JP2020146622A - Method and apparatus for measuring glycosylated hemoglobin by affinity method - Google Patents

Method and apparatus for measuring glycosylated hemoglobin by affinity method Download PDF

Info

Publication number
JP2020146622A
JP2020146622A JP2019045559A JP2019045559A JP2020146622A JP 2020146622 A JP2020146622 A JP 2020146622A JP 2019045559 A JP2019045559 A JP 2019045559A JP 2019045559 A JP2019045559 A JP 2019045559A JP 2020146622 A JP2020146622 A JP 2020146622A
Authority
JP
Japan
Prior art keywords
glycated hemoglobin
sample
eluent
injection mechanism
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019045559A
Other languages
Japanese (ja)
Other versions
JP7243315B2 (en
Inventor
原一 植松
Genichi Uematsu
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019045559A priority Critical patent/JP7243315B2/en
Publication of JP2020146622A publication Critical patent/JP2020146622A/en
Application granted granted Critical
Publication of JP7243315B2 publication Critical patent/JP7243315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an apparatus capable of measuring hemoglobin by an affinity method in which a base line does not vary and calculation processing is simple.SOLUTION: A liquid chromatograph apparatus is provided that comprises: an eluant feed pump 3 for feeding eluent 1; a sample injection mechanism 8 connected to a position downstream of the eluant feed pump; an analysis column 10 filled with an affinity gel capable of selectively adsorbing glycosylated hemoglobin; a visible light detector 11; and a switching valve 9, the switching valve can switch a state of the liquid chromatograph apparatus between a first state in which the sample injection mechanism, the visible light detector, and the analysis column are fluidly connected to each other in this order and a second state in which the sample injection mechanism, the analysis column, and the visible light detector are fluidly connected to each other in this order.SELECTED DRAWING: Figure 1

Description

本発明は、アフィニティ法による糖化ヘモグロビンの測定方法および装置に関するものである。 The present invention relates to a method and an apparatus for measuring glycated hemoglobin by an affinity method.

糖尿病の判断基準の指標として、血液中の糖化ヘモグロビン(SA1c)の割合を基に診断することが多い。SA1c%の測定法として、アフィニティクロマトグラフィの原理に基づく測定方法が広く用いられている。具体的には、血液を溶血、希釈後、アミノフェニルボロン酸基を配したゲルを充填したカラムに導入し、第一の溶離液で糖化ヘモグロビンをゲルに吸着させ非糖化ヘモグロビンを溶出させ、一定時間後、糖化ヘモグロビンを脱着させる第二の溶離液に切り替え、糖化ヘモグロビンを溶出させる。 Diagnosis is often made based on the proportion of glycated hemoglobin (SA1c) in the blood as an index for determining diabetes. As a method for measuring SA1c%, a measuring method based on the principle of affinity chromatography is widely used. Specifically, after hemolyzing and diluting blood, the blood is introduced into a column packed with a gel containing an aminophenylboronic acid group, and glycated hemoglobin is adsorbed on the gel with the first eluent to elute non-glycated hemoglobin. After an hour, it is switched to a second eluent that desorbs glycated hemoglobin to elute glycated hemoglobin.

前記2種類の溶離液は、種々の緩衝液、濃度が提案されているが、一般的には、両者の組成は大きく異なり、検出器のバックグラウンドの差異もあり、ベースラインが階段状に変動するため、各ピーク面積を正確に算出することについて難しい面があった。 Various buffer solutions and concentrations have been proposed for the above two types of eluents, but in general, the compositions of the two solutions are significantly different, and the background of the detector is also different, so that the baseline fluctuates stepwise. Therefore, it is difficult to calculate each peak area accurately.

本発明の目的は、ベースラインの変動がなく、計算処理が簡便である、アフィニティ法による糖化ヘモグロビンの測定可能な装置を提供するものである。 An object of the present invention is to provide an apparatus capable of measuring glycated hemoglobin by an affinity method, which has no baseline fluctuation and is easy to calculate.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above problems, the present inventors have reached the present invention as a result of repeated diligent studies.

すなわち本発明の一態様は、
溶離液を送液するための送液ポンプと、
前記送液ポンプよりも下流に接続された試料注入機構と、
糖化ヘモグロビンを特異的に吸着できるアフィニティゲルを充填した分析カラムと、
可視光検出器と、
切り替えバルブと、
を備えた液体クロマトグラフ装置であって、
前記切り替えバルブは、前記試料注入機構、前記可視光検出器、前記分析カラムの順で流体接続された第一の状態と、
前記試料注入機構、前記分析カラム、前記可視光検出器の順で流体接続された第二の状態に切り替え可能であることを特徴とする。
That is, one aspect of the present invention is
A liquid feed pump for feeding the eluent and
A sample injection mechanism connected downstream of the liquid feed pump,
An analytical column filled with an affinity gel capable of specifically adsorbing glycated hemoglobin,
Visible light detector and
Switching valve and
It is a liquid chromatograph device equipped with
The switching valve is a first state in which the sample injection mechanism, the visible photodetector, and the analysis column are fluidly connected in this order.
It is characterized in that the sample injection mechanism, the analysis column, and the visible photodetector can be switched to the second fluid-connected state in this order.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

図1は本発明の一態様である装置の構成を示したものであり、流路切り替えバルブの状態を示した図である。なお、図中の太実線は繋がっている流路を示している。 FIG. 1 shows a configuration of an apparatus according to an aspect of the present invention, and is a diagram showing a state of a flow path switching valve. The thick solid line in the figure indicates the connected flow paths.

測定開始時に、切り替えバルブを第一の状態とし、糖化ヘモグロビン吸着用の溶離液を送液する。この状態で検体を試料注入機構より注入する。これにより、検体は、可視光検出器、分析カラムの順で流れて、排出される。検体は直接可視光検出器に導入されることから、検出器では検体の全量に比例した信号が得られる。検出器を出た試料はカラムに導入されるが、糖化ヘモグロビン成分はゲルに吸着され、それ以外の成分はカラム内を移動していく(図1a参照)。 At the start of measurement, the switching valve is set to the first state, and the eluent for adsorbing glycated hemoglobin is sent. In this state, the sample is injected from the sample injection mechanism. As a result, the sample flows in the order of the visible light detector and the analysis column, and is discharged. Since the sample is directly introduced into the visible light detector, the detector can obtain a signal proportional to the total amount of the sample. The sample exiting the detector is introduced into the column, but the glycated hemoglobin component is adsorbed on the gel, and the other components move within the column (see FIG. 1a).

次に、切り替えバルブを第二の状態に切り替える。これにより、溶離液は分析カラム、可視光検出器の順で流れて、排出される。分析カラム内を移動していた、糖化ヘモグロビン以外の成分は検出器へと導かれる。つまり、検出器では糖化ヘモグロビン以外の成分量に比例した信号が得られる(図1b参照)。 Next, the switching valve is switched to the second state. As a result, the eluent flows in the order of the analysis column and the visible photodetector, and is discharged. The components other than glycated hemoglobin that were moving in the analysis column are guided to the detector. That is, the detector can obtain a signal proportional to the amount of components other than glycated hemoglobin (see FIG. 1b).

バルブ切り替えのタイミングは早すぎると、検出器で検体の全量について正確な信号が得られず、タイミングが遅すぎると分析カラム内を移動していた、糖化ヘモグロビン以外の成分が排出されてしまうため、第一の状態で検出器の出力信号が適切な閾値以下となったら自動的に切り替わるような態様としておくことが好ましい。適切な閾値については、サンプルによるテスト運転等によって適宜決定すればよい。 If the valve switching timing is too early, the detector will not be able to obtain an accurate signal for the total amount of the sample, and if the timing is too late, components other than glycated hemoglobin that were moving in the analysis column will be discharged. In the first state, it is preferable to set the mode so that the output signal of the detector automatically switches when the output signal falls below an appropriate threshold value. The appropriate threshold value may be appropriately determined by a test run using a sample or the like.

切り替えバルブが第一の状態で得られた検出器信号(A)と第二の状態で得られた検出器信号(B)から、全体量に対する糖化ヘモグロビン割合(SA1c%)を算出できる。すなわち、糖化ヘモグロビンの量は、全体の量(A)と非糖化ヘモグロビンの量(B)との差に相当する。全体の量(A)に対する差分(A)−(B)の割合が、糖化ヘモグロビン割合(SA1c%)となる。(A)、(B)の量は各工程で得られるピークの積分値またはピーク面積に相当する。 From the detector signal (A) obtained in the first state and the detector signal (B) obtained in the second state of the switching valve, the ratio of glycated hemoglobin (SA1c%) to the total amount can be calculated. That is, the amount of glycated hemoglobin corresponds to the difference between the total amount (A) and the amount of non-glycated hemoglobin (B). The ratio of the difference (A)-(B) to the total amount (A) is the glycated hemoglobin ratio (SA1c%). The amounts of (A) and (B) correspond to the integrated value or peak area of the peaks obtained in each step.

従来のアフィニティ法では1回の分析において、2つの溶離液(糖化ヘモグロビン吸着用、糖化ヘモグロビン脱着用)を順次切り替えを行う必要があるのに対して、本発明の装置は、上述した通り、バルブの切り替えにより、検体の全量及び糖化ヘモグロビン以外の成分を検出器で検出可能なため、糖化ヘモグロビン吸着用の溶離液のみの使用で糖化ヘモグロビン割合を測定可能である。このため、本発明は溶離液に組成変化がなく、バックグラウンドの変動がない状態での測定が可能となる(図2参照)。 In the conventional affinity method, it is necessary to sequentially switch between two eluents (for glycated hemoglobin adsorption and glycated hemoglobin desorption) in one analysis, whereas the apparatus of the present invention is a valve as described above. Since the total amount of the sample and components other than glycated hemoglobin can be detected by the detector, the glycated hemoglobin ratio can be measured by using only the eluent for adsorbing glycated hemoglobin. Therefore, the present invention enables measurement in a state where the composition of the eluent does not change and the background does not change (see FIG. 2).

また、本発明の一態様である装置で検体を連続して分析を行う場合、分析カラムに吸着された糖化ヘモグロビンは累積されていくが、使用するゲルの吸着の限界を超えるまでは問題なく、連続分析が可能である。図3に切り替えバルブの状態と、得られる検出器信号の変化を模式的に示す。 Further, when the sample is continuously analyzed by the apparatus which is one aspect of the present invention, the saccharified hemoglobin adsorbed on the analysis column is accumulated, but there is no problem until the adsorption limit of the gel used is exceeded. Continuous analysis is possible. FIG. 3 schematically shows the state of the switching valve and the change in the obtained detector signal.

ゲルの吸着の限界を超えた場合や、事前に設定した測定回数を超えた場合は、分析カラムは交換してもよいが、例えば、送液ポンプの上流側に切り替え弁(図4a参照)又は開閉弁(図4b参照)を設けたり、送液ポンプを2つ備えることで(図4c参照)、糖化ヘモグロビン吸着用溶離液と糖化ヘモグロビン脱着用溶離液を配することが可能になり、一定回数連続して測定を行った後、糖化ヘモグロビン脱着用溶離液を流し、蓄積された糖化ヘモグロビン成分を洗い流し、再生操作を行ってもよい。 If the limit of gel adsorption is exceeded, or if the number of measurements exceeds a preset number of measurements, the analysis column may be replaced, but for example, a switching valve (see FIG. 4a) on the upstream side of the liquid feed pump. By providing an on-off valve (see FIG. 4b) or by providing two liquid feed pumps (see FIG. 4c), it becomes possible to distribute the glycated hemoglobin adsorption eluent and the glycated hemoglobin desorption eluent a certain number of times. After continuous measurement, the glycated hemoglobin desorption eluent may be flushed to wash away the accumulated glycated hemoglobin component, and the regeneration operation may be performed.

本発明の一態様である装置を使用することで、試料注入機構より血液試料を糖化ヘモグロビン吸着用溶離液で押し流し、可視光検出器にて血液の濃度変化を計測し、計測後の前記血液試料を、糖化ヘモグロビンを特異的に吸着できるアフィニティゲルを充填した分析カラムに導いた後、糖化ヘモグロビン以外の成分の濃度変化を可視光検出器で計測し、血液の濃度変化の量と、糖化ヘモグロビン以外の成分の濃度変化の量との差から糖化ヘモグロビンの量を算出することが簡便に行えるが、可視光検出器、分析カラム、可視光検出器の順に血液試料を糖化ヘモグロビン吸着用溶離液で押し流せれば、使用する装置は前述の装置には限られない。 By using the apparatus according to one aspect of the present invention, the blood sample is flushed from the sample injection mechanism with the eluent for adsorbing glycated hemoglobin, the change in blood concentration is measured by the visible light detector, and the measured blood sample is measured. Was guided to an analysis column filled with an affinity gel capable of specifically adsorbing glycated hemoglobin, and then the concentration change of components other than glycated hemoglobin was measured with a visible light detector, and the amount of blood concentration change and other than glycated hemoglobin were measured. The amount of glycated hemoglobin can be easily calculated from the difference from the amount of change in the concentration of the components of the blood sample, but the blood sample is pressed with the eluent for adsorbing glycated hemoglobin in the order of the visible light detector, the analysis column, and the visible light detector. If it can flow, the device used is not limited to the above-mentioned device.

ベースラインの変動がなく、計算処理が簡便である、アフィニティ法による糖化ヘモグロビンの測定が可能となった。 It has become possible to measure glycated hemoglobin by the affinity method, which has no baseline fluctuation and is easy to calculate.

本発明の一態様である装置の構成を示した図である。図1aは、切り替えバルブを第一の状態としたとき、図1bは切り替えバルブを第二の状態としたときを示している。It is a figure which showed the structure of the apparatus which is one aspect of this invention. FIG. 1a shows the switching valve in the first state, and FIG. 1b shows the switching valve in the second state. 従来のアフィニティクロマトグラフィと本発明の方法によるベースラインの変動の違いを模式的に示した図である。It is a figure which showed the difference of the variation of the baseline by the conventional affinity chromatography and the method of this invention schematically. 本発明の方法による糖化ヘモグロビンの分離のパターンと流路切り替えバルブの様態を模式的に示した図である。It is a figure which showed typically the pattern of separation of glycated hemoglobin by the method of this invention, and the mode of a flow path switching valve. 本発明の他の態様を示した図である。図4aは送液ポンプを1台のみ使用し、1つの切り替え弁により2液を切り替える態様、図4bは送液ポンプを1台のみ使用し、1つの開閉弁により2液を切り替える態様、図4cは送液ポンプを2台使用し、2液を切り替える態様である。It is a figure which showed the other aspect of this invention. FIG. 4a shows a mode in which only one liquid feed pump is used and one switching valve switches between two liquids, and FIG. 4b shows a mode in which only one liquid feed pump is used and two liquids are switched by one on-off valve, FIG. 4c. Is a mode in which two liquid feeding pumps are used and two liquids are switched. 実施例1で、キャリブレータを連続で3回測定した結果および溶血洗浄液を測定した結果を重ね描いた図である。図5aがLevel_1(Low)、図5bがLevel_2(High)の検体である。FIG. 5 is a diagram in which the results of measuring the calibrator three times in succession and the results of measuring the hemolytic lavage fluid in Example 1 are superimposed. FIG. 5a is a sample of Level_1 (Low), and FIG. 5b is a sample of Level_1 (High). 実施例1で、コントロールを連続で3回測定した結果および溶血洗浄液を測定した結果を重ね描いた図である。図6aがLevel_1(Low)、図6bがLevel_2(High)の検体である。FIG. 5 is a diagram in which the results of measuring the control three times in succession and the results of measuring the hemolytic lavage fluid in Example 1 are superimposed. FIG. 6a is a sample of Level_1 (Low), and FIG. 6b is a sample of Level_1 (High). 検体濃度変化によるSA1cの面積%への影響を示した図である。横軸は希釈率の対数、縦軸は算出されたSA1c面積%である。It is a figure which showed the influence on the area% of SA1c by the sample concentration change. The horizontal axis is the logarithm of the dilution rate, and the vertical axis is the calculated SA1c area%. 実施例3の測定結果を示した図である。図中、実線は検体測定の結果、破線は複数回連続で検体を測定した後、糖化ヘモグロビン脱着用溶離液をカラムに通液して得られた結果を重ね描いた図である。図8aは検体測定1回、図8bは検体測定2回、図8cは検体測定5回の結果を示している。It is a figure which showed the measurement result of Example 3. In the figure, the solid line is the result of sample measurement, and the broken line is the result obtained by passing the glycated hemoglobin desorption eluent through the column after measuring the sample multiple times in succession. FIG. 8a shows the results of one sample measurement, FIG. 8b shows the results of two sample measurements, and FIG. 8c shows the results of five sample measurements. 図8と同様。図9aは検体測定10回、図9bは検体測定20回、図9cは検体測定50回の結果を示している。Same as FIG. FIG. 9a shows the results of sample measurement 10 times, FIG. 9b shows the results of sample measurement 20 times, and FIG. 9c shows the results of sample measurement 50 times. 実施例3の測定結果を示した図である。横軸が連続して測定した回数の対数、縦軸が脱着時の糖化ヘモグロビンのピーク面積の対数である。It is a figure which showed the measurement result of Example 3. The horizontal axis is the logarithm of the number of consecutive measurements, and the vertical axis is the logarithm of the peak area of glycated hemoglobin at the time of desorption.

本発明の効果を明らかにするため、図4aのシステムを構築し、検証を行った。 In order to clarify the effect of the present invention, the system of FIG. 4a was constructed and verified.

送液ポンプ(3)、試料注入機構(8)および6ポート2位置切り替えバルブ(9)を介して、分析カラム(10)/可視光検出器(11)を接続した。また、送液ポンプ(3)の上流側に切り替え弁(7)を配し、SA1c吸着用溶離液(1)とSA1c脱着用溶離液(2)の選択ができるようにした。
6ポート2位置切り替えバルブ(9)は、2つの状態(流路)をとることが可能であり、第一の状態では、送液される溶離液が、可視光検出器、分析カラム、ドレインの順で流れ、第二の状態では、送液される溶離液が、分析カラム、可視光検出器、ドレインの順で流れる構成をとることができる。
いずれの構成機器も、全て東ソー(株)製の8020シリーズのHPLCを用い、分析カラムは、m−アミノフェニルボロン酸をリガンドとしたTSKgel Boronate−5PW(東ソー(株)製、粒径10μm)を内径4.6mm長さ10mmのカラム管に充填したものを使用した。
The analytical column (10) / visible photodetector (11) was connected via a liquid feed pump (3), a sample injection mechanism (8) and a 6-port 2-position switching valve (9). In addition, a switching valve (7) was arranged on the upstream side of the liquid feed pump (3) so that the SA1c adsorption eluent (1) and the SA1c desorption eluent (2) could be selected.
The 6-port 2-position switching bulb (9) can take two states (flow paths). In the first state, the eluent to be sent is the visible light detector, the analysis column, and the drain. In the second state, the eluent to be sent can flow in the order of the analysis column, the visible photodetector, and the drain.
All components use 8020 series HPLC manufactured by Tosoh Corporation, and the analysis column uses TSKgel Boronate-5PW (manufactured by Tosoh Corporation, particle size 10 μm) using m-aminophenylboronic acid as a ligand. A column tube having an inner diameter of 4.6 mm and a length of 10 mm was filled.

SA1c吸着用溶離液(pH8.8)は、以下の組成で調整したものを使用した。
グリシン50mM
塩化マグネシウム・6水和物5mM
塩化ナトリウム50mM
SA1c脱着用溶離液(pH8.8)は、以下の組成で調整したものを使用した。
グリシン50mM
塩化ナトリウム50mM
D−ソルビトール100mM
その他の測定条件は以下の通りである。
カラム温度 :45℃
流速 :1.0mL/min
検出波長 :415nm(単波長)
検出器レスポンス :0.15s
データ収集サンプリングピッチ:50ms
試料注入機構(8)の洗浄液として、東ソー(株)製グリコヘモグロビン分析計(HLC−723シリーズ)専用の溶血/洗浄液を使用した。また、血液を検体として使用する場合は、前記の溶血/洗浄液にて溶血/希釈を行った。
As the SA1c adsorption eluent (pH 8.8), one prepared with the following composition was used.
Glycine 50 mM
Magnesium chloride hexahydrate 5 mM
Sodium chloride 50 mM
As the SA1c desorption eluent (pH 8.8), one prepared with the following composition was used.
Glycine 50 mM
Sodium chloride 50 mM
D-sorbitol 100 mM
Other measurement conditions are as follows.
Column temperature: 45 ° C
Flow velocity: 1.0 mL / min
Detection wavelength: 415 nm (single wavelength)
Detector response: 0.15s
Data collection sampling pitch: 50ms
As the cleaning solution of the sample injection mechanism (8), a hemolysis / cleaning solution dedicated to a glycohemoglobin analyzer (HLC-723 series) manufactured by Tosoh Corporation was used. When blood was used as a sample, hemolysis / dilution was performed with the above-mentioned hemolysis / washing solution.

(実施例1)
SA1c吸着用溶離液のみで、連続した測定が可能か検証を行った。
検体として、以下の通り調製したキャリブレータ試料、コントロール試料を用いた。
凍結乾燥品のA1cキャリブレータ(東ソー(株)製)のLevel_1(HbA1c 5.87%[NGSP])およびLevel_2(HbA1c 10.87%[NGSP])を精製水1.3mLに溶解して、室温下で30分放置したもの
凍結乾燥品のA1cコントロール(東ソー(株)製)のLevel_1(HbA1c 4.9±0.3%[NGSP])およびLevel_2(HbA1c 9.9±0.5%[NGSP])を精製水0.5mL溶解で1次溶解した後、室温下で30分放置し、さらに1次溶解したもの30μLに対して精製水0.5mLを添加したもの
キャリブレータLevel_1を連続で3回、キャリブレータLevel_2を連続で3回測定した。また、同様にコントロールLevel_1を連続で3回、続いてコントロールLevel_2を連続で3回測定した。通液はSA1c吸着用溶離液のみを連続して送液を行った。
測定のシーケンスは、試料注入時から0.25分まではバルブを第一の状態、0.25分から2.80分まではバルブを第二の状態とした。
(Example 1)
It was verified whether continuous measurement was possible with only the SA1c adsorption eluent.
As the sample, the calibrator sample and the control sample prepared as follows were used.
Freeze-dried A1c calibrator (manufactured by Toso Co., Ltd.) Level_1 (HbA1c 5.87% [NGSP]) and Level_1 (HbA1c 10.87% [NGSP]) are dissolved in 1.3 mL of purified water at room temperature. Level_1 (HbA1c 4.9 ± 0.3% [NGSP]) and Level_2 (HbA1c 9.9 ± 0.5% [NGSP]) of A1c control (manufactured by Toso Co., Ltd.) ) Was first dissolved in 0.5 mL of purified water, left at room temperature for 30 minutes, and 0.5 mL of purified water was added to 30 μL of the first dissolved product. Calibrator Level_1 was added three times in a row. The calibrator Level_2 was measured three times in a row. Similarly, the control Level_1 was measured three times in a row, and then the Control Level_1 was measured three times in a row. As for the liquid flow, only the SA1c adsorption eluent was continuously fed.
In the measurement sequence, the valve was in the first state from the time of sample injection to 0.25 minutes, and the valve was in the second state from 0.25 minutes to 2.80 minutes.

図5はキャリブレータLevel_1および2の3回の結果を重ね描いた図、同様に、図6はコントロールLevel_1および2の3回の結果を重ね描いた図である。なお、図中の破線は溶血洗浄液を試料として注入した際のクロマトグラム、つまりベースラインの変動を示すバックグラウンドである。
図5、6のいずれも、0.1分付近に現れるシャープなピークは注入した試料全体の吸光度変化、0.45分付近にブロードなピークとしてアフィニティカラム内を移動していた糖化ヘモグロビン以外の成分の吸光度変化が確認できる。
FIG. 5 is a diagram in which the results of the calibrators Level_1 and 2 are superimposed, and FIG. 6 is a diagram in which the results of the controls Level_1 and 2 are superimposed. The broken line in the figure is a background showing the variation of the chromatogram, that is, the baseline when the hemolytic washing solution is injected as a sample.
In both FIGS. 5 and 6, the sharp peak appearing around 0.1 minute is the change in the absorbance of the entire injected sample, and the component other than glycated hemoglobin that was moving in the affinity column as a broad peak around 0.45 minute. The change in absorbance can be confirmed.

キャリブレータ試料の定量結果を表1に示す。 Table 1 shows the quantification results of the calibrator sample.

糖化ヘモグロビン(SA1c)の面積は、ピーク1の面積とピーク2の面積の差分に相当するので、SA1cの面積%は、
{(ピーク1 面積)−(ピーク2 面積)}*100/(ピーク1 面積)
で計算される。
SA1c面積%(4)をX、基準値(5)をYとして検量線を作成すると、その回帰式は
y = 0.7873x − 4.6712
となった。
Since the area of glycated hemoglobin (SA1c) corresponds to the difference between the area of peak 1 and the area of peak 2, the area% of SA1c is
{(Peak 1 area)-(Peak 2 area)} * 100 / (Peak 1 area)
It is calculated by.
When a calibration curve is created with SA1c area% (4) as X and reference value (5) as Y, the regression equation is y = 0.7873x − 4.6712.
It became.

次に、コントロール試料の定量結果を表2に示す。なお、表中(6)列は、上記検量線によりSA1c%を算出した値である。 Next, Table 2 shows the quantitative results of the control sample. In addition, column (6) in the table is a value calculated by SA1c% by the above calibration curve.

コントロールLevel_1のSA1c%の平均は5.3%、コントロールLevel_2は10.4%となる結果が得られた。 The average SA1c% of control Level_1 was 5.3%, and that of control Level_1 was 10.4%.

(実施例2)
次に、従来のアフィニティ法と本発明の方法について、検体の濃度による影響について比較を行った。
送液ポンプ(3)の上流に配した切り替え弁(7)により、SA1c吸着用溶離液(1)とSA1c脱着用溶離液(2)を切り替えるステップグラジエントを実施した。バルブは第二の状態に固定したため、分析カラム、可視光検出器、ドレインの順で流れるので、一般的なクロマトグラフィの流路をとることができる。
なお、測定のシーケンスは試料注入時から0.15分まではSA1c吸着用溶離液を、0.15分から0.65分まではSA1c脱着用溶離液を流した。また、測定で得られたクロマトグラムから、溶血洗浄液を注入して得られたクロマトグラム(バックグラウンド)を差し引き、その差分クロマトグラムでピーク検出を行った。
(Example 2)
Next, the effects of the concentration of the sample on the conventional affinity method and the method of the present invention were compared.
A step gradient was carried out in which the SA1c adsorption eluent (1) and the SA1c desorption eluent (2) were switched by a switching valve (7) arranged upstream of the liquid feed pump (3). Since the bulb is fixed in the second state, it flows in the order of the analysis column, the visible photodetector, and the drain, so that a general chromatography flow path can be taken.
In the measurement sequence, the SA1c adsorption eluent was flowed from the time of sample injection to 0.15 minutes, and the SA1c desorption eluent was flowed from 0.15 minutes to 0.65 minutes. Further, the chromatogram (background) obtained by injecting the hemolytic washing solution was subtracted from the chromatogram obtained by the measurement, and the peak was detected by the difference chromatogram.

全血を1/25〜1/150まで5種類の濃度に調整した試料を、本発明の方法と従来のアフィニティ法に供して、SA1c面積%への影響を確認した。表3に本発明の方法による定量結果、表4に従来のアフィニティ法による定量結果を示す。なお、濃度範囲が広いため、濃度は対数とした。 Samples prepared by adjusting whole blood to 5 different concentrations from 1/25 to 1/150 were subjected to the method of the present invention and the conventional affinity method, and the effect on SA1c area% was confirmed. Table 3 shows the quantification results by the method of the present invention, and Table 4 shows the quantification results by the conventional affinity method. Since the concentration range is wide, the concentration is logarithmic.

従来のアフィニティ法では濃度が低くなるにつれて、SA1c面積%が大きくなる傾向があるが、本発明の連続アフィニティ法では、濃度の影響が小さいことが分かる(図7参照)。
従来のアフィニティ法では2種の溶離液の切り替えによるバックグラウンドの変動があり、その変動分がSA1c面積に含まれることとなるが、本発明の方法では1種類の溶離液しか使用しないことから、バックグラウンドの変動はなく、検体濃度による影響を受けにくいからである。
In the conventional affinity method, the SA1c area% tends to increase as the concentration decreases, but in the continuous affinity method of the present invention, it can be seen that the influence of the concentration is small (see FIG. 7).
In the conventional affinity method, there is a background fluctuation due to switching between two types of eluents, and the fluctuation amount is included in the SA1c area. However, since the method of the present invention uses only one type of eluent, This is because there is no change in the background and it is not easily affected by the sample concentration.

(実施例3)
本発明の方法を連続で行っても、糖化ヘモグロビン成分が吸着されているか検証を行った。基本的な測定条件は実施例1と同様であり、糖化ヘモグロビン吸着用溶離液(1)を送液し、検体を複数回測定後、糖化ヘモグロビン脱着用溶離液(2)を送液し、吸着された成分の検出を行った。
測定は、検体をそれぞれ1回、2回、5回、10回、20回、50回注入後、溶離液を切り替えた。なお、検体としては、コントロール試料(Level_1)を使用した。図8、9にその結果を示す。図中、実線は検体測定の結果(n回測定結果の重ね描き)、破線は脱着時に得られた結果を示している。
(Example 3)
It was verified whether the glycated hemoglobin component was adsorbed even when the method of the present invention was continuously carried out. The basic measurement conditions are the same as in Example 1. The glycated hemoglobin adsorption eluent (1) is fed, the sample is measured multiple times, and then the glycated hemoglobin desorption eluent (2) is fed and adsorbed. The components were detected.
For the measurement, the sample was injected once, twice, five times, ten times, 20 times, and 50 times, respectively, and then the eluent was switched. As the sample, a control sample (Level_1) was used. The results are shown in FIGS. 8 and 9. In the figure, the solid line shows the result of sample measurement (overlaying of the measurement result n times), and the broken line shows the result obtained at the time of attachment / detachment.

検体測定時は、約0.1分付近にトータル量を示すシャープなピーク、約0.3分付近に糖化ヘモグロビン以外の成分量を示すブロードなピークが現れ、脱着時には、約1.6分付近に糖化ヘモグロビンの量を示すブロードなピークが現れ、当該ピークは測定回数が増えるごとに、ピーク強度が高くなっていることが分かる。
横軸に連続して測定した回数の対数、縦軸に脱着時の糖化ヘモグロビンのピーク面積の対数をプロットしたものを図10に示す。注入回数と脱着時の糖化ヘモグロビンのピーク面積には直線関係が成り立っていることが見て取れ、定量的に糖化ヘモグロビン成分のみがアフィニティゲルに吸着されていることが分かる。
At the time of sample measurement, a sharp peak showing the total amount appears around 0.1 minutes, a broad peak showing the amount of components other than glycated hemoglobin appears around about 0.3 minutes, and at the time of desorption, around 1.6 minutes. A broad peak indicating the amount of glycated hemoglobin appears in, and it can be seen that the peak intensity of the peak increases as the number of measurements increases.
FIG. 10 shows a plot of the logarithm of the number of consecutive measurements on the horizontal axis and the logarithm of the peak area of glycated hemoglobin at the time of desorption on the vertical axis. It can be seen that a linear relationship is established between the number of injections and the peak area of glycated hemoglobin at the time of desorption, and it can be seen that only the glycated hemoglobin component is quantitatively adsorbed on the affinity gel.

1 SA1c吸着用溶離液
2 SA1c脱着用溶離液
3、4 送液ポンプ
5、6 開閉弁
7 切り替え弁
8 試料注入機構
9 6ポート2位置切り替えバルブ
10 分析カラム
11 可視光検出器
12 カラムオーブン
1 SA1c adsorption eluent 2 SA1c desorption eluent 3, 4 Liquid transfer pump 5, 6 On-off valve 7 Switching valve 8 Sample injection mechanism 9 6 Port 2 Position switching valve 10 Analytical column 11 Visible photodetector 12 Column oven

Claims (3)

溶離液を送液するための送液ポンプと、
前記送液ポンプよりも下流に接続された試料注入機構と、
糖化ヘモグロビンを特異的に吸着できるアフィニティゲルを充填した分析カラムと、
可視光検出器と、
切り替えバルブと、
を備えた液体クロマトグラフ装置であって、
前記切り替えバルブは、前記試料注入機構、前記可視光検出器、前記分析カラムの順で流体接続された第一の状態と、
前記試料注入機構、前記分析カラム、前記可視光検出器の順で流体接続された第二の状態に切り替え可能であることを特徴とする前記装置。
A liquid feed pump for feeding the eluent and
A sample injection mechanism connected downstream of the liquid feed pump,
An analytical column filled with an affinity gel capable of specifically adsorbing glycated hemoglobin,
Visible light detector and
Switching valve and
It is a liquid chromatograph device equipped with
The switching valve is a first state in which the sample injection mechanism, the visible photodetector, and the analysis column are fluidly connected in this order.
The apparatus, wherein the sample injection mechanism, the analysis column, and the visible photodetector can be switched to a second state fluidly connected in this order.
送液ポンプの上流に開閉弁又は切換え弁を備える、若しくは送液ポンプを2以上備えることにより2種以上の溶離液を送液可能とした請求項1に記載の装置。 The apparatus according to claim 1, wherein an on-off valve or a switching valve is provided upstream of the liquid feed pump, or two or more liquid feed pumps are provided so that two or more kinds of eluents can be fed. 液体クロマトグラフ装置を用いた血液試料中の糖化ヘモグロビンの量を算出する方法であって、
試料注入機構より前記血液試料を糖化ヘモグロビン吸着用溶離液で押し流し、可視光検出器にて血液の濃度変化を計測し、
計測後の前記血液試料を、糖化ヘモグロビンを特異的に吸着できるアフィニティゲルを充填した分析カラムに導いた後、糖化ヘモグロビン以外の成分の濃度変化を可視光検出器で計測し、
血液の濃度変化の量と、糖化ヘモグロビン以外の成分の濃度変化の量との差から糖化ヘモグロビンの量を算出する方法。
A method of calculating the amount of glycated hemoglobin in a blood sample using a liquid chromatograph device.
The blood sample was flushed from the sample injection mechanism with an eluent for adsorbing glycated hemoglobin, and the change in blood concentration was measured with a visible light detector.
After the measurement, the blood sample was guided to an analysis column filled with an affinity gel capable of specifically adsorbing glycated hemoglobin, and then the concentration change of components other than glycated hemoglobin was measured with a visible photodetector.
A method for calculating the amount of glycated hemoglobin from the difference between the amount of change in blood concentration and the amount of change in concentration of components other than glycated hemoglobin.
JP2019045559A 2019-03-13 2019-03-13 Method and apparatus for measuring glycated hemoglobin by affinity method Active JP7243315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045559A JP7243315B2 (en) 2019-03-13 2019-03-13 Method and apparatus for measuring glycated hemoglobin by affinity method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045559A JP7243315B2 (en) 2019-03-13 2019-03-13 Method and apparatus for measuring glycated hemoglobin by affinity method

Publications (2)

Publication Number Publication Date
JP2020146622A true JP2020146622A (en) 2020-09-17
JP7243315B2 JP7243315B2 (en) 2023-03-22

Family

ID=72431314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045559A Active JP7243315B2 (en) 2019-03-13 2019-03-13 Method and apparatus for measuring glycated hemoglobin by affinity method

Country Status (1)

Country Link
JP (1) JP7243315B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255956A (en) * 1990-03-06 1991-11-14 Sekisui Chem Co Ltd Analysis of hemoglobin
JPH10319003A (en) * 1997-05-14 1998-12-04 Sekisui Chem Co Ltd Liquid chromatography measuring method
JP2002139481A (en) * 2000-11-02 2002-05-17 Tosoh Corp Glycohemoglobin measuring device
JP2018529966A (en) * 2015-09-30 2018-10-11 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Chromatographic system and method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255956A (en) * 1990-03-06 1991-11-14 Sekisui Chem Co Ltd Analysis of hemoglobin
JPH10319003A (en) * 1997-05-14 1998-12-04 Sekisui Chem Co Ltd Liquid chromatography measuring method
JP2002139481A (en) * 2000-11-02 2002-05-17 Tosoh Corp Glycohemoglobin measuring device
JP2018529966A (en) * 2015-09-30 2018-10-11 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Chromatographic system and method therefor

Also Published As

Publication number Publication date
JP7243315B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
US5417853A (en) Liquid chromatographic system and operation method
EP2012111B1 (en) Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
JP6657003B2 (en) Glycated hemoglobin measuring method, glycated hemoglobin measuring device, and glycated hemoglobin measuring program
JP2619537B2 (en) Liquid chromatography method, apparatus, system, and separation column
JP6221458B2 (en) Method for determining the injection state of a specimen
CN106053616B (en) Preparative separation chromatograph
US8021887B2 (en) Method of measuring glycated hemoglobin concentration
CN104865326A (en) Three-gradient elution analysis method of glycosylated hemoglobin analyzer
JP7243315B2 (en) Method and apparatus for measuring glycated hemoglobin by affinity method
JP6711087B2 (en) Background correction method by section division
JP6856434B2 (en) Liquid chromatographic measurement method, liquid chromatography measurement device, and liquid chromatography measurement program
JP6435165B2 (en) Liquid chromatography measurement method, liquid chromatography measurement device, and liquid chromatography measurement program
US5132018A (en) Isoconductive gradient ion chromatography
JP7434870B2 (en) How to correct the set flow rate value of the buffer
CN115372486A (en) Glycosylated hemoglobin detection kit and application thereof
Irth et al. Liquid chromatographic determination of azidothymidine in human plasma using on-line dialysis and preconcentration on a silver (I)-thiol stationary phase
JPH1010107A (en) Sample analysis method by liquid chromatography
US20230375572A1 (en) Stable glycohemoglobin measurement method, stable glycohemoglobin measurement apparatus, and non-transitory computer-readable recording medium
JP2021131352A (en) Successive liquid chromatographs
Zupančič et al. Optimisation of a dialytic set-up for liquid chromatography: automated separation and preconcentration of ciprofloxacin
JP2023172913A (en) Stable glycohemoglobin measurement method, stable glycohemoglobin measurement apparatus, and stable glycohemoglobin measurement program
CN114324635B (en) Method for measuring bromate in drinking water by utilizing ion chromatography on-line matrix elimination system
CN117110508A (en) Method and apparatus for measuring stabilized glycosylated hemoglobin, and non-transitory computer-readable storage medium
JP2023140054A (en) Measuring method of hemoglobin f
JP6393964B2 (en) Time-controlled sample injection device and liquid chromatography provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R151 Written notification of patent or utility model registration

Ref document number: 7243315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151