JP2020147088A - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
JP2020147088A
JP2020147088A JP2019044385A JP2019044385A JP2020147088A JP 2020147088 A JP2020147088 A JP 2020147088A JP 2019044385 A JP2019044385 A JP 2019044385A JP 2019044385 A JP2019044385 A JP 2019044385A JP 2020147088 A JP2020147088 A JP 2020147088A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
surface area
steering
dimensional object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019044385A
Other languages
English (en)
Other versions
JP7192585B2 (ja
Inventor
悠平 宮本
Yuhei Miyamoto
悠平 宮本
浩平 諸冨
Kohei Morotomi
浩平 諸冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019044385A priority Critical patent/JP7192585B2/ja
Publication of JP2020147088A publication Critical patent/JP2020147088A/ja
Application granted granted Critical
Publication of JP7192585B2 publication Critical patent/JP7192585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 簡易な構成にて路面エリアを推定して、自動操舵による衝突回避支援を行えるようにする。【解決手段】 運転支援ECUは、白線情報に基づいて車両の走行できる路面エリアを推定する(S12)。更に、運転支援ECUは、周辺センサから供給された立体物情報に基づいて、立体物の移動軌跡を取得し、白線情報に基づいて推定される路面エリアに、立体物の移動軌跡から推定される路面エリアを加えたエリアを補完後路面エリアに設定する(S13〜14)。運転支援ECUは、補完後路面エリアに自車両の衝突を回避できる回避スペースが存在するか否かについて判定し、回避スペースが存在する場合には、衝突予測時間TTCが作動用閾値TTCa以下となったときに、回避スペースに自車両を移動させるように操舵制御を実施する。【選択図】 図5

Description

本発明は、自車両が障害物に衝突することを回避するようにドライバーを支援する運転支援装置に関する。
従来から、カメラあるいはレーダ等の前方センサによって自車両が衝突する可能性の高い障害物が検知された場合に、ドライバーに注意喚起をし、さらに、自車両が衝突する可能性が高まると自動ブレーキを行って衝突を回避するようにドライバーの運転を支援する運転支援装置が知られている。また、特許文献1に提案された運転支援装置(以下、従来装置と呼ぶ)は、自動ブレーキによって自車両が減速しても、自車両が障害物と衝突する可能性が高い場合に、自動操舵によって自車両を障害物との衝突を回避する方向に偏向させる。
特開2017−43262号公報
従来装置のように自動操舵により衝突回避支援を行う装置では、自車両を衝突から回避させるための回避スペースが存在していることが条件とされる。回避スペースの有無を判定するためには、車両が走行できる路面エリアを把握する必要がある。例えば、道路に施された白線を検知することにより、路面エリアを把握することができる。しかし、白線を検知できない状況(白線ロストと呼ぶ)においては、路面エリアを把握できない。
例えば、ステレオカメラを用いれば、前方の三次元情報が得られるため、この三次元情報から道路の三次元形状を推定できる。従って、白線ロストが発生した場合でも、道路の横に形成された窪み(崖など)を除外するようにして路面エリアを把握することができる。また、機械学習によって路面の形状を推定する手法も知られている。この機械学習では、複数のサンプル路面画像を予め記憶しておいて、現在撮影されている画像の領域からサンプル路面画像に類似する領域を抽出し、その抽出した領域を車両が走行できる路面エリアと推定する。
しかしながら、こうした手法で路面エリアを推定する場合には、システム容量および演算処理負荷の増加を招き、大がかりな構成となってしまう。また、開発コストおよび開発工数も大きくなる。従って、低価格帯の車両に採用することは難しい。
本発明は、上記課題を解決するためになされたものであり、簡易な構成にて路面エリアを推定して、自動操舵による衝突回避支援を行えるようにすることを目的とする。
上記目的を達成するために、本発明の特徴は、
自車両の前方周辺に存在する立体物を検知する立体物検知手段(11,12)と、
前記自車両と衝突する可能性が高い立体物である障害物を検知した場合に、操舵制御によって前記自車両を前記障害物との衝突を回避する方向に偏向させる自動操舵手段(10,30,S17)と
を備えた運転支援装置において、
道路に施された白線を検知し、前記白線に基づいて車両の走行できる路面エリアを推定する路面推定手段(S12)と、
前記立体物検知手段によって検知された立体物の移動軌跡を取得し、前記移動軌跡に基づいて前記路面エリアを補完する路面補完手段(S13,S14)と、
前記路面補完手段によって補完された前記路面エリアに、前記自車両の衝突を回避できる回避スペースが存在するか否かについて判定する回避スペース判定手段(S15)と
を備え、
前記自動操舵手段は、前記回避スペースが存在すると判定された場合(S15:Yes)に、前記自車両を前記回避スペースに移動させるように操舵制御を実施する(S17)ように構成されている。
本発明の運転支援装置は、立体物検知手段と自動操舵手段とを備えている。立体物検知手段は、自車両の前方周辺に存在する立体物を検知する。自動操舵手段は、自車両と衝突する可能性が高い立体物である障害物を検知した場合に、操舵制御(操舵輪の舵角制御)によって自車両を障害物との衝突を回避する方向に偏向させる。これにより、ドライバーの衝突回避操作を支援することができる。
操舵制御を行うためには、自車両の衝突を回避できる回避スペースを検知する必要がある。そこで、本発明の運転支援装置は、路面推定手段と路面補完手段と回避スペース判定手段とを備えている。路面推定手段は、道路に施された白線を検知し、白線に基づいて車両の走行できる路面エリアを推定する。
立体物検知手段によって検知された立体物が移動している場合には、その立体物の移動軌跡は、路面エリア上に存在していると考えられる。そこで、路面補完手段は、立体物検知手段によって検知された立体物の移動軌跡を取得し、移動軌跡に基づいて路面エリアを補完する。例えば、路面補完手段は、路面推定手段によって推定された路面エリアに、立体物の移動軌跡から推定される路面エリアを加えるようにして路面エリアを補完する。これにより、白線を検知できない場合(白線ロストが生じている場合)であっても、車両の走行できる路面エリアを簡単に推定することができる。
回避スペース判定手段は、路面補完手段によって補完された路面エリアに、自車両の衝突を回避できる回避スペース(回避軌道)が存在するか否かについて判定する。自動操舵手段は、回避スペースが存在すると判定された場合に、自車両を回避スペースに移動させるように操舵制御を実施する。これにより、自車両を障害物との衝突を回避する方向に偏向させることができる。
この結果、本発明によれば、簡易な構成にて路面エリアを推定して、自動操舵による衝突回避支援を行えるようにすることができる。
上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成要件に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は、前記符号によって規定される実施形態に限定されるものではない。
本実施形態に係る運転支援装置の概略システム構成図である。 ラップ率を説明する平面図である。 ラップ率を説明する平面図である。 ラップ率を説明する平面図である。 操舵PCS制御ルーチンを表すフローチャートである。 移動軌跡によって推定される路面エリアを説明する平面図である。 移動軌跡によって推定される路面エリアを説明する平面図である。
以下、本発明の実施形態に係る車両の運転支援装置について図面を参照しながら説明する。
本発明の実施形態に係る運転支援装置は、車両(以下において、他の車両と区別するために、「自車両」と称呼される場合がある。)に適用される。運転支援装置は、図1に示すように、運転支援ECU10、メータECU20、電動パワーステアリングECU30、および、ブレーキECU40を備えている。
これらのECUは、マイクロコンピュータを主要部として備える電気制御装置(Electric Control Unit)であり、CAN(Controller Area Network)100を介して相互に情報を送信可能及び受信可能に接続されている。本明細書において、マイクロコンピュータは、CPU、ROM、RAM、不揮発性メモリ及びインターフェースI/F等を含む。CPUはROMに格納されたインストラクション(プログラム、ルーチン)を実行することにより各種機能を実現するようになっている。これらのECUは、幾つか又は全部が一つのECUに統合されてもよい。
また、CAN100には、車両状態を検知する複数の車両状態センサ50、および、運転操作状態を検知する複数の運転操作状態センサ60が接続されている。車両状態センサ50は、例えば、車両の走行速度を検知する車速センサ、車両の前後方向の加速度を検知する前後加速度センサ、車両の横方向の加速度を検知する横加速度センサ、および、車両のヨーレートを検知するヨーレートセンサなどである。
運転操作状態センサ60は、アクセルペダルの操作量を検知するアクセル操作量センサ、ブレーキペダルの操作量を検知するブレーキ操作量センサ、ブレーキペダルの操作の有無を検知するブレーキスイッチ、操舵角を検知する操舵角センサ、操舵トルクを検知する操舵トルクセンサ、および、変速機のシフトポジションを検知するシフトポジションセンサなどである。
車両状態センサ50、および、運転操作状態センサ60によって検知された情報(センサ情報と呼ぶ)は、CAN100に送信される。各ECUにおいては、CAN100に送信されたセンサ情報を、適宜、利用することができる。尚、センサ情報は、特定のECUに接続されたセンサの情報であって、その特定のECUからCAN100に送信される場合もある。例えば、操舵角センサは、電動パワーステアリングECU30に接続されていてもよい。この場合、電動パワーステアリングECU30から操舵角を表すセンサ情報がCAN100に送信される。他のセンサにおいても同様である。また、CAN100を介在させることなく、特定のECU間における直接的な通信により、センサ情報の授受が行われる構成が採用されてもよい。
運転支援ECU10は、ドライバーの運転支援を行う中枢となる制御装置であって、衝突回避支援制御を実施する。この衝突回避支援制御は、運転支援制御の一つであって、自車両の前方に障害物が検知された場合に、ドライバーに対して注意喚起を行い、衝突の可能性が更に高くなった場合に、自動ブレーキあるいは自動操舵によって、自車両と障害物との衝突を回避する制御である。衝突回避支援制御は、一般に、PCS制御(プリクラッシュセーフティ制御)と呼ばれているため、以下、衝突回避支援制御をPCS制御と呼ぶ。
尚、運転支援ECU10は、PCS制御に加えて、他の運転支援制御を実施する構成であってもよい。例えば、運転支援ECU10は、自車両を車線の中央位置に沿って走行させる車線維持支援制御などを実施してもよい。
運転支援ECU10には、カメラセンサ11、レーダセンサ12、ブザー13、および、設定操作器14が接続されている。
カメラセンサ11は、車室内のフロントウインドの上部に配設されている。カメラセンサ11は、カメラ部、および、カメラ部によって撮影して得られた画像データを解析する画像処理部を備えている。カメラセンサ11(カメラ部)は、例えば、単眼カメラであって、自車両の前方の風景を撮影する。カメラセンサ11(画像処理部)は、撮影された画像に基づいて、道路の白線、および、自車両の前方に存在する立体物を認識し、それらの情報(白線情報、立体物情報)を所定の周期で運転支援ECU10に供給する。白線情報は、自車両と白線との相対的な位置関係(向きを含む)、および、白線の曲率などを表す情報である。立体物情報は、自車両の前方に検知された立体物の種類、立体物の大きさ、および、立体物の自車両に対する相対的な位置関係などを表す情報である。
レーダセンサ12は、車体のフロント中央部に設けられ、自車両の前方領域に存在する立体物を検知する。レーダセンサ12は、レーダ送受信部と信号処理部(図示略)とを備えており、レーダ送受信部が、ミリ波帯の電波(以下、「ミリ波」と称呼する。)を放射し、放射範囲内に存在する立体物(例えば、他車両、歩行者、自転車、建造物など)によって反射されたミリ波(即ち、反射波)を受信する。信号処理部は、送信したミリ波と受信した反射波との位相差、反射波の減衰レベル及びミリ波を送信してから反射波を受信するまでの時間等に基づいて、自車両と立体物との距離、自車両と立体物との相対速度、自車両に対する立体物の相対位置(方向)等を演算し、それらの演算結果を表す情報(立体物情報)を所定の周期で運転支援ECU10に供給する。
運転支援ECU10は、カメラセンサ11から供給される立体物情報とレーダセンサ12から供給される立体物情報とを合成して、精度の高い立体物情報を取得する。また、運転支援ECU10は、カメラセンサ11から供給される白線情報に基づいて、車両が走行できる路面エリアを推定する。また、運転支援ECU10は、立体物情報の履歴に基づいて、移動している立体物の軌跡(移動軌跡)を取得し、この立体物の移動軌跡に基づいて、路面エリアを補完する。
以下、カメラセンサ11およびレーダセンサ12から得られる自車両の前方の情報を、周辺情報と総称する。また、カメラセンサ11とレーダセンサ12とをあわせて周辺センサと呼ぶ。
ブザー13は、運転支援ECU10から出力されるブザー鳴動信号を入力して鳴動する。運転支援ECU10は、ドライバーに対して運転支援状況を知らせる場合、および、ドライバーに対して注意を促す場合等においてブザー13を鳴動させる。
設定操作器14は、ドライバーが各種の設定を行うための操作器であって、例えば、操舵ハンドルに設けられている。運転支援ECU10は、設定操作器14の設定信号を入力して、各種の設定処理を行う。例えば、設定操作器14は、PCS制御などの運転支援制御のそれぞれについて、個々に作動させる/作動させないという選択操作に用いられる。
メータECU20は、表示器21に接続されている。表示器21は、例えば、運転席の正面に設けられたマルチインフォーメーションディスプレイであって、車速等のメータ類の計測値の表示に加えて、各種の情報を表示する。例えば、メータECU20は、運転支援ECU10から運転支援状況に応じた表示指令を受信すると、その表示指令で指定された画面を表示器21に表示させる。尚、表示器21としては、マルチインフォーメーションディスプレイに代えて、あるいは、加えて、ヘッドアップディスプレイ(図示略)を採用することもできる。ヘッドアップディスプレイを採用する場合には、ヘッドアップディスプレイの表示を制御する専用のECUを設けるとよい。
電動パワーステアリングECU30は、電動パワーステアリング装置の制御装置である。以下、電動パワーステアリングECU30をEPS・ECU(Electric Power Steering ECU)30と呼ぶ。EPS・ECU30は、モータドライバ31に接続されている。モータドライバ31は、転舵アクチュエータである転舵用モータ32に接続されている。転舵用モータ32は、図示しない車両のステアリング機構に組み込まれている。EPS・ECU30は、ステアリングシャフトに設けられた操舵トルクセンサによって、ドライバーが操舵ハンドル(図示略)に入力した操舵トルクを検知し、この操舵トルクに基づいて、モータドライバ31の通電を制御して、転舵用モータ32を駆動する。この転舵用モータ32の駆動によってステアリング機構に操舵トルクが付与されて、ドライバーの操舵操作をアシストする。
また、EPS・ECU30は、CAN100を介して運転支援ECU10から操舵指令を受信した場合には、操舵指令で特定される制御量で転舵用モータ32を駆動して操舵トルクを発生させる。この操舵トルクは、上述したドライバーの操舵操作(ハンドル操作)を軽くするために付与される操舵アシストトルクとは異なり、ドライバーの操舵操作を必要とせずに、運転支援ECU10からの操舵指令によってステアリング機構に付与されるトルクを表す。
ブレーキECU40は、ブレーキアクチュエータ41に接続されている。ブレーキアクチュエータ41は、ブレーキペダルの踏力によって作動油を加圧する図示しないマスタシリンダと、左右前後輪に設けられる摩擦ブレーキ機構42との間の油圧回路に設けられる。摩擦ブレーキ機構42は、車輪に固定されるブレーキディスク42aと、車体に固定されるブレーキキャリパ42bとを備える。ブレーキアクチュエータ41は、ブレーキECU40からの指示に応じてブレーキキャリパ42bに内蔵されたホイールシリンダに供給する油圧を調整し、その油圧によりホイールシリンダを作動させることによりブレーキパッドをブレーキディスク42aに押し付けて摩擦制動力を発生させる。従って、ブレーキECU40は、ブレーキアクチュエータ41を制御することによって、自車両の制動力を制御することができる。
<PCS制御>
次に、PCS制御について説明する。運転支援ECU10は、周辺センサから供給される周辺情報と、車両状態センサ50によって検知される車両状態とに基づいて、自車両が立体物に衝突するか否かについて判定する。例えば、運転支援ECU10は、立体物が現状の移動状態(立体物が静止物の場合は停止状態)を維持し、かつ、自車両が現状の走行状態を維持した場合に、自車両が立体物に衝突するか否かについて判定する。運転支援ECU10は、その判定結果に基づいて、自車両が立体物に衝突すると判定した場合に、その立体物を障害物であると認定する。
運転支援ECU10は、障害物を検知した場合、自車両が障害物に衝突するまでの予測時間である衝突予測時間TTCを演算する。この衝突予測時間TTCは、障害物と自車両とのあいだの距離dと、障害物に対する自車両の相対速度Vrとに基づいて、次式(1)によって演算される。
TTC=d/Vr ・・・(1)
この衝突予測時間TTCは、自車両が障害物に衝突する可能性の高さを表す指標として用いられ、その値が小さいほど、自車両が障害物に衝突する可能性(危険性)が高くなる。
本実施形態におけるPCS制御では、衝突予測時間TTCに基づいて、自車両が障害物に衝突する可能性のレベルを2段階に分け、初期の第1段階では、ブザー13および表示器21を使ってドライバーに警告を与える。自車両が障害物に衝突する可能性のレベルが第1段階よりも高くなった第2段階では、ブレーキ制御(自動ブレーキ)あるいは操舵制御(自動操舵)によって衝突回避支援が行われる。
この場合、運転支援ECU10は、衝突予測時間TTCが警報用閾値TTCw以下にまで低下したときに、自車両が障害物に衝突する可能性のレベルが第1段階に到達したと判定し、衝突予測時間TTCが更に低下して作動用閾値TTCa(<TTCw)以下になると、自車両が障害物に衝突する可能性のレベルが第2段階に到達したと判定する。
運転支援ECU10は、自車両が障害物に衝突する可能性のレベルが第2段階に到達すると、自車両と障害物とにおける幅方向の位置関係(ラップ率)に応じて、自動ブレーキと自動操舵とを使い分けて衝突回避支援を行う。
ここでラップ率について説明する。図2に示すように、ラップ率L(%)は、自車両V1と他車両V2とが衝突すると仮定した場合における自車両V1と他車両V2の重なり度合を示す指標であって、次式(2)に示すように、自車両V1と他車両V2とが自車両V1の車幅方向において重なっている長さBを、自車両V1の車幅Aで除算することによって算出される。
L=(B/A)×100(%) ・・・(2)
従って、図3に示す例では、ラップ率Lは100%である。
また、障害物が歩行者の場合には、ラップ率Lは、図4に示すように、自車両の車幅中心線上の位置を100%、自車両の側面の位置を0%として、点Pで表される歩行者の位置を考えればよい。この場合、ラップ率Lは、次式(3)に示すように、自車両の側面から点Pまでの距離Dを、自車両の車幅Wの半分の値で除算することにより算出される。
L=(D/(A/2))×100=(2D/A)×100(%) ・・・(3)
自車両が障害物に衝突する可能性のレベルが第2段階に到達した時に、ラップ率Lが高い場合には、自動ブレーキによって衝突回避支援が行われ、ラップ率Lが低い場合には、自動操舵によって衝突回避支援が行われる。
例えば、運転支援ECU10は、ラップ率Lが閾値Lrefよりも高い場合には、自動ブレーキによって衝突回避支援を行う。この場合、運転支援ECU10は、自車両と障害物との衝突を回避できる目標減速度を演算し、この目標減速度を表す制動指令をブレーキECU40に送信する。ブレーキECU40は、自車両を目標減速度で減速させるように、ブレーキアクチュエータ41を制御して車輪に摩擦制動力を発生させる。
尚、運転支援ECU10は、ドライバーのブレーキペダル操作が検知された場合には、ドライバーのブレーキペダル操作を優先して自動ブレーキを中止する。この場合、ドライバーのブレーキペダル踏力に応じて発生する摩擦制動力は、通常時よりも大きくなるように設定されるとよい。
一方、ラップ率Lが閾値Lref以下である場合には、運転支援ECU10は、障害物との衝突を回避するための回避スペースが存在するか否かについて判定し、回避スペースが存在する場合に、自動操舵によって衝突回避支援を行う。この場合、運転支援ECU10は、回避スペースに沿って自車両を走行させるための目標舵角を演算し、目標舵角を表す操舵指令をEPS・ECU30に送信する。EPS・ECU30は、目標舵角が得られるように転舵用モータ32を制御する。これにより、自車両を回避スペースに沿って走行させることができる。尚、運転支援ECU10は、自動操舵中にドライバーの操舵操作(ハンドル操作)が検知された場合には、ドライバーの操舵操作を優先して自動操舵を中止する。
回避スペースの有無を判定するにあたっては、車両が走行できる路面エリアを認識する必要がある。路面エリアは、カメラセンサ11から供給される白線情報から認識することができる。しかし、常に道路の白線を検知できるとは限らない。つまり、白線ロストが発生するおそれがある。そこで、運転支援ECU10は、周囲センサによって検知された立体物の位置の履歴に基づいて立体物の移動軌跡を取得し、その移動軌跡に基づいて路面エリアを推定する。そして、移動軌跡に基づいて推定された路面エリアを、白線情報によって認識される路面エリアに加えるようにして路面エリアを補完する。これにより、白線を検知できない場合(白線ロストが生じている場合)であっても、車両の走行できる路面エリアを簡単に推定することができる。
<操舵PCS制御ルーチン>
本実施形態におけるPCS制御は、自動操舵によって衝突を回避する手法に特徴を有している。従って、以下、自動操舵によって衝突を回避する場合におけるPCS制御処理について説明する。運転支援ECU10は、自車両の前方周辺(斜め前方も含む)に障害物が検知された場合、その障害物についてのラップ率Lを演算し、ラップ率Lが閾値Lrefよりも小さい場合に、図5に示す操舵PCS制御ルーチンを実施する。
尚、運転支援ECU10は、ラップ率Lが閾値Lref以上である場合には、上述した自動ブレーキによるPCS制御を実施する。また、運転支援ECU10は、自動ブレーキあるいは自動操舵によるPCS制御と並行して、ドライバーに警報を与える警報処理(衝突予測時間TTCが警報用閾値TTCw以下にまで低下しているときの警報処理)を実施する。
運転支援ECU10は、操舵PCS制御ルーチンを開始すると、まず、ステップS11において、衝突予測時間TTCを演算する。続いて、運転支援ECU10は、ステップS12において、白線情報に基づいて車両の走行できる路面エリアを推定する。例えば、自車両の左右に検知される白線で囲まれる領域を路面エリアとして設定する。この白線情報に基づいて推定される路面エリアを白線路面エリアと呼ぶ。
続いて、運転支援ECU10は、ステップS13において、周辺センサによって検知された立体物の移動軌跡に基づいて、立体物の通った路面エリアを推定する。立体物が移動したということがわかれば、その立体物の移動軌跡にそって路面が存在すると考えることができる。そこで、運転支援ECU10は、周辺センサから供給された立体物情報に基づいて、立体物の位置の履歴を逐次記憶しておき、この立体物の位置の履歴で表される移動軌跡を取得する。運転支援ECU10は、この移動軌跡に基づいて、立体物の通った路面エリアを推定する。このステップS13で推定された路面エリアは、実際に立体物の通ったエリアであるため、信頼性の高い路面エリアと考えられる。
続いて、運転支援ECU10は、ステップS14において、白線情報に基づいて推定される白線路面エリアを、立体物の移動軌跡から推定される路面エリアで補完することによって補完後路面エリアを算出する。つまり、運転支援ECU10は、白線情報に基づいて推定される白線路面エリアに、立体物の移動軌跡から推定された路面エリアを加えたエリアを補完後路面エリアに設定する。
例えば、図6に示すように、自車両V1の走行する自車線L1に隣接する車線(隣接車線L2)の前方を他車両V2が走行しているケースを考える。この場合、他車両V2の移動軌跡は、路面エリア上に存在していると考えることができる。従って、他車両V2を最初に検知した時点の他車両V2の位置から、現在の他車両V2の位置までの移動軌跡を、路面エリアRAとして推定することができる。
例えば、カメラセンサ11で自車線L1の左右の白線を検知できている場合には、運転支援ECU10は、自車線L1を白線路面エリアとして認識することができる。しかし、隣接車線L2の右側白線についてはカメラセンサ11で検知できない場合がある。その場合であっても、他車両V2の移動軌跡に基づいて路面エリアRAを推定することができるため、路面エリア補完処理によって、自車線L1と隣接車線L2とを合わせたエリアを補完後路面エリアとすることができる。
また、例えば、道路に白線が施されていない、あるいは、全ての白線をカメラセンサ11で検知できていない場合には、白線路面エリアは存在しない。この場合でも、他車両V2の移動軌跡に基づいて路面エリアRAを推定することができるため、路面エリア補完処理によって、隣接車線L2を補完後路面エリアとすることができる。
続いて、運転支援ECU10は、ステップS15において、補完後路面エリアに自車両と障害物との衝突を回避できる回避スペースが存在するか否かについて判定する。例えば、運転支援ECU10は、補完後路面エリア内であって、操舵制御によって、自車両が障害物との衝突を回避できる回避軌道を演算し、回避軌道が存在し、かつ、その回避軌道に他車両などの立体物が存在していないか否かについて判定する。
運転支援ECU10は、回避軌道に立体物が存在している場合には、他の回避軌道を演算し、同様の処理を繰り返す。運転支援ECU10は、自車両が障害物との衝突を回避できる回避軌道を演算することができ、かつ、その回避軌道に他車両などの立体物が存在してない場合に、回避スペースが存在すると判定する。
運転支援ECU10は、回避スペースが存在すると判定した場合、その処理をステップS16に進める。運転支援ECU10は、ステップS16において、衝突予測時間TTCが作動用閾値TTCa以下であるか否かについて判定する。
衝突予測時間TTCが作動用閾値TTCaより大きい場合(S16:No)、運転支援ECU10は、その処理をステップS11に戻す。従って、ラップ率Lが閾値Lrefよりも小さい障害物が検知されている間、上述した処理が繰り返される。
運転支援ECU10は、こうした処理を繰り返し、衝突予測時間TTCが作動用閾値TTCa以下に達した場合には、その処理をステップS17に進めて、操舵回避支援制御を実施する。この場合、運転支援ECU10は、回避スペース(演算された回避軌道)に沿って自車両を走行させるために必要な目標舵角を演算し、その目標舵角を表す操舵指令をEPS・ECU30に送信する。EPS・ECU30は、目標舵角が得られるように転舵用モータ32を制御する。これにより、自車両を回避スペースに沿って走行させることができる。
運転支援ECU10は、ステップS17の操舵回避支援制御を完了すると、操舵PCS制御ルーチンを終了する。
一方、回避スペースが存在しないと判定した場合(S15:No)、運転支援ECU10は、操舵PCS制御ルーチンを一旦終了する。運転支援ECU10は、ラップ率Lが閾値Lrefよりも小さい障害物が検知されている間、操舵PCS制御ルーチンを繰り返し実施する。
以上説明した本実施形態の運転支援装置によれば、周辺センサによって検知された立体物の移動軌跡に基づいて路面エリアを推定するという非常にシンプルな手法が用いられる。そして、白線情報に基づいて推定された白線路面エリアが、立体物の移動軌跡に基づいて推定された路面エリアによって補完される。このため、走行中に白線ロストが生じた場合であっても、車両の走行できる路面エリアを簡単に推定することができる。この結果、簡易な構成にて路面エリアを推定して、自動操舵による衝突回避支援を行うことができる。これにより、自動操舵による衝突回避支援を低コストにて実施することができる。従って、低価格帯の車両に本実施形態の運転支援装置を搭載することが可能となる。
以上、本実施形態に係る運転支援装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、本実施形態においては、カメラセンサ11は、単眼カメラが採用されているが、ステレオカメラを採用してもいい。この場合であっても、三次元情報によって路面エリアを推定しなくても、ステレオカメラで検知した立体物の移動軌跡に基づいて路面エリアを簡単に推定することができる。これにより、路面エリアを推定するための演算処理を軽くすることができる。
また、本実施形態においては、周辺センサは、自車両の前方周辺の状況を検知するように構成されているが、更に、自車両の後方(例えば、左後側方および右後側方)を検知するレーダセンサ等を備え、自車両の前方周辺の状況だけでなく後方周辺の状況を検知する構成であってもよい。この場合には、自車両の後方を走行している他車両を監視しながら、自動操舵による衝突回避支援を実施することができる。
また、例えば、図7に示すように、自車両V1が交差点に合流するようなシーンにおいては、自車両V1の前を横方向に通過する他車両V2の移動軌跡から、横方向に延びる路面エリアRAの存在を認識することができる。従って、本実施形態の技術を、自車両が交差点に合流する状況であることを推定する技術としても利用することができる。更に、こうしたシーンにおいても、横方向に延びる路面エリアRAを、回避スペースの候補として利用することができる。
10…運転支援ECU、11…カメラセンサ、12…レーダセンサ、13…ブザー、14…設定操作器、20…メータECU、21…表示器、30…電動パワーステアリングECU、31…モータドライバ、32…転舵用モータ、40…ブレーキECU、41…ブレーキアクチュエータ、42…摩擦ブレーキ機構、50…車両状態センサ、60…運転操作状態センサ、L…ラップ率、TTC…衝突予測時間、V1…自車両、V2…他車両、RA…路面エリア。

Claims (1)

  1. 自車両の前方周辺に存在する立体物を検知する立体物検知手段と、
    前記自車両と衝突する可能性が高い立体物である障害物を検知した場合に、操舵制御によって前記自車両を前記障害物との衝突を回避する方向に偏向させる自動操舵手段と
    を備えた運転支援装置において、
    道路に施された白線を検知し、前記白線に基づいて車両の走行できる路面エリアを推定する路面推定手段と、
    前記立体物検知手段によって検知された立体物の移動軌跡を取得し、前記移動軌跡に基づいて前記路面エリアを補完する路面補完手段と、
    前記路面補完手段によって補完された前記路面エリアに、前記自車両の衝突を回避できる回避スペースが存在するか否かについて判定する回避スペース判定手段と
    を備え、
    前記自動操舵手段は、前記回避スペースが存在すると判定された場合に、前記自車両を前記回避スペースに移動させるように操舵制御を実施するように構成されている運転支援装置。
JP2019044385A 2019-03-12 2019-03-12 運転支援装置 Active JP7192585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044385A JP7192585B2 (ja) 2019-03-12 2019-03-12 運転支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044385A JP7192585B2 (ja) 2019-03-12 2019-03-12 運転支援装置

Publications (2)

Publication Number Publication Date
JP2020147088A true JP2020147088A (ja) 2020-09-17
JP7192585B2 JP7192585B2 (ja) 2022-12-20

Family

ID=72431548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044385A Active JP7192585B2 (ja) 2019-03-12 2019-03-12 運転支援装置

Country Status (1)

Country Link
JP (1) JP7192585B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055046A (ja) * 2020-09-28 2022-04-07 ダイハツ工業株式会社 運転支援装置
CN114407881A (zh) * 2022-04-01 2022-04-29 天津所托瑞安汽车科技有限公司 带挂货车转向避碰方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296291A (ja) * 1994-04-22 1995-11-10 Nippon Soken Inc 車両用走行路検出装置
JP2007008281A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp 車両用運転支援装置
JP2017016403A (ja) * 2015-07-01 2017-01-19 株式会社デンソー 車線内走行制御装置、車線内走行制御方法
JP2017043262A (ja) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 衝突回避支援装置
JP2018103862A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 運転支援装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296291A (ja) * 1994-04-22 1995-11-10 Nippon Soken Inc 車両用走行路検出装置
JP2007008281A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp 車両用運転支援装置
JP2017016403A (ja) * 2015-07-01 2017-01-19 株式会社デンソー 車線内走行制御装置、車線内走行制御方法
JP2017043262A (ja) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 衝突回避支援装置
JP2018103862A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 運転支援装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055046A (ja) * 2020-09-28 2022-04-07 ダイハツ工業株式会社 運転支援装置
JP7301483B2 (ja) 2020-09-28 2023-07-03 ダイハツ工業株式会社 運転支援装置
CN114407881A (zh) * 2022-04-01 2022-04-29 天津所托瑞安汽车科技有限公司 带挂货车转向避碰方法和系统
CN114407881B (zh) * 2022-04-01 2022-06-21 天津所托瑞安汽车科技有限公司 带挂货车转向避碰方法和系统

Also Published As

Publication number Publication date
JP7192585B2 (ja) 2022-12-20

Similar Documents

Publication Publication Date Title
US11897462B2 (en) Collision avoidance assist apparatus
CN108622083B (zh) 泊车辅助装置
EP3135550B1 (en) Collision avoidance support device
JP7200871B2 (ja) 衝突回避支援装置
US20190084558A1 (en) Vehicle surrounding monitoring device
GB2544162A (en) Park out assist
KR20170015194A (ko) 운전 지원 장치
JP2017105383A (ja) 車両の運転支援装置
CN108238055B (zh) 驾驶辅助设备
CN113212428B (zh) 碰撞避免支援装置
EP2799302A1 (en) Vehicle driving assistance device
JP7380937B2 (ja) 運転支援装置
JP2022024322A (ja) 衝突回避支援装置
JP6549958B2 (ja) 自動運転装置
JP2020097346A (ja) 車両の走行制御装置
KR20150051550A (ko) 성능이 개선된 운전보조시스템 및 그 제어방법
JP2020147088A (ja) 運転支援装置
KR101511860B1 (ko) 운전보조시스템 및 그 제어방법
US20230202475A1 (en) Driving assistance apparatus, driving assistance method, and program
KR20210080717A (ko) 운전자 보조 장치 및 운전자 보조 방법
JP2021003952A (ja) 操舵制御装置
KR20230089780A (ko) 충돌 방지 방법 및 장치
KR101511861B1 (ko) 운전보조시스템 및 그 제어방법
JP2021124830A (ja) 衝突回避支援装置
KR20200059931A (ko) 차량 및 차량의 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7192585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151