JP2020145865A - Motor system - Google Patents

Motor system Download PDF

Info

Publication number
JP2020145865A
JP2020145865A JP2019041200A JP2019041200A JP2020145865A JP 2020145865 A JP2020145865 A JP 2020145865A JP 2019041200 A JP2019041200 A JP 2019041200A JP 2019041200 A JP2019041200 A JP 2019041200A JP 2020145865 A JP2020145865 A JP 2020145865A
Authority
JP
Japan
Prior art keywords
component
phase
current
fundamental wave
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019041200A
Other languages
Japanese (ja)
Other versions
JP7181817B2 (en
Inventor
大谷 裕子
Yuko Otani
裕子 大谷
中井 英雄
Hideo Nakai
英雄 中井
谷口 真
Makoto Taniguchi
真 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2019041200A priority Critical patent/JP7181817B2/en
Priority to PCT/JP2020/009411 priority patent/WO2020179867A1/en
Publication of JP2020145865A publication Critical patent/JP2020145865A/en
Application granted granted Critical
Publication of JP7181817B2 publication Critical patent/JP7181817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To realize a motor system that can use the force obtained by the zero-phase magnetic field as a torque component.SOLUTION: A motor includes a stator with N-phase windings (N is a natural number) and a rotor with a permanent magnet, and the interlinkage magnetic flux of the stator by the rotor includes a fundamental wave magnetic flux component and a N×K harmonic flux component (K is a natural number). A current supply circuit supplies the N-phase winding with a current including the fundamental current component that generates a rotating magnetic field and the N×K harmonic current component that generates a zero-phase magnetic field. For example, a current including the fundamental current component that generates a rotating magnetic field and a third harmonic current component (N=3, K=1) that generates a zero-phase magnetic field is supplied to the three-phase winding (N=3).SELECTED DRAWING: Figure 4

Description

本発明は、モータと電流供給回路を有するモータシステムに関する。 The present invention relates to a motor system having a motor and a current supply circuit.

従来から、モータと当該モータに電流を供給する電流供給回路を備えたモータシステムが知られている。 Conventionally, a motor system including a motor and a current supply circuit for supplying a current to the motor has been known.

例えば特許文献1には、電動機(モータ)とインバータ(電流供給回路)を備えた電動機システム(モータシステム)が記載されている。特許文献1に記載されるシステムにおいて、電動機は回転子と固定子を有しており、回転子には永久磁石が配置され、固定子には中性点で結線された多相巻線が設けられている。そして、特許文献1に記載されるシステムでは、インバータの直流側の電圧の中点と多相巻線が有する中性点のうちの1つとを接続する接続手段に零相電流が流れるようにインバータが制御される。これにより、特許文献1に記載されるシステムは、接続手段に零相電流を流すことにより発生する磁束と永久磁石に発生する磁束により、回転子に対して半径方向の力を発生させる。 For example, Patent Document 1 describes an electric motor system (motor system) including an electric motor (motor) and an inverter (current supply circuit). In the system described in Patent Document 1, the electric motor has a rotor and a stator, a permanent magnet is arranged on the rotor, and the stator is provided with a multi-phase winding connected at a neutral point. Has been done. Then, in the system described in Patent Document 1, the inverter so that the zero-phase current flows through the connecting means for connecting the middle point of the voltage on the DC side of the inverter and one of the neutral points of the multi-phase winding. Is controlled. As a result, the system described in Patent Document 1 generates a force in the radial direction with respect to the rotor by the magnetic flux generated by passing a zero-phase current through the connecting means and the magnetic flux generated in the permanent magnet.

特開2016−42768号公報Japanese Unexamined Patent Publication No. 2016-42768

特許文献1に記載されるシステムでは、零相電流を流すことで発生する磁界(零相磁界)により、回転子に対して半径方向の力を発生させているが、零相磁界により得られる力をトルク成分として利用できていない。 In the system described in Patent Document 1, a force in the radial direction is generated with respect to the rotor by a magnetic field (zero-phase magnetic field) generated by passing a zero-phase current, but the force obtained by the zero-phase magnetic field is generated. Is not available as a torque component.

本発明は、零相磁界により得られる力をトルク成分として利用できるモータシステムを実現することにある。 The present invention is to realize a motor system in which the force obtained by a zero-phase magnetic field can be used as a torque component.

本発明の具体例の一つであるモータシステムは、モータと電流供給回路を有するモータシステムであって、前記モータは、N相巻線(Nは自然数)を備えたステータと、永久磁石を備えたロータと、を有し、前記ロータによる前記ステータの鎖交磁束が基本波磁束成分とN×K次高調波磁束成分(Kは自然数)とを含み、前記電流供給回路は、回転磁界を発生させる基本波電流成分と零相磁界を発生させるN×K次高調波電流成分とを含んだ電流を前記N相巻線に供給することを特徴とする。 The motor system, which is one of the specific examples of the present invention, is a motor system having a motor and a current supply circuit, and the motor includes a stator having an N-phase winding (N is a natural number) and a permanent magnet. The interlinkage magnetic flux of the stator by the rotor includes a fundamental wave magnetic flux component and an N × Kth harmonic magnetic flux component (K is a natural number), and the current supply circuit generates a rotating magnetic field. It is characterized in that a current including a fundamental wave current component to be generated and an N × K harmonic current component to generate a zero-phase magnetic field is supplied to the N-phase winding.

例えば、前記電流供給回路は、前記基本波電流成分の極値の絶対値よりも合成後の極値の絶対値が小さくなる位相関係で前記基本波電流成分と前記N×K次高調波電流成分を合成した電流を前記N相巻線に供給するようにしてもよい。 For example, in the current supply circuit, the fundamental wave current component and the N × K harmonic current component have a phase relationship in which the absolute value of the extremum after synthesis is smaller than the absolute value of the extreme value of the fundamental wave current component. The combined current may be supplied to the N-phase winding.

また、例えば、前記モータは、前記基本波電流成分による回転磁界と前記鎖交磁束の前記基本波磁束成分とにより得られる基本波トルク成分と、前記N×K次高調波電流成分による零相磁界と前記鎖交磁束の前記N×K次高調波磁束成分とにより得られるN×K次高調波トルク成分と、を含んだトルクを発生し、前記電流供給回路は、トルクの増加を必要とする動作期間において、前記基本波トルク成分と前記N×K次高調波トルク成分が互いに同じ方向となる位相関係で、前記基本波電流成分と前記N×K次高調波電流成分が合成された電流を、前記N相巻線に供給するようにしてもよい。 Further, for example, the motor has a fundamental wave torque component obtained by the rotating magnetic field due to the fundamental wave current component and the fundamental wave magnetic flux component of the interlinkage magnetic flux, and a zero-phase magnetic field due to the N × K order harmonic current component. And the N × K harmonic torque component obtained by the N × K harmonic flux component of the interlinkage magnetic flux, and the current supply circuit requires an increase in torque. During the operation period, the current obtained by combining the fundamental wave current component and the N × K harmonic current component in a phase relationship in which the fundamental wave torque component and the N × K harmonic torque component are in the same direction as each other. , The N-phase winding may be supplied.

また、例えば、前記ロータの永久磁石の開角が前記ステータのN相巻線の巻幅よりも小さくてもよいし、前記ロータの突極の開角が当該ロータの永久磁石の開角よりも小さくてもよい。 Further, for example, the opening angle of the permanent magnet of the rotor may be smaller than the winding width of the N-phase winding of the stator, and the opening angle of the salient pole of the rotor may be smaller than the opening angle of the permanent magnet of the rotor. It may be small.

本発明により、零相磁界により得られる力をトルク成分として利用できるモータシステムが実現される。 According to the present invention, a motor system capable of utilizing the force obtained by the zero-phase magnetic field as a torque component is realized.

中性点を利用したモータシステムの具体例を示す図である。It is a figure which shows the specific example of the motor system which used the neutral point. オープン巻線を利用したモータシステムの具体例を示す図である。It is a figure which shows the specific example of the motor system using an open winding. モータの構成例1を示す図である。It is a figure which shows the structural example 1 of a motor. ロータ磁石鎖交磁束の具体例1を示す図である。It is a figure which shows the specific example 1 of a rotor magnet interlinkage magnetic flux. N相巻線に供給される電流の具体例1を示す図である。It is a figure which shows the specific example 1 of the electric current supplied to the N-phase winding. モータが発生するトルクの具体例を示す図である。It is a figure which shows the specific example of the torque generated by a motor. ロータの構造とロータ磁石鎖交磁束の関係を示す図である。It is a figure which shows the relationship between a rotor structure and a rotor magnet interlinkage magnetic flux. 磁石の開角とN相巻線の巻幅と突極の開角に関する具体例を示す図である。It is a figure which shows the specific example about the opening angle of a magnet, the winding width of an N-phase winding, and the opening angle of a salient pole. 磁石の開角とN相巻線の巻幅と突極の開角に関する具体例を示す図である。It is a figure which shows the specific example about the opening angle of a magnet, the winding width of an N-phase winding, and the opening angle of a salient pole. モータの構成例2を示す図である。It is a figure which shows the structural example 2 of a motor. ロータ磁石鎖交磁束の具体例2を示す図である。It is a figure which shows the specific example 2 of the rotor magnet interlinkage magnetic flux. N相巻線に供給される電流の具体例2を示す図である。It is a figure which shows the specific example 2 of the electric current supplied to the N-phase winding.

図1,図2は、本発明の具体的な実施態様の一例を示す図である。図1,図2には、モモータシステムに関するいくつかの具体例が図示されている。 1 and 2 are views showing an example of a specific embodiment of the present invention. 1 and 2 show some specific examples of the motor motor system.

図1,図2に示す各具体例のモータシステムは、モータ10とインバータ20と電池30を備えている。モータ10は、N相巻線(Nは自然数)を備えている。また、インバータ20は、モータ10が備えるN相巻線に電流を供給する電流供給回路の一例である。インバータ20は、電池30から電力を得てモータ10のN相巻線に電流を供給する。インバータ20は、回転磁界を発生させる電流成分と零相磁界を発生させる電流成分を含んだ電流をN相巻線に供給する。 The motor system of each specific example shown in FIGS. 1 and 2 includes a motor 10, an inverter 20, and a battery 30. The motor 10 includes an N-phase winding (N is a natural number). Further, the inverter 20 is an example of a current supply circuit that supplies a current to the N-phase winding included in the motor 10. The inverter 20 obtains electric power from the battery 30 and supplies a current to the N-phase winding of the motor 10. The inverter 20 supplies the N-phase winding with a current including a current component that generates a rotating magnetic field and a current component that generates a zero-phase magnetic field.

図1は、中性点を利用したモータシステムの具体例を示す図である。図1には、3相巻線(N=3)のモータ10を備えた具体例Aと、5相巻線(N=5)のモータ10を備えた具体例Bが例示されている。 FIG. 1 is a diagram showing a specific example of a motor system using a neutral point. FIG. 1 illustrates a specific example A provided with a motor 10 having a three-phase winding (N = 3) and a specific example B provided with a motor 10 having a five-phase winding (N = 5).

図1に示す具体例Aでは、モータ10が備える3相巻線の中性点Gと零相用回路22の間に、零相磁界を発生させる電流成分である零相電流が流れる。また、図1に示す具体例Bでは、モータ10が備える5相巻線の中性点Gと零相用回路22の間に零相電流が流れる。 In the specific example A shown in FIG. 1, a zero-phase current, which is a current component that generates a zero-phase magnetic field, flows between the neutral point G of the three-phase winding included in the motor 10 and the zero-phase circuit 22. Further, in the specific example B shown in FIG. 1, a zero-phase current flows between the neutral point G of the five-phase winding included in the motor 10 and the zero-phase circuit 22.

図2は、オープン巻線を利用したモータシステムの具体例を示す図である。図2には、3相巻線(N=3)のモータ10を備えた具体例Cと、5相巻線(N=5)のモータ10を備えた具体例Dが例示されている。 FIG. 2 is a diagram showing a specific example of a motor system using an open winding. FIG. 2 illustrates a specific example C provided with a motor 10 having a three-phase winding (N = 3) and a specific example D provided with a motor 10 having a five-phase winding (N = 5).

図2に示す具体例Cでは、モータ10が備える3相巻線の各巻線を介して、インバータ20と第2インバータ24の間に、零相磁界を発生させる電流成分である零相電流が流れる。また、図2に示す具体例Dでは、モータ10が備える5相巻線の各巻線を介して、インバータ20と第2インバータ24の間に零相電流が流れる。 In the specific example C shown in FIG. 2, a zero-phase current, which is a current component that generates a zero-phase magnetic field, flows between the inverter 20 and the second inverter 24 via each winding of the three-phase winding included in the motor 10. .. Further, in the specific example D shown in FIG. 2, a zero-phase current flows between the inverter 20 and the second inverter 24 via each winding of the five-phase winding included in the motor 10.

なお、図1,図2には、N相巻線の代表例として3相巻線と5相巻線のモータ10を有するモータシステムを例示したが、3相巻線と5相巻線以外のN相巻線を備えたモータ10によりモータシステムが実現されてもよい。 Note that FIGS. 1 and 2 exemplify a motor system having a motor 10 having a 3-phase winding and a 5-phase winding as a typical example of the N-phase winding, but other than the 3-phase winding and the 5-phase winding. A motor system may be realized by a motor 10 with N-phase windings.

図3は、モータ10の構成例1を示す図である。図3には、ステータ12とロータ14を備えたモータ10の構成例が図示されている。ステータ12はN相巻線(Nは自然数)を備えており、ロータ14は磁石(永久磁石)を備えている。なお、図3(A)は、モータ10の回転軸を中心とする円周全体の構成例であり、図3(B)は、図3(A)に示す円周全体を円周方向に8等分したうちの1つに対応した部分構成を示している。 FIG. 3 is a diagram showing a configuration example 1 of the motor 10. FIG. 3 shows a configuration example of the motor 10 including the stator 12 and the rotor 14. The stator 12 has an N-phase winding (N is a natural number), and the rotor 14 has a magnet (permanent magnet). Note that FIG. 3 (A) is an example of the configuration of the entire circumference centered on the rotation axis of the motor 10, and FIG. 3 (B) shows the entire circumference shown in FIG. 3 (A) being 8 in the circumferential direction. The partial configuration corresponding to one of the equal parts is shown.

図3に示す構成例のステータ12は3相巻線(N=3)を備えている。つまり、図3のステータ12は、U相とV相とW相の3相に対応した巻線Cを備えている。また、図3に示す構成例のロータ14は、図3(B)に示す部分構成ごとに、2つで1つの組を構成する磁石(永久磁石)を備えている。 The stator 12 of the configuration example shown in FIG. 3 includes a three-phase winding (N = 3). That is, the stator 12 in FIG. 3 includes windings C corresponding to three phases of U phase, V phase, and W phase. Further, the rotor 14 of the configuration example shown in FIG. 3 is provided with magnets (permanent magnets) that form one set of two for each partial configuration shown in FIG. 3 (B).

図4は、ロータ磁石鎖交磁束の具体例1を示す図である。図4には、図3に示す構成例1のロータ14によるステータ12への鎖交磁束の具体例が図示されている。N相巻線(Nは自然数)を備えたステータ12への鎖交磁束には、基本波磁束成分とN×K次高調波磁束成分(Kは自然数)が含まれている。 FIG. 4 is a diagram showing a specific example 1 of the rotor magnet interlinkage magnetic flux. FIG. 4 shows a specific example of the interlinkage magnetic flux to the stator 12 by the rotor 14 of the configuration example 1 shown in FIG. The interlinkage magnetic flux to the stator 12 provided with the N-phase winding (N is a natural number) includes a fundamental wave magnetic flux component and an N × K harmonic flux component (K is a natural number).

図4には、3相巻線(N=3)を備えたステータ12のロータ磁石鎖交磁束が実線で示されている。また、図4に実線で示されるロータ磁石鎖交磁束は、破線で示す基本波磁束成分と点線で示す3次高調波磁束成分(N=3,K=1)を含んでいる。 In FIG. 4, the rotor magnet interlinkage magnetic flux of the stator 12 provided with the three-phase winding (N = 3) is shown by a solid line. Further, the rotor magnet interlinkage magnetic flux shown by the solid line in FIG. 4 includes a fundamental wave magnetic flux component shown by a broken line and a third harmonic magnetic flux component (N = 3, K = 1) shown by a dotted line.

図5は、N相巻線に供給される電流の具体例1を示す図である。インバータ20(図1,図2)は、回転磁界を発生させる基本波電流成分と零相磁界を発生させるN×K次高調波電流成分とを含んだ電流をN相巻線に供給する。図5には、3相巻線(N=3)のロータ磁石鎖交磁束(図4)に対して同方向のトルクを発生させる基本波電流成分と3次高調波電流成分(N=3,K=1)の具体例が図示されている。 FIG. 5 is a diagram showing a specific example 1 of the current supplied to the N-phase winding. The inverter 20 (FIGS. 1 and 2) supplies a current including a fundamental wave current component that generates a rotating magnetic field and an N × K harmonic current component that generates a zero-phase magnetic field to the N-phase winding. FIG. 5 shows a fundamental wave current component and a third harmonic current component (N = 3,) that generate torque in the same direction with respect to the rotor magnet interlinkage magnetic flux (FIG. 4) of the three-phase winding (N = 3). A specific example of K = 1) is shown.

なお、インバータ20は、基本波電流成分の極値の絶対値よりも、合成後の極値の絶対値が小さくなる位相関係で、基本波電流成分とN×K次高調波電流成分を合成した電流をN相巻線に供給するようにしてもよい。 The inverter 20 combines the fundamental wave current component and the N × K harmonic current component in a phase relationship in which the absolute value of the extremum after synthesis is smaller than the absolute value of the extreme value of the fundamental wave current component. The current may be supplied to the N-phase winding.

例えば、図5に示す具体例のように、破線で示す基本波電流成分の極大値Pfよりも、実線で示す合成後の相電流の極大値Pcが小さくなる位相関係で、基本波電流成分と点線で示す3次高調波電流成分である零相電流を合成した相電流が供給されてもよい。これにより、実線で示す合成後の相電流のピークを減少させることができる。 For example, as in the specific example shown in FIG. 5, the phase relationship with the fundamental wave current component is such that the maximum value Pc of the combined phase current shown by the solid line is smaller than the maximum value Pf of the fundamental wave current component shown by the broken line. A phase current obtained by synthesizing a zero-phase current, which is a third-order harmonic current component indicated by a dotted line, may be supplied. As a result, the peak of the phase current after synthesis shown by the solid line can be reduced.

図6は、モータ10(図1〜図3)が発生するトルクの具体例を示す図である。モータ10は、基本波電流成分による回転磁界と鎖交磁束の基本波磁束成分とにより得られる基本波トルク成分と、N×K次高調波電流成分による零相磁界と鎖交磁束のN×K次高調波磁束成分とにより得られるN×K次高調波トルク成分を含んだトルクを発生する。 FIG. 6 is a diagram showing a specific example of the torque generated by the motor 10 (FIGS. 1 to 3). The motor 10 has a fundamental torque component obtained by a rotating magnetic field due to a fundamental current component and a fundamental magnetic flux component of an interlinkage magnetic flux, and a zero-phase magnetic field and an interlinkage magnetic flux N × K due to an N × K order harmonic current component. A torque including the N × K order harmonic torque component obtained by the second harmonic magnetic flux component is generated.

図6には、破線で示す基本波トルク成分と点線で示す3次高調波トルク成分(N=3,K=1)と、これらの2つのトルク成分を合成した実線で示す合成トルクの具体例が図示されている。 FIG. 6 shows a specific example of the fundamental wave torque component shown by the broken line, the third harmonic torque component (N = 3, K = 1) shown by the dotted line, and the combined torque shown by the solid line obtained by combining these two torque components. Is illustrated.

また、インバータ20(図1,図2)は、トルクの増加を必要とする動作期間において基本波トルク成分とN×K次高調波トルク成分が互いに同じ方向となる位相関係で、基本波電流成分とN×K次高調波電流成分が合成された電流をN相巻線に供給してもよい。 Further, in the inverter 20 (FIGS. 1 and 2), the fundamental wave current component has a phase relationship in which the fundamental wave torque component and the N × K harmonic torque component are in the same direction during an operation period requiring an increase in torque. A current in which the N × K harmonic current components are combined may be supplied to the N-phase winding.

例えば、図6に示す具体例のように、電流進角30〜90deg.の動作期間(例えば弱め界磁の期間)において、基本波トルク成分と3次高調波トルク成分が共に正方向となる位相関係で合成されてもよい。 For example, as in the specific example shown in FIG. 6, the current advance angle is 30 to 90 deg. In the operation period of (for example, the period of field weakening), the fundamental wave torque component and the third harmonic torque component may be combined in a positive phase relationship.

図7は、ロータ14の構造とロータ磁石鎖交磁束の関係を示す図である。ステータ12はN相巻線を備えており、ロータ14は磁石(永久磁石)を備えている。図7には、ステータ12が備えるU相巻線と、ロータ14の磁石が角度A,角度B,角度Cの順に回転方向に回転する様子が例示されている。 FIG. 7 is a diagram showing the relationship between the structure of the rotor 14 and the magnetic flux interlinking the rotor magnets. The stator 12 includes N-phase windings, and the rotor 14 includes magnets (permanent magnets). FIG. 7 illustrates how the U-phase winding included in the stator 12 and the magnet of the rotor 14 rotate in the rotational direction in the order of angle A, angle B, and angle C.

例えば、図7に例示するように、ロータ14が備える磁石(永久磁石)の開角が、ステータ12のN相巻線の巻幅よりも小さい構成例としてもよい。また、例えば、後に説明するロータ14の突極の開角が、ロータ14が備える磁石(永久磁石)の開角よりも小さい構成例としてもよい。 For example, as illustrated in FIG. 7, the opening angle of the magnet (permanent magnet) included in the rotor 14 may be smaller than the winding width of the N-phase winding of the stator 12. Further, for example, the opening angle of the salient pole of the rotor 14 described later may be smaller than the opening angle of the magnet (permanent magnet) included in the rotor 14.

図8,図9は、磁石の開角とN相巻線の巻幅と突極の開角に関する具体例を示す図である。図8,図9には、ロータ14が備える磁石(永久磁石)の開角θmと、N相巻線の巻幅(角度)θcと、ロータ14の突極の開角θtの具体例が示されている。なお、図8,図9に示す各角度は、ロータ14の回転軸を中心とする回転方向の角度である。 8 and 9 are diagrams showing specific examples of the opening angle of the magnet, the winding width of the N-phase winding, and the opening angle of the salient pole. 8 and 9 show specific examples of the opening angle θm of the magnet (permanent magnet) included in the rotor 14, the winding width (angle) θc of the N-phase winding, and the opening angle θt of the salient pole of the rotor 14. Has been done. The angles shown in FIGS. 8 and 9 are angles in the rotation direction about the rotation axis of the rotor 14.

磁石の開角θmは、ロータ14が備える磁石(永久磁石)の磁束がステータ12に渡る部位の角度である。図8(A)(B)に示す具体例では、ロータ14が2つで1つの組を構成する磁石(永久磁石)を備えており、1つの組の磁石の磁束がステータ12に渡る部位の角度が磁石の開角θmとなる。図9に示す具体例では、ロータ14が1つずつ個別に設けられた磁石(永久磁石)を備えており、個別に設けられた各磁石の磁束がステータ12に渡る部位の角度が磁石の開角θmとなる。 The opening angle θm of the magnet is the angle of the portion where the magnetic flux of the magnet (permanent magnet) included in the rotor 14 crosses the stator 12. In the specific example shown in FIGS. 8 (A) and 8 (B), the rotor 14 includes two magnets (permanent magnets) forming a set, and the magnetic flux of the one set of magnets reaches the stator 12. The angle is the opening angle θm of the magnet. In the specific example shown in FIG. 9, the rotor 14 is provided with magnets (permanent magnets) individually provided, and the angle of the portion where the magnetic flux of each individually provided magnet crosses the stator 12 is the opening of the magnet. The angle is θm.

また、突極の開角θtは、ロータ14が備える各突極(1つの突極)の回転方向の幅に対応した角度であり、巻幅θcは、ステータ12が備えるN相巻線の巻幅に関する回転方向の角度である。例えば、図8(A)(B)に示す具体例では、磁石の開角θmがN相巻線の巻幅θcよりも小さく、突極の開角θtが磁石の開角θmよりも小さい。 Further, the opening angle θt of the salient pole is an angle corresponding to the width in the rotation direction of each salient pole (one salient pole) included in the rotor 14, and the winding width θc is the winding of the N-phase winding provided in the stator 12. The angle of rotation with respect to width. For example, in the specific example shown in FIGS. 8A and 8B, the opening angle θm of the magnet is smaller than the winding width θc of the N-phase winding, and the opening angle θt of the salient pole is smaller than the opening angle θm of the magnet.

図10は、モータ10の構成例2を示す図である。図10には、ステータ12とロータ14を備えたモータ10の構成例が図示されている。ステータ12はN相巻線(Nは自然数)を備えており、ロータ14は磁石(永久磁石)を備えている。なお、図10(A)はモータ10の回転軸を中心とする円周全体の構成例であり、図10(B)は、図10(A)に示す円周全体を円周方向に4等分したうちの1つに対応した部分構成を示している。 FIG. 10 is a diagram showing a configuration example 2 of the motor 10. FIG. 10 shows a configuration example of the motor 10 including the stator 12 and the rotor 14. The stator 12 has an N-phase winding (N is a natural number), and the rotor 14 has a magnet (permanent magnet). Note that FIG. 10A shows an example of the configuration of the entire circumference centered on the rotation axis of the motor 10, and FIG. 10B shows the entire circumference shown in FIG. 10A being 4 mag in the circumferential direction. The partial configuration corresponding to one of the divided parts is shown.

図10に示す構成例のステータ12は5相巻線(N=5)を備えている。つまり、図10のステータ12は、U相とV相とW相とX相とY相の5相に対応した巻線Cを備えている。また、図10に示す構成例のロータ14は、また、図10に示す構成例のロータ14は、図10(B)に示す部分構成ごとに個別に設けられた1つの磁石(永久磁石)を備えている。 The stator 12 of the configuration example shown in FIG. 10 includes a 5-phase winding (N = 5). That is, the stator 12 in FIG. 10 includes windings C corresponding to five phases of U phase, V phase, W phase, X phase, and Y phase. Further, the rotor 14 of the configuration example shown in FIG. 10 and the rotor 14 of the configuration example shown in FIG. 10 have one magnet (permanent magnet) individually provided for each partial configuration shown in FIG. 10 (B). I have.

図11は、ロータ磁石鎖交磁束の具体例2を示す図である。図11には、図10に示す構成例2のロータ14によるステータ12への鎖交磁束の具体例が図示されている。N相巻線(Nは自然数)を備えたステータ12への鎖交磁束には、基本波磁束成分とN×K次高調波磁束成分(Kは自然数)が含まれている。 FIG. 11 is a diagram showing a specific example 2 of the rotor magnet interlinkage magnetic flux. FIG. 11 shows a specific example of the interlinkage magnetic flux to the stator 12 by the rotor 14 of the configuration example 2 shown in FIG. The interlinkage magnetic flux to the stator 12 provided with the N-phase winding (N is a natural number) includes a fundamental wave magnetic flux component and an N × K harmonic flux component (K is a natural number).

図11には、5相巻線(N=5)を備えたステータ12のロータ磁石鎖交磁束が実線で示されている。また、図11に実線で示されるロータ磁石鎖交磁束は、破線で示す基本波磁束成分と点線で示す5次高調波磁束成分(N=5,K=1)を含んでいる。 In FIG. 11, the rotor magnet interlinkage magnetic flux of the stator 12 provided with the 5-phase winding (N = 5) is shown by a solid line. Further, the rotor magnet interlinkage magnetic flux shown by the solid line in FIG. 11 includes a fundamental wave magnetic flux component shown by a broken line and a fifth harmonic magnetic flux component (N = 5, K = 1) shown by a dotted line.

図12は、N相巻線に供給される電流の具体例2を示す図である。インバータ20(図1,図2)は、回転磁界を発生させる基本波電流成分と零相磁界を発生させるN×K次高調波電流成分とを含んだ電流をN相巻線に供給する。図12には、5相巻線(N=5)のロータ磁石鎖交磁束(図11)に対して同方向のトルクを発生させる基本波電流成分と5次高調波電流成分(N=5,K=1)の具体例が図示されている。 FIG. 12 is a diagram showing a specific example 2 of the current supplied to the N-phase winding. The inverter 20 (FIGS. 1 and 2) supplies a current including a fundamental wave current component that generates a rotating magnetic field and an N × K harmonic current component that generates a zero-phase magnetic field to the N-phase winding. In FIG. 12, a fundamental wave current component and a fifth harmonic current component (N = 5,) that generate torque in the same direction with respect to the rotor magnet interlinkage magnetic flux (FIG. 11) of the 5-phase winding (N = 5) are shown. A specific example of K = 1) is shown.

なお、インバータ20は、基本波電流成分の極値の絶対値よりも、合成後の極値の絶対値が小さくなる位相関係で、基本波電流成分とN×K次高調波電流成分を合成した電流をN相巻線に供給するようにしてもよい。 The inverter 20 synthesizes the fundamental wave current component and the N × K harmonic current component in a phase relationship in which the absolute value of the extreme value after synthesis is smaller than the absolute value of the extreme value of the fundamental wave current component. The current may be supplied to the N-phase winding.

例えば、図12に示す具体例のように、破線で示す基本波電流成分の極大値Pfよりも実線で示す合成後の相電流の極大値Pcが小さくなる位相関係で、基本波電流成分と点線で示す5次高調波電流成分である零相電流を合成した相電流が供給されてもよい。これにより、実線で示す合成後の相電流のピークを減少させることができる。 For example, as in the specific example shown in FIG. 12, the fundamental wave current component and the dotted line have a phase relationship in which the maximum value Pc of the combined phase current shown by the solid line is smaller than the maximum value Pf of the fundamental wave current component shown by the broken line. A phase current obtained by synthesizing a zero-phase current, which is a fifth-order harmonic current component indicated by, may be supplied. As a result, the peak of the phase current after synthesis shown by the solid line can be reduced.

また、モータ10(図1〜図3,図10)は、基本波電流成分による回転磁界と鎖交磁束の基本波磁束成分とにより得られる基本波トルク成分と、N×K次高調波電流成分による零相磁界と鎖交磁束のN×K次高調波磁束成分とにより得られるN×K次高調波トルク成分を含んだトルクを発生する。 Further, the motor 10 (FIGS. 1 to 3 and 10) has a fundamental torque component obtained by a rotating magnetic field due to the fundamental current component and a fundamental magnetic flux component of the interlinkage magnetic flux, and an N × K harmonic current component. A torque including the N × K harmonic torque component obtained by the zero-phase magnetic field and the N × K harmonic flux component of the interlinkage magnetic flux is generated.

例えば、図10に例示するモータ10は、図12に示す基本波電流成分による回転磁界と図11に示す基本波磁束成分とにより得られる基本波トルク成分と、図12に示す5次高調波電流成分による零相磁界と図11に示す5次高調波磁束成分とにより得られる5次高調波トルク成分と、を合成した合成トルクを発生する。 For example, the motor 10 illustrated in FIG. 10 has a fundamental torque component obtained by a rotating magnetic field due to the fundamental wave current component shown in FIG. 12 and a fundamental wave magnetic flux component shown in FIG. 11, and a fifth harmonic current shown in FIG. A combined torque is generated by combining the zero-phase magnetic field due to the components and the fifth-order harmonic torque component obtained by the fifth-order harmonic flux component shown in FIG.

インバータ20(図1,図2)は、トルクの増加を必要とする動作期間において基本波トルク成分とN×K次高調波トルク成分が互いに同じ方向となる位相関係で、基本波電流成分とN×K次高調波電流成分が合成された電流をN相巻線に供給してもよい。これにより、例えば図10から図12を利用して説明した具体例であれば、トルクの増加を必要とする動作期間(例えば弱め界磁の期間)において、基本波トルク成分と5次高調波トルク成分が共に同方向となる位相関係で合成されてもよい。 In the inverter 20 (FIGS. 1 and 2), the fundamental wave current component and the N are in a phase relationship in which the fundamental wave torque component and the N × K harmonic torque component are in the same direction during an operation period requiring an increase in torque. The current in which the × Kth harmonic current component is combined may be supplied to the N-phase winding. As a result, for example, in the specific example described with reference to FIGS. 10 to 12, the fundamental wave torque component and the fifth harmonic torque during an operation period requiring an increase in torque (for example, a period of field weakening). The components may be synthesized in a phase relationship in which both components are in the same direction.

以上、本発明の具体的な実施態様の一例を説明したが、上述した具体例はあらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。 Although an example of a specific embodiment of the present invention has been described above, the above-mentioned specific example is merely an example in all respects and does not limit the scope of the present invention. The present invention includes various modified forms without departing from its essence.

10 モータ、12 ステータ、14 ロータ、20 インバータ、30 電池。 10 motors, 12 stators, 14 rotors, 20 inverters, 30 batteries.

Claims (5)

モータと電流供給回路を有するモータシステムであって、
前記モータは、
N相巻線(Nは自然数)を備えたステータと、
永久磁石を備えたロータと、
を有し、
前記ロータによる前記ステータの鎖交磁束が基本波磁束成分とN×K次高調波磁束成分(Kは自然数)とを含み、
前記電流供給回路は、
回転磁界を発生させる基本波電流成分と零相磁界を発生させるN×K次高調波電流成分とを含んだ電流を前記N相巻線に供給する、
ことを特徴とするモータシステム。
A motor system that has a motor and a current supply circuit.
The motor
A stator with an N-phase winding (N is a natural number),
A rotor with a permanent magnet and
Have,
The interlinkage magnetic flux of the stator by the rotor includes a fundamental wave magnetic flux component and an N × K harmonic flux component (K is a natural number).
The current supply circuit
A current including a fundamental wave current component that generates a rotating magnetic field and an N × K harmonic current component that generates a zero-phase magnetic field is supplied to the N-phase winding.
A motor system characterized by that.
請求項1に記載のモータシステムにおいて、
前記電流供給回路は、
前記基本波電流成分の極値の絶対値よりも合成後の極値の絶対値が小さくなる位相関係で前記基本波電流成分と前記N×K次高調波電流成分を合成した電流を前記N相巻線に供給する、
ことを特徴とするモータシステム。
In the motor system according to claim 1,
The current supply circuit
The N phase is a combination of the fundamental wave current component and the N × K harmonic current component in a phase relationship in which the absolute value of the extremum after synthesis is smaller than the absolute value of the extreme value of the fundamental wave current component. Supply to the winding,
A motor system characterized by that.
請求項1または2に記載のモータシステムにおいて、
前記モータは、
前記基本波電流成分による回転磁界と前記鎖交磁束の前記基本波磁束成分とにより得られる基本波トルク成分と、
前記N×K次高調波電流成分による零相磁界と前記鎖交磁束の前記N×K次高調波磁束成分とにより得られるN×K次高調波トルク成分と、
を含んだトルクを発生し、
前記電流供給回路は、
トルクの増加を必要とする動作期間において、前記基本波トルク成分と前記N×K次高調波トルク成分が互いに同じ方向となる位相関係で、前記基本波電流成分と前記N×K次高調波電流成分が合成された電流を、前記N相巻線に供給する、
ことを特徴とするモータシステム。
In the motor system according to claim 1 or 2.
The motor
The fundamental wave torque component obtained by the rotating magnetic field due to the fundamental wave current component and the fundamental wave magnetic flux component of the interlinkage magnetic flux, and
The N × K harmonic torque component obtained by the zero-phase magnetic field due to the N × K harmonic current component and the N × K harmonic flux component of the interlinkage magnetic flux, and
Generates torque including
The current supply circuit
The fundamental wave current component and the N × K harmonic current in a phase relationship in which the fundamental wave torque component and the N × K harmonic torque component are in the same direction during an operation period requiring an increase in torque. A current in which the components are combined is supplied to the N-phase winding.
A motor system characterized by that.
請求項1から3のいずれか1項に記載のモータシステムにおいて、
前記ロータの永久磁石の開角が前記ステータのN相巻線の巻幅よりも小さい、
ことを特徴とするモータシステム。
In the motor system according to any one of claims 1 to 3.
The opening angle of the permanent magnet of the rotor is smaller than the winding width of the N-phase winding of the stator.
A motor system characterized by that.
請求項1から4のいずれか1項に記載のモータシステムにおいて、
前記ロータの突極の開角が当該ロータの永久磁石の開角よりも小さい、
ことを特徴とするモータシステム。
In the motor system according to any one of claims 1 to 4.
The opening angle of the salient pole of the rotor is smaller than the opening angle of the permanent magnet of the rotor.
A motor system characterized by that.
JP2019041200A 2019-03-07 2019-03-07 motor system Active JP7181817B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019041200A JP7181817B2 (en) 2019-03-07 2019-03-07 motor system
PCT/JP2020/009411 WO2020179867A1 (en) 2019-03-07 2020-03-05 Motor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041200A JP7181817B2 (en) 2019-03-07 2019-03-07 motor system

Publications (2)

Publication Number Publication Date
JP2020145865A true JP2020145865A (en) 2020-09-10
JP7181817B2 JP7181817B2 (en) 2022-12-01

Family

ID=72338186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041200A Active JP7181817B2 (en) 2019-03-07 2019-03-07 motor system

Country Status (2)

Country Link
JP (1) JP7181817B2 (en)
WO (1) WO2020179867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095475A1 (en) * 2022-11-04 2024-05-10 日産自動車株式会社 Motor control method and motor control device
JP7516284B2 (en) 2021-02-05 2024-07-16 日本キヤリア株式会社 Motor Drive Unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042768A (en) * 2014-08-18 2016-03-31 国立大学法人東京工業大学 Motor system
JP2017103910A (en) * 2015-12-01 2017-06-08 株式会社デンソー Motor system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042768A (en) * 2014-08-18 2016-03-31 国立大学法人東京工業大学 Motor system
JP2017103910A (en) * 2015-12-01 2017-06-08 株式会社デンソー Motor system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516284B2 (en) 2021-02-05 2024-07-16 日本キヤリア株式会社 Motor Drive Unit
WO2024095475A1 (en) * 2022-11-04 2024-05-10 日産自動車株式会社 Motor control method and motor control device

Also Published As

Publication number Publication date
JP7181817B2 (en) 2022-12-01
WO2020179867A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
Dwari et al. Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF
Yu et al. Controllability and performance of a nine-phase FSPM motor under severe five open-phase fault conditions
EP2412091B1 (en) Electric motor system
US8896178B2 (en) Synchronous electric motor drive system having slit windings
CN104682807B (en) A kind of short-circuit fault tolerant control method of five mutually fault-tolerant magnetoes
JP4629659B2 (en) Synchronous electric machine having one stator and at least one rotor and related control device
US7852037B2 (en) Induction and switched reluctance motor
JP2015509697A (en) Synchronous electrical machine
JP2019022299A (en) Drive system of rotary electric machine
WO2020179867A1 (en) Motor system
JP5466742B2 (en) Generator winding
JP2010136523A (en) Drive control device for rotary electric machine
JP6432579B2 (en) Multi-phase winding and rotating electric machine
Ai et al. Novel direct flux and direct torque control of six-phase induction machine with nearly square air-gap flux density
CN109980824B (en) Electric motor, actuating unit and method for operating an electric motor
Scuiller Design of a 7-phase surface-mounted pm machine with tooth-concentrated winding
JP2010028957A (en) Inductor and inductor pole-number switching system
JPH10225035A (en) Armature winding
CN110063018B (en) Field winding type rotating electrical machine
Sirewal et al. A self-excitation scheme for a brushless synchronous generator
JP2007189818A (en) Current control method of synchronous motor
Qu et al. Design and analysis of a new consequent-pole interior permanent magnet synchronous motor
JP2017139864A (en) Rotary electric machine
Jiang et al. New direct torque control of five-phase fault-tolerant flux-switching permanent-magnet motor drives
WO2019009195A1 (en) Consequent motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221118

R150 Certificate of patent or registration of utility model

Ref document number: 7181817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150