JP2020145772A - Motor drive control device, fan, and motor drive control method - Google Patents

Motor drive control device, fan, and motor drive control method Download PDF

Info

Publication number
JP2020145772A
JP2020145772A JP2019038257A JP2019038257A JP2020145772A JP 2020145772 A JP2020145772 A JP 2020145772A JP 2019038257 A JP2019038257 A JP 2019038257A JP 2019038257 A JP2019038257 A JP 2019038257A JP 2020145772 A JP2020145772 A JP 2020145772A
Authority
JP
Japan
Prior art keywords
motor
rotation speed
drive control
target
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038257A
Other languages
Japanese (ja)
Other versions
JP7256033B2 (en
Inventor
政人 青木
Masato Aoki
政人 青木
祐司 大村
Yuji Omura
祐司 大村
貴大 鈴木
Takahiro Suzuki
貴大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2019038257A priority Critical patent/JP7256033B2/en
Priority to US16/805,975 priority patent/US11754084B2/en
Publication of JP2020145772A publication Critical patent/JP2020145772A/en
Application granted granted Critical
Publication of JP7256033B2 publication Critical patent/JP7256033B2/en
Priority to US18/356,390 priority patent/US20230374995A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

To realize a fan improved in silence while ensuring necessary air amount.SOLUTION: A motor drive control device (1) includes a control circuit portion (4) that produces a drive control signal (Sd) for controlling the rotation speed of a motor, on the basis of a speed instruction signal (Sc) instructing a target rotation speed (Rtg) of the motor (20), and a motor drive portion (2) that drives the motor on the basis of the drive control signal. The control circuit portion carries out speed feedback control that generates the drive control signal so as to make the rotation speed of the motor match the target rotation speed when the target rotation speed is lower than a threshold value (Rth), and carries out the maximum air amount control for producing the drive control signal bringing a current (Ir) flowing in the motor close to a target current value (Itg) calculated corresponding to the rotation speed of the motor, when the target rotation speed is higher than the threshold value.SELECTED DRAWING: Figure 4

Description

本発明は、モータ駆動制御装置、ファン、およびモータ駆動制御方法に関し、例えば、モータによって回転するファンの風量を制御するモータ駆動制御装置に関する。 The present invention relates to a motor drive control device, a fan, and a motor drive control method, for example, a motor drive control device that controls an air volume of a fan rotated by a motor.

従来、家電機器やOA機器等において、その内部に設けられた部品等を冷却するための装置として、ファン(ファンモータ)が広く知られている。 Conventionally, a fan (fan motor) is widely known as a device for cooling a component or the like provided inside a home electric appliance or an OA device.

一般に、ファンの性能は、風量−静圧特性(以下、「P−Qカーブ」とも称する。)によって表される。P−Qカーブは、ファンの吸込口と吐出口との間の圧力による損失(静圧)と風量との関係を表したものである。P−Qカーブにおいて、静圧が最大(通風抵抗が最大)の場合にファンの風量がゼロになり、静圧がゼロ(通風抵抗がゼロ)の場合にファンの風量は最大となる(例えば、特許文献1参照)。
なお、静圧がゼロ、すなわちファンの風量が最大の状態を、「フリーエア状態」とも称する。
In general, fan performance is represented by air volume-static pressure characteristics (hereinafter, also referred to as "PQ curve"). The PQ curve represents the relationship between the loss (static pressure) due to the pressure between the suction port and the discharge port of the fan and the air volume. In the PQ curve, when the static pressure is the maximum (the ventilation resistance is the maximum), the fan air volume becomes zero, and when the static pressure is zero (the ventilation resistance is zero), the fan air volume becomes the maximum (for example). See Patent Document 1).
The state where the static pressure is zero, that is, the air volume of the fan is maximum is also referred to as a "free air state".

特開2009−174414号公報JP-A-2009-174414

一般に、ファンは、所定の動作範囲(例えば、静圧が中域の領域)において、要求される風量が得られるように設計される。すなわち、ファンは、要求された動作範囲において所定の風量が得られるP−Qカーブを実現するように設計されている。その一方で、ファンは、要求された動作範囲以外の領域、例えば静圧が所定値以下の領域では、風量よりも静音性が重要視される。 Generally, the fan is designed to obtain the required air volume in a predetermined operating range (for example, in the region where the static pressure is in the middle range). That is, the fan is designed to realize a PQ curve that provides a predetermined air volume in the required operating range. On the other hand, in a region other than the required operating range, for example, in a region where the static pressure is equal to or less than a predetermined value, the fan is more important than the air volume in quietness.

従来のファンは、上位装置から指示された回転速度になるようにモータの回転数を制御しており、圧力損失(静圧)によって風量は変化する。そのため、従来のファンでは、フリーエア状態のように静圧が低い領域において、要求された動作範囲における風量以上の風量が発生し、騒音が大きくなるという課題がある。 In the conventional fan, the rotation speed of the motor is controlled so as to be the rotation speed instructed by the host device, and the air volume changes depending on the pressure loss (static pressure). Therefore, the conventional fan has a problem that an air volume larger than the air volume in the required operating range is generated in a region where the static pressure is low such as in a free air state, and the noise becomes loud.

本発明は、上述した課題に鑑みてなされたものであり、ファンにおいて、必要な風量を確保しつつ、静音性を高めることを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve quietness while ensuring a necessary air volume in a fan.

本発明の代表的な実施の形態に係るモータ駆動制御装置は、モータの目標回転速度を指示する速度指令信号に基づいて、前記モータの回転速度を制御するための駆動制御信号を生成する制御回路部と、前記駆動制御信号に基づいて、前記モータを駆動するモータ駆動部とを備え、前記制御回路部は、前記目標回転速度が閾値より低い場合に、前記モータの回転速度が前記目標回転速度に一致するように前記駆動制御信号を生成する速度フィードバック制御を行い、前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流が、前記モータの回転速度に対応して算出される目標電流値に近づくように前記駆動制御信号を生成する最大風量制御を行うことを特徴とする。 The motor drive control device according to a typical embodiment of the present invention is a control circuit that generates a drive control signal for controlling the rotation speed of the motor based on a speed command signal indicating a target rotation speed of the motor. The control circuit unit includes a unit and a motor drive unit that drives the motor based on the drive control signal. When the target rotation speed is lower than the threshold value, the rotation speed of the motor is the target rotation speed. The speed feedback control for generating the drive control signal is performed so as to match the above, and when the target rotation speed is higher than the threshold value, the current flowing through the motor is calculated in accordance with the rotation speed of the motor. It is characterized in that the maximum air volume control for generating the drive control signal so as to approach the current value is performed.

本発明に係るモータ駆動制御装置によれば、必要な風量を確保しつつ、静音性を高めたファンを実現することができる。 According to the motor drive control device according to the present invention, it is possible to realize a fan with improved quietness while securing a required air volume.

本発明の実施の形態に係るファンの構成を示すブロック図である。It is a block diagram which shows the structure of the fan which concerns on embodiment of this invention. 本実施の形態に係るモータ駆動制御装置によるファンの風量制御を説明するための図である。It is a figure for demonstrating the air volume control of a fan by the motor drive control device which concerns on this embodiment. 図2の最大風量制御ラインにおけるモータの回転速度とモータ電流の対応関係を示す図である。It is a figure which shows the correspondence relationship of the rotation speed of a motor, and a motor current in the maximum air volume control line of FIG. 本実施の形態に係るモータ駆動制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the motor drive control device which concerns on this embodiment. 最大風量制御時のモータの回転速度の調整方法の一例を示す図である。It is a figure which shows an example of the adjustment method of the rotation speed of a motor at the time of the maximum air volume control. 最大風量制御時のモータの動作点の調整方法の一例を示す図である。It is a figure which shows an example of the adjustment method of the operating point of a motor at the time of the maximum air volume control. 本実施の形態に係るモータ駆動制御装置によるファンの風量制御の流れを示すフロー図である。It is a flow chart which shows the flow of the air volume control of a fan by the motor drive control device which concerns on this embodiment. 本実施の形態に係るファンにおけるモータの回転速度と目標回転速度との関係を示す図である。It is a figure which shows the relationship between the rotation speed of the motor in the fan which concerns on this embodiment, and the target rotation speed.

1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.

〔1〕本発明の代表的な実施の形態に係るモータ駆動制御装置(1)は、モータ(20)の目標回転速度(Rtg)を指示する速度指令信号(Sc)に基づいて、前記モータの回転速度を制御するための駆動制御信号(Sd)を生成する制御回路部(4)と、前記駆動制御信号に基づいて、前記モータを駆動するモータ駆動部(2)とを備え、前記制御回路部は、前記目標回転速度が閾値(Rth)より低い場合に、前記モータの回転速度が前記目標回転速度に一致するように前記駆動制御信号を生成する速度フィードバック制御を行い、前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流(Ir)が、前記モータの回転速度に対応して算出される目標電流値(Itg)に近づくように前記駆動制御信号を生成する最大風量制御を行うことを特徴とする。 [1] The motor drive control device (1) according to a typical embodiment of the present invention is based on a speed command signal (Sc) indicating a target rotation speed (Rtg) of the motor (20). The control circuit unit (4) for generating a drive control signal (Sd) for controlling the rotation speed and a motor drive unit (2) for driving the motor based on the drive control signal are provided. When the target rotation speed is lower than the threshold value (Rth), the unit performs speed feedback control to generate the drive control signal so that the rotation speed of the motor matches the target rotation speed, and the target rotation speed becomes the target rotation speed. When the value is higher than the threshold value, the maximum air volume control for generating the drive control signal so that the current (Ir) flowing through the motor approaches the target current value (Itg) calculated corresponding to the rotation speed of the motor is performed. It is characterized by doing.

〔2〕上記モータ駆動制御装置において、前記制御回路部は、前記モータの回転位置を示す位置検出信号(Sh)に基づいて、前記モータの実回転速度を算出するとともに、予め記憶された前記モータの回転速度と前記目標電流値との対応関係を示す対応関係情報(471)と算出した前記実回転速度に基づいて、前記目標電流を算出してもよい。 [2] In the motor drive control device, the control circuit unit calculates the actual rotation speed of the motor based on a position detection signal (Sh) indicating the rotation position of the motor, and the motor is stored in advance. The target current may be calculated based on the correspondence relationship information (471) indicating the correspondence relationship between the rotation speed and the target current value and the calculated actual rotation speed.

〔3〕上記モータ駆動制御装置において、前記モータは、ファン(100)におけるインペラ(21)を回転させ、前記対応関係は、前記ファンの静圧が所定値(Pb)より低い領域での前記モータの回転速度と前記目標電流値との関係を示していてもよい。 [3] In the motor drive control device, the motor rotates the impeller (21) in the fan (100), and the corresponding relationship is that the motor in a region where the static pressure of the fan is lower than a predetermined value (Pb). The relationship between the rotation speed of the motor and the target current value may be shown.

〔4〕上記モータ駆動制御装置において、前記制御回路部は、前記最大風量制御において、前記モータに流れる電流(Ir)が前記目標電流値(Itg)より高い場合に、前記モータの回転速度(Rr)が増加するように前記駆動制御信号を生成し、前記モータに流れる電流(Ir)が前記目標電流値(Itg)より低い場合に、前記モータの回転速度(Rr)が低下するように前記駆動制御信号を生成してもよい。 [4] In the motor drive control device, the control circuit unit determines the rotation speed (Rr) of the motor when the current (Ir) flowing through the motor is higher than the target current value (Itg) in the maximum air volume control. ) Is generated so that the drive control signal is increased, and when the current (Ir) flowing through the motor is lower than the target current value (Itg), the drive is driven so that the rotation speed (Rr) of the motor decreases. A control signal may be generated.

〔5〕上記モータ駆動制御装置において、前記制御回路部は、前記最大風量制御において、前記モータに流れる電流(Ir)が前記目標電流値(Itg)を基準とする所定範囲(M)より高い場合に、前記モータの回転速度を増加させ、前記モータに流れる電流(Ir)が前記所定範囲(M)内にある場合に、前記モータの回転速度を変化させず、前記モータに流れる電流が前記所定範囲(M)より低い場合に、前記モータの回転速度を低下させるように前記駆動制御信号を生成してもよい。 [5] In the motor drive control device, in the control circuit unit, when the current (Ir) flowing through the motor is higher than the predetermined range (M) based on the target current value (Itg) in the maximum air volume control. In addition, when the rotation speed of the motor is increased and the current (Ir) flowing through the motor is within the predetermined range (M), the rotation speed of the motor is not changed and the current flowing through the motor is the predetermined value. When it is lower than the range (M), the drive control signal may be generated so as to reduce the rotation speed of the motor.

〔6〕上記モータ駆動制御装置において、前記制御回路部は、前記位置検出信号(Sh)に基づいて前記実回転速度(Rr)を算出する回転速度算出部(42)と、前記回転速度算出部によって算出された前記実回転速度(Rr)が前記速度指令信号(Sc)で指示された前記目標回転速度(Rtg)に一致するように第1制御信号(Sp1)を生成する速度制御部(43)と、前記回転速度算出部によって算出された前記実回転速度(Rr)に基づいて、前記目標電流値(Itg)を算出する目標電流値算出部(47)と、前記モータに流れる電流の電流値を取得する電流値取得部(46)と、前記目標回転速度(Rtg)が前記閾値(Rth)より高い場合に、前記モータに流れる電流(Ir)が前記目標電流値(Itg)に近づくように第2制御信号(Sp2)を生成する最大風量制御部(44)と、前記第1制御信号と前記第2制御信号とに基づいて、前記駆動制御信号(Sd)を生成する駆動制御信号生成部(45)と、を有していてもよい。 [6] In the motor drive control device, the control circuit unit includes a rotation speed calculation unit (42) that calculates the actual rotation speed (Rr) based on the position detection signal (Sh), and the rotation speed calculation unit. A speed control unit (43) that generates a first control signal (Sp1) so that the actual rotation speed (Rr) calculated by the above matches the target rotation speed (Rtg) indicated by the speed command signal (Sc). ), The target current value calculation unit (47) that calculates the target current value (Itg) based on the actual rotation speed (Rr) calculated by the rotation speed calculation unit, and the current of the current flowing through the motor. When the current value acquisition unit (46) for acquiring the value and the target rotation speed (Rtg) are higher than the threshold value (Rth), the current (Ir) flowing through the motor approaches the target current value (Itg). A drive control signal generation that generates the drive control signal (Sd) based on the maximum air volume control unit (44) that generates the second control signal (Sp2), the first control signal, and the second control signal. It may have a part (45) and.

〔7〕本発明の代表的な実施の形態に係るファン(100)は、モータ(20)と、モータ(20)の回転力によって回転可能に構成されたインペラ(21)と、前記モータの駆動を制御するモータ駆動制御装置(1)とを備え、前記モータ駆動制御装置は、前記モータの目標回転速度(Rtg)を指示する速度指令信号(Sc)に基づいて、前記モータの回転速度を制御するための駆動制御信号(Sd)を生成する制御回路部(4)と、前記駆動制御信号に基づいて、前記モータを駆動するモータ駆動部(2)とを有し、前記制御回路部は、前記目標回転速度(Rtg)が閾値(Rth)より低い場合に、前記モータの回転速度(Rr)が前記目標回転速度(Rtg)に一致するように前記駆動制御信号を生成する速度フィードバック制御を行い、前記目標回転速度(Rtg)が前記閾値(Rth)より高い場合に、前記モータに流れる電流(Ir)が、前記モータの回転速度に対応して算出される目標電流値(Itg)に近づくように前記駆動制御信号(Sd)を生成する最大風量制御を行うことを特徴とする。 [7] The fan (100) according to a typical embodiment of the present invention includes a motor (20), an impeller (21) rotatably configured by the rotational force of the motor (20), and a drive of the motor. The motor drive control device includes a motor drive control device (1) for controlling the motor, and the motor drive control device controls the rotation speed of the motor based on a speed command signal (Sc) indicating a target rotation speed (Rtg) of the motor. It has a control circuit unit (4) that generates a drive control signal (Sd) for driving the motor, and a motor drive unit (2) that drives the motor based on the drive control signal. When the target rotation speed (Rtg) is lower than the threshold value (Rth), speed feedback control is performed to generate the drive control signal so that the rotation speed (Rr) of the motor matches the target rotation speed (Rtg). When the target rotation speed (Rtg) is higher than the threshold value (Rth), the current (Ir) flowing through the motor approaches the target current value (Itg) calculated corresponding to the rotation speed of the motor. It is characterized in that the maximum air volume control for generating the drive control signal (Sd) is performed.

〔8〕本発明の代表的な実施の形態に係るモータ駆動制御方法は、モータ(20)の目標回転速度(Rtg)を指示する速度指令信号(Sc)に基づいて前記モータの駆動を制御するための駆動制御信号(Sd)を生成し、前記駆動制御信号に基づいて、前記モータを駆動する方法であって、前記目標回転速度(Rtg)が閾値(Rth)より低い場合に、前記モータの回転速度(Rr)が前記目標回転速度(Rtg)と一致するように前記駆動制御信号を生成する第1ステップ(S3)と、前記目標回転速度(Rtg)が前記閾値(Rth)より高い場合に、前記モータに流れる電流(Ir)が前記モータの回転速度に対応して算出される目標電流値(Itg)に近づくように前記駆動制御信号を生成する第2ステップ(S4〜S14)と、を含むことを特徴とする。 [8] The motor drive control method according to a typical embodiment of the present invention controls the drive of the motor (20) based on a speed command signal (Sc) indicating a target rotation speed (Rtg) of the motor (20). A method of generating a drive control signal (Sd) for driving the motor based on the drive control signal, and when the target rotation speed (Rtg) is lower than the threshold value (Rth), the motor The first step (S3) of generating the drive control signal so that the rotation speed (Rr) matches the target rotation speed (Rtg), and when the target rotation speed (Rtg) is higher than the threshold value (Rth). The second step (S4 to S14) of generating the drive control signal so that the current (Ir) flowing through the motor approaches the target current value (Itg) calculated corresponding to the rotation speed of the motor. It is characterized by including.

2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
2. 2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference reference numerals will be given to the components common to each embodiment, and the repeated description will be omitted.

図1は、本発明の実施の形態に係るファンの構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a fan according to an embodiment of the present invention.

本実施の形態に係るファン100は、インペラ(羽根車)を回転させることによって風を発生させる装置である。ファン100は、機器の内部で発生する熱を外部へ排出し、その機器の内部を冷却する冷却装置の一つとして利用可能である。ファン100は、例えば、軸流ファンである。 The fan 100 according to the present embodiment is a device that generates wind by rotating an impeller (impeller). The fan 100 can be used as one of the cooling devices for discharging the heat generated inside the device to the outside and cooling the inside of the device. The fan 100 is, for example, an axial fan.

図1に示すように、ファン100は、モータ20と、モータ20を駆動するモータ駆動制御装置1と、モータ20の回転力によって回転可能に構成されたインペラ21とを備えている。 As shown in FIG. 1, the fan 100 includes a motor 20, a motor drive control device 1 for driving the motor 20, and an impeller 21 configured to be rotatable by the rotational force of the motor 20.

本実施の形態において、モータ20は、例えば、コイルLu,Lv,Lwを有する3相のブラシレスモータである。モータ駆動制御装置1は、モータ20の回転を制御するための装置である。モータ駆動制御装置1は、モータ20を構成する3相のコイルLu,Lv,Lwに周期的に駆動電流を流すことで、モータ20を回転させる。 In the present embodiment, the motor 20 is, for example, a three-phase brushless motor having coils Lu, Lv, and Lw. The motor drive control device 1 is a device for controlling the rotation of the motor 20. The motor drive control device 1 rotates the motor 20 by periodically passing a drive current through the three-phase coils Lu, Lv, and Lw constituting the motor 20.

具体的に、モータ駆動制御装置1は、モータ駆動部2と、制御回路部4と、電流検出部6とを有している。なお、図1に示されているモータ駆動制御装置1の構成要素は、全体の一部であり、モータ駆動制御装置1は、図1に示されたものに加えて、他の構成要素を有していてもよい。 Specifically, the motor drive control device 1 includes a motor drive unit 2, a control circuit unit 4, and a current detection unit 6. The components of the motor drive control device 1 shown in FIG. 1 are a part of the whole, and the motor drive control device 1 has other components in addition to those shown in FIG. You may be doing it.

本実施の形態において、モータ駆動制御装置1の少なくとも一部が、一つの半導体装置(IC:Integrated Circuit)としてパッケージ化されている。例えば、制御回路部4やモータ駆動部2等の回路が、それぞれ別個の半導体装置として実現されている。 In the present embodiment, at least a part of the motor drive control device 1 is packaged as one semiconductor device (IC: Integrated Circuit). For example, circuits such as the control circuit unit 4 and the motor drive unit 2 are realized as separate semiconductor devices.

なお、モータ駆動制御装置1は、その全部がパッケージ化された半導体装置であってもよいし、モータ駆動制御装置1の全部又は一部と他の装置とが一緒にパッケージ化されて、1つの半導体装置を構成していてもよい。 The motor drive control device 1 may be a semiconductor device in which all of the motor drive control device 1 is packaged, or a whole or a part of the motor drive control device 1 and another device are packaged together to form one. It may constitute a semiconductor device.

モータ駆動部2は、制御回路部4から出力された駆動制御信号Sdに基づいて、モータ20に駆動信号を出力し、モータ20を駆動させる。モータ駆動部2は、モータ20の複数相のコイルLu,Lv,Lwを選択的に通電する。 The motor drive unit 2 outputs a drive signal to the motor 20 based on the drive control signal Sd output from the control circuit unit 4, and drives the motor 20. The motor drive unit 2 selectively energizes the multi-phase coils Lu, Lv, and Lw of the motor 20.

具体的には、モータ駆動部2は、インバータ回路2a及びプリドライブ回路2bを有する。プリドライブ回路2bは、制御回路部4から出力された駆動制御信号Sdに基づいて、インバータ回路2aを駆動するための出力信号を生成し、インバータ回路2aに出力する。インバータ回路2aは、プリドライブ回路2bから出力された信号に基づいて、モータ20が備えるコイルLu,Lv,Lwを通電させる。 Specifically, the motor drive unit 2 has an inverter circuit 2a and a predrive circuit 2b. The predrive circuit 2b generates an output signal for driving the inverter circuit 2a based on the drive control signal Sd output from the control circuit unit 4, and outputs the output signal to the inverter circuit 2a. The inverter circuit 2a energizes the coils Lu, Lv, and Lw included in the motor 20 based on the signal output from the predrive circuit 2b.

具体的には、インバータ回路2aは、例えば、電源電圧(直流電源)Vccの両端に設けられた2つのスイッチング素子の直列回路の対が、コイルLu,Lv,Lwの各相(U相、V相、W相)に対してそれぞれ配置されて構成されている。2つのスイッチング素子の各対において、スイッチング素子同士の接続点に、モータ20の各相の端子が接続されている(不図示)。プリドライブ回路2bは、出力信号として、例えば、インバータ回路2aの各スイッチング素子に対応する6種類の信号Vuu,Vul,Vvu,Vvl,Vwu,Vwlを出力する。これらの信号Vuu,Vul,Vvu,Vvl,Vwu,Vwlが出力されることで、それぞれの信号Vuu,Vul,Vvu,Vvl,Vwu,Vwlに対応するスイッチング素子がオン、オフ動作を行う。これにより、モータ20に駆動信号が出力されて、モータ20の各相のコイルLu,Lv,Lwに電流が流れる(不図示)。 Specifically, in the inverter circuit 2a, for example, a pair of a series circuit of two switching elements provided at both ends of the power supply voltage (DC power supply) Vcc is each phase (U phase, V) of the coils Lu, Lv, and Lw. It is arranged and configured for each phase (phase, W phase). In each pair of the two switching elements, the terminals of each phase of the motor 20 are connected to the connection points between the switching elements (not shown). The predrive circuit 2b outputs, for example, six types of signals Vuu, Vul, Vvu, Vvl, Vwoo, and Vwl corresponding to each switching element of the inverter circuit 2a as output signals. By outputting these signals Vuu, Vul, Vvu, Vvl, Vwoo, and Vwl, the switching elements corresponding to the respective signals Vuu, Vul, Vv, Vvl, Vwoo, and Vwl operate on and off. As a result, a drive signal is output to the motor 20, and a current flows through the coils Lu, Lv, and Lw of each phase of the motor 20 (not shown).

電流検出部6は、モータ20に流れる電流、すなわちモータ20のコイルLu,Lv,Lwに流れる電流(以下、「モータ電流」とも称する。)を検出するための機能部である。電流検出部6は、モータ20のモータ電流に応じた電圧Vsを出力する。なお、電流検出部6の構成については後述する。 The current detection unit 6 is a functional unit for detecting the current flowing through the motor 20, that is, the current flowing through the coils Lu, Lv, and Lw of the motor 20 (hereinafter, also referred to as “motor current”). The current detection unit 6 outputs a voltage Vs corresponding to the motor current of the motor 20. The configuration of the current detection unit 6 will be described later.

制御回路部4は、例えば、マイクロコンピュータ、デジタル回路、およびアナログ回路等によって構成されている。制御回路部4には、モータ20の駆動を指示する各種の信号が入力される。制御回路部4は、これらの信号に基づいてモータ20の駆動制御を行う。例えば、モータ20の駆動を指示する信号として、速度指令信号Scが上位装置等の制御回路部4の外部に設けられた装置から制御回路部4に入力される。 The control circuit unit 4 is composed of, for example, a microcomputer, a digital circuit, an analog circuit, and the like. Various signals instructing the driving of the motor 20 are input to the control circuit unit 4. The control circuit unit 4 controls the drive of the motor 20 based on these signals. For example, as a signal instructing the drive of the motor 20, a speed command signal Sc is input to the control circuit unit 4 from a device provided outside the control circuit unit 4 such as a host device.

速度指令信号Scは、モータ20の回転速度に関する信号である。例えば、速度指令信号Scは、モータ20の目標回転速度Rtgに対応するデューティ比のPWM(パルス幅変調)信号である。なお、速度指令信号Scとして、クロック信号が入力されてもよい。 The speed command signal Sc is a signal related to the rotation speed of the motor 20. For example, the speed command signal Sc is a PWM (pulse width modulation) signal having a duty ratio corresponding to the target rotation speed Rtg of the motor 20. A clock signal may be input as the speed command signal Sc.

また、制御回路部4には、位置検出素子5から位置検出信号Shが入力される。位置検出素子5は、例えば、モータ20に配置されたホール素子であり、位置検出信号Shはホール素子5から出力されるホール信号である。位置検出信号Shは、モータ20の回転位置を示す信号、すなわち、モータ20のロータ(不図示)の回転に対応する信号である。以下、位置検出素子5を「ホール素子5」とも称する。 Further, the position detection signal Sh is input from the position detection element 5 to the control circuit unit 4. The position detection element 5 is, for example, a Hall element arranged in the motor 20, and the position detection signal Sh is a Hall signal output from the Hall element 5. The position detection signal Sh is a signal indicating the rotation position of the motor 20, that is, a signal corresponding to the rotation of the rotor (not shown) of the motor 20. Hereinafter, the position detection element 5 is also referred to as a “Hall element 5”.

制御回路部4は、位置検出信号Shからモータ20のロータの実回転速度に関する情報を得て、モータ20の駆動を制御する。 The control circuit unit 4 obtains information on the actual rotation speed of the rotor of the motor 20 from the position detection signal Sh, and controls the drive of the motor 20.

なお、図1では、ファン100に一つのホール素子5が配置される場合を例示しているが、ファン100に配置されるホール素子5の個数は特に制限されない。例えば、三つのホール素子5が互いに略等間隔で、モータ20の回転子の周囲に配置されていてもよい。 Although FIG. 1 illustrates a case where one Hall element 5 is arranged on the fan 100, the number of Hall elements 5 arranged on the fan 100 is not particularly limited. For example, the three Hall elements 5 may be arranged around the rotor of the motor 20 at substantially equal intervals from each other.

なお、制御回路部4には、このような位置検出信号Shに加えて、又は位置検出信号Shに代えて、モータ20の回転状態に関する他の情報が入力されるように構成されていてもよい。例えば、モータ20の回転子の回転に対応するFG信号として、回転子の側にある基板に設けたコイルパターンを用いて生成される信号(パターンFG)が入力されるようにしてもよい。また、モータ20の各相(U、V、W相)に誘起する逆起電圧を検出する回転位置検出回路の検出結果に基づいてモータ20の回転状態が検知されるように構成されていてもよい。エンコーダやレゾルバなどを設け、それによりモータ20の回転速度等の情報が検出されるようにしてもよい。 The control circuit unit 4 may be configured to input other information regarding the rotational state of the motor 20 in addition to the position detection signal Sh or instead of the position detection signal Sh. .. For example, as the FG signal corresponding to the rotation of the rotor of the motor 20, a signal (pattern FG) generated by using the coil pattern provided on the substrate on the rotor side may be input. Further, even if the rotation state of the motor 20 is detected based on the detection result of the rotation position detection circuit that detects the counter electromotive voltage induced in each phase (U, V, W phase) of the motor 20. Good. An encoder, a resolver, or the like may be provided so that information such as the rotation speed of the motor 20 can be detected.

制御回路部4は、上述した速度指令信号Sc、位置検出信号Shおよび電圧Vs等に基づいて、モータ20の回転速度を制御するための駆動制御信号Sdを生成する。 The control circuit unit 4 generates a drive control signal Sd for controlling the rotation speed of the motor 20 based on the speed command signal Sc, the position detection signal Sh, the voltage Vs, and the like described above.

駆動制御信号Sdは、例えば、PWM(パルス幅変調)信号である。制御回路部4は、モータ駆動部2にPWM(パルス幅変調)信号である駆動制御信号Sdを供給することにより、モータ駆動部2により通電される複数相のコイルLu,Lv,Lwの通電相を所定の順序で切り替えながら、モータ20の回転速度を調整してファン100の風量を制御する。 The drive control signal Sd is, for example, a PWM (pulse width modulation) signal. The control circuit unit 4 supplies the drive control signal Sd, which is a PWM (pulse width modulation) signal, to the motor drive unit 2, and thereby energizes the multi-phase coils Lu, Lv, and Lw that are energized by the motor drive unit 2. The air volume of the fan 100 is controlled by adjusting the rotation speed of the motor 20 while switching the above in a predetermined order.

本実施の形態に係るモータ駆動制御装置1は、ファン100の静圧が所定値以下の領域において、ファン100の風量が制限されるように、モータ20の回転速度を制御する。 The motor drive control device 1 according to the present embodiment controls the rotation speed of the motor 20 so that the air volume of the fan 100 is limited in a region where the static pressure of the fan 100 is equal to or less than a predetermined value.

図2は、本実施の形態に係るモータ駆動制御装置1によるファン100の風量制御を説明するための図である。 FIG. 2 is a diagram for explaining air volume control of the fan 100 by the motor drive control device 1 according to the present embodiment.

図2において、横軸は風量Qを表し、縦軸は静圧Pを表している。図2には、速度指令信号Scによって指示される目標回転速度Rtgを変化させたときの、目標回転速度Rtg毎のP−Qカーブがそれぞれ示されている。 In FIG. 2, the horizontal axis represents the air volume Q and the vertical axis represents the static pressure P. FIG. 2 shows PQ curves for each target rotation speed Rtg when the target rotation speed Rtg indicated by the speed command signal Sc is changed.

図2において、参照符号201_minは、目標回転速度Rtgを最小値Rminに設定したときのファン100のP−Qカーブを表し、参照符号201_maxは、目標回転速度Rtgを最大値Rmaxに設定したときのファン100のP−Qカーブを表し、参照符号201_xは、目標回転速度Rtgを上記最大値と上記最小値との間の値に設定したときのP−Qカーブを表している。 In FIG. 2, reference numeral 201_min represents the PQ curve of the fan 100 when the target rotation speed Rtg is set to the minimum value Rmin, and reference numeral 201_max is when the target rotation speed Rtg is set to the maximum value Rmax. The PQ curve of the fan 100 is represented, and the reference reference numeral 201_x represents the PQ curve when the target rotation speed Rtg is set to a value between the maximum value and the minimum value.

上述したように、ファンは、要求される動作範囲において所望の風量が得られるように設計される。例えば、図2において、ファンに対して要求される動作範囲が参照符号200で示される範囲であったとする。この場合、図2に示すP−Qカーブを有するファンは、要求された動作範囲200が目標回転速度を最大値Rtg_maxに設定したときのP−Qカーブよりも下の領域(静圧が低い領域)に存在しているので、要求された仕様を満足していると言える。 As mentioned above, the fan is designed to provide the desired airflow within the required operating range. For example, in FIG. 2, it is assumed that the operating range required for the fan is the range indicated by the reference numeral 200. In this case, the fan having the PQ curve shown in FIG. 2 has a region where the requested operating range 200 is lower than the PQ curve when the target rotation speed is set to the maximum value Rtg_max (region where the static pressure is low). ), So it can be said that it satisfies the required specifications.

一方で、上述したように、ファンは、要求された動作範囲以外の領域、すなわち静圧が所定値以下の領域では、風量よりも静音性が重要視される。例えば、図2において、静圧がPb以下の領域では、風量よりも静音性が重要となる。 On the other hand, as described above, in a region other than the required operating range, that is, in a region where the static pressure is equal to or less than a predetermined value, the quietness of the fan is more important than the air volume. For example, in FIG. 2, in the region where the static pressure is Pb or less, quietness is more important than air volume.

しかしながら、従来のファンは、速度指令信号Scで指示された目標回転速度になるようにモータの回転数を制御しており、圧力損失(静圧)によって風量は変化する。そのため、静圧が低い領域においても風量が大きくなり、騒音が大きくなる傾向がある。 However, the conventional fan controls the rotation speed of the motor so as to reach the target rotation speed indicated by the speed command signal Sc, and the air volume changes depending on the pressure loss (static pressure). Therefore, the air volume tends to increase and the noise tends to increase even in a region where the static pressure is low.

例えば、図2に示すように、従来のファンが参照符号201_maxで示されるP−Qカーブで動作するように設計されている場合を考える。この場合、従来のファンは、フリーエア状態において目標回転速度が“Rtg_max”に設定されたとき、動作範囲200で要求される風量qr1からqr2の範囲を大きく超える風量qmaxを発生させる。 For example, consider the case where a conventional fan is designed to operate on the PQ curve indicated by reference numeral 201_max, as shown in FIG. In this case, when the target rotation speed is set to "Rtg_max" in the free air state, the conventional fan generates an air volume qmax that greatly exceeds the air volume qr1 to qr2 range required in the operating range 200.

しかしながら、上述したように、動作範囲200以外の領域では、要求される風量qr1からqr2の範囲を大きく超える風量は不要である。 However, as described above, in the region other than the operating range 200, an air volume that greatly exceeds the required air volume qr1 to qr2 range is unnecessary.

そこで、本実施の形態に係るモータ駆動制御装置1は、静圧が所定値より低い領域において、速度指令信号Scによって指示された目標回転速度Rtgに関わらずファン100の風量が制限されるように、モータ20の回転速度を制御する。 Therefore, in the motor drive control device 1 according to the present embodiment, the air volume of the fan 100 is limited in a region where the static pressure is lower than a predetermined value, regardless of the target rotation speed Rtg instructed by the speed command signal Sc. , Control the rotation speed of the motor 20.

具体的には、図2に示すように、モータ駆動制御装置1は、静圧が所定値Pbより低い範囲では、目標回転速度Rtgが所定値Rx(最小値Rmin<Rx<最大値Rmax)に設定されているときの最大風量の点Aから目標回転速度Rtgが最大値Rmaxに設定されているときの最大風量の点Bまでを結ぶライン(以下、「最大風量制御ライン」とも称する。)Cに沿うようにファン100の風量を制御する。 Specifically, as shown in FIG. 2, in the motor drive control device 1, the target rotation speed Rtg becomes a predetermined value Rx (minimum value Rmin <Rx <maximum value Rmax) in a range where the static pressure is lower than the predetermined value Pb. A line connecting the point A of the maximum air volume when it is set to the point B of the maximum air volume when the target rotation speed Rtg is set to the maximum value Rmax (hereinafter, also referred to as "maximum air volume control line") C. The air volume of the fan 100 is controlled so as to be in line with.

より具体的には、モータ駆動制御装置1は、最大風量制御ラインCにおけるモータ20の回転速度とモータ電流との対応関係に基づいてモータ20の回転速度を調整することにより、静圧が所定値Pbより低い範囲では、ファン100の風量を最大風量制御ラインCに沿うように制御する。 More specifically, the motor drive control device 1 adjusts the rotation speed of the motor 20 based on the correspondence between the rotation speed of the motor 20 and the motor current in the maximum air volume control line C, so that the static pressure becomes a predetermined value. In the range lower than Pb, the air volume of the fan 100 is controlled so as to be along the maximum air volume control line C.

図3は、図2の最大風量制御ラインCにおけるモータ20の回転速度とモータ電流の対応関係を示す図である。
図3に示される特性(グラフ)500は、図2の最大風量制御ラインCにおけるモータ20の回転速度(実回転速度Rr)およびモータ電流(実電流値Ir)の関係を表している。図3の特性500におけるA点は、図2の最大風量制御ラインCにおけるA点に対応し、図3の特性500におけるB点は、図2の最大風量制御ラインCにおけるB点に対応している。
FIG. 3 is a diagram showing a correspondence relationship between the rotation speed of the motor 20 and the motor current in the maximum air volume control line C of FIG.
The characteristic (graph) 500 shown in FIG. 3 represents the relationship between the rotation speed (actual rotation speed Rr) and the motor current (actual current value Ir) of the motor 20 in the maximum air volume control line C of FIG. Point A in the characteristic 500 of FIG. 3 corresponds to point A in the maximum air volume control line C of FIG. 2, and point B in the characteristic 500 of FIG. 3 corresponds to point B in the maximum air volume control line C of FIG. There is.

特性500は、以下に示す方法により取得することができる。
例えば、ファン100(モータ20)の目標回転速度Rtgを設定可能な最小値Rminから設定可能な最大値Rmaxまで変化させたときの各目標回転速度における静圧(P)、風量(Q)、モータ20の回転速度(実回転速度Rr)、およびモータ電流(実電流値Ir)を予め測定しておく。なお、このとき、ファン100の後述する最大風量制御は無効にしておく。
The characteristic 500 can be obtained by the method shown below.
For example, the static pressure (P), air volume (Q), and motor at each target rotation speed when the target rotation speed Rtg of the fan 100 (motor 20) is changed from the settable minimum value Rmin to the settable maximum value Rmax. The rotation speed of 20 (actual rotation speed Rr) and the motor current (actual current value Ir) are measured in advance. At this time, the maximum air volume control described later of the fan 100 is disabled.

次に、静圧(P)および風量(Q)の測定データを用いて、図2のように目標回転速度毎にP−Qカーブを描く。次に、描いたP−Qカーブを用いて、静圧が所望の値(例えばPb)より低い領域において風量が制限されるように、最大風量制御ラインCを設定する。最大風量制御ラインCの設定方法は、上述の通りである。 Next, using the measurement data of the static pressure (P) and the air volume (Q), a PQ curve is drawn for each target rotation speed as shown in FIG. Next, using the drawn PQ curve, the maximum air volume control line C is set so that the air volume is limited in a region where the static pressure is lower than a desired value (for example, Pb). The method of setting the maximum air volume control line C is as described above.

次に、各目標回転速度におけるモータ20の実回転速度Rrおよびモータ電流の実電流値Irの測定データの中から、最大風量制御ラインCにおける実回転速度Rrおよび実電流値Irの測定データを抽出する。そして、抽出した測定データに基づいて、実回転速度Rrと実電流値Irとの対応関係をプロットする。これにより、モータ20の回転速度とモータ電流との対応関係を表す特性500を得ることができる。 Next, the measurement data of the actual rotation speed Rr and the actual current value Ir in the maximum air volume control line C are extracted from the measurement data of the actual rotation speed Rr of the motor 20 and the actual current value Ir of the motor current at each target rotation speed. To do. Then, based on the extracted measurement data, the correspondence between the actual rotation speed Rr and the actual current value Ir is plotted. As a result, the characteristic 500 representing the correspondence between the rotation speed of the motor 20 and the motor current can be obtained.

上述したように、特性500は、ファン100が図2に示したP−Qカーブの最大風量制御ラインCに沿って動作したときの、モータ20の回転速度とモータ電流との関係を表している。したがって、特性500を満足するようにモータ20の回転速度およびモータ電流を制御することにより、ファン100を最大風量制御ラインCに沿って動作させることが可能となる。 As described above, the characteristic 500 represents the relationship between the rotation speed of the motor 20 and the motor current when the fan 100 operates along the maximum air volume control line C of the PQ curve shown in FIG. .. Therefore, by controlling the rotation speed and the motor current of the motor 20 so as to satisfy the characteristic 500, the fan 100 can be operated along the maximum air volume control line C.

そこで、本実施の形態に係るモータ駆動制御装置1は、モータ20のモータ電流の実電流値が特性500で表されるモータ電流の目標値(以下、「目標電流値Itg」と称する。)に近づくように、モータ20の回転速度を調整することにより、ファン100を最大風量制御ラインCに沿って動作させて、ファン100の最大風量を制限する。 Therefore, in the motor drive control device 1 according to the present embodiment, the actual current value of the motor current of the motor 20 is set to the target value of the motor current represented by the characteristic 500 (hereinafter, referred to as “target current value Itg”). By adjusting the rotation speed of the motor 20 so as to approach, the fan 100 is operated along the maximum air volume control line C to limit the maximum air volume of the fan 100.

以下、ファン100の最大風量を制限するための機能を実現するためのモータ駆動制御装置1の構成について、詳細に説明する。 Hereinafter, the configuration of the motor drive control device 1 for realizing the function for limiting the maximum air volume of the fan 100 will be described in detail.

図4は、本実施の形態に係るモータ駆動制御装置1の構成を示すブロック図である。
図4には、モータ駆動制御装置1を構成する機能ブロックのうち、上述したファン100の最大風量を制限するための機能に関連する機能ブロックが図示されている。
FIG. 4 is a block diagram showing a configuration of the motor drive control device 1 according to the present embodiment.
FIG. 4 shows a functional block related to the above-mentioned function for limiting the maximum air volume of the fan 100 among the functional blocks constituting the motor drive control device 1.

モータ駆動制御装置1における制御回路部4は、速度指令信号Scによって指定されたモータ20の目標回転速度Rtgが閾値Rthより低い場合(例えば、Rtg<Rthの場合)には、モータ20の回転速度(実回転速度Rr)が目標回転速度Rtgに一致するように駆動制御信号Sdを生成する速度フィードバック制御を行う。 When the target rotation speed Rtg of the motor 20 specified by the speed command signal Sc is lower than the threshold Rth (for example, when Rtg <Rth), the control circuit unit 4 in the motor drive control device 1 rotates the motor 20. Speed feedback control is performed to generate a drive control signal Sd so that (actual rotation speed Rr) matches the target rotation speed Rtg.

一方、目標回転速度Rtgが閾値Rthより高い場合(例えば、Rtg≧Rthの場合)には、制御回路部4は、モータ20に流れる電流(モータ電流)がモータ20の回転速度(実回転速度)に対応して算出される目標電流値Itgに近づくように、駆動制御信号Sdを生成する最大風量制御を行う。 On the other hand, when the target rotation speed Rtg is higher than the threshold Rth (for example, when Rtg ≧ Rth), the control circuit unit 4 determines that the current (motor current) flowing through the motor 20 is the rotation speed (actual rotation speed) of the motor 20. The maximum air volume control for generating the drive control signal Sd is performed so as to approach the target current value Itg calculated in response to.

具体的に、制御回路部4は、速度フィードバック制御および最大風量制御を実現するための機能ブロックとして、目標回転速度取得部41、回転速度算出部42、速度制御部43、最大風量制御部44、駆動制御信号生成部45、電流値取得部46、目標電流値算出部47、および比較部(CMP)48を有している。 Specifically, the control circuit unit 4 includes a target rotation speed acquisition unit 41, a rotation speed calculation unit 42, a speed control unit 43, and a maximum air volume control unit 44 as functional blocks for realizing speed feedback control and maximum air volume control. It has a drive control signal generation unit 45, a current value acquisition unit 46, a target current value calculation unit 47, and a comparison unit (CMP) 48.

目標回転速度取得部41は、例えばモータ駆動制御装置1の外部に存在する上位装置から出力された速度指令信号Scからモータ20の目標回転速度Rtgの情報を取得し、速度制御部43および最大風量制御部44に与える。 The target rotation speed acquisition unit 41 acquires information on the target rotation speed Rtg of the motor 20 from, for example, a speed command signal Sc output from a higher-level device existing outside the motor drive control device 1, and the speed control unit 43 and the maximum air volume. It is given to the control unit 44.

例えば、速度指令信号Scが、デューティ比によって目標回転速度Rtgを表すPWM信号である場合、目標回転速度取得部41は、入力された速度指令信号ScとしてのPWM信号のデューティ比を解析し、そのデューティ比に対応する回転速度を算出して、目標回転速度Rtgとして出力する。例えば、目標回転速度取得部41は、PWM信号のデューティ比と目標回転速度との対応関係を表すテーブルを有しており、目標回転速度取得部41は、入力された速度指令信号Scのデューティ比に対応する目標回転速度を上記テーブルから読み出すことにより、速度指令信号Scから目標回転速度Rtgの情報を取得する。 For example, when the speed command signal Sc is a PWM signal representing the target rotation speed Rtg by the duty ratio, the target rotation speed acquisition unit 41 analyzes the duty ratio of the PWM signal as the input speed command signal Sc, and the target rotation speed acquisition unit 41 analyzes the duty ratio. The rotation speed corresponding to the duty ratio is calculated and output as the target rotation speed Rtg. For example, the target rotation speed acquisition unit 41 has a table showing the correspondence between the duty ratio of the PWM signal and the target rotation speed, and the target rotation speed acquisition unit 41 has the duty ratio of the input speed command signal Sc. By reading the target rotation speed corresponding to the above table from the above table, the information of the target rotation speed Rtg is acquired from the speed command signal Sc.

目標回転速度取得部41は、例えば、マイクロコントローラの外部インターフェース回路等とCPUのプログラム処理とによって実現されている。 The target rotation speed acquisition unit 41 is realized by, for example, an external interface circuit of a microcontroller and a program process of a CPU.

回転速度算出部42は、位置検出素子5から出力された位置検出信号Shに基づいて、モータ20の回転速度(単位時間当たりの回転数)を算出する。回転速度算出部42は、位置検出信号Shを用いてモータ20のロータの実際の回転速度を算出し、実回転速度Rrとして速度制御部43および目標電流値算出部47に与える。 The rotation speed calculation unit 42 calculates the rotation speed (rotation speed per unit time) of the motor 20 based on the position detection signal Sh output from the position detection element 5. The rotation speed calculation unit 42 calculates the actual rotation speed of the rotor of the motor 20 using the position detection signal Sh, and gives the actual rotation speed Rr to the speed control unit 43 and the target current value calculation unit 47.

回転速度算出部42は、例えば、目標回転速度取得部41と同様に、マイクロコントローラの外部インターフェース回路等とCPUのプログラム処理とによって実現されている。 The rotation speed calculation unit 42 is realized by, for example, the external interface circuit of the microcontroller and the program processing of the CPU, similarly to the target rotation speed acquisition unit 41.

速度制御部43は、目標回転速度取得部41から出力された目標回転速度Rtgと、回転速度算出部42によって算出されたモータ20の実回転速度Rrとに基づいて、駆動制御信号SdとしてのPWM信号のデューティ比を指定するPWM指令信号(第1制御信号の一例)Sp1を生成する。 The speed control unit 43 is PWM as a drive control signal Sd based on the target rotation speed Rtg output from the target rotation speed acquisition unit 41 and the actual rotation speed Rr of the motor 20 calculated by the rotation speed calculation unit 42. A PWM command signal (an example of a first control signal) Sp1 that specifies the duty ratio of the signal is generated.

具体的に、速度制御部43は、実回転速度Rrが目標回転速度Rtgに一致するようにPWM指令信号Sp1を生成する。例えば、速度制御部43は、実回転速度Rrと目標回転速度Rtgとの差分を算出し、当該差分がゼロになるように駆動制御信号SdとしてのPWM信号のデューティ比を算出する。そして、速度制御部43は、算出したデューティ比の情報をPWM指令信号Sp1として出力する。 Specifically, the speed control unit 43 generates the PWM command signal Sp1 so that the actual rotation speed Rr matches the target rotation speed Rtg. For example, the speed control unit 43 calculates the difference between the actual rotation speed Rr and the target rotation speed Rtg, and calculates the duty ratio of the PWM signal as the drive control signal Sd so that the difference becomes zero. Then, the speed control unit 43 outputs the calculated duty ratio information as a PWM command signal Sp1.

電流値取得部46は、モータ20に流れる電流の電流値を算出する機能部である。電流値取得部46は、例えば、アナログ信号をデジタル信号に変換するA/D変換回路を含む。例えば、電流値取得部46は、ΔΣ変調型のアナログ/デジタル変換回路であって、専用ロジック回路によって構成されている。電流値取得部46は、電流検出部6から入力されたアナログ信号を、ΔΣ変調方式によりデジタル信号に変換する。 The current value acquisition unit 46 is a functional unit that calculates the current value of the current flowing through the motor 20. The current value acquisition unit 46 includes, for example, an A / D conversion circuit that converts an analog signal into a digital signal. For example, the current value acquisition unit 46 is a delta-sigma modulation type analog / digital conversion circuit, and is composed of a dedicated logic circuit. The current value acquisition unit 46 converts the analog signal input from the current detection unit 6 into a digital signal by the ΔΣ modulation method.

ここで、電流検出部6は、上述したように、制御対象としてのモータ20に流れる電流(モータ電流)に応じた電圧Vsを出力する回路である。例えば図3に示すように、電流検出部6は、モータ駆動部2を介してモータ20のコイルLu,Lv,Lwとグラウンド電位との間に直列に接続された抵抗Rsを含み、抵抗Rsの両端に発生した電圧Vsを、モータ20のモータ電流の検出値として出力する。 Here, as described above, the current detection unit 6 is a circuit that outputs a voltage Vs corresponding to the current (motor current) flowing through the motor 20 as a control target. For example, as shown in FIG. 3, the current detection unit 6 includes a resistor Rs connected in series between the coils Lu, Lv, Lw of the motor 20 and the ground potential via the motor drive unit 2, and the resistance Rs. The voltage Vs generated at both ends is output as a detected value of the motor current of the motor 20.

電流値取得部46は、電流検出部6から出力されたアナログ信号である電圧Vsをデジタル信号に変換し、モータ20のモータ電流の実電流値Irとして出力する。 The current value acquisition unit 46 converts the voltage Vs, which is an analog signal output from the current detection unit 6, into a digital signal, and outputs it as the actual current value Ir of the motor current of the motor 20.

目標電流値算出部47は、回転速度算出部42によって算出された実回転速度Rrに基づいて、目標電流値Itgを算出する。例えば、目標電流値算出部47は、モータ20の回転速度とモータ電流との対応関係を表す対応関係情報471を記憶する記憶部470を有しており、記憶部470から読み出した対応関係情報471を用いて、実回転速度Rrから目標電流値Itgを算出する。 The target current value calculation unit 47 calculates the target current value Itg based on the actual rotation speed Rr calculated by the rotation speed calculation unit 42. For example, the target current value calculation unit 47 has a storage unit 470 that stores the correspondence information 471 representing the correspondence relationship between the rotation speed of the motor 20 and the motor current, and the correspondence information 471 read from the storage unit 470. Is used to calculate the target current value Itg from the actual rotation speed Rr.

上述したように、目標電流値Itgは、ファン100の風量を最大風量制御ラインCに沿って制御するためのモータ電流の目標値である。 As described above, the target current value Itg is a target value of the motor current for controlling the air volume of the fan 100 along the maximum air volume control line C.

対応関係情報471は、例えば、図3の特性500を表す数式を含む情報である。例えば、予め、最大風量制御ラインCにおけるモータ20の実回転速度Rrと実電流値Irの測定データを用いて回帰分析を行うことにより、回転速度とモータ電流の関係式(例えば、一次関数)を導出し、導出した関係式を対応関係情報471として記憶部470に予め記憶しておく。 Correspondence information 471 is, for example, information including a mathematical formula representing the characteristic 500 of FIG. For example, by performing regression analysis in advance using the measurement data of the actual rotation speed Rr and the actual current value Ir of the motor 20 in the maximum air volume control line C, a relational expression (for example, a linear function) between the rotation speed and the motor current can be obtained. It is derived, and the derived relational expression is stored in advance in the storage unit 470 as the correspondence relation information 471.

目標電流値算出部47は、最大風量制御において、記憶部470から対応関係情報471としての回転速度とモータ電流の関係式を読み出し、その関係式に回転速度算出部42によって算出されたモータ20の実回転速度Rrを代入することにより、モータ20の目標電流値Itgを算出する。 In the maximum air volume control, the target current value calculation unit 47 reads out the relational expression between the rotation speed and the motor current as the correspondence information 471 from the storage unit 470, and the rotation speed calculation unit 42 calculates the relational expression of the motor 20. By substituting the actual rotation speed Rr, the target current value Itg of the motor 20 is calculated.

なお、対応関係情報471は、上述した関係式に限られず、例えば、モータ電流と回転速度との対応関係を示すテーブル(ルックアップテーブル)等であってもよい。 The correspondence information 471 is not limited to the above-mentioned relational expression, and may be, for example, a table (look-up table) showing the correspondence between the motor current and the rotation speed.

比較部48は、目標回転速度Rtgと閾値Rthとを比較し、比較結果を出力する。 The comparison unit 48 compares the target rotation speed Rtg with the threshold value Rth and outputs the comparison result.

閾値Rthは、ファン100の制御モード(速度フィードバック制御と最大風量制御)の切り替えの基準となるパラメータである。例えば、図2に示す最大風量制御ラインCに沿ってファン100を制御する場合、A点におけるモータ20の回転速度を閾値Rthとして設定すればよい。 The threshold value Rth is a parameter that serves as a reference for switching the control mode (speed feedback control and maximum air volume control) of the fan 100. For example, when the fan 100 is controlled along the maximum air volume control line C shown in FIG. 2, the rotation speed of the motor 20 at the point A may be set as the threshold value Rth.

比較部48は、目標回転速度取得部41から出力された目標回転速度Rtgが閾値Rthより大きい場合に、例えばハイ(High)レベルの判定信号Scmpを出力する。一方、比較部48は、目標回転速度取得部41から出力された目標回転速度Rtgが閾値Rthより小さい場合に、例えばロー(Low)レベルの判定信号Scmpを出力する。 When the target rotation speed Rtg output from the target rotation speed acquisition unit 41 is larger than the threshold value Rth, the comparison unit 48 outputs, for example, a high level determination signal Scmp. On the other hand, the comparison unit 48 outputs, for example, a low level determination signal Scmp when the target rotation speed Rtg output from the target rotation speed acquisition unit 41 is smaller than the threshold value Rth.

最大風量制御部44は、比較部48の判定信号Scmpに基づいて、駆動制御信号SdとしてのPWM信号のデューティ比を指定するPWM指令信号(第2制御信号の一例)Sp2を生成する。具体的に、最大風量制御部44は、比較部48によって目標回転速度Rtgが所定の閾値Rthより高いと判定された場合に、モータ電流の実電流値Irが目標電流値Itgに近づくようにPWM指令信号Sp2を生成する。一方、比較部48によって目標回転速度Rtgが所定の閾値Rthより低いと判定された場合には、最大風量制御部44は、PWM指令信号Sp2を生成しない。 The maximum air volume control unit 44 generates a PWM command signal (an example of a second control signal) Sp2 that specifies the duty ratio of the PWM signal as the drive control signal Sd based on the determination signal Scmp of the comparison unit 48. Specifically, the maximum air volume control unit 44 PWMs so that the actual current value Ir of the motor current approaches the target current value Itg when the comparison unit 48 determines that the target rotation speed Rtg is higher than the predetermined threshold value Rth. The command signal Sp2 is generated. On the other hand, when the comparison unit 48 determines that the target rotation speed Rtg is lower than the predetermined threshold value Rth, the maximum air volume control unit 44 does not generate the PWM command signal Sp2.

最大風量制御部44は、目標電流値算出部47によって算出された目標電流値Itgと電流値取得部46によって算出された実電流値Irとに基づいて、PWM指令信号Sp2を生成する。 The maximum air volume control unit 44 generates the PWM command signal Sp2 based on the target current value Itg calculated by the target current value calculation unit 47 and the actual current value Ir calculated by the current value acquisition unit 46.

具体的には、最大風量制御部44は、実電流値Irが目標電流値Itgより高い場合に、モータ20の回転速度Rrが増加するようにPWM指令信号Sp2を生成し、実電流値Irが目標電流値Itgより低い場合に、モータ20の回転速度Rrが低下するようにPWM指令信号Sp2を生成する。 Specifically, the maximum air volume control unit 44 generates a PWM command signal Sp2 so that the rotation speed Rr of the motor 20 increases when the actual current value Ir is higher than the target current value Itg, and the actual current value Ir becomes When the current value is lower than the target current value Itg, the PWM command signal Sp2 is generated so that the rotation speed Rr of the motor 20 decreases.

より具体的には、最大風量制御部44は、モータ20の実電流値Irが目標電流値Itgを基準とする所定範囲より高い場合に、モータ20の回転速度を増加させ、実電流値Irが所定範囲内にある場合に、モータ20の回転速度を変化させず、実電流値Irが所定範囲より低い場合に、モータの回転速度を低下させるようにPWM指令信号Sp2を生成する。 More specifically, the maximum air volume control unit 44 increases the rotation speed of the motor 20 when the actual current value Ir of the motor 20 is higher than a predetermined range based on the target current value Itg, and the actual current value Ir becomes. When it is within the predetermined range, the rotation speed of the motor 20 is not changed, and when the actual current value Ir is lower than the predetermined range, the PWM command signal Sp2 is generated so as to reduce the rotation speed of the motor.

図5Aおよび図5Bは、最大風量制御を説明するための図である。図5Aには、モータ電流の実電流値Irに基づく、モータ20の回転速度の調整方法の一例が示され、図5Bには、目標電流値Itgに基づく、モータ20の動作点の調整方法の一例が示されている。
なお、図5Aにおいて、|X|<|Y|,|Z|である。
5A and 5B are diagrams for explaining maximum air volume control. FIG. 5A shows an example of a method of adjusting the rotation speed of the motor 20 based on the actual current value Ir of the motor current, and FIG. 5B shows an example of the method of adjusting the operating point of the motor 20 based on the target current value Itg. An example is shown.
In FIG. 5A, | X | <| Y |, | Z |.

例えば、図5Aに示すように、Itg−X<Ir<Itg+Xである場合、すなわち、モータ電流の実電流値Irが範囲Mmにある場合には、最大風量制御部44は、モータ20の回転速度を変化させない。例えば、図5Bにおいて、モータ20が動作点cで動作しているとき、ファン100が最大風量制御ラインCに沿って動作していると判断することができる。この場合には、最大風量制御部44は、直前に出力したPWM指令信号Sp2と同じデューティ比の情報を含むPWM指令信号Sp2を出力する。 For example, as shown in FIG. 5A, when Itg-X <Ir <Itg + X, that is, when the actual current value Ir of the motor current is in the range Mm, the maximum air volume control unit 44 determines the rotation speed of the motor 20. Does not change. For example, in FIG. 5B, when the motor 20 is operating at the operating point c, it can be determined that the fan 100 is operating along the maximum air volume control line C. In this case, the maximum air volume control unit 44 outputs the PWM command signal Sp2 including the information of the same duty ratio as the PWM command signal Sp2 output immediately before.

一方、Ir>Itg+Zである場合、すなわち、モータ電流の実電流値Irが範囲Hにある場合、最大風量制御部44は、モータ20の回転速度を低下させるようにPWM指令信号Sp2を生成する。例えば、図5Bにおいて、モータ20が動作点aで動作しているとき、ファン100が最大風量制御ラインCに沿って動作していない(ファン100に対する圧力抵抗が大きい)と判断することができる。この場合には、図5Bに示すように、最大風量制御部44は、ファン100の動作点を“a”から特性500上の“ax”に遷移させるように、モータ20の回転速度を増加させるPWM指令信号Sp2を生成する。例えば、直前に出力したPWM指令信号Sp2で指定されたデューティ比が50%であり、デューティ比の単位調整幅が0.1%である場合、最大風量制御部44は、“(50−0.1)%”のデューティ比を示すPMW指令信号Sp2を出力する。 On the other hand, when Ir> Itg + Z, that is, when the actual current value Ir of the motor current is in the range H, the maximum air volume control unit 44 generates the PWM command signal Sp2 so as to reduce the rotation speed of the motor 20. For example, in FIG. 5B, when the motor 20 is operating at the operating point a, it can be determined that the fan 100 is not operating along the maximum air volume control line C (the pressure resistance to the fan 100 is large). In this case, as shown in FIG. 5B, the maximum air volume control unit 44 increases the rotational speed of the motor 20 so as to shift the operating point of the fan 100 from “a” to “ax” on the characteristic 500. Generates PWM command signal Sp2. For example, when the duty ratio specified by the PWM command signal Sp2 output immediately before is 50% and the unit adjustment range of the duty ratio is 0.1%, the maximum air volume control unit 44 is set to "(50-0. 1) The PMW command signal Sp2 indicating the duty ratio of "%" is output.

また、Ir<Itg−Yの場合、すなわちモータ電流の実電流値Irが範囲Lにある場合には、最大風量制御部44は、モータ20の回転速度を低下させるようにPWM指令信号Sp2を生成する。例えば、図5Bにおいて、モータ20が動作点bで動作しているとき、ファン100が最大風量制御ラインCに沿って動作していない(ファン100に対する圧力抵抗が小さい)と判断することができる。この場合には、図5Bに示すように、最大風量制御部44は、ファン100の動作点を“b”から特性500上の“bx”に遷移させるように、モータ20の回転速度を低下させるPWM指令信号Sp2を生成する。例えば、直前に出力したPWM指令信号Sp2で指定されたデューティ比が50%であり、デューティ比の単位調整幅が0.1%である場合、最大風量制御部44は、“(50+0.1)%”のデューティ比を示すPMW指令信号Sp2を出力する。 Further, when Ir <Itg-Y, that is, when the actual current value Ir of the motor current is in the range L, the maximum air volume control unit 44 generates the PWM command signal Sp2 so as to reduce the rotation speed of the motor 20. To do. For example, in FIG. 5B, when the motor 20 is operating at the operating point b, it can be determined that the fan 100 is not operating along the maximum air volume control line C (the pressure resistance to the fan 100 is small). In this case, as shown in FIG. 5B, the maximum air volume control unit 44 reduces the rotation speed of the motor 20 so as to shift the operating point of the fan 100 from “b” to “bx” on the characteristic 500. Generates PWM command signal Sp2. For example, when the duty ratio specified by the PWM command signal Sp2 output immediately before is 50% and the unit adjustment range of the duty ratio is 0.1%, the maximum air volume control unit 44 is set to "(50 + 0.1). % ”Duty ratio indicates PMW command signal Sp2 is output.

なお、図5Aに示すように、Itg+X<Ir<Itg+Zである範囲MhおよびItg−Y<Ir<Itg−Xである範囲Mlにおいては、Itg−X<Ir<Itg+Xである範囲Mmと同様に、最大風量制御部44は、モータ20の回転速度を変化させないように制御してもよい。これにより、最大風量制御において、回転速度を変化させないモータ20の動作点の範囲を、範囲Mmから範囲M(=Mh+Mm+Ml)に拡大することができる。なお、|Y|=|Z|であってもよいし、|Y|≠|Z|であってもよい。 As shown in FIG. 5A, in the range Mh where Itg + X <Ir <Itg + Z and the range Ml where Itg-Y <Ir <Itg-X, the range Mm where Itg-X <Ir <Itg + X is the same. The maximum air volume control unit 44 may be controlled so as not to change the rotation speed of the motor 20. As a result, in the maximum air volume control, the range of the operating points of the motor 20 that does not change the rotation speed can be expanded from the range Mm to the range M (= Mh + Mm + Ml). It should be noted that | Y | = | Z | or | Y | ≠ | Z | may be used.

駆動制御信号生成部45は、モータ20の駆動を制御するための駆動制御信号Sdを生成する機能部である。駆動制御信号生成部45は、速度制御部43から出力されたPWM指令信号Sp1と最大風量制御部44から出力されたPWM指令信号Sp2とに基づいて、駆動制御信号Sdを生成する。 The drive control signal generation unit 45 is a functional unit that generates a drive control signal Sd for controlling the drive of the motor 20. The drive control signal generation unit 45 generates a drive control signal Sd based on the PWM command signal Sp1 output from the speed control unit 43 and the PWM command signal Sp2 output from the maximum air volume control unit 44.

具体的に、駆動制御信号生成部45は、比較部48によって目標回転速度Rtgが閾値Rthより小さいと判定された場合に、速度制御部43から出力されたPWM指令信号Sp1で指定されたデューティ比のPWM信号を生成し、駆動制御信号Sdとして出力する。一方、比較部48によって目標回転速度Rtgが閾値Rthより大きいと判定された場合に、駆動制御信号生成部45は、最大風量制御部44から出力されたPWM指令信号Sp2で指定されたデューティ比のPWM信号を生成し、駆動制御信号Sdとして出力する。 Specifically, when the comparison unit 48 determines that the target rotation speed Rtg is smaller than the threshold value Rth, the drive control signal generation unit 45 has a duty ratio specified by the PWM command signal Sp1 output from the speed control unit 43. PWM signal is generated and output as a drive control signal Sd. On the other hand, when the comparison unit 48 determines that the target rotation speed Rtg is larger than the threshold value Rth, the drive control signal generation unit 45 has a duty ratio of the duty ratio specified by the PWM command signal Sp2 output from the maximum air volume control unit 44. A PWM signal is generated and output as a drive control signal Sd.

例えば、駆動制御信号生成部45は、最大風量制御部44からPWM指令信号Sp2が出力されていない場合には、速度制御部43から出力されたPWM指令信号Sp1で指定されたデューティ比のPWM信号を生成して駆動制御信号Sdとして出力し、最大風量制御部44からPWM指令信号Sp2が出力されている場合には、PWM指令信号Sp1ではなく、最大風量制御部44から出力されたPWM指令信号Sp2で指定されたデューティ比のPWM信号を生成して駆動制御信号Sdとして出力する。 For example, when the PWM command signal Sp2 is not output from the maximum air volume control unit 44, the drive control signal generation unit 45 is a PWM signal having a duty ratio specified by the PWM command signal Sp1 output from the speed control unit 43. Is generated and output as a drive control signal Sd, and when the PWM command signal Sp2 is output from the maximum air volume control unit 44, the PWM command signal output from the maximum air volume control unit 44 instead of the PWM command signal Sp1 A PWM signal with a duty ratio specified in Sp2 is generated and output as a drive control signal Sd.

上述した速度制御部43、最大風量制御部44、駆動制御信号生成部45、目標電流値算出部47、および比較部48は、例えば、マイクロコントローラ(CPU)のプログラム処理によって実現されている。なお、駆動制御信号生成部45は、専用ロジック回路によって実現されていてもよい。 The speed control unit 43, the maximum air volume control unit 44, the drive control signal generation unit 45, the target current value calculation unit 47, and the comparison unit 48 described above are realized by, for example, program processing of a microcontroller (CPU). The drive control signal generation unit 45 may be realized by a dedicated logic circuit.

次に、ファン100の風量制御方法の流れについて説明する。
図6は、実施の形態に係るモータ駆動制御装置1によるファン100の風量制御の流れを示すフロー図である。
Next, the flow of the air volume control method for the fan 100 will be described.
FIG. 6 is a flow chart showing a flow of air volume control of the fan 100 by the motor drive control device 1 according to the embodiment.

先ず、上位装置から制御回路部4に対して速度指令信号Scが入力されると、制御回路部4の目標回転速度取得部41が速度指令信号Scから目標回転速度Rtgの情報を取得する(ステップS1)。 First, when the speed command signal Sc is input to the control circuit unit 4 from the host device, the target rotation speed acquisition unit 41 of the control circuit unit 4 acquires the information of the target rotation speed Rtg from the speed command signal Sc (step). S1).

次に、制御回路部4は、比較部48によって、ステップS1で取得した目標回転速度Rtgが閾値Rthより大きいか否かを判定する(ステップS2)。目標回転速度Rtgが閾値Rthより小さい場合(ステップS2:No)には、制御回路部4は、速度フィードバック制御を行う(ステップS3)。すなわち、上述したように、駆動制御信号生成部45が、速度制御部43によって生成されたPWM指令信号Sp1に基づいて、駆動制御信号Sdを生成することにより、モータ20の実回転速度Rrが目標回転速度Rtgに一致するようにモータ20が動作する。なお、このとき、最大風量制御部44は、PWM指令信号Sp2を生成しない。 Next, the control circuit unit 4 determines whether or not the target rotation speed Rtg acquired in step S1 is larger than the threshold value Rth by the comparison unit 48 (step S2). When the target rotation speed Rtg is smaller than the threshold value Rth (step S2: No), the control circuit unit 4 performs speed feedback control (step S3). That is, as described above, the drive control signal generation unit 45 generates the drive control signal Sd based on the PWM command signal Sp1 generated by the speed control unit 43, so that the actual rotation speed Rr of the motor 20 is targeted. The motor 20 operates so as to match the rotation speed Rtg. At this time, the maximum air volume control unit 44 does not generate the PWM command signal Sp2.

一方、ステップS2において、目標回転速度Rtgが所定の閾値Rthより大きい場合(ステップS2:Yes)には、制御回路部4は、最大風量制御を開始する(ステップS4)。 On the other hand, in step S2, when the target rotation speed Rtg is larger than the predetermined threshold value Rth (step S2: Yes), the control circuit unit 4 starts the maximum air volume control (step S4).

最大風量制御において、先ず、制御回路部4は、モータ20の実回転速度Rrの情報を取得する(ステップS5)。すなわち、上述したように、目標電流値算出部47が、回転速度算出部42によって算出されたモータ20の実回転速度Rrの情報を取得する。 In the maximum air volume control, first, the control circuit unit 4 acquires information on the actual rotation speed Rr of the motor 20 (step S5). That is, as described above, the target current value calculation unit 47 acquires the information of the actual rotation speed Rr of the motor 20 calculated by the rotation speed calculation unit 42.

次に、目標電流値算出部47が、目標電流値Itgを算出する(ステップS6)。具体的には、目標電流値算出部47が、ステップS5で取得した実回転速度Rrの情報と、記憶部470に記憶されている対応関係情報471とに基づいて、上述した手法により目標電流値Itgを算出する。 Next, the target current value calculation unit 47 calculates the target current value Itg (step S6). Specifically, the target current value calculation unit 47 uses the above-described method based on the information of the actual rotation speed Rr acquired in step S5 and the correspondence information 471 stored in the storage unit 470 to obtain the target current value. Calculate Itg.

次に、最大風量制御部44が、モータ20の実電流値Irを取得する(ステップS7)。具体的には、上述したように、最大風量制御部44が、電流値取得部46によって算出されたモータ電流の実電流値Irの情報を取得する。 Next, the maximum air volume control unit 44 acquires the actual current value Ir of the motor 20 (step S7). Specifically, as described above, the maximum air volume control unit 44 acquires the information of the actual current value Ir of the motor current calculated by the current value acquisition unit 46.

次に、最大風量制御部44は、Itg−X<Ir<Itg+Xであるか否か、すなわちステップS7で取得した実電流値Irが範囲Mにあるか否かを判定する(ステップS8)。 Next, the maximum air volume control unit 44 determines whether or not Itg-X <Ir <Itg + X, that is, whether or not the actual current value Ir acquired in step S7 is in the range M (step S8).

ステップS8において、実電流値Irが範囲Mにある場合(ステップS8:Yes)には、最大風量制御部44は、モータ20の回転速度を変化させない(ステップS13)。例えば、最大風量制御部44は、直前に出力したPWM指令信号Sp2と同じデューティ比を示すPWM指令信号Sp2を出力する。 In step S8, when the actual current value Ir is in the range M (step S8: Yes), the maximum air volume control unit 44 does not change the rotation speed of the motor 20 (step S13). For example, the maximum air volume control unit 44 outputs the PWM command signal Sp2 showing the same duty ratio as the PWM command signal Sp2 output immediately before.

一方、ステップS8において、実電流値Irが範囲Mにない場合(ステップS8:No)には、最大風量制御部44は、Ir<Itg−Yであるか否か、すなわち実電流値Irが範囲Lにあるか否かを判定する(ステップS9)。 On the other hand, in step S8, when the actual current value Ir is not in the range M (step S8: No), the maximum air volume control unit 44 determines whether or not Ir <Itg-Y, that is, the actual current value Ir is in the range. It is determined whether or not it is in L (step S9).

ステップS9において、実電流値Irが範囲Lにある場合(ステップS9:Yes)には、最大風量制御部44は、モータ20の回転速度を増加させる(ステップS11)。例えば、最大風量制御部44は、直前に出力したPWM指令信号Sp2が示すデューティ比から所定幅(例えば、0.1%)だけ増加させたデューティ比を示すPWM指令信号Sp2を出力する。 In step S9, when the actual current value Ir is in the range L (step S9: Yes), the maximum air volume control unit 44 increases the rotation speed of the motor 20 (step S11). For example, the maximum air volume control unit 44 outputs a PWM command signal Sp2 indicating a duty ratio increased by a predetermined width (for example, 0.1%) from the duty ratio indicated by the PWM command signal Sp2 output immediately before.

一方、ステップS9において、実電流値Irが範囲Lにない場合(ステップS9:No)には、最大風量制御部44は、Itg+Z<Irであるか否か、すなわち実電流値Irが範囲Hにあるか否かを判定する(ステップS10)。 On the other hand, in step S9, when the actual current value Ir is not in the range L (step S9: No), the maximum air volume control unit 44 determines whether or not Itg + Z <Ir, that is, the actual current value Ir is in the range H. It is determined whether or not there is (step S10).

ステップS10において、実電流値Irが範囲Hにある場合(ステップS10:Yes)には、最大風量制御部44は、モータ20の回転速度を低下させる(ステップS12)。例えば、最大風量制御部44は、直前に出力したPWM指令信号Sp2が示すデューティ比から所定幅(例えば、0.1%)だけ低下させたデューティ比を示すPWM指令信号Sp2を出力する。 In step S10, when the actual current value Ir is in the range H (step S10: Yes), the maximum air volume control unit 44 reduces the rotation speed of the motor 20 (step S12). For example, the maximum air volume control unit 44 outputs a PWM command signal Sp2 indicating a duty ratio that is reduced by a predetermined width (for example, 0.1%) from the duty ratio indicated by the PWM command signal Sp2 output immediately before.

一方、ステップS10において、実電流値Irが範囲Hにない場合(ステップS10:No)には、最大風量制御部44は、Itg+X<Ir<Itg+ZまたはItg−X<Ir<Itg−Yである、すなわちItgが範囲MhまたはMlにあると判定し、モータ20の回転速度を変化させない(ステップS13)。 On the other hand, when the actual current value Ir is not in the range H (step S10: No) in step S10, the maximum air volume control unit 44 is Itg + X <Ir <Itg + Z or Itg-X <Ir <Itg-Y. That is, it is determined that Itg is in the range Mh or Ml, and the rotation speed of the motor 20 is not changed (step S13).

ステップS11〜S13の後、制御回路部4は、PWM指令信号Sp2に基づいて駆動制御信号Sdを生成する(ステップS14)。具体的には、駆動制御信号生成部45が、ステップS11〜S13において最大風量制御部44から出力されたPWM指令信号Sp2で指定されたデューティ比のPWM信号を生成し、駆動制御信号Sdとして出力する。 After steps S11 to S13, the control circuit unit 4 generates a drive control signal Sd based on the PWM command signal Sp2 (step S14). Specifically, the drive control signal generation unit 45 generates a PWM signal having a duty ratio specified by the PWM command signal Sp2 output from the maximum air volume control unit 44 in steps S11 to S13, and outputs the PWM signal as the drive control signal Sd. To do.

ステップS3,S14の後、制御回路部4は、モータ20の停止の指示の有無を判定する(ステップS15)。ステップS15において、モータ20の停止の指示が無い場合(ステップS15:No)、上述した処理(S1〜S15)を繰り返し実行する。一方、ステップS15において、モータ20の停止の指示を受け取った場合(ステップS15:Yes)、制御回路部4は風量制御の処理を終了する。 After steps S3 and S14, the control circuit unit 4 determines whether or not there is an instruction to stop the motor 20 (step S15). In step S15, when there is no instruction to stop the motor 20 (step S15: No), the above-mentioned processes (S1 to S15) are repeatedly executed. On the other hand, when the instruction to stop the motor 20 is received in step S15 (step S15: Yes), the control circuit unit 4 ends the air volume control process.

図7は、本実施の形態に係るファンにおけるモータの回転速度と目標回転速度との関係を示す図である。
図7において、横軸は目標回転速度Rtgを示し、縦軸はモータ20の実回転速度Rrを表している。
FIG. 7 is a diagram showing the relationship between the rotation speed of the motor and the target rotation speed in the fan according to the present embodiment.
In FIG. 7, the horizontal axis represents the target rotation speed Rtg, and the vertical axis represents the actual rotation speed Rr of the motor 20.

図7に示すように、従来のファンは、参照符号600に示すように回転速度が目標回転速度Rtgに一致するようにモータを制御する。すなわち、従来のファンは、目標回転速度Rtgに比例して風量が増加するようにモータを制御するため、例えば、図2の参照符号201_maxで示されるP−Qカーブのように、静圧(圧力抵抗)が低い領域においても、目標回転速度Rtgに比例して風量が増加する。 As shown in FIG. 7, the conventional fan controls the motor so that the rotation speed matches the target rotation speed Rtg as shown by reference numeral 600. That is, since the conventional fan controls the motor so that the air volume increases in proportion to the target rotation speed Rtg, for example, as shown by the PQ curve indicated by the reference numeral 201_max in FIG. 2, the static pressure (pressure). Even in the region where the resistance) is low, the air volume increases in proportion to the target rotation speed Rtg.

一方、本実施の形態に係るファン100は、目標回転速度Rtgが閾値Rthより低い範囲では、従来のファンと同様に、ファン(モータ)の回転速度が目標回転速度Rtgに一致するようにモータ20を制御するが、目標回転速度Rtgが閾値Rthより高い範囲では、参照符号601に示すように、目標回転速度Rtgによらず、回転速度が設定された最大回転速度、すなわち閾値Rthを超えないようにモータ20を制御する。 On the other hand, in the fan 100 according to the present embodiment, in the range where the target rotation speed Rtg is lower than the threshold Rth, the motor 20 so that the rotation speed of the fan (motor) matches the target rotation speed Rtg as in the conventional fan. However, in the range where the target rotation speed Rtg is higher than the threshold Rth, as shown by reference numeral 601 so that the rotation speed does not exceed the set maximum rotation speed, that is, the threshold Rth, regardless of the target rotation speed Rtg. Controls the motor 20.

すなわち、本実施の形態に係るファン100は、目標回転速度Rtgが閾値Rthより高い範囲では、上述したように、図2に示す最大風量制御ラインC上の回転速度とモータ電流との関係からモータ20の実回転速度に対応する目標電流値Itgを算出し、モータ電流が目標電流値Itgに近づくようにモータ20の回転速度を制御する。これにより、ファン100は、静圧が低い領域(図2のP−Qカーブにおける静圧がPbより低い範囲)における最大風量を制限することができる。 That is, in the range where the target rotation speed Rtg is higher than the threshold value Rth, the fan 100 according to the present embodiment is a motor from the relationship between the rotation speed on the maximum air volume control line C shown in FIG. 2 and the motor current, as described above. The target current value Itg corresponding to the actual rotation speed of 20 is calculated, and the rotation speed of the motor 20 is controlled so that the motor current approaches the target current value Itg. Thereby, the fan 100 can limit the maximum air volume in the region where the static pressure is low (the range where the static pressure in the PQ curve of FIG. 2 is lower than Pb).

以上、本実施の形態に係るモータ駆動制御装置1は、速度指令信号Scによって指示された目標回転速度Rtgが閾値Rthより低い場合に、モータ20の回転速度が目標回転速度Rtgに一致するように駆動制御信号Sdを生成する速度フィードバック制御を行い、目標回転速度Rtgが閾値Rthより高い場合に、モータ20の実電流値Irが、モータ20の回転速度に対応して算出される目標電流値Itgに近づくように駆動制御信号Sdを生成する最大風量制御を行う。なお、本発明における最大風量制御は、目標回転速度Rtgが閾値Rthより高い場合において、モータ20の回転速度と圧力損失との関係性に応じて、最大風量が所望の値になるように制御するものであり、必ずしも、風量を一定に維持するように制御するものではない。したがって、本発明の最大風量制御は、従来のいわゆる風量一定制御とは制御方法およびその効果が異なるものである。 As described above, in the motor drive control device 1 according to the present embodiment, when the target rotation speed Rtg instructed by the speed command signal Sc is lower than the threshold Rth, the rotation speed of the motor 20 matches the target rotation speed Rtg. When speed feedback control for generating the drive control signal Sd is performed and the target rotation speed Rtg is higher than the threshold Rth, the actual current value Ir of the motor 20 is the target current value Itg calculated in response to the rotation speed of the motor 20. The maximum air volume control that generates the drive control signal Sd so as to approach is performed. The maximum air volume control in the present invention is controlled so that the maximum air volume becomes a desired value according to the relationship between the rotation speed of the motor 20 and the pressure loss when the target rotation speed Rtg is higher than the threshold value Rth. It is a thing, and it is not necessarily controlled so as to keep the air volume constant. Therefore, the maximum air volume control of the present invention is different from the conventional so-called constant air volume control in the control method and its effect.

これによれば、上述したように、目標回転速度Rtgが閾値Rthより低い範囲では、ファン100の風量が指示された目標回転速度Rtgに比例して増加するようにモータ20が駆動される一方で、目標回転速度Rtgが閾値Rthより高い範囲では、ファン100の風量が静圧に応じて変化するようにモータ20が駆動される。 According to this, as described above, in the range where the target rotation speed Rtg is lower than the threshold Rth, the motor 20 is driven so that the air volume of the fan 100 increases in proportion to the indicated target rotation speed Rtg. In the range where the target rotation speed Rtg is higher than the threshold Rth, the motor 20 is driven so that the air volume of the fan 100 changes according to the static pressure.

具体的には、上述したように、目標回転速度Rtgが閾値Rthより高い範囲において、モータ駆動制御装置1は、予め記憶されたモータ20の回転速度と目標電流値Itgとの対応関係情報471を用いて、モータ20の位置検出信号(ホール信号)Shに基づいて算出したモータ20の実回転速度Rrに対応する目標電流値Itgを算出し、モータ20の実電流値Irが目標電流値Itgに近づくように、モータ20の回転速度を制御する。 Specifically, as described above, in the range where the target rotation speed Rtg is higher than the threshold value Rth, the motor drive control device 1 provides the correspondence information 471 between the rotation speed of the motor 20 and the target current value Itg stored in advance. The target current value Itg corresponding to the actual rotation speed Rr of the motor 20 calculated based on the position detection signal (Hall signal) Sh of the motor 20 is calculated, and the actual current value Ir of the motor 20 becomes the target current value Itg. The rotation speed of the motor 20 is controlled so as to approach.

ここで、対応関係情報471を、ファン100の静圧が所定値より低い領域でのモータ20の回転速度と目標電流値Itgとの関係を示す情報とすることにより、ファン100の静圧が所定値より低い領域では、指定された目標回転速度Rtgによらず、対応関係情報471で規定されたモータ20の回転速度と目標電流値Itgとの関係を満足するように、モータ20の回転速度が制御される。例えば、対応関係情報471が、図2に示したP−Qカーブにおける最大風量制御ラインC上の特性を満たすように設定しておくことにより、ファン100の静圧がPbより低い領域では、指定された目標回転速度Rtgによらず、最大風量制御ラインCを満たすように風量を制御することができる。 Here, the static pressure of the fan 100 is determined by using the correspondence information 471 as information indicating the relationship between the rotation speed of the motor 20 and the target current value Itg in a region where the static pressure of the fan 100 is lower than the predetermined value. In the region lower than the value, the rotation speed of the motor 20 is adjusted so as to satisfy the relationship between the rotation speed of the motor 20 and the target current value Itg specified in the correspondence information 471, regardless of the specified target rotation speed Rtg. Be controlled. For example, by setting the correspondence information 471 so as to satisfy the characteristics on the maximum air volume control line C in the PQ curve shown in FIG. 2, it is designated in the region where the static pressure of the fan 100 is lower than Pb. The air volume can be controlled so as to satisfy the maximum air volume control line C regardless of the target rotation speed Rtg.

すなわち、本実施の形態に係るモータ駆動制御装置1によれば、静圧が所定値より高い領域では、要求される動作範囲において十分な風量を確保することができ、静圧が所定値より低い領域では、指定された目標回転速度Rtgによらず風量を抑えて、ファン100の騒音の発生と消費電力の増大を抑えることができる。 That is, according to the motor drive control device 1 according to the present embodiment, in a region where the static pressure is higher than the predetermined value, a sufficient air volume can be secured in the required operating range, and the static pressure is lower than the predetermined value. In the region, the air volume can be suppressed regardless of the designated target rotation speed Rtg, and the generation of noise of the fan 100 and the increase in power consumption can be suppressed.

また、本実施の形態に係るモータ駆動制御装置1は、最大風量制御において、モータ20の実電流値Irが目標電流値Itgより高い場合に、モータ20の回転速度が増加するように駆動制御信号Sdを生成し、モータ20の実電流値Irが目標電流値Itgより低い場合に、モータ20の回転速度が低下するように駆動制御信号Sdを生成する。 Further, the motor drive control device 1 according to the present embodiment has a drive control signal so that the rotation speed of the motor 20 increases when the actual current value Ir of the motor 20 is higher than the target current value Itg in the maximum air volume control. Sd is generated, and when the actual current value Ir of the motor 20 is lower than the target current value Itg, the drive control signal Sd is generated so that the rotation speed of the motor 20 decreases.

これによれば、指示された目標回転速度Rtgが閾値Rthより高い場合において、図5Bに示すように、モータ20の動作点がモータ20の実電流値Irと実回転速度Rrとが特性500を満たすように制御することが容易となる。 According to this, when the instructed target rotation speed Rtg is higher than the threshold value Rth, as shown in FIG. 5B, the operating point of the motor 20 has the characteristic 500 between the actual current value Ir of the motor 20 and the actual rotation speed Rr. It becomes easy to control to satisfy.

また、モータ駆動制御装置1は、最大風量制御において、モータ20の実電流値Irが目標電流値Itgを基準とする範囲Mmより高い場合に、モータ20の回転速度を増加させ、モータ20の実電流値Irが範囲Mm内にある場合に、モータ20の回転速度を変化させず、モータ20の実電流値Irが範囲Mmより低い場合に、モータ20の回転速度を低下させるように駆動制御信号Sdを生成する。 Further, in the maximum air volume control, the motor drive control device 1 increases the rotation speed of the motor 20 when the actual current value Ir of the motor 20 is higher than the range Mm with respect to the target current value Itg, and the actual current value of the motor 20 is increased. A drive control signal that does not change the rotation speed of the motor 20 when the current value Ir is within the range Mm and reduces the rotation speed of the motor 20 when the actual current value Ir of the motor 20 is lower than the range Mm. Generate Sd.

これによれば、モータ20の動作点が最大風量制御ラインCに近づいた状況において、回転速度が過剰に変更されることによってファン100の風量が不安定になることを防止することが可能となる。 According to this, when the operating point of the motor 20 approaches the maximum air volume control line C, it is possible to prevent the air volume of the fan 100 from becoming unstable due to an excessive change in the rotation speed. ..

特に、図5Aおよび図5Bに示すように、最大風量制御において、モータ20の回転速度を変化させない動作点の範囲を、範囲Mmから範囲M(=Mh+Mm+Ml)に拡大することにより、回転速度の過剰な変更をより効果的に防止することができ、ファン100の風量を更に安定させることが可能となる。 In particular, as shown in FIGS. 5A and 5B, in the maximum air volume control, the range of operating points that do not change the rotation speed of the motor 20 is expanded from the range Mm to the range M (= Mh + Mm + Ml), so that the rotation speed is excessive. It is possible to prevent such changes more effectively, and it is possible to further stabilize the air volume of the fan 100.

≪実施の形態の拡張≫
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of embodiment≫
The inventions made by the present inventors have been specifically described above based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. No.

例えば、上記実施の形態では、最大風量制御ラインC上のモータ電流と回転速度との間の特性500を表す関係式やテーブルを対応関係情報471とする場合を例示したが、これに限られない。例えば、特性500を基準とし、その基準にオフセット量を加算または減算する補正を行い、補正後の特性を表す関係式やテーブル等を対応関係情報471として用いてもよい。 For example, in the above embodiment, the case where the relational expression or table representing the characteristic 500 between the motor current and the rotation speed on the maximum air volume control line C is used as the correspondence relation information 471 is exemplified, but the present invention is not limited to this. .. For example, the characteristic 500 may be used as a reference, a correction may be made by adding or subtracting an offset amount to the reference, and a relational expression, a table, or the like representing the corrected characteristic may be used as the correspondence relation information 471.

また、上記実施の形態では、図5Aに示すように、範囲Mhおよび範囲Mlにおいて、モータ20の回転速度を変化させない場合を例示したが、これに限られない。例えば、範囲Mhおよび範囲Mlにおいて、範囲Hおよび範囲Lの調整幅より小さい調整幅でモータ20の回転速度を低下させてもよい。例えば、範囲Hおよび範囲Lにおける駆動制御信号Sdのデューティ比の調整幅を“±0.5%”とした場合に、範囲Mhおよび範囲Mlにおける駆動制御信号Sdのデューティ比の調整幅を“±0.1%”としてもよい。 Further, in the above embodiment, as shown in FIG. 5A, a case where the rotation speed of the motor 20 is not changed in the range Mh and the range Ml is illustrated, but the present invention is not limited to this. For example, in the range Mh and the range Ml, the rotation speed of the motor 20 may be reduced by an adjustment width smaller than the adjustment width of the range H and the range L. For example, when the adjustment range of the duty ratio of the drive control signal Sd in the range H and the range L is "± 0.5%", the adjustment range of the duty ratio of the drive control signal Sd in the range Mh and the range Ml is "± 0.5%". It may be "0.1%".

また、上記実施の形態では、速度指令信号ScがPWM信号であって、そのPWM信号のデューティ比によって目標回転速度を指定する場合を例示したが、これに限られない。例えば、速度指令信号Scはアナログ信号であって、そのアナログ信号の電圧レベルによって目標回転速度を指定してもよい。 Further, in the above embodiment, the case where the speed command signal Sc is a PWM signal and the target rotation speed is specified by the duty ratio of the PWM signal has been illustrated, but the present invention is not limited to this. For example, the speed command signal Sc is an analog signal, and the target rotation speed may be specified by the voltage level of the analog signal.

また、上記実施の形態において、モータ20が三相のブラシレスモータである場合を例示したが、モータ20の種類や相数等はこれに限定されない。例えば、単相のブラシレスモータであってもよい。 Further, in the above embodiment, the case where the motor 20 is a three-phase brushless motor is illustrated, but the type and the number of phases of the motor 20 are not limited to this. For example, it may be a single-phase brushless motor.

また、上述のフローチャートは、動作を説明するための一例を示すものであって、これに限定されない。すなわち、フローチャートの各図に示したステップは具体例であって、このフローに限定されるものではない。例えば、一部の処理の順番が変更されてもよいし、各処理間に他の処理が挿入されてもよいし、一部の処理が並列に行われてもよい。 Further, the above-mentioned flowchart shows an example for explaining the operation, and is not limited thereto. That is, the steps shown in each figure of the flowchart are specific examples, and are not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, and some processes may be performed in parallel.

1…モータ駆動制御装置、2…モータ駆動部、2a…インバータ回路、2b…プリドライブ回路、4…制御回路部、5…位置検出素子(ホール素子)、6…電流検出部、20…モータ、21…インペラ、41…目標回転速度取得部、42…回転速度算出部、43…速度制御部、44…最大風量制御部、45…駆動制御信号生成部、46…電流値取得部、47…目標電流値算出部、470…記憶部、471…対応関係情報、48…比較部、100…ファン、Lu,Lv,Lw…コイル、H,L,M,Ml,Mm,Mh…範囲、Sc…速度指令信号、Scmp…判定信号、Sd…駆動制御信号、Sp1…PWM指令信号(第1制御信号の一例)、Sp2…PWM指令信号(第2制御信号の一例)、Sh…位置検出信号、Vcc…電源電圧、Vs…電圧、Rtg…目標回転速度、Rth…閾値、Rr…実回転速度、Itg…目標電流値、Ir…実電流値。 1 ... Motor drive control device, 2 ... Motor drive unit, 2a ... Inverter circuit, 2b ... Predrive circuit, 4 ... Control circuit unit, 5 ... Position detection element (Hall element), 6 ... Current detection unit, 20 ... Motor, 21 ... Impeller, 41 ... Target rotation speed acquisition unit, 42 ... Rotation speed calculation unit, 43 ... Speed control unit, 44 ... Maximum air volume control unit, 45 ... Drive control signal generation unit, 46 ... Current value acquisition unit, 47 ... Target Current value calculation unit, 470 ... Storage unit, 471 ... Correspondence relation information, 48 ... Comparison unit, 100 ... Fan, Lu, Lv, Lw ... Coil, H, L, M, Ml, Mm, Mh ... Range, Sc ... Speed Command signal, Scmp ... Judgment signal, Sd ... Drive control signal, Sp1 ... PWM command signal (example of first control signal), Sp2 ... PWM command signal (example of second control signal), Sh ... Position detection signal, Vcc ... Power supply voltage, Vs ... voltage, Rtg ... target rotation speed, Rth ... threshold, Rr ... actual rotation speed, Itg ... target current value, Ir ... actual current value.

Claims (8)

モータの目標回転速度を指示する速度指令信号に基づいて、前記モータの回転速度を制御するための駆動制御信号を生成する制御回路部と、
前記駆動制御信号に基づいて、前記モータを駆動するモータ駆動部と、を備え、
前記制御回路部は、
前記目標回転速度が閾値より低い場合に、前記モータの回転速度が前記目標回転速度に一致するように前記駆動制御信号を生成する速度フィードバック制御を行い、前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流が、前記モータの回転速度に対応して算出される目標電流値に近づくように前記駆動制御信号を生成する最大風量制御を行う
モータ駆動制御装置。
A control circuit unit that generates a drive control signal for controlling the rotation speed of the motor based on a speed command signal that indicates a target rotation speed of the motor.
A motor drive unit that drives the motor based on the drive control signal is provided.
The control circuit unit
When the target rotation speed is lower than the threshold value, speed feedback control for generating the drive control signal is performed so that the rotation speed of the motor matches the target rotation speed, and when the target rotation speed is higher than the threshold value. A motor drive control device that controls the maximum air volume to generate the drive control signal so that the current flowing through the motor approaches the target current value calculated in response to the rotation speed of the motor.
請求項1に記載のモータ駆動制御装置において、
前記制御回路部は、
前記モータの回転位置を示す位置検出信号に基づいて、前記モータの実回転速度を算出するとともに、予め記憶された前記モータの回転速度と前記目標電流値との対応関係を示す対応関係情報と算出した前記実回転速度に基づいて、前記目標電流値を算出する
ことを特徴とするモータ駆動制御装置。
In the motor drive control device according to claim 1,
The control circuit unit
The actual rotation speed of the motor is calculated based on the position detection signal indicating the rotation position of the motor, and the correspondence information and calculation indicating the correspondence relationship between the rotation speed of the motor and the target current value stored in advance are calculated. A motor drive control device characterized in that the target current value is calculated based on the actual rotation speed.
請求項2に記載のモータ駆動制御装置において、
前記モータは、ファンにおけるインペラを回転させ、
前記対応関係は、前記ファンの静圧が所定値より低い領域での前記モータの回転速度と前記目標電流値との関係を示す
ことを特徴とするモータ駆動制御装置。
In the motor drive control device according to claim 2,
The motor rotates the impeller in the fan and
The corresponding relationship is a motor drive control device characterized in that the relationship between the rotational speed of the motor and the target current value in a region where the static pressure of the fan is lower than a predetermined value is shown.
請求項2または3に記載のモータ駆動制御装置において、
前記制御回路部は、前記最大風量制御において、前記モータに流れる電流が前記目標電流値より高い場合に、前記モータの回転速度が増加するように前記駆動制御信号を生成し、前記モータに流れる電流が前記目標電流値より低い場合に、前記モータの回転速度が低下するように前記駆動制御信号を生成する
ことを特徴とするモータ駆動制御装置。
In the motor drive control device according to claim 2 or 3.
In the maximum air volume control, the control circuit unit generates the drive control signal so that the rotation speed of the motor increases when the current flowing through the motor is higher than the target current value, and the current flowing through the motor. A motor drive control device, characterized in that the drive control signal is generated so that the rotation speed of the motor decreases when is lower than the target current value.
請求項4に記載のモータ駆動制御装置において、
前記制御回路部は、前記最大風量制御において、前記モータに流れる電流が前記目標電流値を基準とする所定範囲より高い場合に、前記モータの回転速度を増加させ、前記モータに流れる電流が前記所定範囲内にある場合に、前記モータの回転速度を変化させず、前記モータに流れる電流が前記所定範囲より低い場合に、前記モータの回転速度を低下させるように前記駆動制御信号を生成する
ことを特徴とするモータ駆動制御装置。
In the motor drive control device according to claim 4,
In the maximum air volume control, the control circuit unit increases the rotation speed of the motor when the current flowing through the motor is higher than a predetermined range based on the target current value, and the current flowing through the motor is determined by the predetermined range. When it is within the range, the rotation speed of the motor is not changed, and when the current flowing through the motor is lower than the predetermined range, the drive control signal is generated so as to reduce the rotation speed of the motor. A featured motor drive control device.
請求項2乃至5の何れか一項に記載のモータ駆動制御装置において、
前記制御回路部は、
前記位置検出信号に基づいて前記実回転速度を算出する回転速度算出部と、
前記回転速度算出部によって算出された前記実回転速度が前記速度指令信号で指示された前記目標回転速度に一致するように第1制御信号を生成する速度制御部と、
前記回転速度算出部によって算出された前記実回転速度に基づいて、前記目標電流値を算出する目標電流値算出部と、
前記モータに流れる電流の電流値を取得する電流値取得部と、
前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流が、前記目標電流値に近づくように第2制御信号を生成する最大風量制御部と、
前記第1制御信号と前記第2制御信号とに基づいて、前記駆動制御信号を生成する駆動制御信号生成部と、を有する
ことを特徴とするモータ駆動制御装置。
The motor drive control device according to any one of claims 2 to 5.
The control circuit unit
A rotation speed calculation unit that calculates the actual rotation speed based on the position detection signal,
A speed control unit that generates a first control signal so that the actual rotation speed calculated by the rotation speed calculation unit matches the target rotation speed indicated by the speed command signal.
A target current value calculation unit that calculates the target current value based on the actual rotation speed calculated by the rotation speed calculation unit, and a target current value calculation unit.
A current value acquisition unit that acquires the current value of the current flowing through the motor,
A maximum air volume control unit that generates a second control signal so that the current flowing through the motor approaches the target current value when the target rotation speed is higher than the threshold value.
A motor drive control device including a drive control signal generation unit that generates the drive control signal based on the first control signal and the second control signal.
モータと、
前記モータの回転力によって回転可能に構成されたインペラと、
前記モータの駆動を制御するモータ駆動制御装置と、を備え、
前記モータ駆動制御装置は、
前記モータの目標回転速度を指示する速度指令信号に基づいて、前記モータの回転速度を制御するための駆動制御信号を生成する制御回路部と、
前記駆動制御信号に基づいて、前記モータを駆動するモータ駆動部と、を有し、
前記制御回路部は、
前記目標回転速度が閾値より低い場合に、前記モータの回転速度が前記目標回転速度に一致するように前記駆動制御信号を生成する速度フィードバック制御を行い、前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流が、前記モータの回転速度に対応して算出される目標電流値に近づくように前記駆動制御信号を生成する最大風量制御を行う
ことを特徴とするファン。
With the motor
An impeller configured to be rotatable by the rotational force of the motor,
A motor drive control device for controlling the drive of the motor is provided.
The motor drive control device is
A control circuit unit that generates a drive control signal for controlling the rotation speed of the motor based on a speed command signal that indicates a target rotation speed of the motor.
It has a motor drive unit that drives the motor based on the drive control signal.
The control circuit unit
When the target rotation speed is lower than the threshold value, speed feedback control for generating the drive control signal is performed so that the rotation speed of the motor matches the target rotation speed, and when the target rotation speed is higher than the threshold value. A fan characterized in that the maximum air volume control for generating the drive control signal is performed so that the current flowing through the motor approaches the target current value calculated corresponding to the rotation speed of the motor.
モータの目標回転速度を指示する速度指令信号に基づいて、前記モータの駆動を制御するための駆動制御信号を生成し、前記駆動制御信号に基づいて前記モータを駆動するモータ駆動制御方法であって、
前記目標回転速度が閾値より低い場合に、前記モータの回転速度が前記目標回転速度と一致するように前記駆動制御信号を生成する第1ステップと、
前記目標回転速度が前記閾値より高い場合に、前記モータに流れる電流が、前記モータの回転速度に対応して算出される目標電流値に近づくように前記駆動制御信号を生成する第2ステップと、を含む
ことを特徴とするモータ駆動制御方法。
A motor drive control method in which a drive control signal for controlling the drive of the motor is generated based on a speed command signal indicating a target rotation speed of the motor, and the motor is driven based on the drive control signal. ,
The first step of generating the drive control signal so that the rotation speed of the motor matches the target rotation speed when the target rotation speed is lower than the threshold value.
The second step of generating the drive control signal so that the current flowing through the motor approaches the target current value calculated corresponding to the rotation speed of the motor when the target rotation speed is higher than the threshold value. A motor drive control method characterized by including.
JP2019038257A 2019-03-04 2019-03-04 MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD Active JP7256033B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019038257A JP7256033B2 (en) 2019-03-04 2019-03-04 MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD
US16/805,975 US11754084B2 (en) 2019-03-04 2020-03-02 Motor drive control device using feedback speed control and motor current control
US18/356,390 US20230374995A1 (en) 2019-03-04 2023-07-21 Motor drive control device, fan and motor drive control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038257A JP7256033B2 (en) 2019-03-04 2019-03-04 MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2020145772A true JP2020145772A (en) 2020-09-10
JP7256033B2 JP7256033B2 (en) 2023-04-11

Family

ID=72354650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038257A Active JP7256033B2 (en) 2019-03-04 2019-03-04 MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP7256033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754019A (en) * 2022-04-08 2022-07-15 中建三局第三建设工程有限责任公司 Fixed air volume control method and system based on impeller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193688A (en) * 2000-01-17 2001-07-17 Mitsubishi Electric Corp Driving device for air blowing device and for fluid pressure feeding device
JP2013046488A (en) * 2011-08-24 2013-03-04 Panasonic Corp Blower motor drive
JP2015124930A (en) * 2013-12-26 2015-07-06 ミネベア株式会社 Drive control device of fan motor
JP2016010218A (en) * 2014-06-24 2016-01-18 日本電産サーボ株式会社 Fan motor drive device and blower
WO2016042696A1 (en) * 2014-09-17 2016-03-24 パナソニックIpマネジメント株式会社 Ceiling fan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193688A (en) * 2000-01-17 2001-07-17 Mitsubishi Electric Corp Driving device for air blowing device and for fluid pressure feeding device
JP2013046488A (en) * 2011-08-24 2013-03-04 Panasonic Corp Blower motor drive
JP2015124930A (en) * 2013-12-26 2015-07-06 ミネベア株式会社 Drive control device of fan motor
JP2016010218A (en) * 2014-06-24 2016-01-18 日本電産サーボ株式会社 Fan motor drive device and blower
WO2016042696A1 (en) * 2014-09-17 2016-03-24 パナソニックIpマネジメント株式会社 Ceiling fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754019A (en) * 2022-04-08 2022-07-15 中建三局第三建设工程有限责任公司 Fixed air volume control method and system based on impeller

Also Published As

Publication number Publication date
JP7256033B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US20230374995A1 (en) Motor drive control device, fan and motor drive control method
JP5158290B2 (en) Motor driving device, brushless motor, and motor driving method
US7138781B2 (en) Adaptive controller for PC cooling fans
JP6484544B2 (en) Motor drive device and motor system
JP2013521755A (en) Position correction pulse width modulation for brushless DC motor
JP5797781B2 (en) Motor drive circuit and permanent magnet synchronous motor
JP2006101686A (en) Motor drive device and drive method
JP2009303287A (en) Motor controller
JP2009198139A (en) Brushless motor driving device for compressor of air conditioner
JP4792849B2 (en) DC power supply for air conditioner
EP2828530B1 (en) A determination method and a control method for a fluid displacement device, controller and system
JP2023080158A (en) Motor drive control device, fan, and motor drive control method
JP2009261080A (en) Inverter device and constant-airflow ventilator blower equipped therewith
JP6255576B2 (en) Ventilation equipment
JP7256033B2 (en) MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD
WO2014208095A1 (en) Ventilation device
JP2006149097A (en) Motor controller
JP2003111469A (en) Control method and controller of motor
JP7315337B2 (en) FAN MOTOR, ELECTRONIC DEVICE, AND MOTOR CONTROL METHOD
WO2020188960A1 (en) Motor drive control device and motor drive control method
JP6040066B2 (en) Fan motor drive control device
JP7173887B2 (en) Semiconductor devices, motor drive control devices, and motor units
WO2023100580A1 (en) Motor driving control device, motor unit, and motor driving control method
JP7080403B2 (en) Inverter device, air conditioner and control method of inverter device
WO2022137406A1 (en) Ventilation blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230330

R150 Certificate of patent or registration of utility model

Ref document number: 7256033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150