JP2020144163A - Photon generator - Google Patents

Photon generator Download PDF

Info

Publication number
JP2020144163A
JP2020144163A JP2019038514A JP2019038514A JP2020144163A JP 2020144163 A JP2020144163 A JP 2020144163A JP 2019038514 A JP2019038514 A JP 2019038514A JP 2019038514 A JP2019038514 A JP 2019038514A JP 2020144163 A JP2020144163 A JP 2020144163A
Authority
JP
Japan
Prior art keywords
state
photon
rate
control light
photons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038514A
Other languages
Japanese (ja)
Other versions
JP7141640B2 (en
Inventor
徳永 裕己
Yuki Tokunaga
裕己 徳永
隆朗 青木
Takao Aoki
隆朗 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nippon Telegraph and Telephone Corp
Original Assignee
Waseda University
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nippon Telegraph and Telephone Corp filed Critical Waseda University
Priority to JP2019038514A priority Critical patent/JP7141640B2/en
Publication of JP2020144163A publication Critical patent/JP2020144163A/en
Application granted granted Critical
Publication of JP7141640B2 publication Critical patent/JP7141640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To provide technology with which it is possible to generate photons more efficiently than before.SOLUTION: A photon generator includes a control light generation unit 1 for generating control light, and a cavity QED system unit 2 including an atom excited from an initial state into an excited state upon receiving control light and generating a photon when transitioning from the excited state to a ground state, and a resonator 21 for confining the photons and releasing to the outside at a prescribed external binding rate κex. The external binding rate κex is set so as to satisfy κex=ακin(1+2Cin)(1/2), where κin represents the internal loss rate of the cavity QED system unit 2, g represents the binding rate of atoms and photons, γ represents the decay rate of induced polarization of atoms, Cin=g2/2κinγ, and α represents a prescribed correction coefficient.SELECTED DRAWING: Figure 1

Description

本発明は、量子技術に関し、特に光子を生成する技術に関する。 The present invention relates to quantum technology, and more particularly to technology for generating photons.

近年、量子力学を計算に用いることによりこれまでにできなかったような高速な計算が可能になることが示されている。その量子情報処理において、光子は通信に用いることができる量子ビットとして重要な構成要素である。その光子を高確率に生成することが重要であり。これまでに以下のような光子生成法が知られている(例えば、非特許文献1及び非特許文献2参照。)。 In recent years, it has been shown that the use of quantum mechanics in calculations enables high-speed calculations that have never been possible before. In the quantum information processing, photons are important components as qubits that can be used for communication. It is important to generate the photon with high probability. The following photon generation methods are known so far (see, for example, Non-Patent Document 1 and Non-Patent Document 2).

非特許文献1では、共振器中に捕捉した原子を単一光子源として用いて光子を生成する方法が示されている。ここでは弱結合領域が使われている。 Non-Patent Document 1 discloses a method of generating a photon by using an atom captured in a resonator as a single photon source. Weakly coupled regions are used here.

また、非特許文献2では、共振器中に捕捉した原子を単一光子源として用いて強結合領域で光子を生成する方法が示されている。 Further, Non-Patent Document 2 describes a method of generating photons in a strong coupling region by using an atom captured in a resonator as a single photon source.

C.K.Law, H.J.Kimble, "Deterministic generation of a bit-stream of single-photon pulses", Journal of Modern Optics, Volume 44, ,NO.11-12, p.0267-2074, 1997C.K.Law, H.J.Kimble, "Deterministic generation of a bit-stream of single-photon pulses", Journal of Modern Optics, Volume 44, NO.11-12, p.0267-2074, 1997 A.Kuhn, M.Hennrich, T.Bondo, and G.Rempe, "Controlled generation of single photons from a strongly coupled atom-cavity system", Applied Physics B, Volume 69, Issue 5-6, p.373-377, 1999A.Kuhn, M.Hennrich, T.Bondo, and G.Rempe, "Controlled generation of single photons from a strongly coupled atom-cavity system", Applied Physics B, Volume 69, Issue 5-6, p.373-377 , 1999

しかし、非特許文献1及び非特許文献2では、共振器の外部結合率を考慮した光子生成率の向上が行われていない。 However, in Non-Patent Document 1 and Non-Patent Document 2, the photon generation rate is not improved in consideration of the external coupling rate of the resonator.

本発明の目的は、従来よりも光子の生成を効率良く行うことができる光子生成装置を提供することである。 An object of the present invention is to provide a photon generator capable of generating photons more efficiently than before.

この発明の一態様による光子生成装置は、制御光を発生する制御光発生部と、制御光を受けて初期状態から励起状態に励起し、励起状態から基底状態に遷移するときに光子を発生させる原子と、光子を閉じ込め、所定の外部結合率κexで外部に放出する共振器とを含むキャビティQED系部と、を含み、キャビティQED系部の内部損失率をκinとし、原子と光子の結合率をgとし、原子の誘起分極の減衰レートをγとし、Cin=g2/2κinγとし、所定の補正係数をαとして、外部結合率κexは、κex=ακin(1+2Cin)(1/2)を満たすように設定されている。 The photon generator according to one aspect of the present invention has a control light generator that generates control light, excites the excited state from the initial state by receiving the control light, and generates photons when transitioning from the excited state to the base state. A cavity QED system including an atom and a resonator that confine a photon and emit it to the outside at a predetermined external coupling rate κ ex , and the internal loss rate of the cavity QED system is κ in , and the atom and photon Let g be the bond rate, γ be the decay rate of the induced polarization of the atom, C in = g 2 / 2κ in γ, and α be the predetermined correction factor, and the outer bond rate κ ex is κ ex = ακ in (1). + 2C in ) (1/2) is set to be satisfied.

外部結合率を考慮することにより、従来よりも光子の生成を効率良く行うことができる。 By considering the outer coupling rate, photons can be generated more efficiently than before.

図1は、光子生成装置の機能構成の例を示す図である。FIG. 1 is a diagram showing an example of a functional configuration of a photon generator. 図2は、キャビティQED系部の状態遷移を説明するための図である。FIG. 2 is a diagram for explaining the state transition of the cavity QED system portion. 図3は、キャビティQED系部の状態遷移を説明するための図である。FIG. 3 is a diagram for explaining the state transition of the cavity QED system portion.

以下、本発明の実施の形態について詳細に説明する。なお、図面中において同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In the drawings, the components having the same function are given the same number, and duplicate description is omitted.

光子生成装置は、制御光発生部1、キャビティQED系部2及び外部結合率制御部3を備えている。光子生成装置は、いわゆるCQED系(Cavity Quantum ElectroDynamics,共振器量子電気力学系)を利用して単一の光子を発生させる装置である。CQED系を利用した光子生成装置の詳細については、例えば参考文献1及び参考文献2を参照のこと。 The photon generator includes a control light generation unit 1, a cavity QED system unit 2, and an external coupling rate control unit 3. The photon generator is a device that generates a single photon using a so-called CQED system (Cavity Quantum ElectroDynamics). For details of the photon generator using the CQED system, refer to, for example, Reference 1 and Reference 2.

<参考文献1>Hayato Goto, Shota Mizukami, Yuuki Tokunaga, Takao Aoki, "Fundamental Limit on the Efficiency of Single-Photon Generation Based on Cavity Quantum Electrodynamics", arXiv:1808.10077, 2018年8月30日
<参考文献2>早坂和弘, 「共振器量子電磁力学による決定論的単一光子生成」, レーザー研究, 2003年9月
制御光発生部1は、キャビティQED系部2を制御するための制御光を発生させる。発生した制御光は、キャビティQED系部2の原子に入射される。
<Reference 1> Hayato Goto, Shota Mizukami, Yuuki Tokunaga, Takao Aoki, "Fundamental Limit on the Efficiency of Single-Photon Generation Based on Cavity Quantum Electrodynamics", arXiv: 1808.10077, August 30, 2018
<Reference 2> Kazuhiro Hayasaka, "Deterministic Single Photon Generation by Resonator Quantum Electrodynamics", Laser Research, September 2003 The control light generator 1 is the control light for controlling the cavity QED system part 2. To generate. The generated control light is incident on the atoms of the cavity QED system unit 2.

キャビティQED系部2は、制御光を受けて初期状態|u>から励起状態|e>に励起し、励起状態|e>から基底状態|g>に遷移するときに光子を発生させる原子と、光子を閉じ込め、所定の外部結合率κexで外部に放出する共振器21とを備えている。ここで、原子は、自然の原子でもよいし、量子ドット、超伝導量子ビット等の人工の原子であってもよい。原子から発生した光子は、共振器21内に強く閉じ込められ、原子と相互作用する。その後、光子は、外部結合率κexに応じて外部に放出される。 Cavity QED system part 2 receives control light, excites from the initial state | u> to the excited state | e>, and generates photons when transitioning from the excited state | e> to the ground state | g>. It includes a resonator 21 that traps photons and emits them to the outside at a predetermined external coupling rate κ ex . Here, the atom may be a natural atom or an artificial atom such as a quantum dot or a superconducting qubit. Photons generated from an atom are strongly confined in the resonator 21 and interact with the atom. The photons are then emitted to the outside according to the outer binding rate κ ex .

図2は、キャビティQED系部2の状態遷移を説明するための図である。原子は、初期状態|u>、励起状態|e>及び基底状態|g>という3個の状態を少なくとも取り得る。 FIG. 2 is a diagram for explaining the state transition of the cavity QED system unit 2. Atoms can have at least three states: initial state | u>, excited state | e> and ground state | g>.

初期状態|u>にある原子は、制御光を受けて励起状態|e>に励起する。Ωは、制御光を与えることで発生する、初期状態|u>と励起状態|e>との間の遷移周波数である。Δeは励起状態|e>に対応する離調であり、例えばΔe=E|e>-E|g>-gである。E|e>は励起状態|e>のエネルギー準位であり、E|g>は基底状態|g>のエネルギー準位である。Δuは初期状態|u>に対応する離調であり、例えばΔu=Ω-(E|e>-E|u>-Δe)である。E|u>は励起状態|u>のエネルギー準位である。 Atoms in the initial state | u> are excited to the excited state | e> by receiving control light. Ω is the transition frequency between the initial state | u> and the excited state | e>, which is generated by applying the control light. Δe is the detuning corresponding to the excited state | e>, for example Δe = E | e> -E | g> -g. E | e> is the energy level of the excited state | e>, and E | g> is the energy level of the ground state | g>. Δu is the detuning corresponding to the initial state | u>, for example, Δu = Ω-(E | e> -E | u> -Δe). E | u> is the energy level of the excited state | u>.

励起状態|e>にある原子は、基底状態|g>に遷移するときに光子を発生させる。なお、励起状態|e>にある原子は、所定の自然減衰率γで減衰する。γは、誘起分極の減衰レートとも言える。gは、原子と光子の結合率である。 Atoms in the excited state | e> generate photons when transitioning to the ground state | g>. Atoms in the excited state | e> are attenuated at a predetermined natural attenuation factor γ. γ can also be said to be the decay rate of induced polarization. g is the bond rate between the atom and the photon.

発生した光子は、共振器21に閉じ込められる。共振器21は、例えば互いに対向する2枚の鏡である。この場合、外部結合率κexは、共振器21を構成する2枚の鏡の中の一方の鏡の透過率である。共振器21は、2枚の鏡ではなく、マイクロリング、マイクトロイド、微小球、フォトニック結晶共振器であってもよい。 The generated photons are confined in the resonator 21. The resonator 21 is, for example, two mirrors facing each other. In this case, the outer coupling ratio κ ex is the transmittance of one of the two mirrors constituting the resonator 21. The resonator 21 may be a micro ring, a microphone toroid, a microsphere, or a photonic crystal resonator instead of the two mirrors.

κinは、キャビティQED系部2の内部損失率であり、キャビティQED系部2内の光電場の減衰率とも言える。なお、κ=κexinである。 κ in is the internal loss rate of the cavity QED system part 2, and can be said to be the attenuation rate of the photoelectric field in the cavity QED system part 2. In addition, κ = κ ex + κ in .

外部結合率制御部3は、外部結合率κexを制御する。共振器21が2枚の鏡である場合には、外部結合率制御部3は、例えば、鏡に張力又は熱を加えることで、鏡の透過率を変えることができ、これにより外部結合率κexを制御することができる。 The outer bond rate control unit 3 controls the outer bond rate κ ex . When the resonator 21 is two mirrors, the external coupling rate control unit 3 can change the transmittance of the mirror by, for example, applying tension or heat to the mirror, whereby the external coupling rate κ. You can control ex .

具体的には、外部結合率制御部3は、外部結合率κexがκex=ακin(1+2Cin)(1/2)を満たすように制御する。ここで、Cin=g2/2κinγである。ここで、αは所定の実数である補正係数である。補正係数αは、所望の結果が得られるように適宜決定される。αは、例えば1/2<α<2である。理論的にはα=1であるが、実際には所望の結果が得られるようにκexの値を適宜調整する必要がある。αは、この調整を行うための補正係数である。外部結合率κex=ακin(1+2Cin)(1/2)とすることで、従来よりも光子の生成を効率良く行うことができる(例えば、参考文献1参照。)。 Specifically, the outer bond rate control unit 3 controls so that the outer bond rate κ ex satisfies κ ex = ακ in (1 + 2C in ) (1/2) . Where C in = g 2 / 2κ in γ. Here, α is a correction coefficient that is a predetermined real number. The correction coefficient α is appropriately determined so as to obtain a desired result. α is, for example, 1/2 <α <2. Theoretically, α = 1, but in reality, it is necessary to adjust the value of κ ex appropriately so that the desired result can be obtained. α is a correction coefficient for making this adjustment. By setting the outer binding rate κ ex = ακ in (1 + 2C in ) (1/2) , photons can be generated more efficiently than before (see, for example, Reference 1).

光子の生成確率PSは、以下の式に従うことが知られている。 It is known that the photon generation probability P S follows the following equation.

Figure 2020144163
Figure 2020144163

κ=κexinであり、C=g2/(2κγ)であることを考慮すると、κexが増加すると上記の式の第1項の値は増加し第2項の値は減少するため、Psの上限を最大化する適切なκexの値が存在することが想定される。発明者は、Psの上限を最大化する適切なκexの値がκex=ακin(1+2Cin)(1/2)であることを見出した。適切なκexの値がκex=ακin(1+2Cin)(1/2)となる理由の詳細については、例えば参考文献1を参照のこと。 Considering that κ = κ ex + κ in and C = g 2 / (2κγ), as κ ex increases, the value of the first term of the above equation increases and the value of the second term decreases. Therefore, it is assumed that there is an appropriate value of κ ex that maximizes the upper limit of P s . The inventors have found that the appropriate value of kappa ex that maximizes the upper limit of P s is κ ex = ακ in (1 + 2C in) (1/2). See reference 1, for example, for more information on why a suitable κ ex value is κ ex = ακ in (1 + 2C in ) (1/2) .

なお、キャビティQED系部内の状態遷移は、例えば図3のようにも記述することができる。状態|φ0>は、|φ0>=|u>|0>であり、原子が初期状態|u>であり、かつ、共振器21内に光子が存在しない状態である。状態|φ1>は、|φ1>=|e>|0>であり、原子が励起状態|e>であり、かつ、共振器21内に光子が存在しない状態である。状態|φ2>は、|φ2>=|g>|1>であり、原子が基底状態|g>であり、かつ、共振器21内に光子が存在する状態である。状態|φ3>は、|φ3>=|g>|0>であり、原子が基底状態|g>であり、かつ、光子が共振器21の外部に出て行ってしまった結果共振器21内に光子が存在しない状態である。状態|φ0>及び状態|φ1>は可逆である。同様に、状態|φ1>及び状態|φ2>は可逆である。一方、状態|φ2>及び状態|φ3>は非可逆である。言い換えれば、状態|φ2>から状態|φ3>に遷移することはできるが、状態|φ3>から状態|φ2>に遷移することはできない。 The state transition in the cavity QED system can also be described as shown in FIG. 3, for example. The state | φ 0 > is | φ 0 > = | u> | 0>, the atom is in the initial state | u>, and there is no photon in the resonator 21. The state | φ 1 > is | φ 1 > = | e> | 0>, the atom is in the excited state | e>, and there are no photons in the resonator 21. The state | φ 2 > is | φ 2 > = | g> | 1>, the atom is in the ground state | g>, and the photon is present in the resonator 21. The state | φ 3 > is | φ 3 > = | g> | 0>, the atom is the ground state | g>, and the photon has gone out of the resonator 21. There are no photons in 21. The state | φ 0 > and the state | φ 1 > are reversible. Similarly, the state | φ 1 > and the state | φ 2 > are reversible. On the other hand, the state | φ 2 > and the state | φ 3 > are irreversible. In other words, it is possible to transition from state | φ 2 > to state | φ 3 >, but not from state | φ 3 > to state | φ 2 >.

なお、共振器21内の全体の状態を|ψ>=α00>+α11>+α22>と表記する。α0は状態|φ0>に対応する重みであり、α1は状態|φ1>に対応する重みであり、α2は状態|φ2>に対応する重みである。ここで、重みは、状態に対応する複素振幅である。 The overall state inside the resonator 21 is expressed as | ψ> = α 0 | φ 0 > + α 1 | φ 1 > + α 2 | φ 2 >. α 0 is the weight corresponding to the state | φ 0 >, α 1 is the weight corresponding to the state | φ 1 >, and α 2 is the weight corresponding to the state | φ 2 >. Here, the weight is a complex amplitude corresponding to the state.

この場合、重みα012の変化率は以下のように記述することができる。ここで、iは虚数単位である。 In this case, the rate of change of the weights α 0 , α 1 and α 2 can be described as follows. Where i is an imaginary unit.

Figure 2020144163
Figure 2020144163

ここで、Ωの増加率が小さいと、初期状態|u>から基底状態|g>への遷移が損失が少なく行われる。これにより、中間領域でも光子生成が可能となる(例えば、参考文献1参照。)。中間領域の定義については、後述する。 Here, when the rate of increase of Ω is small, the transition from the initial state | u> to the ground state | g> is performed with little loss. This enables photon generation even in the intermediate region (see, for example, Reference 1). The definition of the intermediate region will be described later.

そのために、制御光発生部1は、Tを所定の時間として、以下の式(1)を満たすように、Ωの増加率を制御してもよい。α2(t)は、原子が基底状態|e>であり、かつ、共振器21内に光子が存在する状態に対応する、時刻tにおける重みである。 Therefore, the control light generation unit 1 may control the increase rate of Ω so as to satisfy the following equation (1) with T as a predetermined time. α 2 (t) is the weight at time t corresponding to the state where the atom is in the ground state | e> and the photon is present in the resonator 21.

Figure 2020144163
Figure 2020144163

非特許文献1では弱結合領域、非特許文献2では強結合領域における光子の生成が行われているが、中間領域における光子の生成は行われていなかった。ここで、弱結合領域とはg<<κとなる領域であり、強結合領域とはg>κ,γとなる領域である。中間領域は、g〜κとなる領域である。ここで、"〜"は大体同じ値であり、言い換えれば大きく離れていないことを意味する。例えば、"〜"の左辺の値と右辺の値が1桁離れている場合にはこれらの値は大体同じであると言えるが、これらの値が3桁離れている場合にはこれらの値は大体同じではないと言える。また、"<<"は、"<<"の左の値が、"<<"の右の値よりも十分小さいことを表す。 In Non-Patent Document 1, photons are generated in the weakly bound region, and in Non-Patent Document 2, photons are generated in the strongly bound region, but photons are not generated in the intermediate region. Here, the weak binding region is a region where g << κ, and the strong binding region is a region where g> κ, γ. The intermediate region is the region where g to κ. Here, "~" are about the same value, in other words, they are not far apart. For example, if the values on the left and right sides of "~" are separated by one digit, these values can be said to be approximately the same, but if these values are separated by three digits, these values are It can be said that they are not almost the same. Also, "<<" means that the value to the left of "<<" is sufficiently smaller than the value to the right of "<<".

これに対して、制御光発生部1が上記の式(1)を満たすようにΩの増加率を制御することで、言い換えれば制御光の増加率を十分緩慢にすることで、中間領域でも光子生成が可能となる(例えば、参考文献1参照。)。 On the other hand, by controlling the increase rate of Ω so that the control light generation unit 1 satisfies the above equation (1), in other words, by making the increase rate of the control light sufficiently slow, photons are also generated in the intermediate region. It can be generated (see, for example, Reference 1).

なお、制御光発生部1は、Tを所定の時間として、以下の式(2)を満たすように、Ωの増加率を制御してもよい。これにより、より安定的に中間領域での光子生成が可能となる。 The control light generation unit 1 may control the rate of increase of Ω so as to satisfy the following equation (2) with T as a predetermined time. This enables more stable photon generation in the intermediate region.

Figure 2020144163
Figure 2020144163

[変形例]
以上、本発明の実施の形態について説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜設計の変更等があっても、本発明に含まれることはいうまでもない。
[Modification example]
Although the embodiments of the present invention have been described above, the specific configuration is not limited to these embodiments, and even if the design is appropriately changed without departing from the spirit of the present invention, the specific configuration is not limited to these embodiments. Needless to say, it is included in the present invention.

実施の形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。 The various processes described in the embodiments are not only executed in chronological order according to the order described, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.

例えば、光子生成装置は、外部結合率制御部3を備えていなくてもよい。この場合、外部結合率κexは、κex=ακin(1+2Cin)(1/2)に初期設定されているとする。 For example, the photon generator does not have to include the outer coupling rate control unit 3. In this case, it is assumed that the outer binding rate κ ex is initialized to κ ex = ακ in (1 + 2C in ) (1/2) .

1 制御光発生部
2 キャビティQED系部
21 共振器
3 外部結合率制御部
1 Control light generator 2 Cavity QED system 21 Resonator 3 External coupling rate control unit

Claims (3)

制御光を発生する制御光発生部と、
前記制御光を受けて初期状態から励起状態に励起し、前記励起状態から基底状態に遷移するときに光子を発生させる原子と、前記光子を閉じ込め、所定の外部結合率κexで外部に放出する共振器とを含むキャビティQED系部と、
を含み、
前記キャビティQED系部の内部損失率をκinとし、前記原子と前記光子の結合率をgとし、前記原子の誘起分極の減衰レートをγとし、Cin=g2/2κinγとし、所定の補正係数をαとして、前記外部結合率κexは、κex=ακin(1+2Cin)(1/2)を満たすように設定されている、
光子生成装置。
A control light generator that generates control light,
It excites from the initial state to the excited state by receiving the control light, traps the atom that generates a photon when transitioning from the excited state to the ground state, and the photon, and emits it to the outside with a predetermined external coupling rate κ ex. Cavity QED system including resonator and
Including
Wherein the internal loss factor kappa in cavity QED systems unit, the coupling ratio of the said atoms photons and g, the attenuation rate of the induced polarization of the atoms and gamma, and C in = g 2 / 2κ in γ, predetermined The outer coupling rate κ ex is set to satisfy κ ex = ακ in (1 + 2C in ) (1/2) , where α is the correction coefficient of.
Photon generator.
請求項1の光子生成装置であって、
前記外部結合率κexがκex=ακin(1+2Cin)(1/2)を満たすように制御する外部結合率制御部、
を更に含む光子生成装置。
The photon generator according to claim 1.
External coupling ratio control unit that the external coupling factor kappa ex is controlled to satisfy the κ ex = ακ in (1 + 2C in) (1/2),
A photon generator that further comprises.
請求項1又は2の光子生成装置であって、
Tを所定の時間とし、前記原子が前記基底状態であり、かつ、共振器21内に光子が存在する状態に対応する、時刻tにおける重みをα2(t)とし、κ=κexinとし、前記キャビティQED系部内の光電場の減衰率をγとし、制御光を与えることで発生する、前記初期状態と前記励起状態との間の遷移周波数をΩとし、C=g2/(2κγ)として、以下の式を満たすように、Ωの増加率が制御されている、
Figure 2020144163
光子生成装置。
The photon generator according to claim 1 or 2.
Let T be a predetermined time, let α 2 (t) be the weight at time t corresponding to the state where the atom is in the ground state and the photon exists in the resonator 21, and κ = κ ex + κ. In, the attenuation factor of the photoelectric field in the cavity QED system is γ, the transition frequency between the initial state and the excited state generated by applying control light is Ω, and C = g 2 / ( As 2κγ), the rate of increase in Ω is controlled so as to satisfy the following equation.
Figure 2020144163
Photon generator.
JP2019038514A 2019-03-04 2019-03-04 photon generator Active JP7141640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019038514A JP7141640B2 (en) 2019-03-04 2019-03-04 photon generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038514A JP7141640B2 (en) 2019-03-04 2019-03-04 photon generator

Publications (2)

Publication Number Publication Date
JP2020144163A true JP2020144163A (en) 2020-09-10
JP7141640B2 JP7141640B2 (en) 2022-09-26

Family

ID=72354114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038514A Active JP7141640B2 (en) 2019-03-04 2019-03-04 photon generator

Country Status (1)

Country Link
JP (1) JP7141640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056434A (en) * 2019-10-01 2021-04-08 日本電信電話株式会社 Photon generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064407A1 (en) * 2006-11-28 2008-06-05 Uniquest Pty Limited Single photon source
JP2008243915A (en) * 2007-03-26 2008-10-09 Japan Science & Technology Agency Light-emitting element
JP2009080311A (en) * 2007-09-26 2009-04-16 Toshiba Corp Optical resonator
JP2009081322A (en) * 2007-09-27 2009-04-16 Toshiba Corp Single-photon generation apparatus, and quantum bit reading apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064407A1 (en) * 2006-11-28 2008-06-05 Uniquest Pty Limited Single photon source
JP2008243915A (en) * 2007-03-26 2008-10-09 Japan Science & Technology Agency Light-emitting element
JP2009080311A (en) * 2007-09-26 2009-04-16 Toshiba Corp Optical resonator
JP2009081322A (en) * 2007-09-27 2009-04-16 Toshiba Corp Single-photon generation apparatus, and quantum bit reading apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056434A (en) * 2019-10-01 2021-04-08 日本電信電話株式会社 Photon generation device
JP7218869B2 (en) 2019-10-01 2023-02-07 日本電信電話株式会社 photon generator

Also Published As

Publication number Publication date
JP7141640B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
CN101399425B (en) Single-photon generation apparatus and quantum bit reading apparatus and method
Afzelius et al. Quantum memory for photons
Covey et al. Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics
Vivoli et al. Proposal for an optomechanical bell test
Cao et al. Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements
EP3469594A1 (en) Quantum memory device
Vogell et al. Deterministic quantum state transfer between remote qubits in cavities
Neuwirth et al. Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories
Kumar et al. Towards long-distance quantum networks with superconducting processors and optical links
Gonţa et al. Dynamical entanglement purification using chains of atoms and optical cavities
Xia et al. Controllable optical bistability of an asymmetric cavity containing a single two-level atom
Shahriar et al. Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion
Vernon et al. Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators
Ruiz et al. Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
JP2020144163A (en) Photon generator
Thornton et al. Coherent diffusive photon gun for generating nonclassical states
JP7218869B2 (en) photon generator
Tan High-fidelity entangling gates with trapped-ions
Giannelli et al. Weak coherent pulses for single-photon quantum memories
Lu et al. Shortcuts to adiabatic passage for the generation of maximally entangle states in a distributed atom-cavity system
Akat’ev et al. Optical parametric oscillator with quantum memory for quantum repeaters
Li et al. Entanglement for excitons in two quantum dots placed in two separate single-mode cavities
Gu et al. Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers
WO2022091382A1 (en) Optical computer
Schimpf et al. Quantum dots as potential sources of strongly entangled photons for quantum networks

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190305

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7141640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150