JP2020149186A - Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method - Google Patents

Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method Download PDF

Info

Publication number
JP2020149186A
JP2020149186A JP2019044580A JP2019044580A JP2020149186A JP 2020149186 A JP2020149186 A JP 2020149186A JP 2019044580 A JP2019044580 A JP 2019044580A JP 2019044580 A JP2019044580 A JP 2019044580A JP 2020149186 A JP2020149186 A JP 2020149186A
Authority
JP
Japan
Prior art keywords
image
orientation
unit
learning
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019044580A
Other languages
Japanese (ja)
Inventor
智博 鳴海
Tomohiro Narumi
智博 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019044580A priority Critical patent/JP2020149186A/en
Publication of JP2020149186A publication Critical patent/JP2020149186A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a position attitude estimation device that can accurately acquire a position attitude at a construction site while suppressing the increase of weight.SOLUTION: A position attitude estimation device includes: an image acquisition unit that acquires image data photographed in any position attitude at a construction site; and a position attitude information calculation unit that calculates position attitude information corresponding to the image data, using a learned model which has learned the relation between either of the position attitudes at the construction site and an image viewed from a first-person eye point from the position attitude among in three-dimensional model data of a construction object at the construction site.SELECTED DRAWING: Figure 1

Description

本発明は、位置姿勢推定装置、学習装置、移動ロボット、位置姿勢推定方法、学習方法に関する。 The present invention relates to a position / posture estimation device, a learning device, a mobile robot, a position / posture estimation method, and a learning method.

建設現場の生産性向上のため、日々の出来形管理などにLIDAR(Light Detection and Ranging)を用いたSLAM (Simultaneous Localization and Mapping)技術、あるいはカメラを用いたVisual SLAM技術などといった、自己位置姿勢推定および現場管理方法が活用されつつある。
LIDARは、直接距離を測定することができるため、写真測量(Structure from Motion)技術に比べて形状の精度が高いことが利点である。
例えば、LIDARによって、毎日あるいは数日毎に、建設現場内の施工対象物の形状を測定することで、測定時において施工対象物がどのような段階まで施工されているか、また、施工状況がどのような状態であるかを把握することができる。これにより、施工の進捗管理をすることができ、また、施工状況に基づく出来形を推定することで出来形を管理することができる。
自己位置姿勢推定技術を、例えば、建設現場内において用いられる自動走行ロボットの現在位置および姿勢の推定に適用した位置姿勢推定装置がある(例えば特許文献1)。
Self-position posture estimation such as SLAM (Simultaneus Localization and Mapping) technology using LIDAR (Light Detection and Ranger) or Visual SLAM technology using a camera to improve the productivity of construction sites. And site management methods are being utilized.
Since LIDAR can directly measure the distance, it has an advantage that the shape accuracy is high as compared with the photogrammetry (Structure from Motion) technique.
For example, by measuring the shape of the construction object in the construction site every day or every few days with LIDAR, to what stage the construction object is constructed at the time of measurement and how the construction status is. It is possible to grasp whether it is in such a state. As a result, the progress of construction can be managed, and the finished shape can be managed by estimating the finished shape based on the construction status.
There is a position / posture estimation device that applies the self-position / posture estimation technique to, for example, the estimation of the current position and posture of an automatic traveling robot used in a construction site (for example, Patent Document 1).

特開2018−164966号公報JP-A-2018-164966

しかしながら、LIDARは、機器が一般的に高価で重いため、軽量なロボット(例えば小型のロボットやドローン)などに搭載することができない。
また、LIDARは、取得した点群のRGB情報が含まれていない欠点がある。
However, LIDAR cannot be mounted on a lightweight robot (for example, a small robot or a drone) because the equipment is generally expensive and heavy.
In addition, LIDAR has a drawback that it does not include RGB information of the acquired point cloud.

一方、Visual SLAMは、RGB情報が含まれているが、視差による測量であるため、LIDARに比べて一般的に測定精度が悪いという欠点がある。 On the other hand, Visual SLAM contains RGB information, but has a drawback that the measurement accuracy is generally lower than that of LIDAR because it is a survey by parallax.

施工状況の管理や出来形管理を行うために、施工対象物の形状測定を移動ロボットに行わせようとすると、自己の位置姿勢を精度良く推定する必要がある。すなわち、自己位置姿勢の推定精度が低い場合には、出来形管理の精度も低下してしまう。また、移動ロボットが移動するためには、機体の重量が増大しないことが望ましい。 When a mobile robot is to measure the shape of a construction object in order to manage the construction status and the finished shape, it is necessary to accurately estimate its own position and orientation. That is, when the estimation accuracy of the self-position posture is low, the accuracy of the finished product management is also lowered. Further, in order for the mobile robot to move, it is desirable that the weight of the machine body does not increase.

本発明は、このような課題に鑑みてなされたものであり、重量の増大を抑えつつ、かつ、精度よく建設現場における位置姿勢を求めることができる位置姿勢推定装置、学習装置、移動ロボット、位置姿勢推定方法、学習方法を提供することにある。 The present invention has been made in view of such a problem, and is a position / posture estimation device, a learning device, a mobile robot, and a position capable of accurately obtaining a position / posture at a construction site while suppressing an increase in weight. The purpose is to provide a posture estimation method and a learning method.

上述した課題を解決するために、本発明の一態様は、建設現場内における何れかの位置姿勢において撮影された画像データを取得する撮像画像取得部と、前記建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢と当該位置姿勢から一人称視点で見たときの画像との関係を学習した学習済みモデルを用いて、前記画像データに対応する位置姿勢情報を求める位置姿勢情報算出部と、を有する位置姿勢推定装置である。 In order to solve the above-mentioned problems, one aspect of the present invention is a three-dimensional image acquisition unit that acquires image data taken at any position or posture in a construction site, and a construction object at the construction site. Positions for obtaining position / orientation information corresponding to the image data using a learned model that has learned the relationship between the position / orientation of any of the construction sites and the image when viewed from the first-person viewpoint from the position / orientation in the model data. It is a position / posture estimation device having a posture information calculation unit.

また、本発明の一態様は、建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢を表す位置姿勢情報を取得する位置姿勢情報取得部と、一人称視点で前記三次元モデルデータにおいて前記位置姿勢から見たときの画像を取得する画像取得部と、前記位置姿勢情報と前記画像との関係性を表す条件を学習する学習部と、を有する学習装置である。 Further, one aspect of the present invention includes a position / orientation information acquisition unit that acquires position / orientation information representing the position / orientation of any of the construction sites in the three-dimensional model data of the construction object at the construction site, and the tertiary from the first-person viewpoint. It is a learning device having an image acquisition unit that acquires an image when viewed from the position / orientation in the original model data, and a learning unit that learns a condition indicating a relationship between the position / orientation information and the image.

また、本発明の一態様は、上述の位置姿勢推定装置と、回避対象を表す回避対象画像データと回避対象であるか否かを識別する識別情報との関係を学習した学習済みモデルを用いて、前記撮像画像取得部によって取得された画像に回避対象である物体が含まれているか否かを判定する判定部と、前記取得された画像に、前記回避対象画像に対応する物体が含まれている場合には、当該を迂回する経路である迂回経路を生成する経路生成部と、前記位置姿勢情報算出部によって求められた位置姿勢情報が前記生成された迂回経路に沿うように移動する移動制御部と、を有する移動ロボットである。 Further, one aspect of the present invention uses the above-mentioned position / orientation estimation device and a trained model in which the relationship between the avoidance target image data representing the avoidance target and the identification information for identifying whether or not the avoidance target is learned is used. A determination unit for determining whether or not the image acquired by the captured image acquisition unit includes an object to be avoided, and the acquired image includes an object corresponding to the avoidance target image. If so, a route generation unit that generates a detour route that bypasses the relevant route and a movement control that moves the position / attitude information obtained by the position / orientation information calculation unit along the generated detour route. It is a mobile robot having a unit and.

また、本発明の一態様は、撮像画像取得部が、建設現場内における何れかの位置姿勢において撮影された画像データを取得し、位置姿勢情報算出部が、前記建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢と当該位置姿勢から一人称視点で見たときの画像との関係を学習した学習済みモデルを用いて、前記画像データに対応する位置姿勢情報を求める位置姿勢推定方法である。 Further, in one aspect of the present invention, the captured image acquisition unit acquires image data taken at any position and orientation in the construction site, and the position and orientation information calculation unit is a tertiary of the construction object at the construction site. Obtain the position / orientation information corresponding to the image data by using the trained model in which the relationship between the position / orientation of any of the construction sites and the image when viewed from the first-person viewpoint is learned in the original model data. This is a position / orientation estimation method.

また、本発明の一態様は、位置姿勢情報取得部が、建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢を表す位置姿勢情報を取得し、画像取得部が、一人称視点で前記三次元モデルデータにおいて前記位置姿勢から見たときの画像を取得し、学習部が、前記位置姿勢情報と前記画像との関係性を表す条件を学習する学習方法である。 Further, in one aspect of the present invention, the position / orientation information acquisition unit acquires the position / orientation information indicating the position / orientation of any of the construction sites in the three-dimensional model data of the construction object at the construction site, and the image acquisition unit This is a learning method in which an image viewed from the position / orientation in the three-dimensional model data is acquired from the first-person viewpoint, and the learning unit learns a condition representing the relationship between the position / orientation information and the image.

以上説明したように、この発明によれば、位置姿勢情報を推定するために必要な機器の重量が増大してしまうことを抑えつつ、かつ、精度よく建設現場における位置姿勢を求めることができる。 As described above, according to the present invention, it is possible to accurately obtain the position / orientation at the construction site while suppressing the increase in the weight of the device required for estimating the position / attitude information.

この発明の一実施形態による状況管理システム1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the situation management system 1 by one Embodiment of this invention. 状況管理システム1の処理の流れを説明する図である。It is a figure explaining the process flow of the situation management system 1. 自律移動ロボット40の処理を説明するフローチャートである。It is a flowchart explaining the process of the autonomous mobile robot 40.

以下、本発明の一実施形態による位置姿勢推定装置を用いた状況管理システム1について図面を参照して説明する。
図1は、この発明の一実施形態による状況管理システム1の構成を示す概略ブロック図である。
状況管理システム1は、三次元モデル画像生成装置10、一人称視点画像データベース20、学習装置30、自律移動ロボット40、状況管理装置50を有する。
Hereinafter, the situation management system 1 using the position / orientation estimation device according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram showing a configuration of a situation management system 1 according to an embodiment of the present invention.
The situation management system 1 includes a three-dimensional model image generation device 10, a first-person viewpoint image database 20, a learning device 30, an autonomous mobile robot 40, and a situation management device 50.

三次元モデル画像生成装置10は、建設現場の施工対象物の三次元モデルデータを記憶している。三次元モデル画像生成装置10は、建設現場の施工対象物の三次元モデルデータを用い、当該建設現場のいずれかの位置姿勢から一人称視点で見たときの画像を生成する。一人称視点での画像は、建設現場内において異なる多数の地点において、それぞれ生成される。例えば、一人称視点での画像を生成する位置姿勢は、施工対象物において自律移動ロボット40が移動する経路となりうる位置姿勢であればいずれの位置姿勢であってもよい。施工対象物は、例えば構造物あるいは建築物であってもよい。施工対象物がビル等である場合には、あるフロアにおける種々の場所について一人称視点での画像を、各フロアのそれぞれにおいて生成する。 The three-dimensional model image generation device 10 stores three-dimensional model data of a construction object at a construction site. The three-dimensional model image generation device 10 uses the three-dimensional model data of the construction object at the construction site to generate an image when viewed from a first-person viewpoint from any position or orientation of the construction site. Images from a first-person perspective are generated at a number of different points within the construction site. For example, the position / orientation for generating the image from the first-person viewpoint may be any position / orientation as long as it can be a path for the autonomous mobile robot 40 to move in the construction object. The construction object may be, for example, a structure or a building. When the object to be constructed is a building or the like, images from a first-person viewpoint are generated for various places on a certain floor on each floor.

三次元モデル画像生成装置10は、一人称視点での画像を生成する場合、施工途中の段階毎における三次元モデルデータのそれぞれにおいて、一人称視点での画像を生成する。これにより、施工途中において施工対象物がどのように見えるかを示した画像を生成することができる。 When the three-dimensional model image generation device 10 generates an image from the first-person viewpoint, the three-dimensional model image generation device 10 generates an image from the first-person viewpoint in each of the three-dimensional model data at each stage during construction. As a result, it is possible to generate an image showing what the construction object looks like during the construction.

また、三次元モデル画像生成装置10は、画像を生成したときの一人称視点における位置姿勢を示す位置姿勢情報を生成する。この位置姿勢情報は、緯度、経度、高度、姿勢角を含む情報であり、一人称視点で見たときの建設現場における位置姿勢を特定することができる。
また、三次元モデル画像生成装置10は、例えば、緯度、経度、高度、姿勢角を表す座標系と、三次元モデルの座標系とを重ね合わせる機能を有しており、この重ね合わせを行うことで、三次元モデルにおける施工対象物におけるいずれの位置姿勢についても、緯度、経度、高度、姿勢角を把握できるようになっている。
In addition, the three-dimensional model image generation device 10 generates position / orientation information indicating the position / orientation in the first-person viewpoint when the image is generated. This position / attitude information includes latitude, longitude, altitude, and attitude angle, and can specify the position / attitude at the construction site when viewed from the first-person viewpoint.
Further, the three-dimensional model image generation device 10 has, for example, a function of superimposing a coordinate system representing latitude, longitude, altitude, and attitude angle on the coordinate system of the three-dimensional model, and this superposition is performed. Therefore, it is possible to grasp the latitude, longitude, altitude, and attitude angle for any position and orientation of the construction object in the three-dimensional model.

ここで生成される画像は、全天球が望ましいが、画角の広いカメラを模擬したものであっても良い。全天球あるいは画角の広いカメラを用いることで、自律移動ロボット40が撮影を行った向きがいずれの方向であっても位置姿勢を推定することが可能な画像を得ることができる。 The image generated here is preferably a spherical image, but may be a simulation of a camera having a wide angle of view. By using a spherical camera or a camera having a wide angle of view, it is possible to obtain an image capable of estimating the position and orientation regardless of the direction in which the autonomous mobile robot 40 has taken a picture.

三次元モデル画像生成装置10は、当該建設現場のいずれかの位置姿勢から一人称視点で見たときの画像データと、当該画像を生成したときの一人称視点における位置姿勢を示す位置姿勢情報とを含む画像情報を出力する。
三次元モデル画像生成装置10は、三次元モデルデータとして、BIM(Building Information Modeling)によって表された三次元モデルデータまたはCAD(computer-aided design)によって表された三次元モデルデータを用いてもよい。
The three-dimensional model image generation device 10 includes image data when viewed from any position / orientation of the construction site from a first-person viewpoint, and position / orientation information indicating a position / orientation at the first-person viewpoint when the image is generated. Output image information.
The three-dimensional model image generation device 10 may use the three-dimensional model data represented by BIM (Building Information Modeling) or the three-dimensional model data represented by CAD (computer-aided design) as the three-dimensional model data. ..

一人称視点画像データベース20は、三次元モデル画像生成装置10から出力される画像情報(画像データと位置姿勢情報との組み合わせ)を記憶する。 The first-person viewpoint image database 20 stores image information (combination of image data and position / orientation information) output from the three-dimensional model image generation device 10.

学習装置30は、三次元モデル画像生成装置10によって、建設現場におけるあらゆる点における十分な量の画像が生成された後、深層学習技術により画像と当該画像の位置姿勢情報とを入力し、画像と位置姿勢(緯度・経度・高度・姿勢角)との関係性を表す条件を学習する。
学習装置30は、画像解析用ワークステーション、小型計算機等を組み合わせて構成されてもよい。
The learning device 30 uses the three-dimensional model image generation device 10 to generate a sufficient amount of images at all points at the construction site, and then inputs the image and the position / orientation information of the image by the deep learning technique to obtain the image. Learn the conditions that express the relationship with the position and orientation (latitude, longitude, altitude, attitude angle).
The learning device 30 may be configured by combining a workstation for image analysis, a small computer, and the like.

より具体的に、学習装置30は、画像情報取得部31、位置姿勢情報学習部32、回避対象学習部33、出力部34を有する。
画像情報取得部31は、一人称視点画像データベースから画像情報を取得する。この画像情報には、建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢を表す位置姿勢情報と、一人称視点で三次元モデルデータにおいて前記位置姿勢から見たときの画像データとが含まれる。この画像情報は、建設現場における様々な位置姿勢毎の画像データである。
位置姿勢情報学習部32は、画像情報取得部31によって取得された画像情報を用いて、学習アルゴリズムに基づいて、位置姿勢情報と画像との関係性を表す条件を学習し、学習済みモデルを生成する。
例えば、位置姿勢情報学習部32は、画像情報に含まれる画像データに対して画像処理を行い、画像データに含まれる物体(柱、梁、壁、床、天井、窓、設備、什器等)の形状(輪郭など)、色、サイズ、光の反射度合い等について解析することで、これらを特徴量(特徴データ)として取得する。位置姿勢情報学習部32は、この特徴量と位置姿勢情報との関係を学習し、学習済モデルを生成する。ここで、位置姿勢情報学習部32における学習は、例えば、特徴量と、位置姿勢情報との関係性を示す条件を学習するようにしてもよい。位置姿勢情報学習部32におけるこの条件とは、画像データと位置姿勢情報との相関性を表すモデル構造、あるいは、当該モデル構造を決定する種々のパラメータである。
More specifically, the learning device 30 includes an image information acquisition unit 31, a position / posture information learning unit 32, an avoidance target learning unit 33, and an output unit 34.
The image information acquisition unit 31 acquires image information from the first-person viewpoint image database. This image information includes the position / orientation information indicating the position / orientation of any of the construction sites in the 3D model data of the construction object at the construction site, and the position / orientation when viewed from the position / orientation in the 3D model data from the first-person viewpoint. Includes image data. This image information is image data for each position and posture at a construction site.
The position / orientation information learning unit 32 uses the image information acquired by the image information acquisition unit 31 to learn the conditions representing the relationship between the position / orientation information and the image based on the learning algorithm, and generates a trained model. To do.
For example, the position / orientation information learning unit 32 performs image processing on the image data included in the image information, and performs image processing on the object (pillar, beam, wall, floor, ceiling, window, equipment, fixture, etc.) included in the image data. By analyzing the shape (contour, etc.), color, size, degree of light reflection, etc., these are acquired as feature quantities (feature data). The position / attitude information learning unit 32 learns the relationship between the feature amount and the position / attitude information, and generates a learned model. Here, in the learning in the position / posture information learning unit 32, for example, the condition indicating the relationship between the feature amount and the position / posture information may be learned. This condition in the position / orientation information learning unit 32 is a model structure representing the correlation between the image data and the position / attitude information, or various parameters for determining the model structure.

位置姿勢情報学習部32の学習は、どのような学習方式であってもよく、例えば、AI(Artificial Intelligence)技術を用いた、機械学習、強化学習、複数の中間層を含むニューラルネットワークによる深層学習技術(ディープラーニング)のうちいずれかを用いることができる。また、学習方式としては、教師あり学習であっても教師無し学習のいずれを用いるようにしてもよい。
位置姿勢情報学習部32は、教師なし学習を行う場合には、例えば、画像データの特徴量に基づいて、画像データに含まれる物体の形状、色、サイズ、光の反射度合い等の観点に基づくクラスタ分析を行なうことで、画像データを位置姿勢情報に応じて分類するようにしてもよい。
The learning of the position / orientation information learning unit 32 may be any learning method, for example, machine learning using AI (Artificial Intelligence) technology, enhanced learning, and deep learning by a neural network including a plurality of intermediate layers. Any of the techniques (deep learning) can be used. Further, as the learning method, either supervised learning or unsupervised learning may be used.
When performing unsupervised learning, the position / orientation information learning unit 32 is based on, for example, the shape, color, size, degree of light reflection, and the like of an object included in the image data based on the feature amount of the image data. By performing cluster analysis, the image data may be classified according to the position / orientation information.

例えば、位置姿勢情報学習部32は、学習の開始時においては、画像データの特徴量と位置姿勢情報との相関関係は未知であるが、学習を進めるに従い、徐々に特徴を識別して相関関係を解釈する。学習が進行することにより、位置姿勢情報学習部32は、画像データの特徴量(画像データに含まれる物体の形状(輪郭など)、色、サイズ、光の反射度合い等)と位置姿勢情報(緯度、経度、高度、姿勢角)の相関関係を表す条件を最適解に近づけることができる。なお、位置姿勢情報学習部32は、画像データの特徴量と位置姿勢情報との関係を学習するようにしたが、画像データの特徴量を用いずに、画像データと位置姿勢情報との関係性を表す条件を学習するようにしてもよい。この場合、位置姿勢情報学習部32は、例えば、画像データに含まれるそれぞれの画素と位置姿勢情報の関係性を表す条件を学習するようにしてもよい。 For example, the position / orientation information learning unit 32 does not know the correlation between the feature amount of the image data and the position / orientation information at the start of learning, but gradually identifies the features and correlates as the learning progresses. To interpret. As the learning progresses, the position / orientation information learning unit 32 receives the feature amount of the image data (shape (contour, etc.), color, size, light reflection degree, etc. of the object included in the image data) and position / orientation information (latitude). , Longitude, altitude, attitude angle) can be brought closer to the optimal solution. The position / orientation information learning unit 32 learns the relationship between the feature amount of the image data and the position / attitude information, but the relationship between the image data and the position / attitude information is not used without using the feature amount of the image data. You may try to learn the condition that represents. In this case, the position / orientation information learning unit 32 may learn, for example, the conditions representing the relationship between each pixel included in the image data and the position / attitude information.

このようにして得られる学習済みモデルは、実際の現場で撮影した画像から位置姿勢を算出することができる。実際の現場で撮像した画像は、例えば、自律移動ロボットや飛行ロボットによって自律撮影された画像であってもよいし、現場内を巡回する作業員によって撮影された画像であってもよい。このように撮像された画像とその撮影された位置姿勢とを保存することができるため、簡単に状況管理をすることができる。 The trained model obtained in this way can calculate the position and orientation from the image taken at the actual site. The image captured at the actual site may be, for example, an image autonomously photographed by an autonomous mobile robot or a flying robot, or an image photographed by a worker patrolling the site. Since the image captured in this way and the captured position / posture can be saved, the situation can be easily managed.

回避対象学習部33は、回避対象を表す回避対象画像データと回避対象であるか否かを識別する識別情報との関係を学習することで、学習済みモデルを生成する。回避対象は、作業員、重機、建築資材等である。回避対象学習部33は、画像情報に含まれる画像データに対して画像処理を行い、画像データに含まれる回避対象である物体(作業員、重機、一時保管された建築資材等)の形状(輪郭など)、色、サイズ、光の反射度合い等について解析することで、これらを特徴量(特徴データ)として取得する。回避対象学習部33は、得られた特徴量と回避対象であるか否かを識別する識別情報との関係を学習する。例えば、作業員、重機、建築資材について回避対象であることを表す識別情報とを関係を学習する。回避対象画像データは、作業員、重機、一時保管された建築資材のそれぞれについて、種々の種類や、種々の角度から撮影された画像が用いられる。これにより、作業員、重機、一時保管された建築資材を精度よく識別可能な学習済みモデルを得ることができる。
また、回避対象学習部33は、回避対象ではないことを表す識別情報と、回避しなくてもよい物体の画像(作業員が床面を汚さずに歩行することができるように床面上に敷かれた養生シート等)との関係を学習してもよい。
回避対象学習部33の学習の方式等は、位置姿勢情報学習部32と共通するため説明を省略する。
The avoidance target learning unit 33 generates a learned model by learning the relationship between the avoidance target image data representing the avoidance target and the identification information that identifies whether or not the avoidance target is. The objects to be avoided are workers, heavy machinery, building materials, etc. The avoidance target learning unit 33 performs image processing on the image data included in the image information, and shapes (contours) of the objects (workers, heavy machinery, temporarily stored building materials, etc.) to be avoided included in the image data. Etc.), color, size, degree of light reflection, etc., and these are acquired as feature quantities (feature data). The avoidance target learning unit 33 learns the relationship between the obtained feature amount and the identification information that identifies whether or not it is an avoidance target. For example, learn the relationship between workers, heavy machinery, and building materials with identification information indicating that they are to be avoided. As the image data to be avoided, images taken from various types and various angles are used for each of the workers, heavy machinery, and temporarily stored building materials. This makes it possible to obtain a trained model that can accurately identify workers, heavy machinery, and temporarily stored building materials.
Further, the avoidance target learning unit 33 includes identification information indicating that the avoidance target is not an avoidance target, and an image of an object that does not need to be avoided (on the floor surface so that the worker can walk without soiling the floor surface). You may learn the relationship with the laid curing sheet, etc.).
Since the learning method of the avoidance target learning unit 33 is common to the position / posture information learning unit 32, the description thereof will be omitted.

出力部34は、位置姿勢情報学習部32によって生成された学習済みモデルと回避対象学習部33によって生成された学習済みモデルとを出力する。 The output unit 34 outputs the learned model generated by the position / attitude information learning unit 32 and the learned model generated by the avoidance target learning unit 33.

自律移動ロボット40は、位置姿勢推定部41、撮像部42、判定部43、経路生成部44、駆動部45、移動制御部46、通信部47を有する。
位置姿勢推定部41は、撮像画像取得部411、位置姿勢情報算出部412、記憶部413、位置姿勢情報出力部414を有する。
撮像画像取得部411は、建設現場内における何れかの位置姿勢において撮影された画像データを取得する。例えば、撮像画像取得部411は、撮像部42によって撮像された画像データを取得する。この画像データは、施工対象物の内部における何れかの位置姿勢から一人称視点で見たときの画像である。また、この画像データは、少なくとも一部に建設現場の画像が含まれていればよく、施工対象物の内部から撮影された画像または施工対象物の外部から施工対象物を撮影した画像を用いることができる。
The autonomous mobile robot 40 includes a position / orientation estimation unit 41, an imaging unit 42, a determination unit 43, a route generation unit 44, a drive unit 45, a movement control unit 46, and a communication unit 47.
The position / attitude estimation unit 41 includes an image capture image acquisition unit 411, a position / attitude information calculation unit 412, a storage unit 413, and a position / attitude information output unit 414.
The captured image acquisition unit 411 acquires image data taken at any position and orientation in the construction site. For example, the captured image acquisition unit 411 acquires the image data captured by the image capturing unit 42. This image data is an image when viewed from a first-person viewpoint from any position or posture inside the construction object. In addition, this image data need only include an image of the construction site at least in part, and an image taken from the inside of the construction object or an image taken from the outside of the construction object should be used. Can be done.

位置姿勢情報算出部412は、建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢と当該位置姿勢から一人称視点で見たときの画像との関係を学習した学習済みモデルを用いて、画像データに対応する位置姿勢情報を求める。このとき用いられる学習済みモデルは、学習装置30によって生成された学習済みモデルである。 The position / posture information calculation unit 412 has learned the relationship between the position / posture of any of the construction sites and the image when viewed from the first person's viewpoint in the three-dimensional model data of the construction object at the construction site. The model is used to obtain the position / orientation information corresponding to the image data. The trained model used at this time is a trained model generated by the learning device 30.

記憶部413は、位置姿勢情報学習部32から出力された学習済みモデルと、回避対象学習部33から出力された学習済みモデルを記憶する。 The storage unit 413 stores the learned model output from the position / posture information learning unit 32 and the learned model output from the avoidance target learning unit 33.

位置姿勢情報出力部414は、位置姿勢情報算出部412によって得られた位置姿勢情報を出力する。 The position / attitude information output unit 414 outputs the position / attitude information obtained by the position / attitude information calculation unit 412.

撮像部42は、周囲を撮影し、撮像データ(画像データ)を出力する。撮像部42は、例えば、カメラである。
判定部43は、回避対象を表す回避対象画像データと回避対象であるか否かを識別する識別情報との関係を学習した学習済みモデルを用いて、撮像画像取得部によって取得された画像に回避対象である物体が含まれているか否かを判定する。判定部43が用いる学習済みモデルは、回避対象学習部33によって生成された学習済みモデルである。
経路生成部44は、自律移動ロボット40が建設現場内を移動する経路を示す経路情報を生成する。この経路情報は、例えば、建設現場の状況管理をする対象の位置姿勢を経由するルートである。
経路生成部44は、取得された画像に、回避対象画像に対応する物体が含まれている場合には、当該を迂回する経路である迂回経路を生成する。この迂回経路は、回避対象物を回避した後、経路情報が示す経路に戻るような経路である。
The imaging unit 42 photographs the surroundings and outputs imaging data (image data). The imaging unit 42 is, for example, a camera.
The determination unit 43 avoids the image acquired by the captured image acquisition unit by using a learned model that has learned the relationship between the avoidance target image data representing the avoidance target and the identification information that identifies whether or not the avoidance target is present. Determine if the target object is included. The trained model used by the determination unit 43 is a trained model generated by the avoidance target learning unit 33.
The route generation unit 44 generates route information indicating a route for the autonomous mobile robot 40 to move in the construction site. This route information is, for example, a route that goes through the position and orientation of the target for managing the situation at the construction site.
When the acquired image includes an object corresponding to the avoidance target image, the route generation unit 44 generates a detour route that is a route that bypasses the object. This detour route is a route that returns to the route indicated by the route information after avoiding the avoidance object.

駆動部45は、自律移動ロボット40の移動機構を駆動する。移動機構としては、自律移動ロボット40に取り付けられた車輪を回転駆動させることで、前後方向に移動させたり、操舵輪を操舵することで左右方向への走行方向を変える。
なお、自律移動ロボット40がドローンである場合、駆動部45は、ドローンに設けられたローターを回転駆動させたり、飛行方向を変更する。自律移動ロボット40は、無人航空機であればよく、ドローンの他にマルチコプターであってもよい。
The drive unit 45 drives the movement mechanism of the autonomous mobile robot 40. As the moving mechanism, the wheels attached to the autonomous moving robot 40 are rotationally driven to move them in the front-rear direction, and the steering wheels are steered to change the traveling direction in the left-right direction.
When the autonomous mobile robot 40 is a drone, the drive unit 45 rotationally drives a rotor provided in the drone or changes the flight direction. The autonomous mobile robot 40 may be an unmanned aerial vehicle, and may be a multicopter in addition to a drone.

移動制御部46は、位置姿勢情報算出部412によって求められた位置姿勢情報が生成された迂回経路に沿うように移動する。 The movement control unit 46 moves along the detour route in which the position / attitude information obtained by the position / attitude information calculation unit 412 is generated.

通信部47は、学習装置30や状況管理装置50と通信を行う。状況管理装置50に撮影された画像データと、当該画像データを撮影した位置姿勢情報とを送信する。また、通信部47は、これらの情報を送信する際に、画像データが撮像された日時を示す情報も送信することができる。 The communication unit 47 communicates with the learning device 30 and the situation management device 50. The image data captured by the situation management device 50 and the position / orientation information at which the image data was captured are transmitted. Further, when transmitting such information, the communication unit 47 can also transmit information indicating the date and time when the image data was captured.

状況管理装置50は、自律移動ロボット40から送信された各種情報を記憶する。状況管理装置50に記憶された情報は、建設現場の管理者が利用する端末装置を利用することで、閲覧することができる。 The situation management device 50 stores various information transmitted from the autonomous mobile robot 40. The information stored in the situation management device 50 can be viewed by using the terminal device used by the manager of the construction site.

上述の一人称視点画像データベース20、記憶部413、状況管理装置50に設けられた記憶部等については、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成することができ、また、例えば不揮発性メモリを用いることができる。 Regarding the storage unit provided in the first-person viewpoint image database 20, the storage unit 413, and the situation management device 50, for example, a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, or an EEPROM (Electrically Erasable Program Read Only Memory). , RAM (Random Access read / write memory), ROM (Read Only Memory), or any combination of these storage media, and for example, a non-volatile memory can be used.

図2は、状況管理システム1の処理の流れを説明する図である。
三次元モデル画像生成装置10は、三次元モデルデータを用いて、施工対象物の内部側のいずれかの位置姿勢から一人称視点で見たときの画像を生成する。ここでは、位置姿勢を変えることで多数の画像を生成する。三次元モデル画像生成装置10は、生成された画像と、当該画像を生成した際の一人称視点の位置姿勢を示す位置姿勢情報とを画像情報として一人称視点画像データベース20に書き込む(ステップS10)。
また、ここでは回避対象画像データが所定の記憶領域に記憶される(ステップS11)。所定の記憶領域は、学習装置30の外部の記憶装置であってもよいし、状況管理装置50の記憶領域を用いるようにしてもよい。
学習装置30は、一人称視点で見たときの画像情報と回避対象画像データとを取得する(ステップS12)。そして、学習装置30は、位置姿勢情報学習部32によって画像情報を用いて学習済みモデルを生成し、回避対象学習部33によって回避対象画像データを用いて学習済みモデルを生成する(ステップS13)。これらの生成された学習済みモデルは、自律移動ロボット40の記憶部413に記憶される(ステップS14)。
FIG. 2 is a diagram illustrating a processing flow of the status management system 1.
The three-dimensional model image generation device 10 uses the three-dimensional model data to generate an image when viewed from a first-person viewpoint from any position or orientation on the inner side of the construction object. Here, a large number of images are generated by changing the position and orientation. The three-dimensional model image generation device 10 writes the generated image and the position / orientation information indicating the position / orientation of the first-person viewpoint when the image is generated in the first-person viewpoint image database 20 as image information (step S10).
Further, here, the image data to be avoided is stored in a predetermined storage area (step S11). The predetermined storage area may be a storage device external to the learning device 30, or the storage area of the situation management device 50 may be used.
The learning device 30 acquires image information when viewed from the first-person viewpoint and image data to be avoided (step S12). Then, the learning device 30 generates a learned model using the image information by the position / orientation information learning unit 32, and generates a learned model using the avoidance target image data by the avoidance target learning unit 33 (step S13). These generated trained models are stored in the storage unit 413 of the autonomous mobile robot 40 (step S14).

自律移動ロボット40は、建設現場内に配置された後、撮像部42によって周囲を撮像する(ステップS15)。この撮影は、撮影タイミングが到来する毎に行われる。撮影タイミングは、一定時間毎(数秒毎、数分毎等)であってもよいし、一定の距離を移動したことを検出したタイミングであってもよいし、撮影する対象の地点に到達したタイミングであってもよい。 After the autonomous mobile robot 40 is placed in the construction site, the image pickup unit 42 images the surroundings (step S15). This shooting is performed every time the shooting timing comes. The shooting timing may be every fixed time (every few seconds, every few minutes, etc.), may be the timing when it is detected that the person has moved a certain distance, or the timing when the shooting target point is reached. It may be.

自律移動ロボット40は、位置姿勢情報学習部32によって生成された学習済みモデルを用いて(ステップS16)、撮像部42によって撮影された画像に対応する位置姿勢情報を得る(ステップS17)。自律移動ロボット40は、得られた位置姿勢情報が、予め定められた経路情報に沿うように駆動部45を駆動させる。また、自律移動ロボット40は、回避対象学習部33によって生成された学習済みモデルを用いて、撮像部42によって撮影された画像に回避対象があるか否かを判定し、回避対象がある場合には、回避経路を生成する(ステップS18)。 The autonomous mobile robot 40 uses the learned model generated by the position / orientation information learning unit 32 (step S16) to obtain the position / attitude information corresponding to the image captured by the imaging unit 42 (step S17). The autonomous mobile robot 40 drives the drive unit 45 so that the obtained position / attitude information follows a predetermined path information. Further, the autonomous mobile robot 40 uses the learned model generated by the avoidance target learning unit 33 to determine whether or not the image captured by the imaging unit 42 has an avoidance target, and if there is an avoidance target. Generates an avoidance route (step S18).

図3は、自律移動ロボット40の処理を説明するフローチャートである。
自律移動ロボット40は、建設現場の状況管理をする対象の位置姿勢を経由するルートを示す経路情報を経路生成部44によって生成し、その経路情報に沿って移動を開始する。そして自律移動ロボット40は、建設現場内において移動しつつ、撮像部42によって周囲を撮影し、画像データを得る(ステップS50)。自律移動ロボット40は、得られた画像データについて画像処理等を行うことで解析を行い(ステップS51)、学習済みモデルを用いて、位置姿勢情報を得る。ここで、位置姿勢情報算出部412は、得られた位置姿勢情報が、正しく認識できたか否かを判定する(ステップS52)。例えば、前回位置姿勢情報を算出した時刻から今回位置姿勢情報を算出した時刻までの時間と、前回得られた位置姿勢情報と今回得られた位置姿勢情報との間の距離と、から得られる速度が、自律移動ロボット40が移動する際の移動速度から一定以上超えている場合には、正しく認識されないと判断する。この場合、得られた位置姿勢情報が正しくないものとして採用しないようにすることができ、位置姿勢情報算出の精度が低下することを防止することができる。なお、ここでは、移動速度を基に判断するようにしたが、前回得られた位置姿勢情報と今回得られた位置姿勢情報との間の距離が一定以上の距離である場合には、正しく認識されないと判断するようにしてもよい。
一方、位置姿勢情報が正しく認識できた場合には、この位置姿勢情報の算出に用いた画像データに、回避対象である物体があるか否かを、回避対象学習部33によって得られた学習済みモデルを用いて認識する(ステップS54)。
FIG. 3 is a flowchart illustrating the processing of the autonomous mobile robot 40.
The autonomous mobile robot 40 uses the route generation unit 44 to generate route information indicating a route that passes through the position and orientation of the target that manages the status of the construction site, and starts moving along the route information. Then, the autonomous mobile robot 40 captures the surroundings by the imaging unit 42 while moving in the construction site, and obtains image data (step S50). The autonomous mobile robot 40 analyzes the obtained image data by performing image processing or the like (step S51), and obtains position / orientation information using the learned model. Here, the position / posture information calculation unit 412 determines whether or not the obtained position / posture information can be correctly recognized (step S52). For example, the speed obtained from the time from the time when the previous position / attitude information was calculated to the time when the current position / attitude information was calculated, and the distance between the position / attitude information obtained last time and the position / attitude information obtained this time. However, if the moving speed of the autonomous moving robot 40 exceeds a certain level, it is determined that the autonomous moving robot 40 is not correctly recognized. In this case, it is possible to prevent the obtained position / posture information from being adopted as being incorrect, and it is possible to prevent the accuracy of the position / posture information calculation from being lowered. In this case, the judgment is made based on the moving speed, but if the distance between the position / posture information obtained last time and the position / posture information obtained this time is a certain distance or more, it is correctly recognized. You may decide that it will not be done.
On the other hand, when the position / orientation information can be correctly recognized, whether or not there is an object to be avoided in the image data used for calculating the position / orientation information has been learned by the avoidance target learning unit 33. Recognize using the model (step S54).

経路生成部44は、回避対象があるか否かの認識結果と経路情報とを基に、移動ルート(経路情報)を生成する。ここでは、回避対象がない場合には、ステップS52において認識された現在位置姿勢から建設現場の状況管理をする対象の位置姿勢まで移動するための経路情報を生成する(ステップS55)。経路情報を生成する場合、例えば、BIMやCAD等の三次元モデルデータを用い、自律移動ロボット40の周囲の環境(通路や壁、柱等)を基に、移動可能な経路を生成する。一方、回避対象がある場合、経路生成部44は、回避対象を回避しつつ建設現場の状況管理をする対象の位置姿勢まで移動するための経路情報を生成する。これにより、三次元モデルデータには存在しない作業員・資材・重機などの画像が、画像データに含まれていたとしても、回避対象として認識し、回避するような迂回ルートを生成し、迂回することができる。
自律移動ロボット40は、経路情報が生成されると、生成された経路情報に沿って移動するように駆動することで位置姿勢制御をする(ステップS56)。
The route generation unit 44 generates a movement route (route information) based on the recognition result of whether or not there is an avoidance target and the route information. Here, when there is no avoidance target, route information for moving from the current position / posture recognized in step S52 to the position / posture of the target for managing the status of the construction site is generated (step S55). When generating route information, for example, three-dimensional model data such as BIM or CAD is used, and a movable route is generated based on the surrounding environment (passage, wall, pillar, etc.) of the autonomous mobile robot 40. On the other hand, when there is an avoidance target, the route generation unit 44 generates route information for moving to the position / posture of the target for managing the status of the construction site while avoiding the avoidance target. As a result, even if images of workers, materials, heavy machinery, etc. that do not exist in the 3D model data are included in the image data, they are recognized as avoidance targets, and a detour route that avoids them is generated and detoured. be able to.
When the route information is generated, the autonomous mobile robot 40 controls the position and attitude by driving the robot so as to move along the generated route information (step S56).

自律移動ロボット40は、このようにして、建設現場の状況管理をする対象の位置姿勢を複数箇所通過した後、スタート位置姿勢に戻り、撮影された画像データと、当該画像データを撮影した位置姿勢情報とを状況管理装置50に送信する。ここでは、画像データを撮像した日時を表す日時データも一緒に送信する。これにより、状況管理装置50は、自律移動ロボット40から得られた画像データと位置姿勢情報と、画像データが撮影された日時とを対応付けて記憶することができる。 In this way, the autonomous mobile robot 40 returns to the start position / posture after passing through a plurality of positions / postures of the target for managing the situation at the construction site, and the photographed image data and the position / orientation in which the image data is photographed. Information and information are transmitted to the status management device 50. Here, date and time data representing the date and time when the image data was captured is also transmitted. As a result, the situation management device 50 can store the image data obtained from the autonomous mobile robot 40, the position / orientation information, and the date and time when the image data was taken in association with each other.

以上説明した実施形態によれば、近年導入が進んでいるBIMを効果的に用いて位置姿勢情報を学習させることで、特殊な装置を必要とせず、また、安価なカメラと計算機を用いるだけで、深層学習技術の活用により位置姿勢情報の取得と現場進捗管理を同時に達成することができる。これにより、自律移動ロボットなどの導入も容易となり、建設業の生産性向上に貢献できる。 According to the embodiment described above, by effectively using BIM, which has been introduced in recent years, to learn the position / orientation information, no special device is required, and only an inexpensive camera and computer are used. By utilizing deep learning technology, it is possible to acquire position and attitude information and manage on-site progress at the same time. This facilitates the introduction of autonomous mobile robots and the like, and can contribute to improving the productivity of the construction industry.

また、本実施形態によれば、ロボットの移動などに必要な位置姿勢情報の取得、また進捗管理等に必要な位置姿勢情報が紐付けられた写真の取得が、軽量なシステムにより実現することができる。また、その結果をBIMに戻すことで、日々の出来形管理をすることが可能となり、より良い現場管理や、学習装置30の学習精度の向上に寄与させることが可能である。 Further, according to the present embodiment, it is possible to acquire the position / attitude information necessary for the movement of the robot and the photograph associated with the position / attitude information necessary for the progress management by the lightweight system. it can. Further, by returning the result to BIM, it is possible to manage the finished product on a daily basis, which can contribute to better on-site management and improvement of learning accuracy of the learning device 30.

また、従来において、LIDARやVisual SLAMは、シーケンシャルに位置姿勢を推定する手法であり、常に絶対的な位置姿勢を算出するものではない。また、いずれも建設現場の進捗管理(出来形管理)に用いることが行われているが、絶対的な自己位置姿勢推定と、進捗管理の両方を併せ持つ軽量なシステムとなっていない。 Further, conventionally, LIDAR and Visual SLAM are methods for sequentially estimating the position and orientation, and do not always calculate the absolute position and orientation. In addition, although all of them are used for progress management (finished form management) of construction sites, they are not lightweight systems that have both absolute self-position posture estimation and progress management.

これに対し、本実施形態では、近年導入が進んでいるBIM(Building Information Modeling)やCADデータより一人称視点画像を生成し、深層学習技術により位置姿勢情報を学習させ、現場内において軽量なカメラ画像から自己位置姿勢を推定するとともに、位置姿勢情報の紐付いた画像を保存することで、進捗管理を容易とすることができる。また、自己位置姿勢の推定に必要な機器の重量の増大を抑えることができることから、自己位置姿勢の推定に必要な機材を移動ロボット等に搭載することが可能となる。 On the other hand, in the present embodiment, a first-person viewpoint image is generated from BIM (Billing Information Modeling) and CAD data, which have been introduced in recent years, and position / orientation information is learned by deep learning technology, and a lightweight camera image is used in the field. Progress management can be facilitated by estimating the self-position / orientation from the above and saving the image associated with the position / orientation information. In addition, since it is possible to suppress an increase in the weight of the equipment required for estimating the self-position and posture, it is possible to mount the equipment necessary for estimating the self-position and posture on a mobile robot or the like.

また、建設現場の状況は、日々変化するため、学習装置30における学習は、数日毎に実施することが望ましい。また、状況管理装置50に画像データが蓄積されることで、この画像データを基に出来形を管理し、また、三次元モデルデータに反映させることで、学習モデルを利用した位置姿勢情報の推定精度も向上していくことが期待できる。 Further, since the situation at the construction site changes every day, it is desirable that the learning with the learning device 30 is carried out every few days. Further, by accumulating the image data in the situation management device 50, the finished shape is managed based on the image data, and by reflecting it in the three-dimensional model data, the position / orientation information is estimated using the learning model. It can be expected that the accuracy will also improve.

なお、上述した位置姿勢推定部41は、自律移動ロボット40の内部に設けられた1つの機能として説明したが、自律移動ロボット40とは別の独立した装置として構成されるようにしてもよい。この場合、位置姿勢推定部41の機能を有する装置が、既存の自律移動ロボットに搭載することで、既存の自律移動ロボットであっても、上述の自律移動ロボット40として機能することができる。 Although the position / posture estimation unit 41 described above has been described as one function provided inside the autonomous mobile robot 40, it may be configured as an independent device separate from the autonomous mobile robot 40. In this case, by mounting the device having the function of the position / orientation estimation unit 41 on the existing autonomous mobile robot, even the existing autonomous mobile robot can function as the above-mentioned autonomous mobile robot 40.

上述した実施形態における学習装置30、位置姿勢推定部41をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The learning device 30 and the position / posture estimation unit 41 in the above-described embodiment may be realized by a computer. In that case, the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.

1…状況管理システム、10…三次元モデル画像生成装置、20…一人称視点画像データベース、30…学習装置、31…画像情報取得部、32…位置姿勢情報学習部、33…回避対象学習部、34…出力部、40…自律移動ロボット、41…位置姿勢推定部、42…撮像部、43…判定部、44…経路生成部、45…駆動部、46…移動制御部、47…通信部、50…状況管理装置、411…撮像画像取得部、412…位置姿勢情報算出部、413…記憶部、414…位置姿勢情報出力部 1 ... Situation management system, 10 ... Three-dimensional model image generator, 20 ... First-person viewpoint image database, 30 ... Learning device, 31 ... Image information acquisition unit, 32 ... Position / orientation information learning unit, 33 ... Avoidance target learning unit, 34 ... Output unit, 40 ... Autonomous mobile robot, 41 ... Position and orientation estimation unit, 42 ... Imaging unit, 43 ... Judgment unit, 44 ... Path generation unit, 45 ... Drive unit, 46 ... Movement control unit, 47 ... Communication unit, 50 ... Situation management device, 411 ... Captured image acquisition unit, 412 ... Position / orientation information calculation unit, 413 ... Storage unit, 414 ... Position / orientation information output unit

Claims (6)

建設現場内における何れかの位置姿勢において撮影された画像データを取得する撮像画像取得部と、
前記建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢と当該位置姿勢から一人称視点で見たときの画像との関係を学習した学習済みモデルを用いて、前記画像データに対応する位置姿勢情報を求める位置姿勢情報算出部と、
を有する位置姿勢推定装置。
An image acquisition unit that acquires image data taken at any position and orientation within the construction site,
Using a trained model that learned the relationship between the position and orientation of any of the construction sites and the image when viewed from the first-person perspective from the position and orientation in the three-dimensional model data of the construction object at the construction site, the image The position / attitude information calculation unit that obtains the position / attitude information corresponding to the data,
Position and orientation estimation device.
前記画像は、前記施工対象物の内部における何れかの位置姿勢から一人称視点で見たときの画像である
請求項1記載の位置姿勢推定装置。
The position / orientation estimation device according to claim 1, wherein the image is an image when viewed from a first-person viewpoint from any position / orientation inside the construction object.
建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢を表す位置姿勢情報を取得する位置姿勢情報取得部と、
一人称視点で前記三次元モデルデータにおいて前記位置姿勢から見たときの画像を取得する画像取得部と、
前記位置姿勢情報と前記画像との関係性を表す条件を学習する学習部と、
を有する学習装置。
A position / attitude information acquisition unit that acquires position / attitude information indicating the position / orientation of any of the construction sites in the three-dimensional model data of the construction object at the construction site.
An image acquisition unit that acquires an image when viewed from the position and orientation in the three-dimensional model data from the first-person viewpoint,
A learning unit that learns conditions that represent the relationship between the position / posture information and the image,
Learning device with.
請求項1または請求項2に記載の位置姿勢推定装置と、
回避対象を表す回避対象画像データと回避対象であるか否かを識別する識別情報との関係を学習した学習済みモデルを用いて、前記撮像画像取得部によって取得された画像に回避対象である物体が含まれているか否かを判定する判定部と、
前記取得された画像に、前記回避対象である物体が含まれている場合には、当該物体を迂回する経路である迂回経路を生成する経路生成部と、
前記位置姿勢情報算出部によって求められた位置姿勢情報が前記生成された迂回経路に沿うように移動する移動制御部と、
を有する移動ロボット。
The position / orientation estimation device according to claim 1 or 2.
Using a trained model that has learned the relationship between the avoidance target image data representing the avoidance target and the identification information that identifies whether or not it is the avoidance target, the object that is the avoidance target in the image acquired by the captured image acquisition unit. A judgment unit that determines whether or not is included, and
When the acquired image includes the object to be avoided, a route generation unit that generates a detour route that is a route that bypasses the object, and a route generation unit.
A movement control unit that moves the position / attitude information obtained by the position / attitude information calculation unit along the generated detour route, and a movement control unit.
Mobile robot with.
撮像画像取得部が、建設現場内における何れかの位置姿勢において撮影された画像データを取得し、
位置姿勢情報算出部が、前記建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢と当該位置姿勢から一人称視点で見たときの画像との関係を学習した学習済みモデルを用いて、前記画像データに対応する位置姿勢情報を求める
位置姿勢推定方法。
The captured image acquisition unit acquires image data taken at any position and orientation in the construction site, and
The position / posture information calculation unit has learned the relationship between the position / posture of any of the construction sites and the image when viewed from the first person's viewpoint in the three-dimensional model data of the construction object at the construction site. A position / posture estimation method for obtaining position / posture information corresponding to the image data using a model.
位置姿勢情報取得部が、建設現場の施工対象物の三次元モデルデータにおいて当該建設現場のいずれかの位置姿勢を表す位置姿勢情報を取得し、
画像取得部が、一人称視点で前記三次元モデルデータにおいて前記位置姿勢から見たときの画像を取得し、
学習部が、前記位置姿勢情報と前記画像との関係性を表す条件を学習する
学習方法。
The position / posture information acquisition unit acquires the position / posture information representing the position / posture of any of the construction sites in the three-dimensional model data of the construction object at the construction site.
The image acquisition unit acquires an image when viewed from the position and orientation in the three-dimensional model data from the first-person viewpoint.
A learning method in which a learning unit learns a condition representing a relationship between the position / posture information and the image.
JP2019044580A 2019-03-12 2019-03-12 Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method Pending JP2020149186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044580A JP2020149186A (en) 2019-03-12 2019-03-12 Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044580A JP2020149186A (en) 2019-03-12 2019-03-12 Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method

Publications (1)

Publication Number Publication Date
JP2020149186A true JP2020149186A (en) 2020-09-17

Family

ID=72430109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044580A Pending JP2020149186A (en) 2019-03-12 2019-03-12 Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method

Country Status (1)

Country Link
JP (1) JP2020149186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029965A (en) * 2021-09-18 2022-02-11 中铁建设集团有限公司 Active management system of side station robot for auxiliary management of construction site
WO2023037773A1 (en) * 2021-09-09 2023-03-16 村田機械株式会社 Traveling vehicle system and traveling vehicle
JP7274782B1 (en) 2021-12-10 2023-05-17 株式会社 Sai STRUCTURE RECOGNITION SYSTEM IN BUILDING AND STRUCTURE RECOGNITION METHOD IN BUILDING

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037773A1 (en) * 2021-09-09 2023-03-16 村田機械株式会社 Traveling vehicle system and traveling vehicle
CN114029965A (en) * 2021-09-18 2022-02-11 中铁建设集团有限公司 Active management system of side station robot for auxiliary management of construction site
JP7274782B1 (en) 2021-12-10 2023-05-17 株式会社 Sai STRUCTURE RECOGNITION SYSTEM IN BUILDING AND STRUCTURE RECOGNITION METHOD IN BUILDING
JP2023086519A (en) * 2021-12-10 2023-06-22 株式会社 Sai Inside building structure recognition system and inside building structure recognition method

Similar Documents

Publication Publication Date Title
US10102429B2 (en) Systems and methods for capturing images and annotating the captured images with information
US20230054914A1 (en) Vehicle localization
JP6896077B2 (en) Vehicle automatic parking system and method
JP7204326B2 (en) Information processing device, its control method and program, and vehicle driving support system
TWI827649B (en) Apparatuses, systems and methods for vslam scale estimation
KR101776622B1 (en) Apparatus for recognizing location mobile robot using edge based refinement and method thereof
JP2020507072A (en) Laser scanner with real-time online self-motion estimation
US10347001B2 (en) Localizing and mapping platform
US20200042656A1 (en) Systems and methods for persistent simulation
JP2020149186A (en) Position attitude estimation device, learning device, mobile robot, position attitude estimation method, and learning method
KR20210029586A (en) Method of slam based on salient object in image and robot and cloud server implementing thereof
CN110260866A (en) A kind of robot localization and barrier-avoiding method of view-based access control model sensor
CN108459596A (en) A kind of method in mobile electronic device and the mobile electronic device
EP4088884A1 (en) Method of acquiring sensor data on a construction site, construction robot system, computer program product, and training method
CN108544494A (en) A kind of positioning device, method and robot based on inertia and visual signature
US20230350418A1 (en) Position determination by means of neural networks
Stowers et al. Quadrotor Helicopter Flight Control Using Hough Transform and Depth Map from a Microsoft Kinect Sensor.
JP6725736B1 (en) Image specifying system and image specifying method
JP7226553B2 (en) Information processing device, data generation method, and program
CN114529585A (en) Mobile equipment autonomous positioning method based on depth vision and inertial measurement
CN109901589B (en) Mobile robot control method and device
WO2019202878A1 (en) Recording medium, information processing apparatus, and information processing method
Zaslavskiy et al. Method for automated data collection for 3d reconstruction
Qian et al. An improved ORB-SLAM2 in dynamic scene with instance segmentation
JP2021047744A (en) Information processing device, information processing method and information processing program