JP2020144055A - Current detection circuit - Google Patents

Current detection circuit Download PDF

Info

Publication number
JP2020144055A
JP2020144055A JP2019042032A JP2019042032A JP2020144055A JP 2020144055 A JP2020144055 A JP 2020144055A JP 2019042032 A JP2019042032 A JP 2019042032A JP 2019042032 A JP2019042032 A JP 2019042032A JP 2020144055 A JP2020144055 A JP 2020144055A
Authority
JP
Japan
Prior art keywords
current detection
circuit
resistors
resistor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019042032A
Other languages
Japanese (ja)
Inventor
亮輔 堀
Ryosuke Hori
亮輔 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Marelli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marelli Corp filed Critical Marelli Corp
Priority to JP2019042032A priority Critical patent/JP2020144055A/en
Publication of JP2020144055A publication Critical patent/JP2020144055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

To suppress deterioration of a current detection circuit even when the circuit is exposed to a wide temperature change.SOLUTION: A current detection circuit 100 includes a first current detection unit 7 including shunt resistors 71 to 74, a second current detection unit 8 including shunt resistors 81 to 84 connected to the first current detection unit 7, a first circuit 10 connected to input electrodes 71a to 74a of the respective shunt resistors 71 to 74 of the first current detection unit 7, a second circuit 11 connected to output electrodes 81b to 84b of the respective shunt resistors 81 to 84 of the second current detection unit 8, a detection signal line 76 that is connected to the shunt resistor 74 of the first current detection unit and detects the current flowing in the shunt resistor 74, and a detection signal line 86 that is connected to the shunt resistor 81 of the second current detection unit 8 and detects the current flowing in the shunt resistor 81. The detection signal lines 76 and 86 are connected to the shunt resistors 74 and 81 in which the ratio of flowing current is the same on the basis of the structure of the first circuit 10 and the second circuit 11.SELECTED DRAWING: Figure 2

Description

本発明は、電流検出回路に関するものである。 The present invention relates to a current detection circuit.

特許文献1には、A/Fセンサ制御装置において、シャント抵抗を用いて電流を検出する電流検出回路が開示されている。 Patent Document 1 discloses a current detection circuit that detects a current using a shunt resistor in an A / F sensor control device.

特開2016−90462号公報Japanese Unexamined Patent Publication No. 2016-90462

特許文献1に示されるように、一般的に電気回路における電流検出手段としてシャント抵抗を用いた電流検出回路が使用される。 As shown in Patent Document 1, a current detection circuit using a shunt resistor is generally used as a current detection means in an electric circuit.

しかしながら、この電流検知回路では、低温から高温まで広範な温度変化に晒される環境で使用される場合には、シャント抵抗を基板に固定するはんだが、膨張収縮を繰り返すことで劣化するおそれがある。 However, in this current detection circuit, when used in an environment exposed to a wide range of temperature changes from low temperature to high temperature, the solder fixing the shunt resistor to the substrate may deteriorate due to repeated expansion and contraction.

本発明は、上記の問題点に鑑みてなされたものであり、広範な温度変化に晒される場合にも電流検出回路の劣化を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress deterioration of the current detection circuit even when exposed to a wide range of temperature changes.

本発明のある態様によれば、電流検出回路は、複数の抵抗器で構成される第1の抵抗群と、前記第1の抵抗群と接続される複数の前記抵抗器で構成される第2の抵抗群と、前記第1の抵抗群の各々の前記抵抗器の入力電極と接続される第1回路と、前記第2の抵抗群の各々の前記抵抗器の出力電極と接続される第2回路と、前記第1の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第1検出信号線と、前記第2の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第2検出信号線と、を備え、前記第1検出信号線及び前記第2検出信号線は、前記第1回路及び前記第2回路の構成に基づき各々の前記抵抗器に流れる電流の割合が同じである前記第1の抵抗群の前記抵抗器及び前記第2の抵抗群の前記抵抗器に接続されることを特徴とする。 According to an aspect of the present invention, the current detection circuit is composed of a first resistor group composed of a plurality of resistors and a second resistor group composed of the plurality of resistors connected to the first resistor group. The first circuit connected to the input electrode of each of the resistors in the first resistance group, and the second circuit connected to the output electrode of each of the resistors in the second resistance group. The circuit, the first detection signal line connected to the resistor of one of the first resistance groups and for detecting the current flowing through the resistor, and the resistor of one of the second resistance groups. A second detection signal line that is connected and for detecting a current flowing through the resistor is provided, and the first detection signal line and the second detection signal line are configured as the first circuit and the second circuit. It is characterized in that it is connected to the resistor of the first resistance group and the resistor of the second resistance group having the same ratio of the current flowing through each of the resistors.

この態様では、抵抗器を複数個配置して電流検出回路を形成することで、単一の抵抗器を用いた電流検出回路と比べて、個々の抵抗器のサイズが小さくなる。抵抗器のサイズが小さくなることで、抵抗器と基板を接合するはんだの量は少なくなる。そのため、温度変化に伴うはんだの膨張収縮範囲は小さくなり、はんだの疲労を抑えることができる。よって、広範な温度変化に晒される場合にも電流検出回路の劣化を抑制することができる。 In this embodiment, by arranging a plurality of resistors to form a current detection circuit, the size of each resistor is reduced as compared with a current detection circuit using a single resistor. As the size of the resistor decreases, the amount of solder that joins the resistor to the substrate decreases. Therefore, the expansion / contraction range of the solder due to the temperature change becomes small, and the fatigue of the solder can be suppressed. Therefore, deterioration of the current detection circuit can be suppressed even when exposed to a wide range of temperature changes.

図1は、本発明の実施形態に係る電流検出回路が適用される加熱装置の構成図である。FIG. 1 is a block diagram of a heating device to which the current detection circuit according to the embodiment of the present invention is applied. 図2は、本発明の第1の実施形態に係る電流検出回路の模式図である。FIG. 2 is a schematic diagram of a current detection circuit according to the first embodiment of the present invention. 図3は、本発明の第2の実施形態に係る電流検出回路の模式図である。FIG. 3 is a schematic diagram of a current detection circuit according to a second embodiment of the present invention. 図4は、本発明の第3の実施形態に係る電流検出回路の模式図である。FIG. 4 is a schematic diagram of a current detection circuit according to a third embodiment of the present invention.

以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
以下、図1及び図2を参照して、本発明の第1の実施形態に係る電流検出回路100及び電流検出回路100が適用される加熱装置1について説明する。
(First Embodiment)
Hereinafter, the heating device 1 to which the current detection circuit 100 and the current detection circuit 100 according to the first embodiment of the present invention are applied will be described with reference to FIGS. 1 and 2.

まず、図1を参照して、加熱装置1について説明する。 First, the heating device 1 will be described with reference to FIG.

加熱装置1は、高電圧バッテリ2から供給される電力によって駆動されるヒータ4と、ヒータ4に接続される第1スイッチング素子,第2スイッチング素子としてのIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)5a,5bと、を備える。 The heating device 1 includes a heater 4 driven by power supplied from a high-voltage battery 2, a first switching element connected to the heater 4, and an IGBT (Insulated Gate Bipolar Transistor) as a second switching element. ) 5a, 5b, and the like.

加熱装置1は、EV(Electric Vehicle:電動車両)やHEV(Hybrid Electric Vehicle:ハイブリッド車両)などの車両に搭載される車両用空調装置(図示省略)に適用される。車両用空調装置は、暖房運転を実行するために、冷媒をヒータ4によって加熱する温水タンク(図示省略)を有する。 The heating device 1 is applied to a vehicle air-conditioning device (not shown) mounted on a vehicle such as an EV (Electric Vehicle: electric vehicle) or a HEV (Hybrid Electric Vehicle: hybrid vehicle). The vehicle air conditioner has a hot water tank (not shown) that heats the refrigerant by the heater 4 in order to perform the heating operation.

高電圧バッテリ2は、EVやHEVに搭載される強電バッテリである。高電圧バッテリ2の出力電圧は、200〜400Vの強電である。高電圧バッテリ2は、供給ライン3を通じてヒータ4に電力を供給する。 The high-voltage battery 2 is a high-voltage battery mounted on an EV or HEV. The output voltage of the high voltage battery 2 is a high voltage of 200 to 400 V. The high voltage battery 2 supplies electric power to the heater 4 through the supply line 3.

ヒータ4は、電力が供給されると発熱するシーズヒータである。ヒータ4は、温水タンク内(図示省略)に収容される。 The heater 4 is a sheathed heater that generates heat when electric power is supplied. The heater 4 is housed in a hot water tank (not shown).

IGBT5a,5bは、コントローラ6からの指令に応じてオンとオフとが切り換えられることで、高電圧バッテリ2からヒータ4への電力の供給と遮断とを切り換える。IGBT5a,5bは、PWM(Pulse Width Modulation:パルス幅変調)制御によってオンとオフとが切り換えられる。 The IGBTs 5a and 5b are switched on and off in response to a command from the controller 6 to switch between supplying and shutting off the power from the high-voltage battery 2 to the heater 4. The IGBTs 5a and 5b are switched on and off by PWM (Pulse Width Modulation) control.

コントローラ6は、例えば車両用空調装置を制御するECU(Electronic Control Unit:電子制御装置)である。コントローラ6は、車両用空調装置の制御を実行するCPU(中央演算処理装置)と、CPUの処理動作に必要な制御プログラムや設定値等が記憶されたROM(リードオンリメモリ)と、各種センサが検出した情報を一時的に記憶するRAM(ランダムアクセスメモリ)と、を備える。 The controller 6 is, for example, an ECU (Electronic Control Unit: electronic control unit) that controls an air conditioner for a vehicle. The controller 6 includes a CPU (central processing unit) that executes control of the vehicle air conditioner, a ROM (read-only memory) that stores control programs and setting values required for the processing operation of the CPU, and various sensors. It includes a RAM (random access memory) that temporarily stores the detected information.

IGBT5bの下流側には、電流検出回路100の第1電流検出部7と第2電流検出部8とが直列に接続される。電流検出回路100の詳細については、後述する。 On the downstream side of the IGBT 5b, the first current detection unit 7 and the second current detection unit 8 of the current detection circuit 100 are connected in series. Details of the current detection circuit 100 will be described later.

また、加熱装置1には、高電圧バッテリ2とヒータ4を結ぶ供給ライン3に印加される電圧を検出する電圧検出部9a,9bを有する電圧検出回路9が設けられる。 Further, the heating device 1 is provided with a voltage detection circuit 9 having voltage detection units 9a and 9b for detecting the voltage applied to the supply line 3 connecting the high voltage battery 2 and the heater 4.

電圧検出部9a,9bは、ヒータ4の上流に接続され、供給ライン3に印加される電圧を検出する。電圧検出部9a,9bは、検出した電圧の大きさに応じた電気信号をコントローラ6に送信する。このように、加熱装置1は、回路内の電圧検出手段として2つの電圧検出部9a,9bを備えることにより、例えば一方の電圧検出部9aに異常が生じて電圧を検出できなくなったとしても、他方の電圧検出部9bで電圧を検出することができる。つまり、加熱装置1は、電圧検出部9a,9bを備えることにより、電圧検出手段を冗長化することができる。 The voltage detection units 9a and 9b are connected to the upstream of the heater 4 and detect the voltage applied to the supply line 3. The voltage detection units 9a and 9b transmit an electric signal corresponding to the magnitude of the detected voltage to the controller 6. As described above, the heating device 1 is provided with two voltage detecting units 9a and 9b as voltage detecting means in the circuit, so that even if an abnormality occurs in one of the voltage detecting units 9a and the voltage cannot be detected, for example. The voltage can be detected by the other voltage detection unit 9b. That is, the heating device 1 can make the voltage detecting means redundant by providing the voltage detecting units 9a and 9b.

ところで、上記加熱装置1内の環境は、冷媒を加熱するヒータ4の熱や、作動に伴うIGBT5a,5bの発熱によって高温の環境になる。また、ヒータ4の稼働が必要になる環境とは外気が寒冷な環境である。そのため、加熱装置1内の環境は、ヒータ4、IGBT5a,5b、外気などにより例えば−40℃から120℃という広範囲の温度変化に晒される環境にある。 By the way, the environment in the heating device 1 becomes a high temperature environment due to the heat of the heater 4 for heating the refrigerant and the heat generated by the IGBTs 5a and 5b due to the operation. Further, the environment in which the heater 4 needs to be operated is an environment in which the outside air is cold. Therefore, the environment inside the heating device 1 is an environment exposed to a wide temperature change of, for example, −40 ° C. to 120 ° C. by the heater 4, the IGBTs 5a, 5b, the outside air, and the like.

ここで、加熱装置1の回路は高電圧バッテリ2によって高電圧が掛かる回路であるため、抵抗器を用いた電流検出回路を組み込む場合には、大きな抵抗器を採用するのが一般的である。しかしながら、大きな抵抗器は、サイズに伴って端子線も太くなるため、基板への接合のためのはんだの量も多くなる。当該抵抗器が上記の広範な温度変化に晒されると、抵抗器を基板に固定するはんだが、膨張収縮を繰り返すことで劣化するおそれがある。そこで本実施形態では、電流検出回路100を、以下のように構成する。 Here, since the circuit of the heating device 1 is a circuit in which a high voltage is applied by the high voltage battery 2, a large resistor is generally adopted when incorporating a current detection circuit using a resistor. However, since the terminal wire of a large resistor becomes thicker with its size, the amount of solder for joining to the substrate also increases. When the resistor is exposed to the above-mentioned wide range of temperature changes, the solder that fixes the resistor to the substrate may deteriorate due to repeated expansion and contraction. Therefore, in the present embodiment, the current detection circuit 100 is configured as follows.

次に、図2を参照して、電流検出回路100の詳細について説明する。 Next, the details of the current detection circuit 100 will be described with reference to FIG.

図2は、電流検出回路100の模式図である。電流検出回路100は、第1の抵抗群としての第1電流検出部7と、第2の抵抗群としての第2電流検出部8と、第1電流検出部7が接続される第1回路10と、第2電流検出部8が接続される第2回路11と、第1電流検出部7と第2電流検出部8とを接続する回路パターン12と、を備える。 FIG. 2 is a schematic diagram of the current detection circuit 100. In the current detection circuit 100, the first circuit 10 to which the first current detection unit 7 as the first resistance group, the second current detection unit 8 as the second resistance group, and the first current detection unit 7 are connected. A second circuit 11 to which the second current detection unit 8 is connected, and a circuit pattern 12 for connecting the first current detection unit 7 and the second current detection unit 8 are provided.

図2において、矢印A〜Hは、電流検出回路100に流れる電流を示す。矢印A〜Hの幅は、広ければ流れる電流の割合が大きいことを示し、狭ければ流れる電流の割合が小さいことを示す。 In FIG. 2, arrows A to H indicate the current flowing through the current detection circuit 100. The width of the arrows A to H indicates that the ratio of the flowing current is large when the width is wide, and the ratio of the flowing current is small when the width is narrow.

第1回路10は、IGBT5bと第1電流検出部7とを接続する回路であり、積層プリント基板10aに形成される回路パターン10bと、ビア10cと、を有する。第1回路10には、第1電流検出部7の後述するシャント抵抗71〜74の入力電極71a〜74aが接続される。IGBT5bから第1回路10に流入する電流は、図2に矢印A〜Dで示すように、第1回路10から第1電流検出部7のシャント抵抗71〜74に流れる。 The first circuit 10 is a circuit that connects the IGBT 5b and the first current detection unit 7, and has a circuit pattern 10b formed on the laminated printed circuit board 10a and a via 10c. Input electrodes 71a to 74a of shunt resistors 71 to 74, which will be described later, of the first current detection unit 7 are connected to the first circuit 10. The current flowing from the IGBT 5b into the first circuit 10 flows from the first circuit 10 to the shunt resistors 71 to 74 of the first current detection unit 7, as shown by arrows A to D in FIG.

第1電流検出部7は、抵抗器としてのシャント抵抗71〜74と、シャント抵抗71〜74の出力電極71b〜74bを接続する回路パターン75a〜75cと、シャント抵抗74に接続される第1検出信号線としての検出信号線76と、を有する。 The first current detection unit 7 has circuit patterns 75a to 75c connecting the shunt resistors 71 to 74 as resistors, the output electrodes 71b to 74b of the shunt resistors 71 to 74, and the first detection connected to the shunt resistor 74. It has a detection signal line 76 as a signal line.

シャント抵抗71〜74は、同一の所定抵抗値をもつ抵抗器であり、第1回路10から流れる電流の方向(図2に示す矢印A〜Hの方向)に対して、並列に配置される。シャント抵抗71〜74の出力電極71b〜74bは、回路パターン75a〜75cによって並列に接続されるとともに、回路パターン12a〜12dによって、第2電流検出部8の後述するシャント抵抗81〜84の入力電極81a〜84aに各々直列に接続される。第1回路10から第1電流検出部7に流入する電流は、シャント抵抗71〜74と、回路パターン75a〜75cと、図示しない積層プリント基板に形成される回路パターン12(12a〜12d)とを介して、第2電流検出部8へと流れる。 The shunt resistors 71 to 74 are resistors having the same predetermined resistance value, and are arranged in parallel with respect to the direction of the current flowing from the first circuit 10 (directions of arrows A to H shown in FIG. 2). The output electrodes 71b to 74b of the shunt resistors 71 to 74 are connected in parallel by the circuit patterns 75a to 75c, and the input electrodes of the shunt resistors 81 to 84 described later in the second current detection unit 8 are connected by the circuit patterns 12a to 12d. Each is connected in series to 81a to 84a. The current flowing from the first circuit 10 to the first current detection unit 7 includes shunt resistors 71 to 74, circuit patterns 75a to 75c, and circuit patterns 12 (12a to 12d) formed on a laminated printed substrate (not shown). The current flows to the second current detection unit 8.

このとき、第1電流検出部7は、電流が流れることでシャント抵抗74に発生する電圧の大きさに応じた電気信号を、検出信号線76を介してコントローラ6へ送信する。コントローラ6は、送信された電気信号とシャント抵抗74の抵抗値とに基づき、シャント抵抗74に流れる電流値を演算する。 At this time, the first current detection unit 7 transmits an electric signal corresponding to the magnitude of the voltage generated in the shunt resistor 74 due to the flow of the current to the controller 6 via the detection signal line 76. The controller 6 calculates the value of the current flowing through the shunt resistor 74 based on the transmitted electric signal and the resistance value of the shunt resistor 74.

第2電流検出部8は、抵抗器としてのシャント抵抗81〜84と、シャント抵抗81〜84の入力電極81a〜84aを接続する回路パターン85a〜85cと、シャント抵抗81に接続される第2検出信号線としての検出信号線86と、を有する。 The second current detection unit 8 has circuit patterns 85a to 85c for connecting the shunt resistors 81 to 84 as resistors, the input electrodes 81a to 84a of the shunt resistors 81 to 84, and the second detection connected to the shunt resistor 81. It has a detection signal line 86 as a signal line.

シャント抵抗81〜84は、第1電流検出部7のシャント抵抗71〜74と同一の所定抵抗値をもつ抵抗器である。シャント抵抗81〜84は、第1回路10から流れる電流の方向(図2に示す矢印A〜Hの方向)に対して、並列に配置される。シャント抵抗81〜84の入力電極81a〜84aは、回路パターン85a〜85cによって並列に接続されるとともに、回路パターン12(12a〜12d)によって、第1電流検出部7のシャント抵抗71〜74の出力電極71b〜74bに各々直列に接続される。第1電流検出部7から回路パターン12を介して第2電流検出部8に流入する電流は、回路パターン85a〜85c及びシャント抵抗81〜84を介して、第2回路11へと流れる(図2の矢印E〜H)。 The shunt resistors 81 to 84 are resistors having the same predetermined resistance values as the shunt resistors 71 to 74 of the first current detection unit 7. The shunt resistors 81 to 84 are arranged in parallel with respect to the direction of the current flowing from the first circuit 10 (directions of arrows A to H shown in FIG. 2). The input electrodes 81a to 84a of the shunt resistors 81 to 84 are connected in parallel by the circuit patterns 85a to 85c, and the outputs of the shunt resistors 71 to 74 of the first current detection unit 7 are connected by the circuit patterns 12 (12a to 12d). They are connected in series to the electrodes 71b to 74b, respectively. The current flowing from the first current detection unit 7 to the second current detection unit 8 via the circuit pattern 12 flows to the second circuit 11 via the circuit patterns 85a to 85c and the shunt resistors 81 to 84 (FIG. 2). Arrows E to H).

このとき、第2電流検出部8は、電流が流れることでシャント抵抗81に発生する電圧の大きさに応じた電気信号を、検出信号線86を介してコントローラ6へ送信する。コントローラ6は、送信された電気信号とシャント抵抗81の抵抗値とに基づき、シャント抵抗81に流れる電流値を演算する。 At this time, the second current detection unit 8 transmits an electric signal corresponding to the magnitude of the voltage generated in the shunt resistor 81 due to the flow of the current to the controller 6 via the detection signal line 86. The controller 6 calculates the current value flowing through the shunt resistor 81 based on the transmitted electric signal and the resistance value of the shunt resistor 81.

第2回路11は、第2電流検出部8のシャント抵抗81〜84の出力電極81b〜84bが接続される回路であり、積層プリント基板11aに形成される回路パターン11bと、ビア11cと、を有する。第2電流検出部8から第2回路11に流入する電流(図2の矢印E〜H)は、回路パターン11bとビア11cとを介して、図示しない回路を経て、高電圧バッテリ2に流れる。 The second circuit 11 is a circuit to which the output electrodes 81b to 84b of the shunt resistors 81 to 84 of the second current detection unit 8 are connected, and connects the circuit pattern 11b formed on the laminated printed circuit board 11a and the via 11c. Have. The current flowing from the second current detection unit 8 into the second circuit 11 (arrows E to H in FIG. 2) flows through the circuit pattern 11b and the via 11c to the high-voltage battery 2 via a circuit (not shown).

このように、加熱装置1では、シャント抵抗71〜74,81〜84を複数個配置して第1電流検出部7及び第2電流検出部8を形成する。これにより、単一のシャント抵抗を用いた電流検出回路と比べて、個々のシャント抵抗71〜74,81〜84のサイズが小さくなる。シャント抵抗71〜74,81〜84のサイズが小さくなることで、シャント抵抗71〜74,81〜84と第1,第2回路10,11とを接合するはんだの量は少なくなる。そのため、温度変化に伴うはんだの膨張収縮範囲は小さくなり、はんだの疲労を抑えることができる。よって、広範な温度変化に晒される場合にも電流検出回路100の劣化を抑制することができる。 As described above, in the heating device 1, a plurality of shunt resistors 71 to 74, 81 to 84 are arranged to form the first current detection unit 7 and the second current detection unit 8. This reduces the size of the individual shunt resistors 71-74, 81-84 as compared to a current detection circuit using a single shunt resistor. As the size of the shunt resistors 71-74, 81-84 becomes smaller, the amount of solder that joins the shunt resistors 71-74, 81-84 and the first and second circuits 10 and 11 decreases. Therefore, the expansion / contraction range of the solder due to the temperature change becomes small, and the fatigue of the solder can be suppressed. Therefore, deterioration of the current detection circuit 100 can be suppressed even when exposed to a wide range of temperature changes.

上記のように第1電流検出部7で用いる抵抗器を複数個にすると、各々のシャント抵抗71〜74に流れる電流の割合が、第1回路10及び第2回路11の回路パターン10b,11bやビア10c,11cの構成によっては、ばらつきが生じるおそれがある。同様に、第2電流検出部8の各々のシャント抵抗81〜84に流れる電流の割合も、第1回路10及び第2回路11の構成によっては、ばらつきが生じるおそれがある。そのため、第1電流検出部7及び第2電流検出部8の、どのシャント抵抗71〜74,81〜84に検出信号線76,86を接続するかによっては、演算される電流値が変動するおそれがある。 When a plurality of resistors used in the first current detection unit 7 are used as described above, the ratio of the current flowing through each of the shunt resistors 71 to 74 is the circuit patterns 10b and 11b of the first circuit 10 and the second circuit 11. Variations may occur depending on the configurations of the vias 10c and 11c. Similarly, the ratio of the current flowing through each of the shunt resistors 81 to 84 of the second current detection unit 8 may also vary depending on the configurations of the first circuit 10 and the second circuit 11. Therefore, the calculated current value may fluctuate depending on which shunt resistors 71 to 74, 81 to 84 of the first current detection unit 7 and the second current detection unit 8 are connected to the detection signal lines 76 and 86. There is.

そこで、本実施形態では、第1回路10及び第2回路11を構成する回路パターン10b,11bと、ビア10c,11cと、はんだと、の各抵抗に基づいて、各々のシャント抵抗71〜74,81〜84に流れる電流の割合を求め、電流の流れる割合が同じ(図2においては、幅が同じである矢印Aと矢印Eで示す。)である、第1電流検出部7のシャント抵抗(図2においてシャント抵抗74)及び第2電流検出部8のシャント抵抗(図2においてシャント抵抗81)に、検出信号線76,86をそれぞれ接続する。 Therefore, in the present embodiment, the shunt resistors 71 to 74, respectively, are based on the resistances of the circuit patterns 10b and 11b, the vias 10c and 11c, and the solder constituting the first circuit 10 and the second circuit 11. The ratio of the current flowing through 81 to 84 is obtained, and the shunt resistance of the first current detection unit 7 (indicated by arrows A and E having the same width in FIG. 2) is the same. The detection signal lines 76 and 86 are connected to the shunt resistor 74) in FIG. 2 and the shunt resistor (shunt resistor 81 in FIG. 2) of the second current detection unit 8, respectively.

ここで、「同じ」とは、第1電流検出部7の各シャント抵抗71〜74に流れる電流の割合と、第2電流検出部8の各シャント抵抗81〜84に流れる電流の割合を比較したときに、値が同一であるか、若しくは値が最も近いことを意味する。 Here, “same” means comparing the ratio of the current flowing through each of the shunt resistors 71 to 74 of the first current detection unit 7 and the ratio of the current flowing through each of the shunt resistors 81 to 84 of the second current detection unit 8. Sometimes it means that the values are the same or the values are closest.

上記のように、検出信号線76,86の接続箇所を決定する事により、第1電流検出部7によって検出される電流値と、第2電流検出部8によって検出される電流値が同じ値になる。そのため、電流検出回路100における第1電流検出部7と第2電流検出部8とでの電流検出の整合性を向上させることができる。 By determining the connection points of the detection signal lines 76 and 86 as described above, the current value detected by the first current detection unit 7 and the current value detected by the second current detection unit 8 become the same value. Become. Therefore, it is possible to improve the consistency of current detection between the first current detection unit 7 and the second current detection unit 8 in the current detection circuit 100.

また、第1電流検出部7と第2電流検出部8とで検出される電流の値が同じになるため、電流検出部の間で値の差分が生じない。そのため、差分を埋めるための構成を電流検出回路100に追加することや、差分調整のための制御をコントローラ6に行わせる必要がなくなる。 Further, since the current values detected by the first current detection unit 7 and the second current detection unit 8 are the same, there is no difference in the values between the current detection units. Therefore, it is not necessary to add a configuration for filling the difference to the current detection circuit 100 or to have the controller 6 perform control for adjusting the difference.

また、電流検出回路100は、2つの電流検出手段(第1電流検出部7と第2電流検出部8)を備えることにより、例えば第1電流検出部7に異常が生じて電流を検出できなくなったとしても、第2電流検出部8で電流を検出することができる。つまり、電流検出回路100は、第1電流検出部7と第2電流検出部8を備えることにより電流検出手段を冗長化することができる。 Further, the current detection circuit 100 includes two current detection means (first current detection unit 7 and second current detection unit 8), so that, for example, an abnormality occurs in the first current detection unit 7 and the current cannot be detected. Even so, the second current detection unit 8 can detect the current. That is, the current detection circuit 100 can make the current detection means redundant by including the first current detection unit 7 and the second current detection unit 8.

また、コントローラ6は、第1電流検出部7によって検出される電流値と第2電流検出部8によって検出される電流値を比較し、値が同じであれば第1電流検出部7及び第2電流検出部8の状態が正常であると判定し、値が離れていれば第1電流検出部7又は第2電流検出部8が異常であると判定する構成にしてもよい。上記構成にすることで、第1電流検出部7及び第2電流検出部8の稼働状態が正常か否か監視することができる。 Further, the controller 6 compares the current value detected by the first current detection unit 7 with the current value detected by the second current detection unit 8, and if the values are the same, the first current detection unit 7 and the second current detection unit 7. The state of the current detection unit 8 may be determined to be normal, and if the values are different, the first current detection unit 7 or the second current detection unit 8 may be determined to be abnormal. With the above configuration, it is possible to monitor whether or not the operating states of the first current detection unit 7 and the second current detection unit 8 are normal.

以上の第1の実施形態によれば、以下に示す効果を奏する。 According to the above first embodiment, the following effects are obtained.

電流検出回路100では、シャント抵抗71〜74,81〜84を複数個配置して第1電流検出部7及び第2電流検出部8を形成する。これにより、単一のシャント抵抗を用いた電流検出回路と比べて、個々のシャント抵抗71〜74,81〜84のサイズが小さくなる。シャント抵抗71〜74,81〜84のサイズが小さくなることで、シャント抵抗71〜74,81〜84と、第1回路10及び第2回路11を接合するはんだの量は少なくなる。そのため、温度変化に伴うはんだの膨張収縮範囲は小さくなり、はんだの疲労を抑えることができる。よって、広範な温度変化に晒される場合にも電流検出回路100の劣化を抑制することができる。 In the current detection circuit 100, a plurality of shunt resistors 71 to 74, 81 to 84 are arranged to form the first current detection unit 7 and the second current detection unit 8. This reduces the size of the individual shunt resistors 71-74, 81-84 as compared to a current detection circuit using a single shunt resistor. As the size of the shunt resistors 71-74, 81-84 becomes smaller, the amount of solder that joins the shunt resistors 71-74, 81-84 to the first circuit 10 and the second circuit 11 becomes smaller. Therefore, the expansion / contraction range of the solder due to the temperature change becomes small, and the fatigue of the solder can be suppressed. Therefore, deterioration of the current detection circuit 100 can be suppressed even when exposed to a wide range of temperature changes.

また、電流検出回路100は、各々のシャント抵抗71〜74,81〜84に流れる電流の割合を、第1回路10及び第2回路11の構成に基づき決定し、電流の流れる割合が同じである第1電流検出部7のシャント抵抗(図2においてシャント抵抗74)及び第2電流検出部8のシャント抵抗(図2においてシャント抵抗81)に、検出信号線76,86を接続する。これにより、第1電流検出部7によって検出する電流値と、第2電流検出部8によって検出する電流値とが同じ値になるため、電流検出回路100における第1電流検出部7と第2電流検出部8とでの電流検出の整合性を向上させることができる。 Further, the current detection circuit 100 determines the ratio of the current flowing through each of the shunt resistors 71 to 74 and 81 to 84 based on the configurations of the first circuit 10 and the second circuit 11, and the current flowing ratio is the same. The detection signal lines 76 and 86 are connected to the shunt resistance of the first current detection unit 7 (shunt resistance 74 in FIG. 2) and the shunt resistance of the second current detection unit 8 (shunt resistance 81 in FIG. 2). As a result, the current value detected by the first current detection unit 7 and the current value detected by the second current detection unit 8 become the same value, so that the first current detection unit 7 and the second current in the current detection circuit 100 It is possible to improve the consistency of current detection with the detection unit 8.

また、電流検出回路100は、電流検出手段として第1電流検出部7と第2電流検出部8とを備えることにより、電流検出手段を冗長化することができる。 Further, the current detection circuit 100 includes the first current detection unit 7 and the second current detection unit 8 as the current detection means, so that the current detection means can be made redundant.

また、コントローラ6は、第1電流検出部7によって検出される電流値と第2電流検出部8によって検出される電流値とを比較し、値が同じであれば第1電流検出部7及び第2電流検出部8の状態が正常であると判定し、値が離れていれば第1電流検出部7又は第2電流検出部8が異常であると判定する構成にしてもよい。上記構成にすることで、第1電流検出部7及び第2電流検出部8の稼働状態が正常か否か監視することができる。 Further, the controller 6 compares the current value detected by the first current detection unit 7 with the current value detected by the second current detection unit 8, and if the values are the same, the first current detection unit 7 and the first current detection unit 7 and the third. 2 The state of the current detection unit 8 may be determined to be normal, and if the values are different, the first current detection unit 7 or the second current detection unit 8 may be determined to be abnormal. With the above configuration, it is possible to monitor whether or not the operating states of the first current detection unit 7 and the second current detection unit 8 are normal.

(第2の実施形態)
以下、図3を参照して、本発明の第2の実施形態に係る電流検出回路200について説明する。以下に示す各実施形態では、第1の実施形態と異なる点を中心に説明し、同様の機能を有する構成には同一の符号を付して説明を省略する。
(Second Embodiment)
Hereinafter, the current detection circuit 200 according to the second embodiment of the present invention will be described with reference to FIG. In each of the following embodiments, the points different from those of the first embodiment will be mainly described, and the same reference numerals will be given to the configurations having the same functions, and the description thereof will be omitted.

第2の実施形態は、第1電流検出部7のシャント抵抗71〜74の出力電極71b〜74bと第2電流検出部8のシャント抵抗81〜84の入力電極81a〜84aが、回路パターン21によって選択的に接続される点で、第1の実施形態とは相違する。 In the second embodiment, the output electrodes 71b to 74b of the shunt resistors 71 to 74 of the first current detection unit 7 and the input electrodes 81a to 84a of the shunt resistors 81 to 84 of the second current detection unit 8 are formed by a circuit pattern 21. It differs from the first embodiment in that it is selectively connected.

図3は、第2の実施形態に係る電流検出回路200の模式図である。 FIG. 3 is a schematic view of the current detection circuit 200 according to the second embodiment.

本実施形態では、第1電流検出部7のシャント抵抗71〜74の出力電極71b〜74bと第2電流検出部8のシャント抵抗81〜84の入力電極81a〜84aとを選択的に接続することで、意図的に第1電流検出部7のシャント抵抗74と第2電流検出部8のシャント抵抗84との流れる電流の割合を同じにする。 In the present embodiment, the output electrodes 71b to 74b of the shunt resistors 71 to 74 of the first current detection unit 7 and the input electrodes 81a to 84a of the shunt resistors 81 to 84 of the second current detection unit 8 are selectively connected. Therefore, the ratio of the flowing current between the shunt resistor 74 of the first current detection unit 7 and the shunt resistor 84 of the second current detection unit 8 is intentionally made the same.

図3に示すように、シャント抵抗72の出力電極72bとシャント抵抗82の入力電極82aとを回路パターン21bによって接続させるとともに、シャント抵抗74の出力電極74bとシャント抵抗84の入力電極84aとを回路パターン21dによって接続する。また、シャント抵抗71の出力電極71bとシャント抵抗81の入力電極81a、及びシャント抵抗73の出力電極73bとシャント抵抗83の入力電極83aは接続しない。 As shown in FIG. 3, the output electrode 72b of the shunt resistor 72 and the input electrode 82a of the shunt resistor 82 are connected by a circuit pattern 21b, and the output electrode 74b of the shunt resistor 74 and the input electrode 84a of the shunt resistor 84 are circuited. Connect by pattern 21d. Further, the output electrode 71b of the shunt resistance 71 and the input electrode 81a of the shunt resistance 81, and the output electrode 73b of the shunt resistance 73 and the input electrode 83a of the shunt resistance 83 are not connected.

上記のように、第1電流検出部7と第2電流検出部8を接続することにより、電流検出回路200のシャント抵抗71〜74,81〜84に流れる電流の割合が変化する。その結果、第1電流検出部7のシャント抵抗74と第2電流検出部8のシャント抵抗84で、流れる電流の割合が同じになる(図3においては、幅が同じである矢印Aと矢印Hで示す)。つまり、意図的にシャント抵抗74とシャント抵抗84とに流れる電流の割合を同じにすることができる。 As described above, by connecting the first current detection unit 7 and the second current detection unit 8, the ratio of the current flowing through the shunt resistors 71 to 74, 81 to 84 of the current detection circuit 200 changes. As a result, the shunt resistance 74 of the first current detection unit 7 and the shunt resistance 84 of the second current detection unit 8 have the same ratio of the flowing currents (in FIG. 3, arrows A and H having the same width). (Indicated by). That is, the ratio of the current flowing through the shunt resistor 74 and the shunt resistor 84 can be intentionally made the same.

以上の第2の実施形態によれば、第1の実施形態と同様の効果を奏するとともに、第1電流検出部7のシャント抵抗71〜74の出力電極71b〜74bと第2電流検出部8のシャント抵抗81〜84の入力電極81a〜84aとを選択的に接続させることで、流れる電流の割合が同じになるシャント抵抗71〜74,81〜84を任意に選択することができる。そのため、電流検出回路200において検出信号線76,86を接続させる位置を任意に選択できるようになり、回路基板の設計を容易にすることができる。また、回路基板の設計が容易になることで、小さい回路基板を選択できるようになり、電流検出回路200の製作コストを削減することができる。 According to the second embodiment described above, the same effect as that of the first embodiment is obtained, and the output electrodes 71b to 74b of the shunt resistors 71 to 74 of the first current detection unit 7 and the second current detection unit 8 By selectively connecting the input electrodes 81a to 84a of the shunt resistors 81 to 84, the shunt resistors 71 to 74, 81 to 84 having the same ratio of the flowing currents can be arbitrarily selected. Therefore, in the current detection circuit 200, the positions where the detection signal lines 76 and 86 are connected can be arbitrarily selected, and the design of the circuit board can be facilitated. Further, by facilitating the design of the circuit board, it becomes possible to select a small circuit board, and the manufacturing cost of the current detection circuit 200 can be reduced.

(第3の実施形態)
以下、図4を参照して、本発明の第3の実施形態に係る電流検出回路300について説明する。
(Third Embodiment)
Hereinafter, the current detection circuit 300 according to the third embodiment of the present invention will be described with reference to FIG.

第3の実施形態は、電流検出回路300内のすべてのシャント抵抗71〜74,81〜84において流れる電流の割合が同じになるように第1回路30及び第2回路40の回路パターン30b,40bが設定される点で、第1及び第2の実施形態とは相違する。 In the third embodiment, the circuit patterns 30b and 40b of the first circuit 30 and the second circuit 40 have the same ratio of the flowing currents in all the shunt resistors 71 to 74, 81 to 84 in the current detection circuit 300. Is set, which is different from the first and second embodiments.

図4は、第3の実施形態に係る電流検出回路300の模式図である。 FIG. 4 is a schematic diagram of the current detection circuit 300 according to the third embodiment.

本実施形態では、シャント抵抗71〜74,81〜84に流れる電流の割合が全て同じになるように回路パターン12,30b,40bが形成される。 In the present embodiment, the circuit patterns 12, 30b and 40b are formed so that the ratios of the currents flowing through the shunt resistors 71 to 74 and 81 to 84 are all the same.

図4に示すように、回路パターン30bは、幅が異なる複数の導電部30c〜30fから構成される櫛歯形状に形成される。回路パターン40bも、幅が異なる複数の導電部40c〜40fから構成される櫛歯形状に形成される。本実施形態では、導電部30c〜30f,40c〜40fの幅は、回路パターン30bと回路パターン40bとで対応関係にあるよう形成される。具体的には、導電部30cの幅が狭く形成されれば導電部40cの幅が広く形成され、導電部30fの幅が広く形成されれば導電部40fの幅が狭く形成される。また、回路パターン12は、シャント抵抗71〜74の出力電極71b〜74bとシャント抵抗81〜84の入力電極81a〜84aとを各々直列に接続するように形成される。 As shown in FIG. 4, the circuit pattern 30b is formed in a comb-teeth shape composed of a plurality of conductive portions 30c to 30f having different widths. The circuit pattern 40b is also formed in a comb-teeth shape composed of a plurality of conductive portions 40c to 40f having different widths. In the present embodiment, the widths of the conductive portions 30c to 30f and 40c to 40f are formed so as to correspond with each other in the circuit pattern 30b and the circuit pattern 40b. Specifically, if the width of the conductive portion 30c is formed narrow, the width of the conductive portion 40c is formed wide, and if the width of the conductive portion 30f is formed wide, the width of the conductive portion 40f is formed narrow. Further, the circuit pattern 12 is formed so as to connect the output electrodes 71b to 74b of the shunt resistors 71 to 74 and the input electrodes 81a to 84a of the shunt resistors 81 to 84 in series.

上記の回路パターン30b,40bの形状は、導電部30cから回路パターン12aを経て導電部40cに至る経路の合計の抵抗と、導電部30dから回路パターン12bを経て導電部40dに至る経路の合計の抵抗と、導電部30eから回路パターン12cを経て導電部40eに至る経路の合計の抵抗と、導電部30fから回路パターン12dを経て導電部40fに至る経路の合計の抵抗とが、全て等しくなるように設定される。これにより、電流検出回路300のすべてのシャント抵抗71〜74,81〜84で、流れる電流の割合が同じになる。どのシャント抵抗71〜74,81〜84に検出信号線76,86を接続しても、同じ電流値を検出することができる。 The shapes of the circuit patterns 30b and 40b are the total resistance of the path from the conductive portion 30c to the conductive portion 40c via the circuit pattern 12a and the total resistance of the path from the conductive portion 30d to the conductive portion 40d via the circuit pattern 12b. The resistance, the total resistance of the path from the conductive portion 30e to the conductive portion 40e via the circuit pattern 12c, and the total resistance of the path from the conductive portion 30f to the conductive portion 40f via the circuit pattern 12d are all equal. Is set to. As a result, the ratio of the flowing current becomes the same in all the shunt resistors 71 to 74, 81 to 84 of the current detection circuit 300. The same current value can be detected regardless of which shunt resistors 71 to 74, 81 to 84 are connected to the detection signal lines 76 and 86.

以上の第3の実施形態によれば、第1及び第2の実施形態と同様の効果を奏するとともに、電流検出回路300のすべてのシャント抵抗71〜74,81〜84で、流れる電流の割合が同じになるため、電流検出回路300で検出する電流値の精度を向上させることができる。 According to the third embodiment described above, the same effect as that of the first and second embodiments is obtained, and the ratio of the flowing current is different in all the shunt resistors 71 to 74, 81 to 84 of the current detection circuit 300. Since it is the same, the accuracy of the current value detected by the current detection circuit 300 can be improved.

ここで回路パターン12,30b,40bの形状は、図4に示す形状に限られず、電流検出回路300のすべてのシャント抵抗71〜74,81〜84で流れる電流の割合が同じになれば、どのような形状であってもよい。 Here, the shapes of the circuit patterns 12, 30b, and 40b are not limited to the shapes shown in FIG. 4, and if the ratios of the currents flowing in all the shunt resistors 71 to 74, 81 to 84 of the current detection circuit 300 are the same, whichever It may have such a shape.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiments. Absent.

本実施形態では、第1電流検出部7(第2電流検出部8)として4個のシャント抵抗71〜74(81〜84)を用いているが、シャント抵抗は複数個であればよい。 In the present embodiment, four shunt resistors 71 to 74 (81 to 84) are used as the first current detection unit 7 (second current detection unit 8), but a plurality of shunt resistors may be used.

また、第1電流検出部7のうちのひとつのシャント抵抗と第2電流検出部8のうちのひとつのシャント抵抗とで流れる電流の割合が同じであれば、第1電流検出部7と第2電流検出部8とで用いるシャント抵抗の数は同じでなくてもよい。 Further, if the ratio of the current flowing through the shunt resistor of one of the first current detection units 7 and the shunt resistance of one of the second current detection units 8 is the same, the first current detection unit 7 and the second current detection unit 7 and the second The number of shunt resistors used by the current detection unit 8 does not have to be the same.

また、第1回路10,30と第2回路11,40と回路パターン12とは、別々の基板に形成されるものとして説明したが、これらを単一の基板に形成してもよい。 Further, although the first circuits 10, 30 and the second circuits 11, 40 and the circuit pattern 12 have been described as being formed on separate substrates, they may be formed on a single substrate.

100 電流検出回路
200 電流検出回路
300 電流検出回路
7 第1電流検出部(第1の抵抗群)
8 第2電流検出部(第2の抵抗群)
10 第1回路
10b 回路パターン
10c ビア
11 第2回路
11b 回路パターン
11c ビア
30 第1回路
30b 回路パターン
40 第2回路
40b 回路パターン
71〜74 シャント抵抗(抵抗器)
71a〜74a 入力電極
71b〜74b 出力電極
76 検出信号線(第1検出信号線)
81〜84 シャント抵抗(抵抗器)
81a〜84a 入力電極
81b〜84b 出力電極
86 検出信号線(第2検出信号線)
100 Current detection circuit 200 Current detection circuit 300 Current detection circuit 7 First current detection unit (first resistance group)
8 Second current detector (second resistance group)
10 1st circuit 10b Circuit pattern 10c Via 11 2nd circuit 11b Circuit pattern 11c Via 30 1st circuit 30b Circuit pattern 40 2nd circuit 40b Circuit pattern 71-74 Shunt resistor (resistor)
71a to 74a Input electrodes 71b to 74b Output electrodes 76 Detection signal line (first detection signal line)
81-84 Shunt resistor (resistor)
81a to 84a Input electrodes 81b to 84b Output electrodes 86 Detection signal line (second detection signal line)

Claims (5)

電流検出回路であって、
複数の抵抗器で構成される第1の抵抗群と、
前記第1の抵抗群と接続される複数の前記抵抗器で構成される第2の抵抗群と、
前記第1の抵抗群の各々の前記抵抗器の入力電極と接続される第1回路と、
前記第2の抵抗群の各々の前記抵抗器の出力電極と接続される第2回路と、
前記第1の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第1検出信号線と、
前記第2の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第2検出信号線と、
を備え、
前記第1検出信号線及び前記第2検出信号線は、前記第1回路及び前記第2回路の構成に基づき各々の前記抵抗器に流れる電流の割合が同じである前記第1の抵抗群の前記抵抗器及び前記第2の抵抗群の前記抵抗器に接続される、
ことを特徴とする電流検出回路。
It is a current detection circuit
The first resistor group consisting of multiple resistors and
A second resistance group composed of a plurality of the resistors connected to the first resistance group,
A first circuit connected to the input electrode of each of the resistors in the first resistor group,
A second circuit connected to the output electrode of each of the resistors in the second resistor group,
A first detection signal line connected to the resistor, which is one of the first resistor groups, and for detecting a current flowing through the resistor.
A second detection signal line connected to the resistor, which is one of the second resistor groups, and for detecting a current flowing through the resistor.
With
The first detection signal line and the second detection signal line are the said of the first resistance group in which the ratio of the current flowing through each of the resistors is the same based on the configurations of the first circuit and the second circuit. Connected to the resistor and the resistor in the second group of resistors,
A current detection circuit characterized by that.
請求項1に記載の電流検出回路であって、
前記第1の抵抗群の複数の前記抵抗器は並列に接続され、
前記第2の抵抗群の複数の前記抵抗器は並列に接続され、
前記第1の抵抗群の複数の前記抵抗器の出力電極は、前記第2の抵抗群の複数の前記抵抗器の入力電極と各々直列に接続される、
ことを特徴とする電流検出回路。
The current detection circuit according to claim 1.
A plurality of the resistors of the first resistance group are connected in parallel, and the resistors are connected in parallel.
A plurality of the resistors of the second resistance group are connected in parallel, and the resistors are connected in parallel.
The output electrodes of the plurality of resistors in the first resistance group are connected in series with the input electrodes of the plurality of resistors in the second resistance group, respectively.
A current detection circuit characterized by that.
請求項1に記載の電流検出回路であって、
前記第1の抵抗群の複数の前記抵抗器は並列に配置され、
前記第2の抵抗群の複数の前記抵抗器は並列に配置され、
前記第1の抵抗群の複数の前記抵抗器の出力電極と、前記第2の抵抗群の複数の前記抵抗器の入力電極とは選択的に接続される、
ことを特徴とする電流検出回路。
The current detection circuit according to claim 1.
A plurality of the resistors of the first resistance group are arranged in parallel.
A plurality of the resistors of the second resistance group are arranged in parallel.
The output electrodes of the plurality of resistors in the first resistance group and the input electrodes of the plurality of resistors in the second resistance group are selectively connected.
A current detection circuit characterized by that.
電流検出回路であって、
複数の抵抗器が電流の流れ方向に対して並列に配置される第1の抵抗群と、
前記第1の抵抗群の複数の前記抵抗器の出力電極と直列に接続される複数の前記抵抗器が電流の流れ方向に対して並列に配置される第2の抵抗群と、
前記第1の抵抗群の各々の前記抵抗器の入力電極と接続される第1回路と、
前記第2の抵抗群の各々の前記抵抗器の出力電極と接続される第2回路と、
前記第1の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第1検出信号線と、
前記第2の抵抗群のひとつの前記抵抗器に接続され、当該抵抗器に流れる電流を検出するための第2検出信号線と、
を備え、
前記第1回路及び前記第2回路に形成される回路パターンの形状は、前記第1の抵抗群及び前記第2の抵抗群の全ての前記抵抗器において、流れる電流の割合が同じになるように設定される、
ことを特徴とする電流検出回路。
It is a current detection circuit
A first resistor group in which a plurality of resistors are arranged in parallel with respect to the current flow direction,
A second resistor group in which a plurality of the resistors connected in series with the output electrodes of the plurality of resistors in the first resistor group are arranged in parallel with respect to the current flow direction.
A first circuit connected to the input electrode of each of the resistors in the first resistor group,
A second circuit connected to the output electrode of each of the resistors in the second resistor group,
A first detection signal line connected to the resistor, which is one of the first resistor groups, and for detecting a current flowing through the resistor.
A second detection signal line connected to the resistor, which is one of the second resistor groups, and for detecting a current flowing through the resistor.
With
The shape of the circuit pattern formed in the first circuit and the second circuit is such that the ratio of the flowing current is the same in all the resistors of the first resistance group and the second resistance group. Set,
A current detection circuit characterized by that.
請求項1から4のいずれか一つに記載の電流検出回路であって、
前記抵抗器に流れる電流の割合は、前記第1回路及び前記第2回路を構成する回路パターン、ビア、及びはんだの抵抗に基づき決定される、
ことを特徴とする電流検出回路。
The current detection circuit according to any one of claims 1 to 4.
The proportion of current flowing through the resistor is determined based on the circuit patterns, vias, and solder resistances that make up the first and second circuits.
A current detection circuit characterized by that.
JP2019042032A 2019-03-07 2019-03-07 Current detection circuit Pending JP2020144055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042032A JP2020144055A (en) 2019-03-07 2019-03-07 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042032A JP2020144055A (en) 2019-03-07 2019-03-07 Current detection circuit

Publications (1)

Publication Number Publication Date
JP2020144055A true JP2020144055A (en) 2020-09-10

Family

ID=72353590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042032A Pending JP2020144055A (en) 2019-03-07 2019-03-07 Current detection circuit

Country Status (1)

Country Link
JP (1) JP2020144055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195137A1 (en) * 2022-04-07 2023-10-12 ファナック株式会社 Motor driving device comprising detection unit for detecting motor driving current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195137A1 (en) * 2022-04-07 2023-10-12 ファナック株式会社 Motor driving device comprising detection unit for detecting motor driving current

Similar Documents

Publication Publication Date Title
KR100600441B1 (en) Resistor arrangement, producing method, and measuring circuit
JP4967421B2 (en) Current measuring device
US9694649B2 (en) Electric heating, vehicle comprising an electric heating as well as method for controlling an electric heating
JP7062624B2 (en) Heater system and its operation method and its heater
JP2013517751A (en) Redundant module with symmetrical current path
WO2018056119A1 (en) Control device for vehicular power storage unit and vehicular power storage device
US20080100411A1 (en) Power controller with fusible link
US20170307660A1 (en) A current measurement circuit
JP2002290222A (en) Load drive circuit
JP2020144055A (en) Current detection circuit
JP2019066364A (en) Switch fault detector
CN111837453B (en) Control system for controlling heater
JP2020137089A (en) Control device
JP2016206040A (en) Temperature detection function diagnostic device
US5892150A (en) Air flow measuring element and air flow measuring apparatus therewith
JP6831052B2 (en) Leakage current detector and heating device
JP5821817B2 (en) Current detection circuit and power supply control device
WO2020003930A1 (en) Temperature detection circuit for use on vehicle
JP6249682B2 (en) Liquid discharge head substrate, liquid discharge head, and recording apparatus.
JP2020098140A (en) Switch fault detection device
JP7040348B2 (en) Heater device
EP4015287A1 (en) A charging system for an energy storage in a vehicle and a method for controlling the charging system
US20230314489A1 (en) Voltage detection device
EP2889941B1 (en) Apparatus for controlling fuel cell heating value
JP6539100B2 (en) Power supply control device for vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210120