JP2020143894A - RECEPTORS FOR SURFACE STRESS SENSORS CONTAINING [Cu (PHEN) ((±) -BINAP)] PF6, SURFACE STRESS SENSOR USING ITS RECEPTOR, AND METHANOL DETECTION DEVICE AND METHANOL DETECTION METHOD USING THE SURFACE STRESS SENSOR - Google Patents

RECEPTORS FOR SURFACE STRESS SENSORS CONTAINING [Cu (PHEN) ((±) -BINAP)] PF6, SURFACE STRESS SENSOR USING ITS RECEPTOR, AND METHANOL DETECTION DEVICE AND METHANOL DETECTION METHOD USING THE SURFACE STRESS SENSOR Download PDF

Info

Publication number
JP2020143894A
JP2020143894A JP2019038118A JP2019038118A JP2020143894A JP 2020143894 A JP2020143894 A JP 2020143894A JP 2019038118 A JP2019038118 A JP 2019038118A JP 2019038118 A JP2019038118 A JP 2019038118A JP 2020143894 A JP2020143894 A JP 2020143894A
Authority
JP
Japan
Prior art keywords
surface stress
methanol
stress sensor
binap
phen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038118A
Other languages
Japanese (ja)
Other versions
JP7138944B2 (en
Inventor
道弘 西川
Michihiro Nishikawa
道弘 西川
元起 吉川
Genki Yoshikawa
元起 吉川
弘太 柴
Kota SHIBA
弘太 柴
ロック クマール スレスタ
Kumar Shrestha Lok
ロック クマール スレスタ
克彦 有賀
Katsuhiko Ariga
克彦 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2019038118A priority Critical patent/JP7138944B2/en
Publication of JP2020143894A publication Critical patent/JP2020143894A/en
Application granted granted Critical
Publication of JP7138944B2 publication Critical patent/JP7138944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To make it easy to detect methanol contained in gasoline at a few percent.SOLUTION: The above-mentioned problems are achieved by a surface stress sensor using a material containing a copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 as an acceptor having a following chemical structural formula.SELECTED DRAWING: None

Description

本発明は銅一価錯体[Cu(phen)((±)−BINAP)]PFを含む表面応力センサ用受容体、その受容体を使用した表面応力センサ、並びにその表面応力センサを使用したメタノール検出装置及びメタノール検出方法に関する。 The present invention relates to a receptor for a surface stress sensor containing a copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 , a surface stress sensor using the receptor, and methanol using the surface stress sensor. The present invention relates to a detection device and a methanol detection method.

ガソリンはよく用いられている燃料であるが、メタノールを含むガソリンが市場に出回っている。メタノールを含むガソリンはメタノールが毒性を有し、またエンジンなどの種類によってはメタノールを含むガソリンが適合しない場合があるとも言われることから、メタノールを含むガソリンとメタノールを含まないガソリンとを区別する手段が求められている。これまでにメタノールを十数%含むガソリンと通常のガソリンとを、材料を浸漬させることによる色の変化により区別することができる例が報告されている。 Gasoline is a commonly used fuel, but gasoline containing methanol is on the market. Gasoline containing methanol is toxic to methanol, and it is said that gasoline containing methanol may not be compatible with some types of engines. Therefore, a means for distinguishing gasoline containing methanol from gasoline containing no methanol. Is required. So far, there have been reports of examples in which gasoline containing a dozen percent of methanol and ordinary gasoline can be distinguished by a change in color due to immersion of the material.

メタノールを出力電圧などの電気信号として検出することができるセンサの開発例が報告されている。しかしガソリンの中に数%以下の微量のメタノールが含まれているガソリンあるいはn−ヘキサンのような炭化水素とメタノールが含まれていないこの種の液体とを区別することができるセンサの開発例は限られており、しかもそのようなセンサは微量のメタノールの存在を周期的な電気信号といった取り扱いやすい形態で出力できるものではなかった。 An example of development of a sensor capable of detecting methanol as an electric signal such as an output voltage has been reported. However, there is an example of the development of a sensor that can distinguish between hydrocarbons such as gasoline or n-hexane, which contains a trace amount of methanol of a few percent or less, and this type of liquid, which does not contain methanol. Moreover, such sensors have not been able to output the presence of trace amounts of methanol in an easy-to-handle form such as a periodic electrical signal.

膜型表面応力センサ(MSS)はピエゾ素子から構成され、カンチレバーを用いた表面応力センサに比べて感度が著しく大きく、表面応力から電圧へと変換することができる。さらに種々の材料を用いて表面応力を受け取るMSS表面(一般には表面応力センサが表面応力を受け取るセンサ表面)に受容体層を形成することで、種々の揮発性有機化合物(VOC)等の存在を、それから得られる出力電圧として検出することができる。なお、本願では受容体の層を有していない表面応力センサを表面応力センサ本体、また受容体の層を形成済みの表面応力センサを単に表面応力センサと呼ぶ。したがって、表面応力センサとしてMSSを使用する場合にはそれぞれMSS本体及びMSSと呼ぶ。なお、MSSについては当業者によく知られた事項であるためこれ以上説明しないが、必要に応じて特許文献1〜3、非特許文献1等を参照されたい。 The film-type surface stress sensor (MSS) is composed of a piezo element, has significantly higher sensitivity than a surface stress sensor using a cantilever, and can convert surface stress into voltage. Furthermore, by forming a receptor layer on the surface of the MSS that receives surface stress using various materials (generally, the surface of the sensor that the surface stress sensor receives surface stress), the presence of various volatile organic compounds (VOCs) and the like can be detected. , Can be detected as the output voltage obtained from it. In the present application, a surface stress sensor having no receptor layer is referred to as a surface stress sensor main body, and a surface stress sensor having a receptor layer formed thereof is simply referred to as a surface stress sensor. Therefore, when MSS is used as the surface stress sensor, they are referred to as MSS main body and MSS, respectively. Since MSS is a matter well known to those skilled in the art, it will not be described further, but if necessary, refer to Patent Documents 1 to 3 and Non-Patent Document 1 and the like.

センサ本体としてMSSを使用し、ネットワーク構造を有するシリカとポルフィリン誘導体を合わせた材料を受容体として用いることで、アセトンを出力信号として検出をした例が報告されている。ポリマーを受容体として用いて主成分分析を行うことでスパイスの識別を行うことができることが示されている。また、MSSの受容体に低吸湿性材料を用いることでメタノールを検出できるセンサが開発されている。ポルフィリン錯体の固体を受容体に用いたセンサも開発されており、種々のVOCの検出が報告されている。 An example has been reported in which acetone is detected as an output signal by using MSS as the sensor body and using a material that combines silica having a network structure and a porphyrin derivative as a receptor. It has been shown that spices can be identified by performing principal component analysis using a polymer as a receptor. Further, a sensor capable of detecting methanol has been developed by using a low hygroscopic material for the MSS receptor. Sensors using a solid porphyrin complex as a receptor have also been developed, and detection of various VOCs has been reported.

しかしながら、これに限定するものではないが、ガソリン中のメタノールを検出するという用途に適用することが求められた場合、ガソリンへのメタノール添加量は数%程度のわずかなものである場合がしばしばあるので、1%程度のメタノールでも十分に測定できる程度の高いメタノール検出感度を有するセンサを提供することが望ましい。 However, but not limited to this, when it is required to be applied to the application of detecting methanol in gasoline, the amount of methanol added to gasoline is often as small as a few percent. Therefore, it is desirable to provide a sensor having a high methanol detection sensitivity that can sufficiently measure even about 1% methanol.

本発明の一側面によれば、下記の化学構造式


を有する銅一価錯体[Cu(phen)((±)−BINAP)]PFを含む表面応力センサ用受容体材料が与えられる。
本発明の他の側面によれば、表面応力センサ本体と、前記表面応力センサ本体上の表面応力を受け取る表面に、前記受容体材料からなる受容体層を設けた、表面応力センサが与えられる。
ここで、前記表面応力センサは膜型表面応力センサであってよい。
本発明のさらにほかの側面によれば、前記表面応力センサを使用した、気体中のメタノールを検出するメタノール検出装置が与えられる。
ここで、前記メタノール検出装置において、前記気体はガソリンを含んでよい。
本発明のさらに他の側面によれば、気体を前記表面応力センサに与え、前記表面応力センサからの出力信号に基づいて前記気体中のメタノールを検出する、メタノール検出方法が与えられる。
前記メタノール検出方法において、前記気体はガソリンを含んでよい。
According to one aspect of the present invention, the following chemical structural formula


A receptor material for a surface stress sensor containing a copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 is provided.
According to another aspect of the present invention, a surface stress sensor is provided in which a surface stress sensor main body and a surface of the surface stress sensor main body that receives surface stress are provided with a receptor layer made of the receptor material.
Here, the surface stress sensor may be a film type surface stress sensor.
According to still another aspect of the present invention, there is provided a methanol detector that detects methanol in a gas using the surface stress sensor.
Here, in the methanol detection device, the gas may contain gasoline.
According to still another aspect of the present invention, there is provided a methanol detecting method in which a gas is applied to the surface stress sensor and methanol in the gas is detected based on an output signal from the surface stress sensor.
In the methanol detection method, the gas may contain gasoline.

本発明によればガソリンへの1%程度のわずかなメタノールの混入でも検出できる、高感度のメタノール検出を実現することができる。また、本発明ではメタノールに対して特異的に高い感度が得られるため、異なる検出特性を有する多数のセンサからの出力を演算処理するなどの複雑な後処理なしでメタノールだけを高い精度で検出することができる。 According to the present invention, it is possible to realize highly sensitive methanol detection that can detect even a small amount of methanol mixed in gasoline by about 1%. Further, in the present invention, since high sensitivity specifically for methanol can be obtained, only methanol is detected with high accuracy without complicated post-processing such as arithmetic processing of outputs from a large number of sensors having different detection characteristics. be able to.

アセトン−d中における[Cu(phen)((±)−BINAP)]PFの1H NMRを示す図。Shows the [Cu (phen) ((± ) -BINAP)] 1H NMR of PF 6 in acetone -d 6. CDCl中における[Cu(phen)((±)−BINAP)]PFの1H NMRを示す図。The figure which shows 1H NMR of [Cu (phen) ((±) -BINAP)] PF 6 in CDCl 3 . 各種の条件下における[Cu(phen)((±)−BINAP)]PFの大気下の1H NMRを示す図。これらの条件は1H NMRのグラフの右側に示すが、これらの条件において「1」は[Cu(phen)((±)−BINAP)]PFを意味する。The figure which shows 1H NMR in the atmosphere of [Cu (phen) ((±) -BINAP)] PF 6 under various conditions. These conditions are shown on the right side of the 1H NMR graph, where "1" means [Cu (phen) ((±) -BINAP)] PF 6 . 353Kにおいて[Cu(phen)((±)−BINAP)]PFのDMA溶液を300回MSS本体上の表面応力を受け取る平坦部に滴下することにより受容体層を形成した受容体層付きMSSに対して、n−ヘキサン、メタノール、エタノール、アセトン、トルエン、n−ヘプタン、ベンゼン、酢酸エチル、2−プロパノールの夫々を含有する窒素と純窒素とを交互に周期的に供給したときの受容体層付きMSSからの出力電圧の時間変化を示す図。At 353K, a DMA solution of [Cu (methane) ((±) -BINAP)] PF 6 was dropped 300 times onto a flat portion receiving surface stress on the MSS body to form an MSS with a receptor layer. On the other hand, the receptor layer when nitrogen containing n-hexane, methanol, ethanol, acetone, toluene, n-heptane, benzene, ethyl acetate, and 2-propanol were alternately and periodically supplied with pure nitrogen. The figure which shows the time change of the output voltage from MSS with. 353Kにおいて[Cu(phen)((±)−BINAP)]PFのDMA溶液を300回MSS本体の表面応力を受け取る平坦部に滴下することにより受容体層を形成した受容体層付きMSSに対して、メタノール/n−ヘキサン(1:500=v/v)(上)、(1:200=v/v)(中)、(1:50=v/v)(下)を含有する窒素と純窒素とを交互に周期的に供給したときの受容体層付きMSSからの出力電圧の時間変化を示す図。ここで、メタノール、n−ヘキサンと窒素との混合気体は、メタノールとn−ヘキサンとをそれぞれ上記体積比で混合した液体に純窒素ガスを流してそこからの蒸気を含ませることによって得た。For MSS with a receptor layer, which formed a receptor layer by dropping a DMA solution of [Cu (methane) ((±) -BINAP)] PF 6 300 times on a flat portion that receives the surface stress of the MSS body at 353K. With nitrogen containing methanol / n-hexane (1: 500 = v / v) (top), (1: 200 = v / v) (middle), (1:50 = v / v) (bottom). The figure which shows the time change of the output voltage from MSS with a receptor layer when pure nitrogen was supplied alternately and periodically. Here, the mixed gas of methanol, n-hexane and nitrogen was obtained by flowing pure nitrogen gas into a liquid in which methanol and n-hexane were mixed at the above volume ratios and containing vapors from the liquid. 353Kにおいて[Cu(phen)((±)−BINAP)]PFのDMA溶液を300回MSS本体上の表面応力を受ける平坦部に滴下することにより受容体層を形成した受容体層付きMSSに対して、ガソリンを含有する窒素(上)及びメタノール/ガソリン混合物(1:100=v/v)を含有する窒素(下)の夫々と純窒素とを交互に周期的に供給したときの受容体層付きMSSからの出力電圧の時間変化を示す図。ここでガソリンを含有する窒素はガソリンに純窒素を流してそこからの蒸気を含ませることによって得た。また、メタノールとガソリンと窒素との混合気体は、メタノールとガソリンとを上記体積比で混合した液体に純窒素を流してそこからの蒸気を含ませることによって得た。At 353K, a DMA solution of [Cu (phen) ((±) -BINAP)] PF 6 was dropped 300 times onto a flat portion subject to surface stress on the MSS body to form an MSS with a receptor layer. On the other hand, the receptor when pure nitrogen is alternately and periodically supplied with nitrogen containing gasoline (top) and nitrogen containing a methanol / gasoline mixture (1: 100 = v / v) (bottom). The figure which shows the time change of the output voltage from a layered MSS. Here, the nitrogen containing gasoline was obtained by flowing pure nitrogen through gasoline and including vapor from the pure nitrogen. Further, the mixed gas of methanol, gasoline and nitrogen was obtained by flowing pure nitrogen into a liquid obtained by mixing methanol and gasoline in the above volume ratio and including vapor from the liquid. 受容体層付きMSSからの出力電圧の差の棒グラフを示す図。The figure which shows the bar graph of the difference of the output voltage from MSS with a receptor layer.

いくつかの型の銅(I)錯体が報告されている。ジイミンとジホスフィンを含む銅(I)錯体は銅(I)錯体の中で良く用いられている化合物の一つである。この型の銅(I)錯体の長所として、安く元素存在度の高い金属源である銅を用いておりかつ独特な物性を有することがあげられる。既知化合物である[Cu(phen)((±)−BINAP)]BFの溶液中におけるNMRや触媒反応、また[Cu(phen)((S)−BINAP)]PFの溶液中における紫外可視吸収スペクトルが報告されている(非特許文献2、3)。この種の銅一価錯体は多数報告されており発光材料などへの研究が行われており、[Cu(phen)((±)−BINAP)]BFや[Cu(phen)((S)−BINAP)]PFの合成についても報告されている。しかしジイミン及びジホスフィンを含む銅一価錯体をセンサに用いた研究例はなく、どのようにセンサを作製するかは未解明である。 Several types of copper (I) complexes have been reported. A copper (I) complex containing diimine and diphosphine is one of the commonly used compounds among copper (I) complexes. The advantage of this type of copper (I) complex is that it uses copper, which is a cheap metal source with a high elemental abundance, and has unique physical properties. NMR and catalytic reactions of the known compound [Cu (phen) ((±) -BINAP)] BF 4 in solution, and ultraviolet visibility in solution of [Cu (phen) ((S) -BINAP)] PF 6. Absorption spectra have been reported (Non-Patent Documents 2 and 3). Many copper monovalent complexes of this type have been reported, and research into luminescent materials has been conducted. [Cu (phen) ((±) -BINAP)] BF 4 and [Cu (phen) ((S)) -BINAP)] The synthesis of PF 6 has also been reported. However, there is no research example using a copper monovalent complex containing diimine and diphosphine as a sensor, and how to prepare the sensor is unclear.

本願発明者は鋭意研究の結果、上記既知の銅(I)錯体とよく似た[Cu(phen)((±)−BINAP)]PF As a result of diligent research, the inventor of the present application has found that [Cu (phen) ((±) -BINAP)] PF 6 is very similar to the above-mentioned known copper (I) complex.


がメタノールに対して高い感度を示すとともにメタノールに対する高い選択性(つまり、メタノールに対する感度が他のガスに対する感度よりかなり高い)をも有することを見出し、この知見に基づいて本願発明を完成させるに至った。 Has shown high sensitivity to methanol and high selectivity to methanol (that is, sensitivity to methanol is considerably higher than that to other gases), and based on this finding, the present invention has been completed. It was.

なお、以下の説明では表面応力センサとしてもっぱらMSSを例に挙げて説明するが、本発明をMSSに限定するものでないことに注意されたい。 In the following description, the surface stress sensor will be described exclusively by taking MSS as an example, but it should be noted that the present invention is not limited to MSS.

本願発明の一態様によれば、MSS本体等の表面応力センサ本体上の表面応力を受け取る面に設けられる受容体層として、銅一価の陽イオンにかさ高いアリール基を有するジホスフィンである(±)−BINAP((±)−2,2′−ビス(ジフェニルホスフィノ)−1,1′−ビナフチル)とジイミン(phen=1,10−フェナントロリン)が結合し、カウンターイオンとしてヘキサフルオロホスファートを有する化合物である銅一価錯体、すなわち[Cu(phen)((±)−BINAP)]PFを用いた表面応力センサが与えられる。 According to one aspect of the present invention, the acceptor layer provided on the surface of the surface stress sensor body such as the MSS body that receives the surface stress is diphosphine having a bulky aryl group for copper monovalent cations (±). ) -BINAP ((±) -2,2'-bis (diphenylphosphino) -1,1'-binaphthyl) and diimine (phen = 1,10-phenanthroline) bind to hexafluorophosphate as a counter ion. A surface stress sensor using a copper monovalent complex, that is, [Cu (phen) ((±) -BINAP)] PF 6 , is provided.

ここで、受容体層材料として使用された上記銅一価錯体[Cu(phen)((±)−BINAP)]PFの構造の決定は以下のようにして行った。この銅一価錯体の製造プロセスや使用原料からこれとよく似た構造を有すると考えられる非特許文献3の化合物との比較を行った。これにより、上述のようにして得られた化合物の固体粉末と非特許文献3の化合物と1H NMRの化学シフト値、積分値比、J値の値が誤差範囲内で一致していた(非特許文献3の化合物については当該文献に記載されていた値を使用)。これにより、非特許文献3の化合物はカウンターイオンとしてテトラフルオロボレートを有するが、錯イオンの部分については上記本願での受容体層材料として使用された化合物と同じであると判定される。また上記銅一価錯体カウンターイオン部分については製造プロセスや使用原料から、非特許文献3におけるテトラフルオロボロレートとよく似た構造を有するヘキサフルオロホスファートであると判定される。その結果、上記銅一価錯体は[Cu(phen)((±)−BINAP)]PFであると同定できる。 Here, the structure of the copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 used as the receptor layer material was determined as follows. A comparison was made with the compound of Non-Patent Document 3 which is considered to have a structure similar to this from the production process of this copper monovalent complex and the raw materials used. As a result, the solid powder of the compound obtained as described above, the compound of Non-Patent Document 3 and the chemical shift value, integral value ratio, and J value of 1 H NMR were in agreement within the error range (non-patent). For the compound of Document 3, the value described in the document is used). As a result, the compound of Non-Patent Document 3 has tetrafluoroborate as a counter ion, but it is determined that the complex ion portion is the same as the compound used as the receptor layer material in the present application. Further, the copper monovalent complex counterion moiety is determined to be hexafluorophosphate having a structure similar to that of tetrafluoroborolate in Non-Patent Document 3 from the production process and raw materials used. As a result, the copper monovalent complex can be identified as [Cu (phen) ((±) -BINAP)] PF 6 .

上記銅一価錯体[Cu(phen)((±)−BINAP)]PFをN,N′−ジメチルアセトアミド(DMA)に溶解した溶液をインクジェットを用いて353KにおいてMSS本体の表面応力を受ける表面に滴下させ蒸発させることで、受容体層として機能する固体を析出させた。表面応力センサを使用した周知の測定装置、すなわち試料用の気体とパージ用の気体とをポンプ、マスフローコントローラーなどを使用することで交互に切り替えて供給する気体供給系、表面応力センサを収容し、このような気体供給系から供給される気体を表面応力センサに供給するチャンバー、及び表面応力センサからの出力信号を受け取って所要の解析を行うデータ処理系を設けた測定装置にこのようにして構成されたMSSを設置する。ここに、揮発性有機化合物(VOC)の入った容器中でキャリアガスとしての純窒素ガスを流すことにより得られたVOC含有窒素ガス(試料用の気体)と純窒素ガス(パージ用の気体)とを交互に通すことにより、MSS出力電圧の時間変化を測定した。n−ヘキサン(以下、単にヘキサン、hexaneと記載することがある)、メタノール、エタノール、アセトン、トルエン、n−ヘプタン、ベンゼン、酢酸エチル、2−プロパノールの測定を行った。窒素ガスの時に比べてメタノールを含む窒素ガスのほうが出力電圧が大きく、この傾向は他のVOCでも見られた。水、エタノール、アセトン、ヘキサン、メタノールの順に測定を3回繰り返してもこれらの信号はおおむね一致している結果が得られた。 A surface in which a solution of the above-mentioned copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 in N, N'-dimethylacetamide (DMA) is subjected to surface stress of the MSS body at 353 K using an inkjet. A solid functioning as a receptor layer was precipitated by dropping the mixture in the water and evaporating it. It houses a well-known measuring device that uses a surface stress sensor, that is, a gas supply system that alternately switches between a sample gas and a purging gas by using a pump, mass flow controller, etc., and a surface stress sensor. A measuring device provided with a chamber for supplying the gas supplied from the gas supply system to the surface stress sensor and a data processing system for receiving the output signal from the surface stress sensor and performing the required analysis is configured in this manner. Install the installed MSS. Here, VOC-containing nitrogen gas (gas for sample) and pure nitrogen gas (gas for purging) obtained by flowing pure nitrogen gas as a carrier gas in a container containing a volatile organic compound (VOC). And were alternately passed to measure the time change of the MSS output voltage. Measurements of n-hexane (hereinafter, may be simply referred to as hexane or hexane), methanol, ethanol, acetone, toluene, n-heptane, benzene, ethyl acetate, and 2-propanol were performed. The output voltage of nitrogen gas containing methanol was higher than that of nitrogen gas, and this tendency was also observed in other VOCs. Even when the measurement was repeated three times in the order of water, ethanol, acetone, hexane, and methanol, the results were obtained in which these signals were generally in agreement.

純窒素ガスに対するMSSの出力電圧とメタノールを含む窒素ガスのMSSの出力電圧との差が他の揮発性有機化合物の時に比べて大きいことから、ここで作製したセンサは気体状態のメタノールにより敏感に応答して出力電圧へと変換できることが確認できた。また、メタノールが1%含まれるガソリンに対するMSSの出力電圧の差は、メタノールが混入していないガソリンに対するMSSの出力信号に比べて大きかった。更に、ガソリンの主成分の一つであるn−ヘキサンについての実験でも、メタノールが0.2%含まれるn−ヘキサンをMSSに通したところ、出力電圧の差はn−ヘキサンだけに比べて増加した。0.2%,0.5%,2%の順でその値は増加した。これらの結果から、本発明により、ガソリン中の数%以下の微量のメタノールを検出できるセンサが得られることを確認した。具体的な測定に当たっては、例えばガソリン中に混入されている物質があるとすればメタノールだけであるということが事前にわかっている場合であれば、周知のように上で説明したところのMSSの出力電圧の差の値からメタノールの混入の有無や混入量が判る。また、複数種類の物質がガソリン中に混入している可能性があるのであれば、これも周知のとおり、複数種類の受容体の層を設けた一群のMSSからの出力信号を得ることにより、受容体毎の各物質への応答性(MSSの出力電圧の値や出力電圧波形)の違いからこれらの出力信号を組み合わせて混入物質の同定及び定量を行うことができる。 Since the difference between the output voltage of MSS with respect to pure nitrogen gas and the output voltage of MSS of nitrogen gas containing methanol is larger than that of other volatile organic compounds, the sensor made here is more sensitive to methanol in a gaseous state. It was confirmed that it could be converted to the output voltage in response. Further, the difference in the output voltage of the MSS with respect to the gasoline containing 1% methanol was larger than the output signal of the MSS with respect to the gasoline containing no methanol. Furthermore, in an experiment on n-hexane, which is one of the main components of gasoline, when n-hexane containing 0.2% methanol was passed through MSS, the difference in output voltage increased compared to n-hexane alone. did. The value increased in the order of 0.2%, 0.5%, and 2%. From these results, it was confirmed that the present invention can provide a sensor capable of detecting a trace amount of methanol of several% or less in gasoline. In the specific measurement, for example, if it is known in advance that the only substance mixed in gasoline is methanol, as is well known, the MSS described above From the value of the difference in output voltage, the presence or absence of methanol contamination and the amount of methanol mixed can be determined. Also, if there is a possibility that multiple types of substances are mixed in the gasoline, as is well known, by obtaining output signals from a group of MSSs provided with multiple types of receptor layers, From the difference in the responsiveness to each substance (MSS output voltage value and output voltage waveform) of each receptor, these output signals can be combined to identify and quantify the contaminating substance.

以下実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものでないことに注意されたい。 The present invention will be described in more detail with reference to the following examples, but it should be noted that the present invention is not limited to the following examples.

<銅一価錯体[Cu(phen)((±)−BINAP)]PFの合成>
使用した銅一価錯体の固体の作製は非特許文献3に記載の合成方法の条件を変更して行った。(±)−BINAP(313mg、0.503mmol)とテトラキス(アセトニトリル)銅(I)ヘキサフルオロホスファート(186.4mg、0.500mmol)との混合物に大気下室温の7.5mLのジクロロメタンを加えた。この混合物をスターラーチップで攪拌した後にphen(90.2mg、0.501mmol)を加え、室温大気下で60分間攪拌した。3mLのジエチルエーテルを加えると黄色粉末が生成した。この合成過程の化学反応式を以下に示す。
<Synthesis of copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 >
The solid copper monovalent complex used was prepared by changing the conditions of the synthesis method described in Non-Patent Document 3. 7.5 mL of dichloromethane at room temperature in the air was added to a mixture of (±) -BINAP (313 mg, 0.503 mmol) and tetrakis (acetonitrile) copper (I) hexafluorophosphate (186.4 mg, 0.500 mmol). .. After stirring the mixture with a stirrer tip, phen (90.2 mg, 0.501 mmol) was added, and the mixture was stirred at room temperature for 60 minutes. Addition of 3 mL of diethyl ether produced a yellow powder. The chemical reaction formula of this synthesis process is shown below.


この黄色粉末をろ過し、乾燥させた。収量は297.2mg、収率は59%であった。1H NMR(acetone−d,300.40MHz) δ=9.30(d,J=5Hz,2H),8.93(d,J=8Hz,2H),8.36(s,2H),8.15(dd,J=5,8Hz,2H),7.90(d,J=8Hz,2H),7.78(d,J=8Hz,2H),7.5−7.2(m,20H),6.96(d,J=8Hz,2H),6.85(2H),6.70(4H)(図1)。1H NMRはAL300BX(JEOL)分光器を用いて行った。CDCl中の1H NMRスペクトル(図2)の化学シフトはテトラメチルシラン(δ=0.00ppm)、acetone−d中の1H NMRスペクトルの化学シフトは溶媒残留ピーク(δ=2.05ppm)を用いて規格化を行った。 The yellow powder was filtered and dried. The yield was 297.2 mg and the yield was 59%. 1H NMR (acetone-d 6 , 300.40 MHz) δ = 9.30 (d, J = 5 Hz, 2H), 8.93 (d, J = 8 Hz, 2H), 8.36 (s, 2H), 8 .15 (dd, J = 5,8Hz, 2H), 7.90 (d, J = 8Hz, 2H), 7.78 (d, J = 8Hz, 2H), 7.5-7.2 (m, 20H), 6.96 (d, J = 8Hz, 2H), 6.85 (2H), 6.70 (4H) (Fig. 1). 1H NMR was performed using an AL300BX (JEOL) spectroscope. The chemical shift of the 1H NMR spectrum in CDCl 3 (FIG. 2) is tetramethylsilane (δ = 0.00ppm), and the chemical shift of the 1H NMR spectrum in acetone-d 6 is the solvent residual peak (δ = 2.05ppm). It was standardized using.

テトラメチルシランの入った重クロロホルム(CDCl)中における1H NMRの化学シフト値が既知化合物である[Cu(phen)((±)−BINAP)]BFと一致していることから、得られた黄色固体の妥当な化学式は[Cu(phen)((±)−BINAP)]PFであると考えられる。 Obtained from the fact that the chemical shift value of 1H NMR in deuterated chloroform (CDCl 3 ) containing tetramethylsilane is consistent with the known compound [Cu (phen) ((±) -BINAP)] BF 4. A reasonable chemical formula for the yellow solid is considered to be [Cu (phen) ((±) -BINAP)] PF 6 .

図3に示すように、このようにして得られた[Cu(phen)((±)−BINAP)]PFのアセトン−dの溶液と、このアセトン−dの溶液を6日間室温大気下で静置した後のものと、このアセトン−dの溶液を6日間室温大気下で静置した後のものとは芳香族領域の信号において化学シフト値の変化がないことから、得られた錯体は室温大気下のアセトン−d中で安定であることが確認された。また、これも図3に示すように、[Cu(phen)((±)−BINAP)]PFのアセトン−d−メタノール−d(1:100=v/v)と、そのアセトン−d−メタノール−d(1:100=v/v)の溶液を8日間室温大気下で静置した後のものと、そのアセトン−d−メタノール(1:100=v/v)とのスペクトルがアセトン−d中とよく一致していることから、メタノール及びメタノール−dの添加による錯体部分の変化は無視できるほど小さいと考えられる。更に、これも図3からわかるように、[Cu(phen)((±)−BINAP)]PFの作製直後の黄色固体をアセトン−dに溶解した溶液とこの黄色固体を室温大気下で半年静置した後でアセトン−dに溶解したものとでスペクトルが十分一致していることから、[Cu(phen)((±)−BINAP)]PFの作製直後の状態である黄色固体は室温大気下での長期保存が可能であることも確認された。 As shown in FIG. 3, a solution of [Cu (phen) ((±) -BINAP)] PF 6 of acetone-d 6 thus obtained and a solution of this acetone-d 6 were mixed in a room temperature atmosphere for 6 days. as after standing under, because there is no change in the chemical shift value in the signal of the aromatic region from those after standing in solution under 6 days at room temperature atmosphere of acetone -d 6, obtained The complex was confirmed to be stable in acetone-d 6 at room temperature. Also, as shown in FIG. 3, [Cu (phen) ((±) -BINAP)] PF 6 acetone-d 6 -methanol-d 4 (1: 100 = v / v) and its acetone- A solution of d 6 -methanol-d 4 (1: 100 = v / v) after being allowed to stand in the air at room temperature for 8 days, and its acetone-d 6 -methanol (1: 100 = v / v). It is considered that the change in the complex portion due to the addition of methanol and methanol-d 4 is negligibly small, since the spectrum of the above is in good agreement with that in acetone-d 6 . Furthermore, as can also be seen from FIG. 3, a solution of the yellow solid immediately after the preparation of [Cu (phen) ((±) -BINAP)] PF 6 in acetone-d 6 and the yellow solid at room temperature in the air. Since the spectra are sufficiently in agreement with those dissolved in acetone-d 6 after being allowed to stand for half a year, it is a yellow solid immediately after the preparation of [Cu (phen) ((±) -BINAP)] PF 6. It was also confirmed that it can be stored for a long time in the air at room temperature.

<銅一価錯体[Cu(phen)((±)−BINAP)]PFを受容体層とするMSSの作成及びそれを使用したメタノール検出>
得られた固体は0.72mgの1を2.5mLのDMAを加えて室温で5分間超音波を使用して作製した溶液(0.3mg/mL)を、インクジェットマシンを使用して353KのMSS本体上に300回滴下することでセンサを作製した。このようにして作製したMSSを陽圧測定装置に取り付けて、純窒素ガスと、水、種々のVOC、メタノール/n−ヘキサン混合物(1:500=v/v、1:200=v/v、1:50=v/v、ガソリン、メタノール/ガソリン混合物(1:100=v/v)に流すことによりこれらの蒸気を含ませた窒素ガスとをMSSに30秒毎に切り替えて供給する操作を4回繰り返し、これに応答したMSSの出力電圧の経時変化を測定した。0秒における出力電圧を0mVとしてグラフの作製および解析を行った。得られた出力電圧の60秒後と90秒後の差を用いてその応答性を調査した。このように、MSSに純窒素ガスとn−ヘプタンが含まれる窒素ガスとを30秒ごとに交互に通すことにより、図4の最上段左のグラフに示すように出力電圧が繰り返し変化した。この傾向は、同じく図4に示すように、水や他のVOCであるベンゼン、メタノール、酢酸エチル、n−ヘキサン、アセトン、エタノール、トルエン、2−プロパノールでも同様に観測された。また、図5に示すように、メタノールをわずかに含有するn−ヘキサン(メタノール/n−ヘキサン混合物の混合比は1:500=v/v、1:200=v/v、1:50=v/v)でも観測された。更に、図6に示すように、メタノールをわずかに含有するガソリン(メタノール/ガソリン混合物の混合比は1:100=v/v)でもこの傾向が観測された。以上のようにして得られたMSS出力電圧の差を図7に棒グラフとして示す。なお、この実験ではガソリンとしてJXTGエネルギー株式会社から供給されているENEOSハイオクガソリンを使用した。
<Copper monovalent complex [Cu (phen) ((±) -BINAP)] Preparation of MSS using PF 6 as a receptor layer and detection of methanol using it>
The obtained solid was prepared by adding 2.5 mL of DMA to 0.72 mg of 1 at room temperature for 5 minutes using ultrasonic waves (0.3 mg / mL), and using an inkjet machine, 353 K MSS. A sensor was manufactured by dropping it on the main body 300 times. The MSS thus prepared was attached to a positive pressure measuring device, and pure nitrogen gas, water, various VOCs, and methanol / n-hexane mixture (1: 500 = v / v, 1: 200 = v / v, An operation of switching and supplying the nitrogen gas containing these vapors to the MSS every 30 seconds by flowing it through a 1:50 = v / v, gasoline, methanol / gasoline mixture (1: 100 = v / v). It was repeated 4 times, and the change with time of the output voltage of MSS in response to this was measured. The graph was prepared and analyzed with the output voltage at 0 seconds as 0 mV. 60 seconds and 90 seconds after the obtained output voltage. The responsiveness was investigated using the difference. In this way, by passing pure nitrogen gas and nitrogen gas containing n-heptan alternately through the MSS every 30 seconds, the graph on the upper left of FIG. 4 is shown. As shown, the output voltage changed repeatedly. This tendency is also seen in water and other VOCs such as benzene, methanol, ethyl acetate, n-hexane, acetone, ethanol, toluene and 2-propanol, as also shown in FIG. It was also observed. Also, as shown in FIG. 5, n-hexane containing a small amount of methanol (mixture ratio of methanol / n-hexane mixture is 1: 500 = v / v, 1: 200 = v / v). , 1:50 = v / v). Further, as shown in FIG. 6, this tendency is also observed in gasoline containing a small amount of methanol (mixture ratio of methanol / gasoline mixture is 1: 100 = v / v). The difference in MSS output voltage obtained as described above is shown as a bar graph in FIG. 7. In this experiment, ENEOS high-octane gasoline supplied by JXTG Energy Co., Ltd. was used as the gasoline.

以上の測定結果からわかるように、メタノールの時のMSS出力電圧の差はエタノール、アセトン、トルエン、n−ヘプタン、ベンゼン、酢酸エチル、2−プロパノールに比べて大きい。またメタノール/n−ヘキサン混合物(1:500=v/v、1:200=v/v、1:50=v/v)の時のMSS出力電圧の差はn−ヘキサン単独の場合に比べて大きく、メタノールよりも小さい。またメタノール/ガソリン混合物(1:100=v/v)の時のMSS出力電圧の差もガソリン単独の場合に比べて大きい。更には、図5及び図6から明らかなように、n−ヘキサン及びガソリンの何れの場合でも、メタノールを混合していない場合のMSS出力電圧に対するメタノール混合物のMSS出力信号の変化率はメタノールの混合比(0.5%〜2%)に比べてはるかに大きい値となった。これらの結果から、メタノールを1%程度のわずかな量含むガソリンあるいはn−ヘキサンとメタノールを含まないガソリンあるいはn−ヘキサンとを十分に識別できることが確認された。 As can be seen from the above measurement results, the difference in MSS output voltage in the case of methanol is larger than that in ethanol, acetone, toluene, n-heptane, benzene, ethyl acetate and 2-propanol. Further, the difference in MSS output voltage when the methanol / n-hexane mixture (1: 500 = v / v, 1: 200 = v / v, 1:50 = v / v) is different from that when n-hexane alone is used. Larger and smaller than methanol. Also, the difference in MSS output voltage when the methanol / gasoline mixture (1: 100 = v / v) is larger than that when gasoline alone is used. Furthermore, as is clear from FIGS. 5 and 6, the rate of change of the MSS output signal of the methanol mixture with respect to the MSS output voltage when methanol is not mixed is the mixture of methanol in either case of n-hexane or gasoline. The value was much larger than the ratio (0.5% to 2%). From these results, it was confirmed that gasoline or n-hexane containing a small amount of methanol of about 1% can be sufficiently distinguished from gasoline or n-hexane containing no methanol.

以上説明したように、本発明によればガソリンなどにわずかに混入したメタノールでも検出可能になるので、ガソリンの品質チェックなどに大いに利用可能であることが期待される。 As described above, according to the present invention, even methanol slightly mixed in gasoline or the like can be detected, so that it is expected to be widely used for quality check of gasoline and the like.

特開2015−45657JP-A-2015-45657 再公表2013/157581Republished 2013/157581 再公表2011/148774Republished 2011/148774

G. Yoshikawa et al., Nano Lett., 11(2011)1044.7-5481.G. Yoshikawa et al., Nano Lett., 11 (2011) 1044.7-5481. K. Saito, T. Tsukuda, T. Tsubomura, Bull. Chem. Soc. Jpn.2006, 79, 437-441.K. Saito, T. Tsukuda, T. Tsubomura, Bull. Chem. Soc. Jpn. 2006, 79, 437-441. Clementine Minozzi et al., Angew. Chem. Int. Ed. 2018, 57, 547.Clementine Minozzi et al., Angew. Chem. Int. Ed. 2018, 57, 547.

Claims (7)

下記の化学構造式


を有する銅一価錯体[Cu(phen)((±)−BINAP)]PFを含む表面応力センサ用受容体材料。
The following chemical structural formula


Copper monovalent complex [Cu (phen) ((±) -BINAP)] PF 6 for a surface stress sensor receptor material.
表面応力センサ本体と、
前記表面応力センサ本体上の表面応力を受け取る表面に、請求項1の受容体材料からなる受容体層を設けた、表面応力センサ。
Surface stress sensor body and
A surface stress sensor in which a receptor layer made of the receptor material of claim 1 is provided on a surface of the surface stress sensor body that receives surface stress.
前記表面応力センサは膜型表面応力センサである、請求項2に記載の表面応力センサ。 The surface stress sensor according to claim 2, wherein the surface stress sensor is a film-type surface stress sensor. 請求項2または3に記載の表面応力センサを使用した、気体中のメタノールを検出するメタノール検出装置。 A methanol detection device for detecting methanol in a gas using the surface stress sensor according to claim 2 or 3. 前記気体はガソリンを含む、請求項4に記載のメタノール検出装置。 The methanol detection device according to claim 4, wherein the gas contains gasoline. 気体を請求項2または3に記載の表面応力センサに与え、
前記表面応力センサからの出力信号に基づいて前記気体中のメタノールを検出する、
メタノール検出方法。
Applying a gas to the surface stress sensor according to claim 2 or 3,
Detects methanol in the gas based on the output signal from the surface stress sensor.
Methanol detection method.
前記気体はガソリンを含む、請求項6に記載のメタノール検出方法。 The method for detecting methanol according to claim 6, wherein the gas contains gasoline.
JP2019038118A 2019-03-04 2019-03-04 Surface stress sensor receptor containing [Cu(phen)((±)-BINAP)] PF6, surface stress sensor using the receptor, and methanol detection device and methanol detection method using the surface stress sensor Active JP7138944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019038118A JP7138944B2 (en) 2019-03-04 2019-03-04 Surface stress sensor receptor containing [Cu(phen)((±)-BINAP)] PF6, surface stress sensor using the receptor, and methanol detection device and methanol detection method using the surface stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038118A JP7138944B2 (en) 2019-03-04 2019-03-04 Surface stress sensor receptor containing [Cu(phen)((±)-BINAP)] PF6, surface stress sensor using the receptor, and methanol detection device and methanol detection method using the surface stress sensor

Publications (2)

Publication Number Publication Date
JP2020143894A true JP2020143894A (en) 2020-09-10
JP7138944B2 JP7138944B2 (en) 2022-09-20

Family

ID=72353954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038118A Active JP7138944B2 (en) 2019-03-04 2019-03-04 Surface stress sensor receptor containing [Cu(phen)((±)-BINAP)] PF6, surface stress sensor using the receptor, and methanol detection device and methanol detection method using the surface stress sensor

Country Status (1)

Country Link
JP (1) JP7138944B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074025A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
US20070231918A1 (en) * 2006-03-30 2007-10-04 Oakland University Devices with surface bound ionic liquids and method of use thereof
JP2013098419A (en) * 2011-11-02 2013-05-20 Kyushu Univ Organic electroluminescent element, and copper complex and light-emitting material for use in the same
WO2017098862A1 (en) * 2015-12-08 2017-06-15 国立研究開発法人物質・材料研究機構 Fuel oil discrimination sensor equipped with receptor layer composed of hydrocarbon-group-modified microparticles, and fuel oil discrimination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074025A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
US20070231918A1 (en) * 2006-03-30 2007-10-04 Oakland University Devices with surface bound ionic liquids and method of use thereof
JP2013098419A (en) * 2011-11-02 2013-05-20 Kyushu Univ Organic electroluminescent element, and copper complex and light-emitting material for use in the same
WO2017098862A1 (en) * 2015-12-08 2017-06-15 国立研究開発法人物質・材料研究機構 Fuel oil discrimination sensor equipped with receptor layer composed of hydrocarbon-group-modified microparticles, and fuel oil discrimination method

Also Published As

Publication number Publication date
JP7138944B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
EP3114468B1 (en) Alkene sensor comprising a cobalt(iii)porphyrin complex
Chidambaram et al. Electronic metal–organic framework sensors
Schnorr et al. Sensory arrays of covalently functionalized single‐walled carbon nanotubes for explosive detection
Verlinden et al. Determining the ligand properties of N‐heterocyclic carbenes from 77Se NMR parameters
Hennrich et al. 1, 3, 5‐2, 4, 6‐Functionalized, Facially Segregated Benzenes—Exploitation of Sterically Predisposed Systems in Supramolecular Chemistry
Rehman et al. Methods and approaches of utilizing ionic liquids as gas sensing materials
Pinalli et al. Cavitands at work: From molecular recognition to supramolecular sensors
AU2015342241A1 (en) Gas sensor and gas measuring device for detecting volatile organic compounds
Huynh et al. Chemosensor for selective determination of 2, 4, 6-trinitrophenol using a custom designed imprinted polymer recognition unit cross-linked to a fluorophore transducer
Eddaif et al. A piezogravimetric sensor platform for sensitive detection of lead (ii) ions in water based on calix [4] resorcinarene macrocycles: synthesis, characterization and detection
Nishikawa et al. Discrimination of methanol from ethanol in gasoline using a membrane-type surface stress sensor coated with copper (I) complex
CN110691962A (en) Receptor for nano-mechanical sensor made of low hygroscopic material and nano-mechanical sensor using the same as receptor
Capan et al. Langmuir–Blodgett thin film for chloroform detection
Singh et al. A Click‐Generated Triethoxysilane Tethered Ferrocene‐Chalcone‐Triazole Triad for Selective and Colorimetric Detection of Cu2+ Ions
Rahman et al. Ultrasensitive hydrazine sensor fabrication based on Co-doped ZSM-5 zeolites for environmental safety
Bhalla et al. Terphenyl based ‘Turn On’fluorescent sensor for mercury
Liu et al. Highly selective chloromethanes detection based on quartz crystal microbalance gas sensors with Ba-MOFs
Li et al. Imine Bond-Based Fluorescent Nanofilms toward High-Performance Detection and Efficient Removal of HCl and NH3
JP2020143894A (en) RECEPTORS FOR SURFACE STRESS SENSORS CONTAINING [Cu (PHEN) ((±) -BINAP)] PF6, SURFACE STRESS SENSOR USING ITS RECEPTOR, AND METHANOL DETECTION DEVICE AND METHANOL DETECTION METHOD USING THE SURFACE STRESS SENSOR
Banthia et al. Calix [4] azacrown and 4-aminophthalimide-appended calix [4] azacrown: synthesis, structure, complexation and fluorescence signaling behaviour
Ananikov et al. Catalyst leaching as an efficient tool for constructing new catalytic reactions: Application to the synthesis of cyclic vinyl sulfides and vinyl selenides
CN109912533A (en) To the fluorescence probe and preparation method thereof of palladium response
JP5736593B2 (en) Sensor element, sensor
Crociani et al. Kinetic Studies of the Oxidative Addition and Transmetallation Steps Involved in the Cross‐Coupling of Alkynyl Stannanes with Aryl Iodides Catalysed by η2‐(Dimethyl fumarate)(iminophosphane) palladium (0) Complexes
Zhang et al. Nonplanar Perylene Monoimide‐Based Fluorescent Film for Enhanced BTX Sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7138944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150