JP2020149782A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2020149782A
JP2020149782A JP2019043643A JP2019043643A JP2020149782A JP 2020149782 A JP2020149782 A JP 2020149782A JP 2019043643 A JP2019043643 A JP 2019043643A JP 2019043643 A JP2019043643 A JP 2019043643A JP 2020149782 A JP2020149782 A JP 2020149782A
Authority
JP
Japan
Prior art keywords
layer
active material
solid
layers
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019043643A
Other languages
Japanese (ja)
Other versions
JP7159924B2 (en
Inventor
健久 加藤
Takehisa Kato
健久 加藤
啓子 竹内
Keiko Takeuchi
啓子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019043643A priority Critical patent/JP7159924B2/en
Publication of JP2020149782A publication Critical patent/JP2020149782A/en
Application granted granted Critical
Publication of JP7159924B2 publication Critical patent/JP7159924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an all-solid battery having high I/O characteristics.SOLUTION: An all-solid battery 1 comprises: a laminate where multiple electrode layers by laminating collector layers 31, 41 and active material layers 32, 42, are laminated via a solid electrolyte layer 50; and a boundary surface of the solid electrolyte layer 50 and the active material layers 32, 42, where the active material layers 32, 42 contain Ti and V. When defining the same direction as the lamination direction, and directing from the boundary surface toward the collector layers 31, 41 closest thereto as the depth direction, formulas (1) and (2) are satisfied. (R1-0.20d)≤R2≤(R1-0.15d) ... (1), 0.0<d≤3.0 ... (2) (d indicates the distance (μm) from the boundary surface in the depth direction, R1 represents the atomic weight ratio (Ti/(Ti+V)) of Ti and V in the active material layers 32, 42, at the boundary surface and R2 represents the atomic weight ratio (Ti/(Ti+V)) of Ti and V in the collector layers 31, 41 at a point d).SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池に関する。 The present invention relates to an all-solid-state battery.

近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴い、電子機器の電源となる電池に対しては、小型軽量化、薄型化、信頼性の向上が強く望まれている。現在、汎用的に使用されているリチウムイオン二次電池は、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。しかし、前記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質であるため、より安全性の高い電池が求められている。 In recent years, the development of electronics technology has been remarkable, and portable electronic devices have been made smaller and lighter, thinner, and more multifunctional. Along with this, there is a strong demand for batteries that serve as power sources for electronic devices to be smaller and lighter, thinner, and more reliable. Currently, in lithium ion secondary batteries that are widely used, an electrolyte (electrolyte solution) such as an organic solvent has been conventionally used as a medium for moving ions. However, in the battery having the above configuration, there is a risk that the electrolytic solution may leak out. Further, since the organic solvent and the like used in the electrolytic solution are flammable substances, a battery with higher safety is required.

そこで、電池の安全性を高めるための一つの対策として、電解液に代えて、固体電解質を電解質として用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。ここで特に酸化物系固体電解質を用いた全固体電池では固体同士の接触性が悪く、抵抗が高くなり高入出力化が困難である。
全固体電池の高出入力化に関して、特許文献1、2が開示されている。
特許文献1では、固体電解質のイオン伝導度の低さが出入力の低さに起因しているとし、所定の化学式で表される物質を用いた全固体電池が開示されている。しかしながら、上記特許文献1に記載の物質を用いるだけでは、意図しない反応が起こり、抵抗が増大し出入力特性が低下する可能性がある。特許文献2では、電極層と電解質層の界面における接合を強化すべく、固体電解質と電極活物質を反応/拡散させることで中間層を形成し、抵抗低減が可能な全固体電池が開示されている。また、特許文献2の実施例で述べられている中間層に形成される電解質は、イオン伝導度が低く、抵抗低減による高出力化は困難であると考えられる。
Therefore, as one measure for improving the safety of the battery, it has been proposed to use a solid electrolyte as an electrolyte instead of the electrolytic solution. Further, development of an all-solid-state battery in which a solid electrolyte is used as an electrolyte and other components are also composed of solids is underway. Here, in particular, in an all-solid-state battery using an oxide-based solid electrolyte, the contact property between solids is poor, the resistance is high, and it is difficult to increase the input / output.
Patent Documents 1 and 2 are disclosed with respect to increasing the input / output of an all-solid-state battery.
Patent Document 1 discloses an all-solid-state battery using a substance represented by a predetermined chemical formula, assuming that the low ionic conductivity of the solid electrolyte is caused by the low input / output. However, if only the substance described in Patent Document 1 is used, an unintended reaction may occur, the resistance may increase, and the input / output characteristics may decrease. Patent Document 2 discloses an all-solid-state battery capable of reducing resistance by forming an intermediate layer by reacting / diffusing a solid electrolyte and an electrode active material in order to strengthen the bonding at the interface between the electrode layer and the electrolyte layer. There is. Further, the electrolyte formed in the intermediate layer described in the examples of Patent Document 2 has low ionic conductivity, and it is considered difficult to increase the output by reducing the resistance.

特開2007−258165号JP-A-2007-258165 特許第4797105号Patent No. 4797105

本発明は、上記問題点に鑑みてなされたものであり、高出入力特性を有する全固体電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an all-solid-state battery having high output / output characteristics.

本発明の一態様に係る全固体電池は、集電体層と活物質層とが積層された電極層が、固体電解質層を介して複数積層された積層体と、前記固体電解質層と前記活物質層との界面と、を含み、前記活物質層はTiとVと、を含み、積層方向と同一方向であって、且つ前記界面から前記界面に最も近い前記集電体層に向かう方向を深さ方向と定義した際に、式(1)および(2)を満たす、全固体電池。
(R1−0.20d)≦R2≦(R1−0.15d)…(1)
0.0<d≦3.0…(2)
(dは、前記深さ方向における前記界面からの距離(μm)を示し、R1は、前記界面における前記活物質層中のTiとVの原子量比(Ti/(Ti+V))を表し、R2は、xの地点における前記活物質層中のTiとVの原子量比(Ti/(Ti+V))を表す。)
The all-solid-state battery according to one aspect of the present invention includes a laminate in which a plurality of electrode layers in which a current collector layer and an active material layer are laminated are laminated via a solid electrolyte layer, and the solid electrolyte layer and the active material layer. The active material layer contains Ti and V, and is in the same direction as the stacking direction, and the direction from the interface toward the current collector layer closest to the interface is included. An all-solid-state battery that satisfies equations (1) and (2) when defined as the depth direction.
(R1-0.20d) ≤ R2 ≤ (R1-0.15d) ... (1)
0.0 <d ≤ 3.0 ... (2)
(D represents the distance (μm) from the interface in the depth direction, R1 represents the atomic weight ratio (Ti / (Ti + V)) of Ti and V in the active material layer at the interface, and R2 is. , X represents the atomic weight ratio of Ti to V in the active material layer (Ti / (Ti + V)).

本発明によれば、出入力特性に優れる全固体電池を提供することができる。 According to the present invention, it is possible to provide an all-solid-state battery having excellent input / output characteristics.

本開示の一つの実施形態に係る全固体電池の構成を表すイメージ断面図である。It is an image cross-sectional view which shows the structure of the all-solid-state battery which concerns on one Embodiment of this disclosure. 図1の領域Aにおける活物質層と固体電解質層との界面近傍の拡大図である。It is an enlarged view of the vicinity of the interface between the active material layer and the solid electrolyte layer in the region A of FIG. 本実施形態における、距離dと活物質中のTiとVの原子量比との関係を示すためのグラフである。It is a graph for showing the relationship between the distance d and the atomic weight ratio of Ti and V in an active material in this embodiment.

以下、発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法などは一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the invention will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components may differ from the actual ones. is there. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

図1及び図2に示すように、全固体電池1は、正極30と負極40とが、固体電解質層50を介して積層された積層体20を含む。正極30は、正極集電体層31と正極活物質層32とを有する。負極40は、負極集電体層41と負極活物質層42とを有する。正極30および負極40の同一平面上には、マージン層80が形成されている。積層体20は、6面体であり、積層方向に対して平行な面として形成された4つの側面(第1側面21、第2側面22、第3側面23、第4側面24)と、積層方向と直交する面として形成された上面25及び下面26を有する。第1側面21には正極集電体層31が露出し、第2側面22には負極集電体層41が露出している。第3側面23は、上面25を上にして第1側面21側から見て右側の側面であり、第4側面24は、上面25を上にして第1側面21側から見て左側の側面である。また、第1側面21および第2側面22は対向し、第3側面23および第4側面24は対向している。 As shown in FIGS. 1 and 2, the all-solid-state battery 1 includes a laminated body 20 in which a positive electrode 30 and a negative electrode 40 are laminated via a solid electrolyte layer 50. The positive electrode 30 has a positive electrode current collector layer 31 and a positive electrode active material layer 32. The negative electrode 40 has a negative electrode current collector layer 41 and a negative electrode active material layer 42. A margin layer 80 is formed on the same plane of the positive electrode 30 and the negative electrode 40. The laminated body 20 is a hexahedron, and has four side surfaces (first side surface 21, second side surface 22, third side surface 23, fourth side surface 24) formed as surfaces parallel to the stacking direction, and a stacking direction. It has an upper surface 25 and a lower surface 26 formed as surfaces orthogonal to. The positive electrode current collector layer 31 is exposed on the first side surface 21, and the negative electrode current collector layer 41 is exposed on the second side surface 22. The third side surface 23 is the side surface on the right side when viewed from the first side surface 21 side with the top surface 25 facing up, and the fourth side surface 24 is the side surface on the left side when viewed from the first side surface 21 side with the top surface 25 facing up. is there. Further, the first side surface 21 and the second side surface 22 face each other, and the third side surface 23 and the fourth side surface 24 face each other.

積層体の第1側面21には、正極集電体層31に電気的に接続する正極外部電極60が付設されている。積層体20の第2側面22には、負極集電体層41に電気的に接続する負極外部電極70が付設されている。 A positive electrode external electrode 60 that is electrically connected to the positive electrode current collector layer 31 is attached to the first side surface 21 of the laminated body. A negative electrode external electrode 70 that is electrically connected to the negative electrode current collector layer 41 is attached to the second side surface 22 of the laminated body 20.

なお、以降の明細書中の説明として、正極活物質および負極活物質のいずれか一方または両方を総称として活物質と呼び、正極活物質層32および負極活物質層42のいずれか一方または両方を総称して活物質層と呼び、正極活集電体層31および負極集電体層41のいずれか一方または両方を総称して集電体層と呼び、正極30および負極40のいずれか一方または両方を総称して電極層と呼び、正極外部電極60および負極外部電極70のいずれか一方または両方を総称して外部電極と呼ぶことがある。なお正極活物質層32および負極活物質層42に用いられる材料は、それぞれ同じでも良いし異なっていてもよい。また正極集電体層31および負極集電体層32に用いられる材料は、それぞれ同じでも良いし異なっていても良い。 In addition, as a description in the following specification, either one or both of the positive electrode active material and the negative electrode active material are collectively referred to as an active material, and either or both of the positive electrode active material layer 32 and the negative electrode active material layer 42 are referred to as active materials. Collectively, it is called an active material layer, and either or both of the positive electrode active current collector layer 31 and the negative electrode current collector layer 41 are collectively called a current collector layer, and either one or one of the positive electrode 30 and the negative electrode 40 or Both are collectively referred to as an electrode layer, and either or both of the positive electrode external electrode 60 and the negative electrode external electrode 70 may be collectively referred to as an external electrode. The materials used for the positive electrode active material layer 32 and the negative electrode active material layer 42 may be the same or different. The materials used for the positive electrode current collector layer 31 and the negative electrode current collector layer 32 may be the same or different.

本実施形態に係る全固体電池1における固体電解質層50は、リン酸チタンアルミニウムリチウムを含み、活物質層3は、リン酸バナジウムリチウムを含んでいる。マージン層80は、リン酸チタンアルミニウムリチウムを含んでいる。もちろんこれに限らず全く同じ材料を使用しなくてもよい。 The solid electrolyte layer 50 in the all-solid-state battery 1 according to the present embodiment contains titanium aluminum lithium phosphate, and the active material layer 3 contains vanadium lithium phosphate. The margin layer 80 contains titanium-aluminum-lithium phosphate. Of course, not limited to this, it is not necessary to use exactly the same material.

(固体電解質)
本実施形態の全固体電池1の固体電解質層50は、リン酸チタンアルミニウムリチウムを含む。リン酸チタンアルミニウムリチウムは、Li1+xAlTi2−x(PO(0≦x≦0.6)であることが好ましい。また、固体電解質層は、リン酸チタンアルミニウムリチウム以外の固体電解質材料を含んでいてもよい。例えば、Li3+x1Six11−x1(0.4≦x1≦0.6)、Li3.40.4Ge0.6、リン酸ゲルマニウムリチウム(LiGe(PO)、LiOV−SiO、LiO−P−B、LiPO、Li0.5La0.5TiO、Li14Zn(GeO、LiLaZr12、LiZr(POよりなる群から選択される少なくとも1種を含むことが好ましい。
(Solid electrolyte)
The solid electrolyte layer 50 of the all-solid-state battery 1 of the present embodiment contains titanium aluminum lithium phosphate. Lithium aluminum hydride is preferably Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≦ x ≦ 0.6). Further, the solid electrolyte layer may contain a solid electrolyte material other than titanium-aluminum-lithium phosphate. For example, Li 3 + x1 Si x1 P 1-x1 O 4 (0.4 ≤ x 1 ≤ 0.6), Li 3.4 V 0.4 Ge 0.6 O 4 , Lithium germanium phosphate (LiGe 2 (PO 4 )). 3 ), Li 2 OV 2 O 5- SiO 2 , Li 2 O-P 2 O 5- B 2 O 3 , Li 3 PO 4 , Li 0.5 La 0.5 TiO 3 , Li 14 Zn (GeO 4 ) 4, Li 7 La 3 Zr 2 O 12, preferably includes a LiZr 2 (PO 4) at least one member selected from the group consisting of 3.

(活物質)
前述した通り本実施形態の全固体電池1の活物質層(正極活物質層32、負極活物質層42)は、リン酸バナジウムリチウムを含む。リン酸バナジウムリチウムは、LiVOPO、Li(PO、LiVOP、LiVP、Li(VO)(PO、およびLi(P(POのいずれか一つまたは複数であることが好ましく、特に、LiVOPOおよびLi(POの一方または両方であることが好ましい。さらに、LiVOPOおよびLi(POは、リチウムの欠損がある方が好ましく、LiVOPO(0.94≦x≦0.98)やLi(PO(2.8≦x≦2.95)であればより好ましい。また、VおよびPの一部が他元素であるCa、Ti、Siに置換されていてもよい。
(Active material)
As described above, the active material layer (positive electrode active material layer 32, negative electrode active material layer 42) of the all-solid-state battery 1 of the present embodiment contains lithium vanadium phosphate. Lithium vanadium phosphate includes LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 VOP 2 O 7 , Li 2 VP 2 O 7 , Li 4 (VO) (PO 4 ) 2 , and Li 9 V 3 ( P 2 O 7 ) 3 (PO 4 ) 2 is preferably one or more, and in particular, one or both of LiVOPO 4 and Li 3 V 2 (PO 4 ) 3 . Furthermore, LiVOPO 4 and Li 3 V 2 (PO 4 ) 3 preferably have a lithium deficiency, such as Li x VOPO 4 (0.94 ≤ x ≤ 0.98) and Li x V 2 (PO 4 ) 3. It is more preferable if (2.8 ≦ x ≦ 2.95). Further, a part of V and P may be substituted with other elements Ca, Ti and Si.

活物質層は、リン酸バナジウムリチウム以外の活物質を含んでいてもよい。例えば、遷移金属酸化物、遷移金属複合酸化物を含んでいるのが好ましい。具体的には、リチウムマンガン複合酸化物LiMnx3Ma1−x3(0.8≦x3≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、および、一般式:LiNix4Coy4Mnz4(x4+y4+z4=1、0≦x4≦1、0≦y4≦1、0≦z4≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、Li過剰系固溶体正極LiMnO−LiMcO(Mc=Mn、Co、Ni)、チタン酸リチウム(LiTi12)、LiaNix5Coy5Alz5(0.9<a<1.3、0.9<x5+y5+z5<1.1)で表される複合金属酸化物のいずれかであることが好ましい。またこれら材料の含有量は、同じ活物質層中において、リン酸バナジウムリチウムを100質量部に対し、1質量部から20質量部の範囲であることが好ましい。 The active material layer may contain an active material other than lithium vanadium phosphate. For example, it preferably contains a transition metal oxide and a transition metal composite oxide. Specifically, lithium manganese composite oxide Li 2 Mn x3 Ma 1-x3 O 3 (0.8 ≤ x 3 ≤ 1, Ma = Co, Ni), lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2). ), Lithium manganese spinel (LiMn 2 O 4 ), and general formula: LiNi x4 Coy4 Mn z4 O 2 (x4 + y4 + z4 = 1, 0 ≦ x4 ≦ 1, 0 ≦ y4 ≦ 1, 0 ≦ z4 ≦ 1). Composite metal oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMbPO 4 (however, Mb is one or more selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr. elements), Li excess solid solution positive electrode Li 2 MnO 3 -LiMcO 2 (Mc = Mn, Co, Ni), lithium titanate (Li 4 Ti 5 O 12) , LiaNi x5 Co y5 Al z5 O 2 (0.9 It is preferably any of the composite metal oxides represented by <a <1.3, 0.9 <x5 + y5 + z5 <1.1). The content of these materials is preferably in the range of 1 part by mass to 20 parts by mass with respect to 100 parts by mass of lithium vanadium phosphate in the same active material layer.

更に活物質層中には、少なくともTiとVが含まれる。これら2つの元素の原子量比は、活物質層のうち、固体電解質層50と活物質層との界面付近の位置と、その界面付近よりも集電体側の位置と、で異なる場合がある。具体的には、活物質層中に含まれるTiの原子量(Ti/(Ti+V))は、界面90から最寄りの集電体層に向かって減少することがある。 Further, the active material layer contains at least Ti and V. The atomic weight ratio of these two elements may differ depending on the position of the active material layer near the interface between the solid electrolyte layer 50 and the active material layer and the position on the current collector side of the interface. Specifically, the atomic weight of Ti (Ti / (Ti + V)) contained in the active material layer may decrease from the interface 90 toward the nearest current collector layer.

更に、本実施形態においては、積層方向と同一方向であって、且つ界面から、当該界面90に最も近い集電体層に向かう方向を深さ方向DR1と定義した際に、下記の式(1)および(2)を満たすように設定することが好ましい。
(R1−0.20d)≦R2≦(R1−0.15d) …(1)
0.0<d≦3.0 …(2)
(dは、深さ方向DR1における界面90からの距離(μm)を示し、
R1は、界面90における活物質層中のTiとVの原子量比(Ti/(Ti+V))を表し、
R2は、dの地点における活物質層中のTiとVの原子量比(Ti/(Ti+V))を表す。)
Further, in the present embodiment, the following equation (1) is defined when the direction from the interface to the current collector layer closest to the interface 90 is defined as the depth direction DR1 in the same direction as the stacking direction. ) And (2) are preferably set.
(R1-0.20d) ≤ R2 ≤ (R1-0.15d) ... (1)
0.0 <d ≦ 3.0… (2)
(D indicates the distance (μm) from the interface 90 in the depth direction DR1.
R1 represents the atomic weight ratio (Ti / (Ti + V)) of Ti and V in the active material layer at the interface 90.
R2 represents the atomic weight ratio (Ti / (Ti + V)) of Ti and V in the active material layer at the point d. )

換言すれば本実施形態における活物質層のdの地点(ただしdは、0.0<d≦3.0の範囲内)における活物質層中のTiとVの原子量比(Ti/(Ti+V))R2は、図3に記載のR1−0.20dおよびR1−0.15dで囲われた範囲内で深さ方向DR1に向かって減少していくといえる。なお図3の縦軸はTiとVの原子量比(Ti/(Ti+V))を表し、横軸は(Ti/(Ti+V))が測定される距離dの地点を表す。 In other words, the atomic weight ratio of Ti and V in the active material layer at the point d of the active material layer in the present embodiment (where d is within the range of 0.0 <d ≦ 3.0) (Ti / (Ti + V)). ) R2 can be said to decrease toward DR1 in the depth direction within the range surrounded by R1-0.20d and R1-0.15d shown in FIG. The vertical axis of FIG. 3 represents the atomic weight ratio of Ti to V (Ti / (Ti + V)), and the horizontal axis represents the point at the distance d where (Ti / (Ti + V)) is measured.

式(1)および(2)を満たすようにすることで、界面90近傍にかかる電位差が小さくなり好適な範囲とすることができるため空間電荷層由来の界面抵抗を低減することができる。これにより、空間電荷層の形成によるリチウムイオンの欠損が解消され、界面抵抗を低減することが出来、ひいては優れた出入力特性が得られると考えられる。 By satisfying the equations (1) and (2), the potential difference applied to the vicinity of the interface 90 can be reduced to a suitable range, so that the interface resistance derived from the space charge layer can be reduced. As a result, the loss of lithium ions due to the formation of the space charge layer can be eliminated, the interfacial resistance can be reduced, and it is considered that excellent input / output characteristics can be obtained.

ここで固体電解質層50と活物質層との界面90の定義について詳述する。界面90は、固体電解質層50中の任意の位置から、深さ方向90に向かって1μm毎にTiとVの原子量比(Ti/(Ti+V))を測定した際に、深さ方向90に進むにつれてTiとVの原子量比(Ti/(Ti+V))が1μmあたり0.1を超えて減少した区間のうち、最も固体電解質層側に近い箇所(すなわち当該区間のうち最も活物質層から遠い箇所)と定める。 Here, the definition of the interface 90 between the solid electrolyte layer 50 and the active material layer will be described in detail. The interface 90 advances in the depth direction 90 when the atomic weight ratio of Ti and V (Ti / (Ti + V)) is measured every 1 μm in the depth direction 90 from an arbitrary position in the solid electrolyte layer 50. In the section where the atomic weight ratio of Ti to V (Ti / (Ti + V)) decreased by more than 0.1 per μm, the part closest to the solid electrolyte layer side (that is, the part farthest from the active material layer in the section). ).

(正極集電体および負極集電体)
本実施形態の全固体電池1の集電体層(正極集電体層31、負極集電体層41)を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらに全固体電池の内部抵抗の低減効果があるためより好ましい。
(Positive current collector and negative electrode current collector)
As the material constituting the current collector layer (positive electrode current collector layer 31, negative electrode current collector layer 41) of the all-solid-state battery 1 of the present embodiment, it is preferable to use a material having a high conductivity, for example, silver or palladium. , Gold, platinum, aluminum, copper, nickel and the like are preferably used. In particular, copper is more preferable because it does not easily react with titanium aluminum lithium phosphate and has an effect of reducing the internal resistance of the all-solid-state battery.

また、本実施形態の全固体電池1の集電体層は、活物質を含むことが好ましい。 Further, the current collector layer of the all-solid-state battery 1 of the present embodiment preferably contains an active material.

集電体層が、活物質を含むことにより、集電体層と活物質層との密着性が向上するため望ましい。 It is desirable that the current collector layer contains an active material because the adhesion between the current collector layer and the active material layer is improved.

本実施形態の集電体層における活物質の比率は、集電体として機能する限り特に限定はされないが、集電体と活物質が、体積比率で90/10から70/30の範囲であることが好ましい。 The ratio of the active material in the current collector layer of the present embodiment is not particularly limited as long as it functions as a current collector, but the current collector and the active material are in the range of 90/10 to 70/30 in volume ratio. Is preferable.

(マージン層)
本実施形態の全固体電池のマージン層80は、固体電解質層50と電極層または活物質層3との段差を解消するために設けることが好ましい。したがって、マージン層80は、電極または活物質層以外の領域を示す。このようなマージン層80の存在により、固体電解質層50と電極層または活物質層との段差が解消されるため、電極層の緻密性が高くなり、全固体電池1の焼成による層間剥離(デラミネーション)や反りが生じにくくなる。
(Margin layer)
The margin layer 80 of the all-solid-state battery of the present embodiment is preferably provided in order to eliminate a step between the solid electrolyte layer 50 and the electrode layer or the active material layer 3. Therefore, the margin layer 80 indicates a region other than the electrode or the active material layer. The presence of such a margin layer 80 eliminates a step between the solid electrolyte layer 50 and the electrode layer or the active material layer, so that the electrode layer becomes more dense and delamination due to firing of the all-solid-state battery 1. Lamination) and warpage are less likely to occur.

マージン層80を構成する材料は、例えば固体電解質層50と同じ材料リン酸チタンアルミニウムリチウムを含むことが好ましい。したがって、リン酸チタンアルミニウムリチウムは、Li1+xAlTi2−x(PO(0≦x≦0.6)であることが好ましい。また、マージン層80は、リン酸チタンアルミニウムリチウム以外の固体電解質材料や絶縁性酸化物材料を含んでいてもよい。例えば、Li3+x1Six11−x1(0.4≦x1≦0.6)、Li3.40.4Ge0.6、リン酸ゲルマニウムリチウム(LiGe(PO)、LiOV−SiO、LiO−P−B、LiPO、Li0.5La0.5TiO、Li14Zn(GeO、LiLaZr12、Al、ZrOよりなる群から選択される少なくとも1種を含むことが好ましい。 The material constituting the margin layer 80 preferably contains, for example, the same material as the solid electrolyte layer 50, titanium aluminum lithium phosphate. Therefore, the titanium-aluminum-lithium phosphate is preferably Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≦ x ≦ 0.6). Further, the margin layer 80 may contain a solid electrolyte material or an insulating oxide material other than titanium-aluminum-lithium phosphate. For example, Li 3 + x1 Si x1 P 1-x1 O 4 (0.4 ≤ x 1 ≤ 0.6), Li 3.4 V 0.4 Ge 0.6 O 4 , Lithium germanium phosphate (LiGe 2 (PO 4 )). 3 ), Li 2 OV 2 O 5- SiO 2 , Li 2 O-P 2 O 5- B 2 O 3 , Li 3 PO 4 , Li 0.5 La 0.5 TiO 3 , Li 14 Zn (GeO 4 ) 4. It is preferable to contain at least one selected from the group consisting of Li 7 La 3 Zr 2 O 12 , Al 2 O 3 and ZrO 2 .

(外部電極)
外部電極(正極外部電極61、負極外部電極71)の材料としては、導電率が大きい材料を用いることが好ましい。例えば、銀、金、プラチナ、アルミニウム、銅、スズ、ニッケルを用いることができる。
(External electrode)
As the material of the external electrodes (positive electrode external electrode 61, negative electrode external electrode 71), it is preferable to use a material having a high conductivity. For example, silver, gold, platinum, aluminum, copper, tin and nickel can be used.

(全固体電池の製造方法)
本実施形態の全固体電池1は、次のような手順で製造することができる。集電体層、活物質層、固体電解質層50、マージン層80の各材料をペースト化する。ペースト化の方法は、特に限定されないが、例えば、ビヒクルに前記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称であり、溶媒、バインダー等が含まれる。グリーンシートまたは印刷層を成形するためのペーストに含まれるバインダーは特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂などを用いることができ、これらの樹脂のうち少なくとも1種をスラリーが含むことができる。
(Manufacturing method of all-solid-state battery)
The all-solid-state battery 1 of the present embodiment can be manufactured by the following procedure. Each material of the current collector layer, the active material layer, the solid electrolyte layer 50, and the margin layer 80 is made into a paste. The method of making a paste is not particularly limited, and for example, a paste can be obtained by mixing powders of the above materials with a vehicle. Here, vehicle is a general term for a medium in a liquid phase, and includes a solvent, a binder, and the like. The binder contained in the paste for forming the green sheet or the printing layer is not particularly limited, but polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, vinyl acetate resin, polyvinyl alcohol resin and the like can be used. The slurry can contain at least one of the resins.

また、ペーストには可塑剤を含んでいてもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。 In addition, the paste may contain a plasticizer. The type of plasticizer is not particularly limited, but phthalates such as dioctyl phthalate and diisononyl phthalate may be used.

係る方法により、集電体層用ペースト、活物質層用ペースト、固体電解質層用ペースト、マージン層用ペーストを作製する。 By such a method, a paste for a current collector layer, a paste for an active material layer, a paste for a solid electrolyte layer, and a paste for a margin layer are prepared.

前記に作製した固体電解質層用ペーストをポリエチレンテレフタレート(PET)などの基材上に所望の厚みで塗布し、必要に応じ乾燥させ、固体電解質用グリーンシートを作製する。固体電解質用グリーンシートの作製方法は、特に限定されず、ドクターブレード法、ダイコーター、コンマコーター、グラビアコーター等の公知の方法を採用することができる。次いで固体電解質用グリーンシートの上に活物質層、集電体層、活物質層を順にスクリーン印刷で印刷積層し、電極層を形成する。さらに、固体電解質用グリーンシートと電極層との段差を埋めるために、電極層以外の領域にマージン層をスクリーン印刷で形成し、電極層ユニットを作製する。 The above-mentioned paste for a solid electrolyte layer is applied on a substrate such as polyethylene terephthalate (PET) to a desired thickness and dried if necessary to prepare a green sheet for a solid electrolyte. The method for producing the green sheet for a solid electrolyte is not particularly limited, and a known method such as a doctor blade method, a die coater, a comma coater, or a gravure coater can be adopted. Next, the active material layer, the current collector layer, and the active material layer are printed and laminated in this order on the green sheet for solid electrolyte by screen printing to form an electrode layer. Further, in order to fill the step between the solid electrolyte green sheet and the electrode layer, a margin layer is formed by screen printing in a region other than the electrode layer to prepare an electrode layer unit.

そして電極層ユニットと交互にそれぞれの一端が一致しないようにオフセットを行い積層し、さらに必要に応じて、前記積層体の両主面に、外層(カバー層)を設けることができる。外層を積層することで、全固体電池の素子が複数含まれた積層基板が作製される。なお、外層5は固体電解質と同じ材料を用いることができ、固体電解質用グリーンシートを用いることができる。 Then, the electrode layer units can be alternately offset so that one ends do not coincide with each other and laminated, and if necessary, outer layers (cover layers) can be provided on both main surfaces of the laminated body. By laminating the outer layer, a laminated substrate including a plurality of elements of the all-solid-state battery is produced. The outer layer 5 can be made of the same material as the solid electrolyte, and a green sheet for the solid electrolyte can be used.

前記製造方法は、並列型の全固体電池を作製するものであるが、直列型の全固体電池の製造方法は、それぞれの電極層の一端と一端とが一致するように、つまりオフセットを行わないで積層すればよい。 The manufacturing method is for manufacturing a parallel type all-solid-state battery, but the manufacturing method for a series-type all-solid-state battery is such that one end and one end of each electrode layer coincide with each other, that is, no offset is performed. It may be laminated with.

さらに作製した積層基板を一括して金型プレス、温水等方圧プレス(WIP)、冷水等方圧プレス(CIP)、静水圧プレスなどで加圧し、密着性を高めることができる。加圧は加熱しながら行う方が好ましく、例えば40〜95℃で実施することができる。 Further, the produced laminated substrates can be collectively pressed by a die press, a hot water isotropic pressure press (WIP), a cold water isotropic pressure press (CIP), a hydrostatic pressure press, or the like to improve the adhesion. Pressurization is preferably performed while heating, and can be performed, for example, at 40 to 95 ° C.

作製した積層基板は、ダイシング装置を用いて未焼成の全固体電池の積層体に切断することができる。 The produced laminated substrate can be cut into a laminate of unfired all-solid-state batteries using a dicing device.

前記全固体電池の積層体を脱バイおよび焼成することで、全固体電池が製造される。脱バイおよび焼成は、窒素雰囲気下で600℃〜1000℃の温度で焼成を行うことができる。脱バイ、焼成の保持時間は、例えば0.1〜6時間とする。 An all-solid-state battery is manufactured by removing and firing the laminate of the all-solid-state battery. De-bye and firing can be performed at a temperature of 600 ° C. to 1000 ° C. in a nitrogen atmosphere. The holding time for debuying and firing is, for example, 0.1 to 6 hours.

(R1−0.20d)≦R2≦(R1−0.15d) …(1)
0.0<d≦3.0 …(2)
上記の式(1)および(2)を満たすための条件としては、例えば固体電解質グリーンシート上に、LiTi1.90.1(PO(1≦x≦3)、LiTi1.70.3(PO、LiTi1.50.5(PO、LiTi1.30.7(PO、LiTi1.10.9(PO、LiTi0.91.1(PO、LiTi0.71.3(PO、LiTi0.51.5(PO、LiTi0.31.7(PO、LiTi0.11.9(POの組成を持つそれぞれの活物質を含んだペーストを順に薄く印刷することで制御することができるが、この方法には限定されない。
(R1-0.20d) ≤ R2 ≤ (R1-0.15d) ... (1)
0.0 <d ≦ 3.0… (2)
Conditions for satisfying the above equations (1) and (2) include, for example, Li X Ti 1.9 V 0.1 (PO 4 ) 3 (1 ≦ x ≦ 3), Li on a solid electrolyte green sheet. X Ti 1.7 V 0.3 (PO 4 ) 3 , Li X Ti 1.5 V 0.5 (PO 4 ) 3 , Li X Ti 1.3 V 0.7 (PO 4 ) 3 , Li X Ti 1.1 V 0.9 (PO 4 ) 3 , Li X Ti 0.9 V 1.1 (PO 4 ) 3 , Li X Ti 0.7 V 1.3 (PO 4 ) 3 , Li X Ti 0. Each active material having a composition of 5 V 1.5 (PO 4 ) 3 , Li X Ti 0.3 V 1.7 (PO 4 ) 3 , Li X Ti 0.1 V 1.9 (PO 4 ) 3 It can be controlled by printing the paste containing the above thinly in order, but the method is not limited to this method.

他にも、LiTi(PO、Li(PO(1≦X≦3.5)の2つのターゲットを用意し、固体電解質グリーンシート上に、パルスレーザーデポジション法、真空蒸着法、スパッタリング法などの気相法を用いて成膜・堆積させる際に、それぞれのターゲットの、グリーンシート―ターゲット間の距離を調節することによって、TiとVの比率を制御することも可能である。 In addition, two targets, Li X Ti 2 (PO 4 ) 3 and Li X V 2 (PO 4 ) 3 (1 ≤ X ≤ 3.5), were prepared and pulsed laser deposition was performed on the solid electrolyte green sheet. The ratio of Ti and V is controlled by adjusting the distance between the green sheet and the target of each target when film formation and deposition are performed using vapor phase methods such as the position method, vacuum deposition method, and sputtering method. It is also possible to do.

そのほか、式(1)および(2)を満たすために、焼成条件(焼成温度や昇温速度)を適宜調整することでも、式(1)および(2)を満たすことができる。 In addition, the formulas (1) and (2) can also be satisfied by appropriately adjusting the firing conditions (firing temperature and heating rate) in order to satisfy the formulas (1) and (2).

さらに全固体電池の積層体から効率的に電流を引き出すため、外部電極を設けることができる。外部電極は、積層体の両側面に延出する電極層の一端にそれぞれ接続されている。したがって、積層体の一側面を挟持するように一対の外部電極7が形成される。外部電極の形成方法としては、スパッタリング法、スクリーン印刷法、またはディップコート法などが挙げられる。スクリーン印刷法、ディップコート法では、金属粉末、樹脂、溶剤を含む外部電極用ペーストを作製し、これを外部電極として形成させる。次いで、溶剤を飛ばすための焼き付け工程、ならびに外部電極7の表面に端子電極を形成させるため、めっき処理を行う。一方、スパッタリング法では、外部電極ならびに端子電極を直接形成することができるため、焼き付け工程、メッキ処理工程が不要となる。 Further, an external electrode can be provided in order to efficiently draw current from the laminated body of the all-solid-state battery. The external electrodes are connected to one end of the electrode layer extending on both side surfaces of the laminate. Therefore, a pair of external electrodes 7 are formed so as to sandwich one side surface of the laminated body. Examples of the method for forming the external electrode include a sputtering method, a screen printing method, and a dip coating method. In the screen printing method and the dip coating method, a paste for an external electrode containing a metal powder, a resin, and a solvent is prepared and formed as an external electrode. Next, a baking step for removing the solvent and a plating process for forming a terminal electrode on the surface of the external electrode 7 are performed. On the other hand, in the sputtering method, since the external electrode and the terminal electrode can be directly formed, the baking step and the plating process are not required.

前記全固体電池1の積層体は、耐湿性、耐衝撃性を高めるために、例えばコインセル内に封止してもよい。封止方法は特に限定されず、例えば焼成後の積層体を樹脂で封止してもよい。また、Al等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップコーティングし、この絶縁ペーストを熱処理することにより封止してもよい。 The laminated body of the all-solid-state battery 1 may be sealed in, for example, a coin cell in order to enhance moisture resistance and impact resistance. The sealing method is not particularly limited, and for example, the laminated body after firing may be sealed with a resin. Further, an insulating paste having an insulating property such as Al 2 O 3 may be applied or dip-coated around the laminate, and the insulating paste may be sealed by heat treatment.

以上、本発明に係る実施形態について詳細に説明したが、前記の実施形態に限定されるものではなく、種々変形可能である。 Although the embodiment according to the present invention has been described in detail above, the embodiment is not limited to the above embodiment and can be variously modified.

以下、前記の実施形態に基づいて、さらに実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されない。なお、ペーストの作製における材料の仕込み量の「部」表示は、断りのない限り、「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples based on the above-described embodiment, but the present invention is not limited to these Examples. In addition, unless otherwise specified, the "parts" indication of the amount of the material charged in the preparation of the paste means "parts by mass".

(実施例1)
(活物質の作製)
活物質として、以下の方法で作製したLi1.2Ti1.80.2(PO、Li1.4Ti1.60.4(PO、Li1.6Ti1.40.6(PO、Li1.8Ti1.20.8(PO、LiTiV(PO、Li2.2Ti0.81.2(PO、Li2.4Ti0.61.4(PO、L2.6Ti0.41.6(PO、Li(PO、を用いた。その作製方法としては、LiCOとVとTiOとNHPOとを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥してそれぞれの活物質粉末を得た。この作製した粉体の組成は、X線回折装置を使用して確認した。なお、TiとVの比率は、VとTiOの値をそれぞれの活物質粉末で調整し、作成した。
(Example 1)
(Preparation of active material)
As active materials, Li 1.2 Ti 1.8 V 0.2 (PO 4 ) 3 , Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 , Li 1.6 prepared by the following method. Ti 1.4 V 0.6 (PO 4 ) 3 , Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 , Li 2 TiV (PO 4 ) 3 , Li 2.2 Ti 0.8 V 1.2 (PO 4 ) 3 , Li 2.4 Ti 0.6 V 1.4 (PO 4 ) 3 , L 2.6 Ti 0.4 V 1.6 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) PO 4 ) 3 , was used. As a method for producing the powder, Li 2 CO 3 , V 2 O 5 , TIO 2 and NH 4 H 2 PO 4 are used as starting materials, wet-mixed with a ball mill for 16 hours, dehydrated and dried, and then the obtained powder is obtained. It was calcined in a nitrogen-hydrogen mixed gas at 850 ° C. for 2 hours. The calcined product was wet-pulverized with a ball mill and then dehydrated and dried to obtain each active material powder. The composition of the prepared powder was confirmed using an X-ray diffractometer. The ratio of Ti and V was prepared by adjusting the values of V 2 O 5 and TiO 2 with the respective active material powders.

(活物質層用ペーストの作製)
各活物質層用ペーストは、ともにLi1.2Ti1.80.2(PO、Li1.4Ti1.60.4(PO、Li1.6Ti1.40.6(PO、Li1.8Ti1.20.8(PO、LiTiV(PO、Li2.2Ti0.81.2(PO、Li2.4Ti0.61.4(PO、Li2.6Ti0.41.6(PO、Li(PO、のそれぞれの粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して、各成分の活物質層用ペーストを作製した。
(Preparation of paste for active material layer)
The pastes for each active material layer are Li 1.2 Ti 1.8 V 0.2 (PO 4 ) 3 , Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 , and Li 1.6 Ti. 1.4 V 0.6 (PO 4 ) 3 , Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 , Li 2 TiV (PO 4 ) 3 , Li 2.2 Ti 0.8 V 1 .2 (PO 4 ) 3 , Li 2.4 Ti 0.6 V 1.4 (PO 4 ) 3 , Li 2.6 Ti 0.4 V 1.6 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) 4 ) To 100 parts of each of the powders of 3 and 3 , 15 parts of ethyl cellulose as a binder and 65 parts of dihydroturpineol as a solvent were added, mixed and dispersed to prepare a paste for an active material layer of each component.

(固体電解質層用ペーストの作製)
固体電解質として、以下の方法で作製したLi1.3Al0.3Ti1.7(POを用いた。その作製方法とは、LiCOとAlとTiOとNHPOを出発材料として、ボールミルで16時間湿式混合を行った後、脱水乾燥し、次いで得られた粉末を800℃で2時間、大気中で仮焼した。仮焼後、ボールミルで16時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の組成がLi1.3Al0.3Ti1.7(POであることは、X線回折装置(XRD)を使用して確認した。
(Preparation of paste for solid electrolyte layer)
As the solid electrolyte, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 prepared by the following method was used. The production method is as follows: Li 2 CO 3 , Al 2 O 3 , TIO 2 and NH 4 H 2 PO 4 are used as starting materials, wet-mixed in a ball mill for 16 hours, dehydrated and dried, and then the obtained powder is obtained. Was calcined in the air at 800 ° C. for 2 hours. After calcination, wet pulverization was performed in a ball mill for 16 hours, and then dehydration drying was performed to obtain a solid electrolyte powder. It was confirmed by using an X-ray diffractometer (XRD) that the composition of the prepared powder was Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 .

次いで、この粉末に、溶媒としてエタノール100部、トルエン200部を加えてボールミルで湿式混合した。その後、ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを作製した。 Next, 100 parts of ethanol and 200 parts of toluene were added as solvents to this powder and wet-mixed with a ball mill. Then, 16 parts of a polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were further added and mixed to prepare a paste for a solid electrolyte layer.

(固体電解質層用シートの作製)
固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシートを成形し、厚さ15μmの固体電解質層用シートを得た。
(Preparation of sheet for solid electrolyte layer)
A sheet of the solid electrolyte layer paste was formed by a doctor blade method using a PET film as a base material to obtain a solid electrolyte layer sheet having a thickness of 15 μm.

(集電体層用ペーストの作製)
集電体として、CuとLi(POとを体積比率で80/20となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて混合・分散し、集電体層用ペーストを作製した。
(Preparation of paste for current collector layer)
As a current collector, Cu and Li 3 V 2 (PO 4 ) 3 are mixed so as to have a volume ratio of 80/20, and then 10 parts of ethyl cellulose as a binder and 50 parts of dihydroterpineol as a solvent are added and mixed. It was dispersed to prepare a paste for the current collector layer.

(マージン層用ペーストの作製)
マージン層用ペーストは、Li1.3Al0.3Ti1.7(POの粉末に、溶媒としてエタノール100部、トルエン100部を加えてボールミルで湿式混合し、次いでポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合してマージン層用ペーストを作製した。
(Preparation of paste for margin layer)
The paste for the margin layer is prepared by adding 100 parts of ethanol and 100 parts of toluene as a solvent to the powder of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and wet-mixing them with a ball mill, and then using a polyvinyl butyl system. 16 parts of the binder and 4.8 parts of benzyl butyl phthalate were further added and mixed to prepare a paste for the margin layer.

(外部電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを混合および分散させて、熱硬化型の外部電極ペーストを作製した。
(Preparation of external electrode paste)
A thermosetting external electrode paste was prepared by mixing and dispersing silver powder, an epoxy resin, and a solvent.

これらのペーストを用いて、以下のようにして全固体電池を作製した。 Using these pastes, an all-solid-state battery was prepared as follows.

(電極層ユニットの作製)
前記の固体電解質層用シート上に、厚さ0.55μmのLi1.2Ti1.80.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、各厚さ0.55μmのLi1.4Ti1.60.4(PO層、Li1.6Ti1.40.6(PO層、Li1.8Ti1.20.8(PO層、LiTiV(PO層、Li2.2Ti0.81.2(PO層、Li2.4Ti0.61.4(PO層、Li2.6Ti0.41.6(PO層、Li(PO層を形成した。その上にスクリーン印刷を用いて厚さ5μmの集電体層を形成し、80℃で10分間乾燥した。さらにその上に、厚さ0.55μmのLi(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、各厚さ0.55μmのLi2.8Ti0.21.8(PO層、Li2.6Ti0.41.6(PO層、Li2.4Ti0.61.4(PO層、Li2.2Ti0.81.2(PO層、LiTiV(PO層、Li1.8Ti1.20.8(PO層、Li1.6Ti1.40.6(PO層、Li1.4Ti1.60.4(PO層、Li1.2Ti1.80.2(PO層を形成することで、固体電解質層用シートに電極層を作製した。次いで、電極層の一端の外周に、スクリーン印刷を用いて前記電極層と略同一平面の高さのマージン層80を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、電極層ユニットのシートを得た。
(Manufacturing of electrode layer unit)
Three layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ) having a thickness of 0.55 μm were printed on the solid electrolyte layer sheet to form the solid electrolyte layer, and dried at 80 ° C. for 10 minutes. On top of that, in the same procedure, each 0.55 μm thick Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers, Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 layers, Li 2 TiV (PO 4 ) 3 layers, Li 2.2 Ti 0.8 V 1.2 (PO 4 ) 3 layers , Li 2.4 Ti 0.6 V 1.4 (PO 4 ) 3 layers, Li 2.6 Ti 0.4 V 1.6 (PO 4 ) 3 layers, Li 3 V 2 (PO 4 ) 3 layers Formed. A current collector layer having a thickness of 5 μm was formed on the current collector layer by screen printing, and dried at 80 ° C. for 10 minutes. Further, 3 layers of Li 3 V 2 (PO 4 ) having a thickness of 0.55 μm were printed and formed on the same layer, and dried at 80 ° C. for 10 minutes. On top of that, in the same procedure, each 0.55 μm thick Li 2.8 Ti 0.2 V 1.8 (PO 4 ) 3 layers, Li 2.6 Ti 0.4 V 1.6 (PO 4 ) 3 layers, Li 2.4 Ti 0.6 V 1.4 (PO 4 ) 3 layers, Li 2.2 Ti 0.8 V 1.2 (PO 4 ) 3 layers, Li 2 TiV (PO 4 ) 3 layers , Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers, Li 1.4 Ti 1.6 V 0. By forming 3 layers of 4 (PO 4 ) and 3 layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ), an electrode layer was prepared on a sheet for a solid electrolyte layer. Next, a margin layer 80 having a height substantially flush with the electrode layer was formed on the outer periphery of one end of the electrode layer by screen printing, and dried at 80 ° C. for 10 minutes. Then, the PET film was peeled off to obtain a sheet of the electrode layer unit.

(積層体の作製)
2つの電極層ユニットを交互にそれぞれの一端が一致しないようにオフセットしながら複数積層し、積層基板を作製した。さら前記積層基板の両主面に、外層として固体電解質シートを複数積層し、500μmの外層を設けた。これを金型プレスにより熱圧着した後、切断して未焼成の全固体電池の積層体を作製した。次いで、前記積層体を脱バイ・焼成することで、全固体電池の積層体を得た。焼成は、窒素中で昇温速度40℃/分で焼成温度830℃まで昇温して、その温度に21分保持し、自然冷却後に取り出した。
(Preparation of laminate)
A plurality of electrode layer units were alternately laminated while being offset so that one ends of the two electrode layer units did not match, to prepare a laminated substrate. Further, a plurality of solid electrolyte sheets were laminated as outer layers on both main surfaces of the laminated substrate, and an outer layer of 500 μm was provided. This was thermocompression bonded by a die press and then cut to prepare an unfired all-solid-state battery laminate. Next, the laminate was debuy-fired to obtain an all-solid-state battery laminate. The calcination was carried out in nitrogen at a calcination rate of 40 ° C./min to a calcination temperature of 830 ° C., held at that temperature for 21 minutes, and taken out after natural cooling.

(外部電極形成工程)
前記全固体電池の積層体の端面に外部電極ペーストを塗布し、150℃、30分の熱硬化を行い、一対の外部電極を形成した。
(External electrode forming process)
An external electrode paste was applied to the end faces of the laminated body of the all-solid-state battery, and thermosetting was performed at 150 ° C. for 30 minutes to form a pair of external electrodes.

得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V)を算出すると、表1に記載の通りとなった。 For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(実施例2)
実施例2に係る全固体電池は、前記の固体電解質層用シート上に、厚さ0.65μmのLi1.2Ti1.80.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、各厚さ0.65μmのLi1.4Ti1.60.4(PO層、Li1.6Ti1.40.6(PO層、厚さ0.75μmのLi1.8Ti1.20.8(PO層、各厚さ1.15μmのLiTiV(PO層、Li2.2Ti0.81.2(PO層、を形成した。その上にスクリーン印刷を用いて厚さ5μmの集電体層を形成し、80℃で10分間乾燥した。さらにその上に、厚さ1.15μmのLi2.2Ti0.81.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、厚さ1.15μmのLiTiV(PO層、厚さ0.75μmのLi1.8Ti1.20.8(PO層、各厚さ0.65μmのLi1.6Ti1.40.6(PO層、Li1.4Ti1.60.4(PO層、Li1.2Ti1.80.2(PO層を形成することで、固体電解質層用シートに電極層を作製した。それ以外は、実施例1と同様にして全固体電池を作製した。得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V) を算出すると、表1に記載の通りとなった。
(Example 2)
The all-solid-state battery according to the second embodiment is formed by printing three layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ) having a thickness of 0.65 μm on the above-mentioned sheet for the solid electrolyte layer. , 80 ° C. for 10 minutes. On top of that, in the same procedure, each 0.65 μm thick Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers, 0.75 μm thick Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 layers, 1.15 μm thick Li 2 TiV (PO 4 ) 3 layers, Li 2.2 Ti Three layers of 0.8 V 1.2 (PO 4 ) were formed. A current collector layer having a thickness of 5 μm was formed on the current collector layer by screen printing, and dried at 80 ° C. for 10 minutes. Further, three layers of Li 2.2 Ti 0.8 V 1.2 (PO 4 ) having a thickness of 1.15 μm were printed and formed on the same layer, and dried at 80 ° C. for 10 minutes. The same procedure thereon, Li 2 TiV (PO 4) 3 -layer thickness 1.15μm, Li 1.8 Ti 1.2 V 0.8 (PO 4) having a thickness of 0.75 .mu.m 3 layers, each Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers with a thickness of 0.65 μm, Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 layers, Li 1.2 Ti 1 By forming three layers of .8 V 0.2 (PO 4 ), an electrode layer was prepared on a sheet for a solid electrolyte layer. Other than that, an all-solid-state battery was produced in the same manner as in Example 1. For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(実施例3)
実施例3に係る全固体電池は、前記の固体電解質層用シート上に、厚さ0.65μmのLi1.2Ti1.80.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、厚さ0.65μmのLi1.4Ti1.60.4(PO層、各厚さ0.75μmのLi1.6Ti1.40.6(PO層、Li1.8Ti1.20.8(PO層、各厚さ1.10μmのLiTiV(PO層、Li2.2Ti0.81.2(PO層、を形成した。その上にスクリーン印刷を用いて厚さ5μmの集電体層を形成し、80℃で10分間乾燥した。さらにその上に、厚さ1.10μmのLi2.2Ti0.81.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、厚さ1.10μmのLiTiV(PO層、各厚さ0.75μmのLi1.8Ti1.20.8(PO層、Li1.6Ti1.40.6(PO層、各厚さ0.65μmのLi1.4Ti1.60.4(PO層、Li1.2Ti1.80.2(PO層を形成することで、固体電解質層用シートに電極層を作製した。それ以外は、実施例1と同様にして全固体電池を作製した。得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V) を算出すると、表1に記載の通りとなった。
(Example 3)
The all-solid-state battery according to the third embodiment is formed by printing three layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ) having a thickness of 0.65 μm on the above-mentioned sheet for the solid electrolyte layer. , 80 ° C. for 10 minutes. On top of that, follow the same procedure, with 3 layers of Li 1.4 Ti 1.6 V 0.4 (PO 4 ) with a thickness of 0.65 μm, and Li 1.6 Ti 1.4 V 0 with a thickness of 0.75 μm each. .6 (PO 4 ) 3 layers, Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 layers, each 1.10 μm thickness Li 2 TiV (PO 4 ) 3 layers, Li 2.2 Ti Three layers of 0.8 V 1.2 (PO 4 ) were formed. A current collector layer having a thickness of 5 μm was formed on the current collector layer by screen printing, and dried at 80 ° C. for 10 minutes. Further, three layers of Li 2.2 Ti 0.8 V 1.2 (PO 4 ) having a thickness of 1.10 μm were printed and formed on the same layer, and dried at 80 ° C. for 10 minutes. The same procedure thereon, Li 2 TiV (PO 4) 3 -layer thickness 1.10μm, Li 1.8 Ti 1.2 V 0.8 (PO 4) of the thickness of 0.75 .mu.m 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers, each 0.65 μm thick Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 layers, Li 1.2 Ti By forming three layers of 1.8 V 0.2 (PO 4 ), an electrode layer was prepared on a sheet for a solid electrolyte layer. Other than that, an all-solid-state battery was produced in the same manner as in Example 1. For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(実施例4)
実施例4に係る全固体電池は、実施例3に記載の積層体の焼結条件を変更し、より還元雰囲気に、昇温速度を0.50倍に、焼成温度を850℃に変更した以外は、実施例1と同様にして全固体電池を作製した。得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V) を算出すると、表1に記載の通りとなった。
(Example 4)
In the all-solid-state battery according to Example 4, the sintering conditions of the laminate described in Example 3 were changed to create a more reducing atmosphere, the temperature rising rate was changed to 0.50 times, and the firing temperature was changed to 850 ° C. Made an all-solid-state battery in the same manner as in Example 1. For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(比較例1)
比較例1に係る全固体電池は、前記の固体電解質層用シート上に、厚さ1.10μmのLi1.2Ti1.80.2(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、各厚さ0.55μmのLi1.4Ti1.60.4(PO層、Li1.6Ti1.40.6(PO層、各厚さ0.65μmのLi1.8Ti1.20.8(PO層、LiTiV(PO層、Li2.2Ti0.81.2(PO層、Li2.4Ti0.61.4(PO層、を形成した。その上にスクリーン印刷を用いて厚さ5μmの集電体層を形成し、80℃で10分間乾燥した。さらにその上に、厚さ0.65μmのLi2.4Ti0.61.4(PO層を印刷して形成し、80℃で10分間乾燥した。その上に同様の手順で、各厚さ0.65μmのLi2.2Ti0.81.2(PO層、LiTiV(PO層、Li1.8Ti1.20.8(PO層、各厚さ0.55μmのLi1.6Ti1.40.6(PO層、Li1.4Ti1.60.4(PO層、厚さ1.10μmのLi1.2Ti1.80.2(PO層を形成することで、固体電解質層用シートに電極層を作製した。それ以外は、実施例1と同様にして全固体電池を作製した。得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V) を算出すると、表1に記載の通りとなった。
(Comparative Example 1)
The all-solid-state battery according to Comparative Example 1 was formed by printing three layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ) having a thickness of 1.10 μm on the above-mentioned sheet for the solid electrolyte layer. , 80 ° C. for 10 minutes. On top of that, in the same procedure, each 0.55 μm thick Li 1.4 Ti 1.6 V 0.4 (PO 4 ) 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers, each 0.65 μm thick Li 1.8 Ti 1.2 V 0.8 (PO 4 ) 3 layers, Li 2 TiV (PO 4 ) 3 layers, Li 2.2 Ti 0.8 V 1. 2 (PO 4 ) 3 layers and Li 2.4 Ti 0.6 V 1.4 (PO 4 ) 3 layers were formed. A current collector layer having a thickness of 5 μm was formed on the current collector layer by screen printing, and dried at 80 ° C. for 10 minutes. Further, three layers of Li 2.4 Ti 0.6 V 1.4 (PO 4 ) having a thickness of 0.65 μm were printed and formed on the same layer, and dried at 80 ° C. for 10 minutes. On top of that, in the same procedure, Li 2.2 Ti 0.8 V 1.2 (PO 4 ) 3 layers, Li 2 TiV (PO 4 ) 3 layers, Li 1.8 Ti 1 with each thickness of 0.65 μm. .2 V 0.8 (PO 4 ) 3 layers, Li 1.6 Ti 1.4 V 0.6 (PO 4 ) 3 layers each 0.55 μm thick, Li 1.4 Ti 1.6 V 0. An electrode layer was prepared on the solid electrolyte layer sheet by forming 3 layers of 4 (PO 4 ) and 3 layers of Li 1.2 Ti 1.8 V 0.2 (PO 4 ) having a thickness of 1.10 μm. Other than that, an all-solid-state battery was produced in the same manner as in Example 1. For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(比較例2)
比較例2に係る全固体電池は、積層体の焼結条件を変更し、昇温速度を1.5倍に、保持時間を0.67倍に変更した以外は、実施例1と同様にして全固体電池を作製した。得られた全固体電池について、活物質と固体電解質との界面をSEM―EDSおよびTEM−EDSにより分析し、界面から集電体層に向かう活物質に含まれるTiとVの原子量比 Ti/(Ti+V) を算出すると、表1に記載の通りとなった。
(Comparative Example 2)
The all-solid-state battery according to Comparative Example 2 was the same as in Example 1 except that the sintering conditions of the laminate were changed, the heating rate was changed to 1.5 times, and the holding time was changed to 0.67 times. An all-solid-state battery was manufactured. For the obtained all-solid-state battery, the interface between the active material and the solid electrolyte was analyzed by SEM-EDS and TEM-EDS, and the atomic weight ratio of Ti to V contained in the active material from the interface toward the current collector layer Ti / ( When Ti + V) was calculated, it was as shown in Table 1.

(電池評価)
本実施例ならびに比較例で作製した全固体電池は、下記の電池特性について評価することができる。
(Battery evaluation)
The all-solid-state batteries produced in this example and comparative examples can be evaluated for the following battery characteristics.

[充放電試験]
本実施例ならびに比較例で作製した全固体電池は、例えば以下に示す充放電条件によって充放電サイクル特性を評価することができる。充放電電流の表記は、以降C(シー)レート表記を使う。CレートはnC(μA)と表記され(nは数値)、公称容量(μAh)を1/n(h)で充放電できる電流を意味する。例えば1Cとは、1hで公称容量を充電できる充放電電流であり、2Cであれば、0.5hで公称容量を充電できる充放電電流を意味する。例えば、公称容量100μAhの全固体電池の場合、0.1Cの電流は10μA(計算式100μA×0.1=10μA)である。同様に0.2Cの電流は20μA、1Cの電流は100μAである。
[Charge / discharge test]
The charge / discharge cycle characteristics of the all-solid-state batteries produced in this example and the comparative example can be evaluated, for example, under the charge / discharge conditions shown below. For the notation of charge / discharge current, the C (sea) rate notation will be used hereafter. The C rate is expressed as nC (μA) (n is a numerical value) and means a current capable of charging / discharging the nominal capacitance (μAh) at 1 / n (h). For example, 1C means a charge / discharge current capable of charging the nominal capacity in 1h, and 2C means a charge / discharge current capable of charging the nominal capacity in 0.5h. For example, in the case of an all-solid-state battery having a nominal capacity of 100 μAh, the current of 0.1 C is 10 μA (calculation formula 100 μA × 0.1 = 10 μA). Similarly, the current of 0.2C is 20 μA, and the current of 1C is 100 μA.

充放電試験条件は、25℃の環境下において、0.2Cレートの定電流で1.6Vの電池電圧になるまで定電流充電(CC充電)を行い、その後、0.2Cレートの定電流で0Vの電池電圧になるまで放電させた(CC放電)。前記の充電と放電を1サイクルとし、これを10サイクル繰り返した。前記1サイクル目の放電容量を理論容量維持率として評価した。その後、1Cレートの定電流で1.6Vの電池電圧になるまで定電流充電(CC充電)を行い、その後、1Cレートの定電流で0Vの電池電圧になるまで放電させた(CC放電)。Cレート変更後の放電容量維持率をレート特性として評価した。なお、本実施形態における初期放電容量、レート特性は、以下の計算式によって算出した。
理論容量維持率(%)=(1サイクル目の放電容量÷活物質量より算出される全固体電池の理論容量)×100
Cレート変更後の放電容量維持率(%)=(1CレートでのCC放電時の容量÷0.2CレートでのCC放電時の容量)×100
The charge / discharge test conditions are: in an environment of 25 ° C., constant current charging (CC charging) is performed at a constant current of 0.2 C rate until the battery voltage reaches 1.6 V, and then at a constant current of 0.2 C rate. It was discharged until the battery voltage reached 0 V (CC discharge). The charging and discharging were set as one cycle, and this was repeated for 10 cycles. The discharge capacity in the first cycle was evaluated as the theoretical capacity retention rate. Then, constant current charging (CC charging) was performed until the battery voltage reached 1.6 V at a constant current of 1 C rate, and then discharged until the battery voltage reached 0 V at a constant current of 1 C rate (CC discharge). The discharge capacity retention rate after changing the C rate was evaluated as a rate characteristic. The initial discharge capacity and rate characteristics in this embodiment were calculated by the following formulas.
Theoretical capacity retention rate (%) = (Theoretical capacity of the all-solid-state battery calculated from the discharge capacity of the first cycle ÷ the amount of active material) x 100
Discharge capacity retention rate after changing C rate (%) = (Capacity during CC discharge at 1 C rate ÷ Capacity during CC discharge at 0.2 C rate) x 100

(結果)
表1に実施例1〜4ならびに比較例1、2に係る全固体電池の理論容量維持率およびCレート変更後の放電容量維持率の結果を示す。実施例1〜4に係る全固体電池では、比較例に係る全固体電池よりも優れた理論容量維持率、レート特性が確認された。

Figure 2020149782
(result)
Table 1 shows the results of the theoretical capacity retention rate and the discharge capacity retention rate after changing the C rate of the all-solid-state batteries according to Examples 1 to 4 and Comparative Examples 1 and 2. In the all-solid-state batteries according to Examples 1 to 4, it was confirmed that the theoretical capacity retention rate and the rate characteristics were superior to those of the all-solid-state batteries according to the comparative examples.
Figure 2020149782

以上、本発明を詳細に説明したが、前記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。 Although the present invention has been described in detail above, the embodiments and examples are merely examples, and the inventions disclosed herein include various modifications and modifications of the above-mentioned specific examples.

1 …全固体電池
20……積層体
30……正極
31………正極集電体層
32………正極活物質層
40……負極
41………負極集電体層
42………負極活物質層
50……固体電解質層
60……正極外部電極
70……負極外部電極
80……マージン層
90……界面
DR1……深さ方向
1 ... All-solid-state battery 20 ... Laminated body 30 ... Positive electrode 31 ......... Positive electrode current collector layer 32 ......... Positive electrode active material layer 40 ... Negative electrode 41 ......... Negative electrode current collector layer 42 ... Material layer 50 ... Solid electrolyte layer 60 ... Positive electrode external electrode 70 ... Negative electrode external electrode 80 ... Margin layer 90 ... Interface DR1 ... Depth direction

Claims (1)

集電体層と活物質層とが積層された電極層が、固体電解質層を介して複数積層された積層体と、
前記固体電解質層と前記活物質層との界面と、を含み、
前記活物質層はTiとVと、を含み、
積層方向と同一方向であって、且つ前記界面から前記界面に最も近い前記集電体層に向かう方向を深さ方向と定義した際に、
式(1)および(2)を満たす、全固体電池。
(R1−0.20d)≦R2≦(R1−0.15d)…(1)
0.0<d≦3.0…(2)
(dは、前記深さ方向における前記界面からの距離(μm)を示し、
R1は、前記界面における前記活物質層中のTiとVの原子量比(Ti/(Ti+V))を表し、
R2は、dの地点における前記活物質層中のTiとVの原子量比(Ti/(Ti+V))を表す。)
A plurality of electrode layers in which a current collector layer and an active material layer are laminated are laminated via a solid electrolyte layer, and a laminate.
Includes an interface between the solid electrolyte layer and the active material layer.
The active material layer contains Ti and V, and contains
When the direction from the interface to the current collector layer closest to the interface is defined as the depth direction in the same direction as the stacking direction,
An all-solid-state battery satisfying the formulas (1) and (2).
(R1-0.20d) ≤ R2 ≤ (R1-0.15d) ... (1)
0.0 <d ≤ 3.0 ... (2)
(D indicates the distance (μm) from the interface in the depth direction.
R1 represents the atomic weight ratio (Ti / (Ti + V)) of Ti and V in the active material layer at the interface.
R2 represents the atomic weight ratio (Ti / (Ti + V)) of Ti and V in the active material layer at the point d. )
JP2019043643A 2019-03-11 2019-03-11 All-solid battery Active JP7159924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043643A JP7159924B2 (en) 2019-03-11 2019-03-11 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043643A JP7159924B2 (en) 2019-03-11 2019-03-11 All-solid battery

Publications (2)

Publication Number Publication Date
JP2020149782A true JP2020149782A (en) 2020-09-17
JP7159924B2 JP7159924B2 (en) 2022-10-25

Family

ID=72430683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043643A Active JP7159924B2 (en) 2019-03-11 2019-03-11 All-solid battery

Country Status (1)

Country Link
JP (1) JP7159924B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143027A1 (en) * 2007-05-11 2008-11-27 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001596A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001595A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143027A1 (en) * 2007-05-11 2008-11-27 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP2016001598A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001596A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery
JP2016001595A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP7159924B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP6651708B2 (en) Lithium ion secondary battery
JP6927289B2 (en) All-solid-state secondary battery
JP6455807B2 (en) Lithium ion secondary battery
CN109792079B (en) All-solid lithium ion secondary battery
JP6623542B2 (en) Lithium ion secondary battery
US11532812B2 (en) All-solid lithium ion secondary battery
US10854917B2 (en) All solid-state lithium ion secondary battery
JPWO2018062079A1 (en) Active material and all solid lithium ion secondary battery
WO2020184652A1 (en) Laminated all-solid secondary cell and method for manufacturing same
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP7275614B2 (en) All-solid secondary battery
WO2020138040A1 (en) Solid-state battery
CN113474917B (en) All-solid battery
WO2021149460A1 (en) Lithium ion secondary battery
WO2020189599A1 (en) All-solid-state secondary battery
WO2020145226A1 (en) All-solid battery
JP6777181B2 (en) Lithium ion secondary battery
WO2020105662A1 (en) All-solid-state battery
JP7159924B2 (en) All-solid battery
US12040495B2 (en) All-solid-state battery
JP7517995B2 (en) All-solid-state battery
US20240128516A1 (en) All-solid-state secondary battery
WO2021149458A1 (en) Stacked all-solid-state battery
WO2023063360A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150