ωC and the modulation frequency of the signal component is ωRF.
τ = π / ωRF
φ = −ωCτ
The optical transmitter / receiver according to claim 1.
前記光受信器は反射型半導体光増幅器を備え、
前記反射型半導体光増幅器により前記光信号のキャリア成分を上り用の光信号として帰還させる請求項1に記載の光送受信装置。
The optical receiver includes a reflective semiconductor optical amplifier.
The optical transmission / reception device according to claim 1, wherein the carrier component of the optical signal is fed back as an uplink optical signal by the reflective semiconductor optical amplifier.
前記光受信器は基地局である請求項1乃至請求項3に記載の光送受信装置。 The optical transmitter / receiver according to claim 1 to 3, wherein the optical receiver is a base station. 複数波長を用いたWDM−PONの使用により光送信器で生成した広帯域の光信号を光ファイバで伝送し複数の光受信器で受光する光送受信方法であって、
強度変調のみを行って伝送される光信号をキャリア成分と信号成分とに分岐し、
前記信号成分とキャリア成分を再度合波し受信側信号とするとともに、
前記光信号のキャリア成分のみを上り用の光信号として帰還させて利用する
ことを特徴とする光送受信方法。
This is an optical transmission / reception method in which a wideband optical signal generated by an optical transmitter by using WDM-PON using multiple wavelengths is transmitted by an optical fiber and received by a plurality of optical receivers.
The optical signal transmitted by performing only intensity modulation is branched into a carrier component and a signal component, and then
The signal component and the carrier component are combined again to form a receiving side signal, and at the same time,
An optical transmission / reception method characterized in that only the carrier component of the optical signal is fed back and used as an uplink optical signal.
JP2019043979A 2019-03-11 2019-03-11 Optical transmitter / receiver and optical transceiver method Active JP6993369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043979A JP6993369B2 (en) 2019-03-11 2019-03-11 Optical transmitter / receiver and optical transceiver method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043979A JP6993369B2 (en) 2019-03-11 2019-03-11 Optical transmitter / receiver and optical transceiver method

Publications (2)

Publication Number Publication Date
JP2020150316A true JP2020150316A (en) 2020-09-17
JP6993369B2 JP6993369B2 (en) 2022-01-13

Family

ID=72429909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043979A Active JP6993369B2 (en) 2019-03-11 2019-03-11 Optical transmitter / receiver and optical transceiver method

Country Status (1)

Country Link
JP (1) JP6993369B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116500A (en) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Analog signal processing circuit
JP2008148306A (en) * 2006-12-05 2008-06-26 Nec Lab America Inc Wavelength division multiplexing passive optical network architecture with light source-free optical network units
JP2010245987A (en) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical/radio access system
WO2011113902A1 (en) * 2010-03-18 2011-09-22 Alcatel Lucent Optical network unit
JP2013509771A (en) * 2009-10-30 2013-03-14 バンガー ユニバーシティ Uplink and downlink signaling using the same wavelength combination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116500A (en) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Analog signal processing circuit
JP2008148306A (en) * 2006-12-05 2008-06-26 Nec Lab America Inc Wavelength division multiplexing passive optical network architecture with light source-free optical network units
JP2010245987A (en) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical/radio access system
JP2013509771A (en) * 2009-10-30 2013-03-14 バンガー ユニバーシティ Uplink and downlink signaling using the same wavelength combination
WO2011113902A1 (en) * 2010-03-18 2011-09-22 Alcatel Lucent Optical network unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOO-MIN KANG ET AL.: "Mitigation of Optical Interference Noise by Optical Carrier Cancelation in Self-Coherent Reflective", IEEE PHOTONICS JOURNAL, vol. Volume: 9, Issue: 3, JPN6021035320, 26 April 2021 (2021-04-26), pages 1 - 10, ISSN: 0004588932 *

Also Published As

Publication number Publication date
JP6993369B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
EP2157722B1 (en) WDM PON RF overlay architecture based on quantum dot multi-wavelength laser source
US7965947B2 (en) Wavelength division multiplexing passive optical network architecture with source-free optical network units
US10948802B2 (en) Wavelength converter apparatus and method of performing wavelength conversion
CN110891206B (en) WDM-RoF-PON system based on optical frequency comb and polarization multiplexing
EP2656520B1 (en) Method and arrangement for receiving an optical input signal and transmittning an optical output signal
US20100028005A1 (en) Bulk modulation of multiple wavelengths for generation of catv optical comb
Prat Technologies for a cost effective UDWDM-PON
Cvijetic et al. 44-Gb/s/λ upstream OFDMA-PON transmission with polarization-insensitive source-free ONUs
Lakshmijayasimha et al. Tunable mm-wave A-RoF transmission scheme employing an optical frequency comb and dual-stage active demultiplexer
WO2012113447A1 (en) Coherent transceiver for an optical network
US20230308175A1 (en) Optical transmitter, optical access system, and optical transmission method
RU2407169C1 (en) Device and method for optical line terminal (olt) and optical network unit (onu) in wavelength-independent wavelength division multiplex passive optical networks
Huang et al. A novel symmetric lightwave centralized WDM-OFDM-PON architecture with OFDM-remodulated ONUs and a coherent receiver OLT
JP6993369B2 (en) Optical transmitter / receiver and optical transceiver method
Kottke et al. Coherent subcarrier-WDM-PON system with SSB modulation and wavelength reuse
Shukla et al. Next generation PON architecture using PD-NOMA employing OAM and WDM multiplexing
EP2693664B1 (en) Self coherent colorless architecture for flexible WDM access network
Anandarajah et al. Long reach UDWDM PON with SCM-QPSK modulation and direct detection
Yu et al. A novel WDM-PON architecture with centralized lightwaves in the OLT for providing triple play services
US20090016741A1 (en) Optical communication
Tian et al. A WDM-PON system providing quadruple play service with converged optical and wireless access
Sarkar et al. Evolution of TDM-PON to WDM-PON Using Downstream MSK and Remodulated Upstream ASK
KR101231927B1 (en) Bidirectional WDM-PON system using single channel and bidirectional signal transmitting method thereof
He et al. 64 channels 1Gbit/s ultra-dense WDM PON system based on coherent heterodyne receiver
Kim et al. Full colorless WDM-RoF system with simultaneous transmission of 63-GHz and baseband 1.25-Gbps data by sideband separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150