JP2020142432A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2020142432A
JP2020142432A JP2019040513A JP2019040513A JP2020142432A JP 2020142432 A JP2020142432 A JP 2020142432A JP 2019040513 A JP2019040513 A JP 2019040513A JP 2019040513 A JP2019040513 A JP 2019040513A JP 2020142432 A JP2020142432 A JP 2020142432A
Authority
JP
Japan
Prior art keywords
laminate
haze value
resin layer
hydrophilic resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019040513A
Other languages
Japanese (ja)
Other versions
JP7224209B2 (en
Inventor
正俊 中村
Masatoshi Nakamura
正俊 中村
輝紀 松川
Teruki Matsukawa
輝紀 松川
スイン リ
Su In Lee
スイン リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Pialex Technologies Corp
Original Assignee
Murakami Corp
Pialex Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp, Pialex Technologies Corp filed Critical Murakami Corp
Priority to JP2019040513A priority Critical patent/JP7224209B2/en
Priority to CN202010120224.1A priority patent/CN111660617A/en
Publication of JP2020142432A publication Critical patent/JP2020142432A/en
Application granted granted Critical
Publication of JP7224209B2 publication Critical patent/JP7224209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/754Self-cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a laminate which is usable as a transparent substrate for protection of an optical element, in which the laminate has a self-cleaning function of easily removing oil stain by rainwater or water washing, easily recovering hydrophilicity, and maintaining hydrophilicity for an extended period.SOLUTION: The laminate is obtained by lamination of a hydrophilic resin layer containing a tetrafluoroethylene resin having a sulfonic acid group on a side chain and a binder resin and a substrate, where the laminate is characterized by that haze value of the substrate is 0.2% or less and the difference between the haze value of the laminate and the haze value of the substrate is 1% or less.SELECTED DRAWING: Figure 1

Description

本発明は、油汚れに対するセルフクリーニング機能を有する積層体に関する。 The present invention relates to a laminate having a self-cleaning function against oil stains.

一般的に防汚技術としては、付着した汚れを雨水や水洗により容易に落とせる親水性を基板に付与することが望ましい。
建造物の外壁に付着した汚れを、降雨やシャワー水の噴射によって落とせる技術が提案されている(例えば、特許文献1参照)。
特許文献1には、パーフルオロスルホン酸基を側鎖に有する高分子4フッ化エチレンの繰り返し単位からなるグラフトポリマーであるナフィオン(登録商標)からなる塗料が記載されている。該塗料を外壁に塗布することにより、塗布面は、長期にわたり超親水性を示すことが記載されている。
また、鋼板およびテント地に、光触媒機能を有する金属酸化物と上記ナフィオン(登録商標)とからなる塗料を塗布することが、引用文献2に記載されている。
Generally, as an antifouling technique, it is desirable to impart hydrophilicity to the substrate so that the adhered dirt can be easily removed by rainwater or washing with water.
A technique has been proposed in which dirt adhering to the outer wall of a building can be removed by rainfall or injection of shower water (see, for example, Patent Document 1).
Patent Document 1 describes a coating material made of Nafion (registered trademark), which is a graft polymer composed of repeating units of a polymer tetrafluoroethylene having a perfluorosulfonic acid group in the side chain. It is described that by applying the paint to the outer wall, the coated surface exhibits superhydrophilicity for a long period of time.
Further, it is described in Cited Document 2 that a paint composed of a metal oxide having a photocatalytic function and the above-mentioned Nafion (registered trademark) is applied to a steel plate and a tent.

一方、近年、屋外、屋内問わず、防犯カメラや監視カメラの設置が増えている。これら防犯カメラや監視カメラ等の光学素子を保護する透明カバーである透明基板は、透明基板に付着した汚れが雨水や水洗により容易に落とせる基板となっていることが、メンテナンス軽減の観点から好ましい。特に、防犯カメラや監視カメラの設置場所によっては、メンテナンスの機会が制限されることがある。そこで、光学素子を保護する透明基板は、どのような汚れに対しても、雨水や水洗により水滴が落ちるときに付着した汚れを一緒に落としてくれる自己清浄(セルフクリーニング)機能を有していることが望ましい。特に実用上の観点から、光学素子を保護する透明基板が、油汚れに対してセルフクリーニング機能を有する透明基板であることが望まれている。 On the other hand, in recent years, the installation of security cameras and surveillance cameras has been increasing regardless of whether they are outdoors or indoors. From the viewpoint of reducing maintenance, it is preferable that the transparent substrate, which is a transparent cover that protects the optical elements of these security cameras and surveillance cameras, is a substrate that allows dirt adhering to the transparent substrate to be easily removed by rainwater or washing with water. In particular, maintenance opportunities may be limited depending on the installation location of security cameras and surveillance cameras. Therefore, the transparent substrate that protects the optical element has a self-cleaning function that removes any dirt that has adhered to it when water droplets fall due to rainwater or washing with water. Is desirable. In particular, from a practical point of view, it is desired that the transparent substrate that protects the optical element is a transparent substrate having a self-cleaning function against oil stains.

特開2006−45370号公報Japanese Unexamined Patent Publication No. 2006-45370 特開2006−233073号公報Japanese Unexamined Patent Publication No. 2006-233073

しかし、上記特許文献1及び2には、降雨やシャワー水の噴射によって落とせる汚れについて具体的な説明はなく、上記特許文献2の背景技術欄には雨筋汚れについての汚れが記載されているだけである。
上記特許文献1及び2には、油が付着した場合に、雨水や水洗により汚れを容易に落とせ親水性を回復できるか否かについては記載されていない。
油汚れを含むどのような汚れに対しても、雨水や水洗により汚れを容易に落とせるセルフクリーニング機能を示す透明基板の提供という観点からは、上記特許文献1及び2に記載の技術は、充分満足のいくものとはいえず、改善の余地があった。
However, Patent Documents 1 and 2 do not have a specific description about stains that can be removed by rainfall or shower water injection, and only stains about rain streaks are described in the background technology column of Patent Document 2. Is.
The above-mentioned Patent Documents 1 and 2 do not describe whether or not the dirt can be easily removed by rainwater or washing with water and the hydrophilicity can be restored when the oil adheres.
The techniques described in Patent Documents 1 and 2 are sufficiently satisfactory from the viewpoint of providing a transparent substrate exhibiting a self-cleaning function that can easily remove stains by rainwater or washing with water for any stains including oil stains. It was not a good thing, and there was room for improvement.

そこで、本発明は、光学素子を保護する透明基板として使用可能な積層体であって、雨水や水洗により、油汚れを容易に落とすことができ、親水性を容易に回復できるセルフクリーニング機能を示し、さらに親水性を長期間安定して持続できる積層体を提供することを目的とする。 Therefore, the present invention is a laminate that can be used as a transparent substrate for protecting an optical element, and exhibits a self-cleaning function that can easily remove oil stains by washing with rainwater or water and easily restore hydrophilicity. Furthermore, it is an object of the present invention to provide a laminate capable of stably maintaining hydrophilicity for a long period of time.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、スルホン酸基を側鎖に有する4フッ化エチレン樹脂とバインダー樹脂とからなる親水性樹脂層、及び基材を有する積層体において、該基材のヘイズ値が特定の値以下であり、かつ該積層体のヘイズ値と該基材のヘイズ値との差が特定の値以下を示す積層体が、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の態様を包含するものである。
As a result of intensive research to solve the above problems, the present inventors have conducted a hydrophilic resin layer composed of a tetrafluorinated ethylene resin having a sulfonic acid group in the side chain and a binder resin, and a laminate having a base material. A laminate in which the haze value of the base material is equal to or less than a specific value and the difference between the haze value of the laminated body and the haze value of the base material is equal to or less than a specific value can solve the above-mentioned problems. The present invention has been completed.
That is, the present invention includes the following aspects.

請求項1に記載の発明によれば、
スルホン酸基を側鎖に有する4フッ化エチレン樹脂とバインダー樹脂とを含有する親水性樹脂層、及び基材を積層してなる積層体であって、
前記基材のヘイズ値が0.2%以下であり、かつ前記積層体のヘイズ値と前記基材のヘイズ値との差が1%以下であることを特徴とする積層体が提供される。
According to the invention of claim 1,
A laminate formed by laminating a hydrophilic resin layer containing a tetrafluorinated ethylene resin having a sulfonic acid group in a side chain and a binder resin, and a base material.
Provided is a laminate characterized in that the haze value of the substrate is 0.2% or less, and the difference between the haze value of the laminate and the haze value of the substrate is 1% or less.

これにより、光学素子を保護する透明基板として使用可能な積層体であって、雨水や水洗により、油汚れを容易に落とすことができ、親水性を容易に回復できるセルフクリーニング機能を示し、さらに親水性を長期間安定して持続できる積層体が提供できる。 As a result, it is a laminate that can be used as a transparent substrate that protects optical elements, and it can easily remove oil stains by washing with rainwater or water, and exhibits a self-cleaning function that can easily restore hydrophilicity. It is possible to provide a laminate that can stably maintain its properties for a long period of time.

請求項2に記載の発明によれば、
前記バインダー樹脂が、ウレタンアクリル樹脂、フッ化ビニリデン共重合物、アクリル樹脂、フッ素樹脂エマルション、及び自己架橋型ポリエステル樹脂の中から選ばれる少なくともいずれかの樹脂である請求項1に記載の積層体が提供される。
According to the invention of claim 2.
The laminate according to claim 1, wherein the binder resin is at least one resin selected from urethane acrylic resin, vinylidene fluoride copolymer, acrylic resin, fluororesin emulsion, and self-crosslinking polyester resin. Provided.

これにより、上記スルホン酸基を側鎖に有する4フッ化エチレン樹脂と相溶し、かつ上記基材表面と結合しやすいバインダー樹脂を選択することができ、本発明で規定する特定のヘイズ値を示す積層体をより確実に得ることができる。 This makes it possible to select a binder resin that is compatible with the ethylene tetrafluoride resin having the sulfonic acid group in the side chain and easily bonds with the surface of the base material, and can obtain a specific haze value specified in the present invention. The indicated laminate can be obtained more reliably.

請求項3に記載の発明によれば、
前記親水性樹脂層が、SiOの粒子を含有する請求項1又は2のいずれかに記載の積層体が提供される。
According to the invention of claim 3,
The laminate according to claim 1 or 2, wherein the hydrophilic resin layer contains particles of SiO 2 is provided.

これにより、親水性樹脂層の表面の親水性機能をより高めることができる。 Thereby, the hydrophilic function of the surface of the hydrophilic resin layer can be further enhanced.

本発明によれば、光学素子を保護する透明基板として使用可能な積層体であって、雨水や水洗により、油汚れを容易に落とすことができ、親水性を容易に回復できるセルフクリーニング機能を示し、さらに親水性を長期間安定して持続できる積層体を提供することができる。 According to the present invention, it is a laminate that can be used as a transparent substrate for protecting an optical element, and exhibits a self-cleaning function that can easily remove oil stains by washing with rainwater or water and easily restore hydrophilicity. Further, it is possible to provide a laminate capable of stably maintaining hydrophilicity for a long period of time.

本発明の積層体の層構成の一態様を示す概略断面図である。It is the schematic sectional drawing which shows one aspect of the layer structure of the laminated body of this invention. 本発明の積層体の層構成の他の一態様を示す概略断面図である。It is the schematic sectional drawing which shows the other aspect of the layer structure of the laminated body of this invention. 試験例1における接触角の変化量Δ(°)と積層体のヘイズ値との関係を示す図である。It is a figure which shows the relationship between the change amount Δ (°) of the contact angle in Test Example 1 and the haze value of a laminated body. 試験例1における接触角の変化量Δ(°)と積層体のヘイズ値との関係を示す図である。It is a figure which shows the relationship between the change amount Δ (°) of the contact angle in Test Example 1 and the haze value of a laminated body. 試験例1のサンプル5の表面をXPS法(X線光電子分光法)により分析して得られた光電子スペクトルの概略図である。It is a schematic diagram of the photoelectron spectrum obtained by analyzing the surface of the sample 5 of Test Example 1 by the XPS method (X-ray photoelectron spectroscopy). 試験例1のサンプル9の表面をXPS法(X線光電子分光法)により分析して得られた光電子スペクトルの概略図である。It is the schematic of the photoelectron spectrum obtained by analyzing the surface of the sample 9 of Test Example 1 by the XPS method (X-ray photoelectron spectroscopy). 試験例1のサンプル10の表面をXPS法(X線光電子分光法)により分析して得られた光電子スペクトルの概略図である。It is a schematic diagram of the photoelectron spectrum obtained by analyzing the surface of the sample 10 of Test Example 1 by the XPS method (X-ray photoelectron spectroscopy). 実施例6における摩耗試験後の接触角の測定結果を示す図である。It is a figure which shows the measurement result of the contact angle after the wear test in Example 6. 実施例7の積層体の試験前の表面を撮影した写真である。It is a photograph of the surface of the laminate of Example 7 before the test. 実施例7の積層体の試験中の表面を撮影した写真である。It is a photograph of the surface of the laminated body of Example 7 under test. 実施例7の積層体の試験後の表面を撮影した写真である。It is a photograph of the surface of the laminated body of Example 7 after the test. 実施例7の積層体の試験後でかつ水かけ後の表面を撮影した写真である。It is a photograph of the surface of the laminate of Example 7 after the test and after watering.

以下、本発明の積層体について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。 Hereinafter, the laminate of the present invention will be described in detail, but the description of the constituent requirements described below is an example as an embodiment of the present invention, and is not specified in these contents.

(積層体)
本発明の積層体は、親水性樹脂層と基材とを積層してなる。
親水性樹脂層は、スルホン酸基を側鎖に有する4フッ化エチレン樹脂と、バインダー樹脂とを含有する。
本発明の積層体において、基材のヘイズ値は0.2%以下であり、かつ本発明の積層体のヘイズ値と基材のヘイズ値との差(以下、本明細書において、「積層体のヘイズ値と基材のヘイズ値との差」を「親水性樹脂層が関与するヘイズ値」ともいう)は1%以下である。
本発明の一態様の積層体の層構成の概略図を図1に示す。
本発明の一態様の積層体1は、図1に示されるように、親水性樹脂層2と基材3とを積層してなる。親水性樹脂層2は、スルホン酸基を側鎖に有する4フッ化エチレン樹脂4と、バインダー樹脂5とを含有する。
(Laminate)
The laminate of the present invention is formed by laminating a hydrophilic resin layer and a base material.
The hydrophilic resin layer contains a tetrafluoroethylene resin having a sulfonic acid group in the side chain and a binder resin.
In the laminated body of the present invention, the haze value of the base material is 0.2% or less, and the difference between the haze value of the laminated body of the present invention and the haze value of the base material (hereinafter, "laminated body" in the present specification. The "difference between the haze value of the base material and the haze value of the base material" is also referred to as "the haze value in which the hydrophilic resin layer is involved") is 1% or less.
FIG. 1 shows a schematic view of the layer structure of the laminated body according to one aspect of the present invention.
As shown in FIG. 1, the laminated body 1 of one aspect of the present invention is formed by laminating a hydrophilic resin layer 2 and a base material 3. The hydrophilic resin layer 2 contains a tetrafluorinated ethylene resin 4 having a sulfonic acid group in the side chain and a binder resin 5.

<親水性樹脂層>
親水性樹脂層は、スルホン酸基を側鎖に有する4フッ化エチレン樹脂と、バインダー樹脂とを含有する。さらに必要に応じて、その他の成分を含有してもよい。
<Hydrophilic resin layer>
The hydrophilic resin layer contains a tetrafluoroethylene resin having a sulfonic acid group in the side chain and a binder resin. Further, if necessary, other components may be contained.

<<スルホン酸基を側鎖に有する4フッ化エチレン樹脂>>
上記スルホン酸基を側鎖に有する4フッ化エチレン樹脂(以下、本明細書において、「スルホン酸基を側鎖に有する4フッ化エチレン樹脂」を「フッ素系アイオノマー樹脂」ともいう)としては、例えば、上記特許文献1(特開2006−45370号公報)に記載の、パーフルオロスルホン酸をグラフト重合させた4フッ化エチレン樹脂などを使用することができる。
具体的には、例えば、下記式(1)で表される、スルホン酸基を末端に有するパーフルオロスルホン酸をグラフト重合させた4フッ化エチレン樹脂が挙げられる。
<< Ethylene tetrafluoride resin having a sulfonic acid group in the side chain >>
The tetrafluoroethylene resin having a sulfonic acid group in the side chain (hereinafter, in the present specification, the "tetrafluoroethylene resin having a sulfonic acid group in the side chain" is also referred to as a "fluorine-based ionomer resin"). For example, the tetrafluorinated ethylene resin obtained by graft-polymerizing perfluorosulfonic acid described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2006-45370) can be used.
Specific examples thereof include a tetrafluoroethylene resin obtained by graft-polymerizing a perfluorosulfonic acid having a sulfonic acid group at the end, which is represented by the following formula (1).

上記式(1)中、Rfはパーフルオロアルキル基、SOHはスルホン酸基で、x、yは整数である。 In the above formula (1), Rf is a perfluoroalkyl group, with SO 3 H sulfonic acid group, x, y are integers.

Rfのパーフルオロアルキル基としては、例えば、炭素数1〜6の直鎖又は分岐鎖のパーフルオロアルキル基が挙げられる。該パーフルオロアルキル基の炭素原子の一部は、酸素原子で置換されていてもよい。
上記Rfのパーフルオロアルキル基として、例えば、下記式(2)、式(3)又は式(4)で表されるパーフルオロアルキル基が好ましく挙げられる。
Examples of the perfluoroalkyl group of Rf include a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms. A part of the carbon atom of the perfluoroalkyl group may be substituted with an oxygen atom.
As the perfluoroalkyl group of Rf, for example, a perfluoroalkyl group represented by the following formula (2), formula (3) or formula (4) is preferably mentioned.

親水性樹脂層におけるフッ素系アイオノマー樹脂の含有量は、本発明で規定する特定のヘイズ値を示す積層体が形成できれば、特に制限はなく、目的に応じて適宜選択することができるが、例えば、8〜30%が好ましく、10〜30%がより好ましく、10〜25%がさらに好ましい。 The content of the fluorine-based ionomer resin in the hydrophilic resin layer is not particularly limited as long as a laminate showing a specific haze value specified in the present invention can be formed, and can be appropriately selected depending on the intended purpose. 8 to 30% is preferable, 10 to 30% is more preferable, and 10 to 25% is further preferable.

<<バインダー樹脂>>
親水性樹脂層を構成するバインダー樹脂としては、本発明で規定する特定のヘイズ値を示す積層体が形成できれば、バインダー樹脂の種類は、特に制限はなく、目的に応じて適宜選択することができるが、親水性樹脂層のヘイズ値を低減する観点や耐久性・耐摩耗性の観点から、以下の樹脂であることが好ましい。
上記フッ素系アイオノマー樹脂と相溶し(親水性樹脂層中に下記その他の成分も含有する場合には、該その他の成分とも相溶性が良い方が好ましい)、かつ基材表面と結合しやすいバインダー樹脂であることが好ましい。
そのため、本発明に係るバインダー樹脂としては、例えば、ウレタンアクリル樹脂、フッ化ビニリデン共重合物、アクリル樹脂、フッ素樹脂エマルション、及び自己架橋型ポリエステル樹脂の中から選ばれる少なくともいずれかの樹脂が好ましく挙げられる。
ウレタンアクリル樹脂、フッ化ビニリデン共重合物、アクリル樹脂、フッ素樹脂エマルション、及び自己架橋型ポリエステル樹脂は、それぞれ1種類で用いても、これらの樹脂から選ばれる複数種類の樹脂を組み合わせて用いても、どちらでも構わない。例えば、バインダー樹脂として、フッ素樹脂エマルションと自己架橋型ポリエステル樹脂とからなる混合物を用いることができる。
本発明に係るバインダー樹脂がこれらの樹脂であれば、親水性樹脂層が関与するヘイズ値、ひいては積層体のヘイズ値を低減でき、所望のヘイズ値を示す積層体をより確実に得ることができる。
中でも、バインダー樹脂として、ウレタンアクリル系樹脂がより好ましい。
<< Binder resin >>
As the binder resin constituting the hydrophilic resin layer, the type of the binder resin is not particularly limited as long as a laminate showing a specific haze value specified in the present invention can be formed, and can be appropriately selected depending on the intended purpose. However, from the viewpoint of reducing the haze value of the hydrophilic resin layer and from the viewpoint of durability and abrasion resistance, the following resins are preferable.
A binder that is compatible with the above-mentioned fluorine-based ionomer resin (when the hydrophilic resin layer also contains the following other components, it is preferable that the hydrophilic resin layer also has good compatibility with the other components) and easily bonds with the surface of the base material. It is preferably a resin.
Therefore, as the binder resin according to the present invention, for example, at least one resin selected from urethane acrylic resin, vinylidene fluoride copolymer, acrylic resin, fluororesin emulsion, and self-crosslinking polyester resin is preferably mentioned. Be done.
The urethane acrylic resin, vinylidene fluoride copolymer, acrylic resin, fluororesin emulsion, and self-crosslinking polyester resin may be used alone or in combination of a plurality of resins selected from these resins. , Either is fine. For example, as the binder resin, a mixture composed of a fluororesin emulsion and a self-crosslinking polyester resin can be used.
When the binder resin according to the present invention is these resins, the haze value involving the hydrophilic resin layer and the haze value of the laminate can be reduced, and the laminate showing a desired haze value can be obtained more reliably. ..
Among them, urethane acrylic resin is more preferable as the binder resin.

<<その他の成分>>
本発明に係る親水性樹脂層には、上記フッ素系アイオノマー樹脂や上記バインダー樹脂の他に、適宜必要に応じて、二酸化ケイ素(SiO)や酸化チタン等の光触媒などの各種粒子を含有させてもよい。
本発明においては、親水性樹脂層にSiOのナノ粒子が含有されている態様が好ましい。SiOの粒子を含有させることにより、親水性樹脂層の表面の親水性をより高めることができる。
親水性樹脂層がSiOの粒子を含有する場合の、本発明の積層体の層構成の概略図を図2に示す。
親水性樹脂層にSiOの粒子を含有する場合の本発明の積層体1は、図2に示されるように、親水性樹脂層2中に、SiOの粒子6を含有する。図2において、図1と同じ構成には同じ符号が付されている。
親水性樹脂層に含有させるSiOの粒子の粒径や含有量としては、本発明で規定する特定のヘイズ値を示す積層体が形成できれば、特に制限はなく、適宜選択することができる。
SiOの粒子の粒径としては、例えば、光の散乱防止の観点から、80nm以下が好ましく、50nm以下がより好ましく、15nm以下がさらに好ましい。また、例えば、粒子の凝集防止の観点から、5nm以上が好ましく、10nm以上がより好ましい。
また、親水性樹脂層におけるSiOの粒子の含有量としては、例えば、光の散乱防止の観点から、50質量%以下が好ましい。また、例えば、効果確保の観点から、10質量%以上が好ましい。
<< Other ingredients >>
In addition to the fluorine-based ionomer resin and the binder resin, the hydrophilic resin layer according to the present invention contains various particles such as a photocatalyst such as silicon dioxide (SiO 2 ) and titanium oxide, if necessary. May be good.
In the present invention, it is preferable that the hydrophilic resin layer contains nanoparticles of SiO 2 . By containing the particles of SiO 2 , the hydrophilicity of the surface of the hydrophilic resin layer can be further enhanced.
FIG. 2 shows a schematic view of the layer structure of the laminate of the present invention when the hydrophilic resin layer contains particles of SiO 2 .
Laminate 1 of the present invention when containing the SiO 2 particles in the hydrophilic resin layer, as shown in FIG. 2, in the hydrophilic resin layer 2, which contains particles 6 of SiO 2. In FIG. 2, the same components as those in FIG. 1 are designated by the same reference numerals.
The particle size and content of the SiO 2 particles contained in the hydrophilic resin layer are not particularly limited as long as a laminate showing a specific haze value specified in the present invention can be formed, and can be appropriately selected.
The particle size of the particles of SiO 2 is preferably 80 nm or less, more preferably 50 nm or less, still more preferably 15 nm or less, for example, from the viewpoint of preventing light scattering. Further, for example, from the viewpoint of preventing particle aggregation, 5 nm or more is preferable, and 10 nm or more is more preferable.
The content of the SiO 2 particles in the hydrophilic resin layer is preferably 50% by mass or less, for example, from the viewpoint of preventing light scattering. Further, for example, from the viewpoint of ensuring the effect, 10% by mass or more is preferable.

本発明では、親水性樹脂層に酸化チタン等の光触媒は含有させない態様がより好ましい。光触媒を含有させない方が、より透明性の高い積層体が得られ、ヘイズ値1%以下の要件を満たす積層体をより確実に作製することができるからである。
また通常、酸化チタン等の光触媒による光触媒反応を用いて、油汚れを分解し防汚効果を達成しようとする場合は、光が当たりにくい場所では、十分な防汚効果が期待できないという制限を受ける。しかし、親水性樹脂層に光触媒を含有させない態様の場合には、光源を気にすることなく、積層体の使用可能領域を広げることができるからである。
In the present invention, it is more preferable that the hydrophilic resin layer does not contain a photocatalyst such as titanium oxide. This is because a laminated body having higher transparency can be obtained and a laminated body satisfying the requirement of a haze value of 1% or less can be more reliably produced when the photocatalyst is not contained.
In addition, when trying to achieve an antifouling effect by decomposing oil stains by using a photocatalytic reaction with a photocatalyst such as titanium oxide, there is usually a limitation that a sufficient antifouling effect cannot be expected in a place where it is difficult to be exposed to light. .. However, in the case where the hydrophilic resin layer does not contain the photocatalyst, the usable area of the laminated body can be expanded without worrying about the light source.

<<親水性樹脂層の形成方法>>
フッ素系アイオノマー樹脂とバインダー樹脂、及びその他の成分を含有する場合はその他の成分を混合して樹脂組成物(コーティング材)を作製する。
コーティング材には、適宜溶剤が含有されていてもよい。
溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機溶剤、及び有機溶剤と水との混合物が挙げられる。有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコール-n-ブチルエーテル、2−ブトキシエタノール、メトキシプロパノール、メチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル、トルエン、ジメチルホルムアミド、アセトニトリル、メチルイソブチルケトン、などが挙げられる。
コーティング材を基材上に塗工し、塗工層を乾燥させることにより、親水性樹脂層を形成することができる。
コーティング材が有機溶剤を含有する場合には、塗工層を加熱しコーティング材中の有機溶剤を蒸発させることにより、塗工層を乾燥させることが好ましい。
塗工方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ディップコーティング、スピンコーティング、スプレー塗布、ロールコート塗布、バーコート塗布などの溶液塗布法が挙げられる。
塗工層を加熱し、乾燥させる際の条件としては、特に制限はなく、適宜選択することができるが、例えば、80〜130℃で、5〜30分間加熱し、乾燥させる条件が挙げられる。
より具体的な親水性樹脂層の形成方法としては、例えば、バーコータを用いて、フッ素系アイオノマー樹脂及びバインダー樹脂を含有するコーティング材を基材上に塗工し、塗工層を120℃の温度で20分間加熱し乾燥させ、親水性樹脂層を形成するという方法が挙げられる。
<< Method of forming a hydrophilic resin layer >>
When the fluorine-based ionomer resin, the binder resin, and other components are contained, the other components are mixed to prepare a resin composition (coating material).
The coating material may appropriately contain a solvent.
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an organic solvent and a mixture of an organic solvent and water. Examples of the organic solvent include methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol monomethyl ether, dipropylene glycol-n-butyl ether, 2-butoxyethanol, methoxypropanol, methyl ethyl ketone, acetone, ethyl acetate, butyl acetate, toluene, and the like. Examples thereof include dimethylformamide, acetonitrile, methyl isobutyl ketone, and the like.
A hydrophilic resin layer can be formed by applying a coating material on a base material and drying the coating layer.
When the coating material contains an organic solvent, it is preferable to dry the coating layer by heating the coating layer and evaporating the organic solvent in the coating material.
The coating method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include solution coating methods such as dip coating, spin coating, spray coating, roll coating and bar coating.
The conditions for heating and drying the coating layer are not particularly limited and may be appropriately selected. Examples thereof include conditions for heating and drying at 80 to 130 ° C. for 5 to 30 minutes.
As a more specific method for forming the hydrophilic resin layer, for example, a coating material containing a fluorine-based ionomer resin and a binder resin is coated on a base material using a bar coater, and the coating layer is heated to a temperature of 120 ° C. A method of forming a hydrophilic resin layer by heating and drying for 20 minutes can be mentioned.

<<親水性樹脂層の膜厚>>
親水性樹脂層の膜厚は、本発明で規定する特定のヘイズ値を示す積層体が形成できれば、特に制限はなく、適宜選択することができるが、膜厚が厚いとヘイズ値が高くなるため、本発明で規定する親水性樹脂層が関与するヘイズ値を1%以下とするためには、親水性樹脂層の膜厚は薄い方が好ましい。
また、コーティング材の粘度によっては、塗工する際のコーティング材の膜厚が厚いとタレによる不具合が発生しやすい。そこで、親水性樹脂層の膜厚としては、乾燥時の膜厚で5μm以下となるように設定するのが好ましい。
一方、フッ素系アイオノマー樹脂は、溶媒中でコロイド状に凝集していると思われるため、親水性樹脂層の膜厚が薄すぎると、平滑な表面が得られにくい。
また、親水性樹脂層にSiOの粒子を含有させる場合には、SiOの粒子も凝集により二次粒子を形成することがある。そこで、親水性樹脂層の膜厚は100nm以上であることが好ましい。
以上のことから、親水性樹脂層の膜厚としては、100nm〜5μmが好ましく、2〜5μmがより好ましく、3〜5μmがさらに好ましい。
<< Film thickness of hydrophilic resin layer >>
The thickness of the hydrophilic resin layer is not particularly limited as long as a laminate showing a specific haze value specified in the present invention can be formed, and can be appropriately selected. However, the thicker the thickness, the higher the haze value. In order to reduce the haze value in which the hydrophilic resin layer specified in the present invention is involved to 1% or less, the thickness of the hydrophilic resin layer is preferably thin.
Further, depending on the viscosity of the coating material, if the film thickness of the coating material at the time of coating is thick, problems due to sagging are likely to occur. Therefore, the film thickness of the hydrophilic resin layer is preferably set to be 5 μm or less in terms of the film thickness when dried.
On the other hand, since the fluorine-based ionomer resin seems to be colloidally aggregated in the solvent, if the thickness of the hydrophilic resin layer is too thin, it is difficult to obtain a smooth surface.
Further, in case of incorporating a SiO 2 particles in a hydrophilic resin layer, sometimes particles of SiO 2 also form secondary particles due to aggregation. Therefore, the film thickness of the hydrophilic resin layer is preferably 100 nm or more.
From the above, the thickness of the hydrophilic resin layer is preferably 100 nm to 5 μm, more preferably 2 to 5 μm, and even more preferably 3 to 5 μm.

<基材>
本発明の積層体を構成する基材としては、0.2%以下のヘイズ値を示す基材を用いる。
基材としては、本発明で規定する特定のヘイズ値を示す積層体が形成できれば、基材の種類は、特に制限はなく、目的に応じて適宜選択することができる。
親水性樹脂層の組成が樹脂であるため、密着性の観点から、基材も樹脂である方が好ましい。
通常、平滑性の低い基材を使用すると、積層体のヘイズ値も高くなる傾向がある。そのため、例えば、本発明で規定する所望のヘイズ値の積層体を得るには、基材が、ポリカーボネート樹脂、ポリアクリル樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂等の樹脂から選択されることが好ましい。中でも、透明性およびコストの観点からは、アクリル樹脂が、強度およびコストの観点からは、ポリカーボネート樹脂が、基材としてより好ましく用いられる。
<Base material>
As the base material constituting the laminate of the present invention, a base material showing a haze value of 0.2% or less is used.
As the base material, the type of the base material is not particularly limited as long as a laminate showing a specific haze value specified in the present invention can be formed, and can be appropriately selected depending on the intended purpose.
Since the composition of the hydrophilic resin layer is a resin, it is preferable that the base material is also a resin from the viewpoint of adhesion.
Generally, when a substrate having low smoothness is used, the haze value of the laminate tends to be high. Therefore, for example, in order to obtain a laminate having a desired haze value specified in the present invention, the base material may be selected from resins such as polycarbonate resin, polyacrylic resin, polyolefin resin, cyclic olefin resin, and polyester resin. preferable. Among them, acrylic resin is more preferably used as a base material from the viewpoint of transparency and cost, and polycarbonate resin is more preferably used as a base material from the viewpoint of strength and cost.

基材の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、平板、シート状、フィルム状、又は3次元形状を全面に若しくは一部に有する物、全面に若しくは一部に曲率を有するもの等、目的に応じた任意の形状とすることができる。 The shape of the base material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a flat plate, a sheet, a film, or a material having a three-dimensional shape on the entire surface or a part thereof, or on the entire surface. Alternatively, it can have an arbitrary shape according to the purpose, such as one having a partial curvature.

また、基材をフィルムとする場合、成形方法としては、例えば、押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等が挙げられる。これらのフィルムは、単層又は多層製膜して形成したプラスチック成形体を基材として用いることもできる。
また、基材の厚みは、特に制限はなく、目的に応じて適宜選択することができる。
When the base material is a film, examples of the molding method include an extrusion method, a cast molding method, a T-die method, a cutting method, and an inflation method. For these films, a plastic molded product formed by forming a single layer or a multilayer film can also be used as a base material.
The thickness of the base material is not particularly limited and can be appropriately selected depending on the intended purpose.

基材のヘイズ値は、上述したように0.2%以下であるが、本発明で規定する特定のヘイズ値を示す積層体を確実に形成する観点からは、基材のヘイズ値は、0.15%以下であると好ましく、0.13%以下であるとより好ましい。 The haze value of the base material is 0.2% or less as described above, but from the viewpoint of surely forming a laminate showing a specific haze value specified in the present invention, the haze value of the base material is 0. It is preferably .15% or less, and more preferably 0.13% or less.

基材の表面には、親水性樹脂層の塗工性を向上させたり親水性樹脂層との接着性を向上させるために、各種の表面処理を行ってもよい。表面処理としては、例えば、オゾン処理、プラズマ処理、コロナ処理、シランカップリング処理などが挙げられる。
基材の種類は樹脂が好ましいが、例えば、シランカップリング剤を下地層として使用すれば、ガラス基材を使用することもできる。
Various surface treatments may be applied to the surface of the base material in order to improve the coatability of the hydrophilic resin layer and the adhesiveness with the hydrophilic resin layer. Examples of the surface treatment include ozone treatment, plasma treatment, corona treatment, and silane coupling treatment.
The type of the base material is preferably resin, but for example, if a silane coupling agent is used as the base layer, a glass base material can also be used.

<ヘイズ値(%)>
本発明の積層体のヘイズ値と基材のヘイズ値との差(親水性樹脂層が関与するヘイズ値)は1%以下である。
さらに、本発明の積層体のヘイズ値が1%以下であるとより好ましい。
ヘイズ値(曇りの度合い)とは、透明さの程度を表す指標であり、全透過光に対する拡散光の割合を求めた値をいう。
ヘイズ値は、C光源を用いて、JIS K7136に準拠して測定することができる。
<Haze value (%)>
The difference between the haze value of the laminate of the present invention and the haze value of the base material (the haze value in which the hydrophilic resin layer is involved) is 1% or less.
Further, it is more preferable that the haze value of the laminate of the present invention is 1% or less.
The haze value (degree of cloudiness) is an index showing the degree of transparency, and is a value obtained by determining the ratio of diffused light to total transmitted light.
The haze value can be measured according to JIS K7136 using a C light source.

親水性樹脂層を構成する上記フッ素系アイオノマー樹脂において、側鎖のスルホン酸(−SOH)部分は、電気陰性度の大きいフッ素元素と結合した炭素元素に結合しているため、フッ素元素の大きな電子吸引性との相互作用により、スルホン酸も−SO となりやすい。側鎖のスルホン酸部分は、強くイオン化されているため、極性の大きい水分子は引き込まれやすく、上記フッ素系アイオノマー樹脂において、側鎖のスルホン酸部分は、親水性を示す。
一方、4フッ化エチレン樹脂自体は、疎水性を示す。このため、スルホン酸基を側鎖に有する4フッ化エチレン樹脂は、疎水性と親水性とを併せ持つ。例えば、静的な濡れ性を測定した場合には、テフロン骨格の影響が高く疎水性を示すが、液滴が大きい、あるいは液滴を落下させる等の動的な濡れ性を測定した場合には、部分的に存在する−SOHの影響で親水性を示す。
このため、一般的な親水性表面とは、異なる挙動を示す。
そこで、本発明者らは、油汚れについて研究したところ、親水性樹脂表面についた油汚れが、流水中で擦り洗いしても落ちず、親水性を回復しない場合があり、それが、ヘイズ値に影響していることを確認した。
本発明者らは、親水性樹脂層が関与するヘイズ値、ひいては積層体のヘイズ値についてさらに検討し、油汚れを除去し、親水性を回復させるには、親水性樹脂層の表面組成にかかわらず、積層体に係るヘイズ値に依存すること、そして、積層体のヘイズ値と基材のヘイズ値との差(親水性樹脂層が関与するヘイズ値)が1%以下であれば、油汚れに対し、親水性を容易に回復し維持できることを見出した。
下記試験例1及び2により、本発明で規定するヘイズ値の意義を明らかにする。
In the fluorine-based ionomer resin constituting the hydrophilic resin layer, since the sulfonic acid (-SO 3 H) portion of the side chain is bonded to bonded carbon elemental greater elemental fluorine electronegativity of fluorine element Sulfonic acid also tends to be -SO 3 - H + due to the interaction with the large electron attraction. Since the sulfonic acid portion of the side chain is strongly ionized, highly polar water molecules are easily attracted, and in the above-mentioned fluoroionic ionomer resin, the sulfonic acid portion of the side chain exhibits hydrophilicity.
On the other hand, the tetrafluorinated ethylene resin itself exhibits hydrophobicity. Therefore, the tetrafluoroethylene resin having a sulfonic acid group in the side chain has both hydrophobicity and hydrophilicity. For example, when the static wettability is measured, the Teflon skeleton has a high influence and shows hydrophobicity, but when the dynamic wettability such as a large droplet or dropping a droplet is measured, shows hydrophilicity due to the influence of -SO 3 H present partially.
Therefore, it behaves differently from a general hydrophilic surface.
Therefore, when the present inventors studied oil stains, the oil stains on the surface of the hydrophilic resin may not be removed even when scrubbed in running water, and the hydrophilicity may not be restored, which is the haze value. It was confirmed that it affected.
The present inventors further investigated the haze value in which the hydrophilic resin layer is involved, and by extension, the haze value of the laminate, and in order to remove oil stains and restore hydrophilicity, the surface composition of the hydrophilic resin layer is involved. However, if it depends on the haze value of the laminate and the difference between the haze value of the laminate and the haze value of the base material (the haze value involving the hydrophilic resin layer) is 1% or less, oil stains On the other hand, it was found that hydrophilicity can be easily restored and maintained.
The significance of the haze value defined in the present invention will be clarified by the following Test Examples 1 and 2.

[試験例1]
スルホン酸基を側鎖に有する4フッ化エチレン樹脂とバインダー樹脂とを含有する親水性樹脂層を基材上に形成した。
下記表1に示すように、親水性樹脂層の組成が異なるサンプル1〜11を作製した。
表1中、スルホン酸基を側鎖に有する4フッ化エチレン樹脂(フッ素系アイオノマー樹脂)は、式(1)のRfとして式(3)を有するフッ素系アイオノマー樹脂(ダイキン工業株式会社製)を用いた。
[Test Example 1]
A hydrophilic resin layer containing a tetrafluorinated ethylene resin having a sulfonic acid group in the side chain and a binder resin was formed on the substrate.
As shown in Table 1 below, Samples 1 to 11 having different compositions of the hydrophilic resin layers were prepared.
In Table 1, the tetrafluorinated ethylene resin (fluorine-based ionomer resin) having a sulfonic acid group in the side chain is a fluorine-based ionomer resin (manufactured by Daikin Industries, Ltd.) having the formula (3) as Rf of the formula (1). Using.

サンプル1では、親水性樹脂層中に、フッ素系アイオノマー樹脂が10質量%含有されている(他のサンプル中の、フッ素系アイオノマー樹脂の含有量は、表1に示すとおりである)。
サンプル1では、バインダー樹脂として、フッ素樹脂エマルション(ダイキン工業株式会社製)を用いた(他のサンプル2〜8でも、サンプル1と同じフッ素樹脂エマルションを用いた)。
サンプル2では、親水性樹脂層中に、SiO粒子が30質量%含有されている(他のサンプル中の、SiO粒子、あるいはTiO粒子の含有量は、表1に示すとおりである)。
各サンプル中におけるSiO粒子としては、サンプル2〜5では、日産化学工業株式会社製シリカゾルIPA−ST−L(粒子径:40〜50nm)を用い、サンプル9では、日産化学工業株式会社製シリカゾルIPA−ST(粒子径:12nm)を用いた。
各サンプル中におけるTiO粒子としては、石原産業株式会社製(粒子径:5〜15nm)を用いた。
サンプル9では、バインダー樹脂として、ウレタンアクリル樹脂(DSM株式会社製)を用いた(他のサンプル10でも、サンプル9と同じウレタンアクリル樹脂を用いた)。
サンプル11では、バインダー樹脂として、フッ素樹脂エマルション(ダイキン工業株式会社製)と自己架橋型ポリエステル樹脂(ユニチカ株式会社製)とからなる混合物を用いた。
基材は、ポリカーボネート基材(住友ベークライト社製ECW100 t=3(厚さ3mm) 10cm角)を用いた。該ポリカーボネート基材のヘイズ値は、0.13%であった。
In sample 1, the hydrophilic resin layer contains 10% by mass of the fluorine-based ionomer resin (the content of the fluorine-based ionomer resin in the other samples is as shown in Table 1).
In Sample 1, a fluororesin emulsion (manufactured by Daikin Industries, Ltd.) was used as the binder resin (the same fluororesin emulsion as in Sample 1 was also used in the other samples 2 to 8).
In sample 2, 30% by mass of SiO 2 particles are contained in the hydrophilic resin layer (the content of SiO 2 particles or TiO 2 particles in the other samples is as shown in Table 1). ..
As the SiO 2 particles in each sample, Nissan Chemical Industries, Ltd. silica sol IPA-ST-L (particle diameter: 40 to 50 nm) was used in Samples 2 to 5, and Nissan Chemical Industries, Ltd. silica sol was used in Sample 9. IPA-ST (particle size: 12 nm) was used.
As the TiO 2 particles in each sample, those manufactured by Ishihara Sangyo Co., Ltd. (particle diameter: 5 to 15 nm) were used.
In sample 9, urethane acrylic resin (manufactured by DSM Co., Ltd.) was used as the binder resin (the same urethane acrylic resin as in sample 9 was used in other samples 10).
In Sample 11, a mixture consisting of a fluororesin emulsion (manufactured by Daikin Industries, Ltd.) and a self-crosslinking polyester resin (manufactured by Unitica Co., Ltd.) was used as the binder resin.
As the base material, a polycarbonate base material (ECW100 t = 3 (thickness 3 mm) 10 cm square manufactured by Sumitomo Bakelite Co., Ltd.) was used. The haze value of the polycarbonate substrate was 0.13%.

親水性樹脂層を構成する各成分を表1に示す割合で混合し、さらに溶剤を混合してなるコーティング材を作製した。
サンプル1〜8では、溶剤として、イソプロピルアルコール、2−ブトキシエタノール、及び水を用いた。
サンプル9〜10では、溶剤として、イソプロピルアルコール、及び水を用いた。
サンプル11では、溶剤として、イソプロピルアルコール、水、ジプロピレングリコール−n−ブチルエーテルを用いた。
ポリカーボネート基材上に、コーティング材をバーコータ#10で塗工し、120℃の温度で20分間乾燥させ、基材上に親水性樹脂層を積層させた積層体を得た。
親水性樹脂層の乾燥前の膜厚は20μmであり、乾燥後の膜厚は5μmであった。
Each component constituting the hydrophilic resin layer was mixed at the ratio shown in Table 1, and a solvent was further mixed to prepare a coating material.
In Samples 1 to 8, isopropyl alcohol, 2-butoxyethanol, and water were used as solvents.
In Samples 9 to 10, isopropyl alcohol and water were used as solvents.
In Sample 11, isopropyl alcohol, water, and dipropylene glycol-n-butyl ether were used as the solvent.
A coating material was applied to a polycarbonate base material with a bar coater # 10 and dried at a temperature of 120 ° C. for 20 minutes to obtain a laminate in which a hydrophilic resin layer was laminated on the base material.
The thickness of the hydrophilic resin layer before drying was 20 μm, and the film thickness after drying was 5 μm.

各サンプルに対し親水性樹脂層の表面にギアオイルを滴下し、1時間放置した後、ベンコットで軽く擦りながら水洗いした。
各サンプルの積層体における親水性樹脂層の表面に対し、ギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。そして、ギアオイル滴下前の接触角と洗浄後の接触角の変化量Δ(°)を求めた。
ここで、接触角(°)は、10μLの水滴を高さ10cmの位置からサンプル表面に滴下し、サンプル上に形成された水滴とサンプル表面のなす角を、協和界面科学株式会社製の接触角計に搭載された多機能統合解析ソフトウェア FAMASを用いて測定した。
各サンプルにおける親水性樹脂層の構成成分及び含有量を下記表1に示す。また、積層体のヘイズ値(%)と、積層体にギアオイルの滴下した際の滴下前の接触角(°)と洗浄後の接触角(°)と、接触角の変化量Δ(°)との各結果を下記表1に示す。
さらに、ギアオイル滴下前の接触角と洗浄後の接触角の変化量Δ(°)と積層体のヘイズ値との関係を、図3及び図4に示す。
Gear oil was dropped on the surface of the hydrophilic resin layer for each sample, left for 1 hour, and then washed with water while gently rubbing with a Bencot.
The contact angle (°) before dropping the gear oil and the contact angle (°) after washing the gear oil with water (after washing) were measured with respect to the surface of the hydrophilic resin layer in the laminated body of each sample. Then, the amount of change Δ (°) between the contact angle before dropping the gear oil and the contact angle after cleaning was determined.
Here, the contact angle (°) is such that 10 μL of water droplets are dropped on the sample surface from a height of 10 cm, and the angle formed by the water droplets formed on the sample and the sample surface is the contact angle manufactured by Kyowa Interface Science Co., Ltd. The measurement was performed using the multifunctional integrated analysis software FAMAS installed in the meter.
The constituents and contents of the hydrophilic resin layer in each sample are shown in Table 1 below. Further, the haze value (%) of the laminated body, the contact angle (°) before dropping the gear oil on the laminated body, the contact angle (°) after cleaning, and the change amount Δ (°) of the contact angle. The results of each of the above are shown in Table 1 below.
Further, FIGS. 3 and 4 show the relationship between the change amount Δ (°) of the contact angle before dropping the gear oil and the contact angle after cleaning and the haze value of the laminated body.

表1、図3、及び図4の結果より、本発明で規定するヘイズ値が1%以下か否かで、積層体の油汚れに対する親水性の回復度合いが異なることがわかった。ギアオイル滴下前の接触角と洗浄後の接触角の変化量Δ(°)が20以下、より好ましくは10以下である積層体は、雨水や水洗により容易に油汚れを落とすことができることを示している。したがって、油汚れを雨水や水洗により容易に落とし、親水性を容易に回復できるセルフクリーニング機能を示し、さらに親水性を長期間安定して持続できる積層体を得るには、その積層体が、0.2%以下のヘイズ値を示す基材を有し、かつ積層体のヘイズ値と基材のヘイズ値との差(親水性樹脂層が関与するヘイズ値)が1%以下を示す積層体であることが必要である。
本発明者らは、油汚れに対するセルフクリーニング機能を満足した積層体を得るためには、ヘイズ値を低減させ、本発明で規定するヘイズ値が所定値以下、つまり親水性樹脂層が関与するヘイズ値が1%以下のヘイズ値を示す積層体を得ることが重要であることを確認した。
図3及び4で示すように、油汚れに対するセルフクリーニング効果と積層体に係るヘイズ値には相関がある。一方、本発明者らは、油汚れに対するセルフクリーニング効果は、親水性樹脂層を構成する成分や親水性樹脂層の表面組成には依らないことを確認した。
そこで、油汚れに対するセルフクリーニング効果が、親水性樹脂層を構成する成分や親水性樹脂層の表面組成には依らないことを下記試験例2により示す。
From the results of Tables 1, 3 and 4, it was found that the degree of recovery of hydrophilicity of the laminate against oil stains differs depending on whether or not the haze value specified in the present invention is 1% or less. It was shown that the laminate in which the amount of change Δ (°) between the contact angle before dropping the gear oil and the contact angle after cleaning is 20 or less, more preferably 10 or less, can easily remove oil stains by rainwater or washing with water. There is. Therefore, in order to obtain a laminate that can easily remove oil stains by rainwater or washing with water, exhibit a self-cleaning function that can easily restore hydrophilicity, and maintain hydrophilicity stably for a long period of time, the laminate is 0. . A laminated body having a base material showing a haze value of 2% or less and having a difference between the haze value of the laminated body and the haze value of the base material (haze value involving a hydrophilic resin layer) of 1% or less. It is necessary to be.
In order to obtain a laminate satisfying the self-cleaning function against oil stains, the present inventors reduce the haze value and the haze value specified in the present invention is equal to or less than a predetermined value, that is, a haze involving a hydrophilic resin layer. It was confirmed that it is important to obtain a laminate having a haze value of 1% or less.
As shown in FIGS. 3 and 4, there is a correlation between the self-cleaning effect on oil stains and the haze value related to the laminate. On the other hand, the present inventors have confirmed that the self-cleaning effect on oil stains does not depend on the components constituting the hydrophilic resin layer or the surface composition of the hydrophilic resin layer.
Therefore, Test Example 2 below shows that the self-cleaning effect on oil stains does not depend on the components constituting the hydrophilic resin layer or the surface composition of the hydrophilic resin layer.

[試験例2]
上記試験例1で作製したサンプル5、9、及び10を用いて、それらサンプルの表面組成を解析した。
各サンプルを超音波カッターで約1×2cmに切り出し、XPS法(X-ray Photoelectron Spectroscopy:X線光電子分光法)にて、最表面(〜10nm)に存在する元素の種類を解析した。
試験例1のサンプル5、9、10の表面をXPS法(X線光電子分光法)により分析して得られた光電子スペクトルの概略図を、それぞれ図5〜7に示す。また、併せて、試験例1のサンプル5、9、10の最表面の組成を下記表2に示す。
[Test Example 2]
The surface compositions of the samples 5, 9 and 10 prepared in Test Example 1 were analyzed.
Each sample was cut into about 1 × 2 cm with an ultrasonic cutter, and the types of elements present on the outermost surface (10 nm) were analyzed by the XPS method (X-ray Photoelectron Spectroscopy).
Schematic diagrams of the photoelectron spectra obtained by analyzing the surfaces of samples 5, 9 and 10 of Test Example 1 by the XPS method (X-ray photoelectron spectroscopy) are shown in FIGS. 5 to 7, respectively. In addition, the composition of the outermost surfaces of Samples 5, 9 and 10 of Test Example 1 is shown in Table 2 below.

表1及び表2の結果によると、サンプル5及び9は、親水性樹脂層を形成する構成成分が異なるにもかかわらず、親水性樹脂層の最表面の元素の種類及び比率はほぼ同じ結果を示している。一方、サンプル10は、他のサンプル5及び9と比較して、親水性樹脂層の表面組成が大きく異なっている。
そして、セルフクリーニング効果については、表1の結果で示す通り、サンプル9及び10には、セルフクリーニング効果が認められるが、サンプル5には、セルフクリーニング効果は認められない。
つまり、表1及び表2の結果から、セルフクリーニング効果の発現には、親水性樹脂層の表面組成より、ヘイズ値の影響を強く受けることがわかった。そして、親水性樹脂層の表面組成が異なっていても、本発明で規定するヘイズ値が1%以下を示す積層体であれば、該積層体は、セルフクリーニング効果を発現できることが確認できた。
According to the results of Tables 1 and 2, the types and ratios of the elements on the outermost surface of the hydrophilic resin layer are almost the same in Samples 5 and 9, although the constituent components forming the hydrophilic resin layer are different. Shown. On the other hand, the surface composition of the hydrophilic resin layer of the sample 10 is significantly different from that of the other samples 5 and 9.
As for the self-cleaning effect, as shown in the results of Table 1, the self-cleaning effect is observed in the samples 9 and 10, but the self-cleaning effect is not observed in the sample 5.
That is, from the results of Tables 1 and 2, it was found that the expression of the self-cleaning effect is more strongly influenced by the haze value than the surface composition of the hydrophilic resin layer. Then, it was confirmed that even if the surface composition of the hydrophilic resin layer is different, the laminated body can exhibit the self-cleaning effect as long as the laminated body has a haze value of 1% or less specified in the present invention.

このように、親水性樹脂層が関与するヘイズ値が1%以下の積層体は、油汚れが付着しても、雨水や水洗により容易に油汚れを除去でき、親水性を容易に回復するセルフクリーニング機能を示す積層体となる。
親水性樹脂層と基材とを積層した積層体のうち、親水性樹脂層が関与するヘイズ値が1%以下の積層体とすることで、油汚れに対し親水性を容易に回復できるメカニズムは不明であるが、本発明者らは、次のように考えている。
ヘイズ値が高い(平滑性が低い)表面では、疎水性が支配的な微細孔に油が付着した場合には、水洗の影響を得にくいのに対し、ヘイズ値が低い(平滑性が高い)表面では、油が物理的に閉じ込められることがないため、水洗により油が洗い流されるものと推測している。
As described above, the laminate having a haze value of 1% or less in which the hydrophilic resin layer is involved can easily remove the oil stains by rainwater or washing with water even if the oil stains adhere to the laminate, and the hydrophilicity can be easily restored. It is a laminated body that shows a cleaning function.
Among the laminated bodies in which the hydrophilic resin layer and the base material are laminated, the mechanism by which the hydrophilicity can be easily restored against oil stains by using the laminated body in which the haze value involving the hydrophilic resin layer is 1% or less is Although it is unknown, the present inventors think as follows.
On a surface with a high haze value (low smoothness), when oil adheres to micropores in which hydrophobicity is dominant, it is less likely to be affected by washing with water, whereas the haze value is low (high smoothness). Since the oil is not physically trapped on the surface, it is speculated that the oil will be washed away by washing with water.

所望のヘイズ値を示す積層体を得るために、親水性樹脂層に関しては、バインダー樹脂の種類、フッ素系アイオノマーの含有量、親水性樹脂層の膜厚などを考慮するとよい。SiO等の粒子を含有させる場合には、SiO粒子の凝集が生じないように、SiO粒子の粒子径や含有量も考慮するとよい。また、親水性樹脂層中において、バインダー樹脂の成分自体が凝集しないようなバインダー樹脂であって、かつフッ素系アイオノマーと相溶性がよく基材との密着性もよいバインダー樹脂を選択するとよい。また、SiO粒子を凝集させないためにSiO粒子との相性もよいバインダー樹脂を選択するとよい。
上記各要素を考慮することで、親水性樹脂層中の光拡散成分によるヘイズ値への影響を低減することができ、かつ表面が凹凸の少ない平滑な親水性樹脂層を得ることができる。
また、基材の表面に凹凸があると、親水性樹脂層の表面にも影響があるため、凹凸の少ない平滑な表面の基材を用いるとよい。さらに、基材の構成成分やその種類、基材の膜厚なども考慮し、基材中の光拡散成分によるヘイズ値への影響を低減するようにするとよい。
所望のヘイズ値を示す積層体を得るために、上述したこれらの各要素を考慮するとよい。
In order to obtain a laminate showing a desired haze value, it is advisable to consider the type of binder resin, the content of fluorine-based ionomers, the thickness of the hydrophilic resin layer, and the like with respect to the hydrophilic resin layer. In case of containing particles such as SiO 2, as the aggregation of SiO 2 particles does not occur, or the particle size and the content of SiO 2 particles is taken into consideration. Further, in the hydrophilic resin layer, it is preferable to select a binder resin that does not agglomerate the components of the binder resin itself and has good compatibility with the fluorine-based ionomer and good adhesion to the base material. Also, it may be selected also good binder resin compatibility with the SiO 2 particles in order not to agglomerate the SiO 2 particles.
By considering each of the above factors, it is possible to reduce the influence of the light diffusing component in the hydrophilic resin layer on the haze value, and it is possible to obtain a smooth hydrophilic resin layer having a surface with few irregularities.
Further, if the surface of the base material has irregularities, the surface of the hydrophilic resin layer is also affected. Therefore, it is preferable to use a base material having a smooth surface with few irregularities. Further, the influence of the light diffusing component in the base material on the haze value may be reduced in consideration of the constituent components of the base material, the type thereof, the film thickness of the base material, and the like.
Each of these factors described above may be considered in order to obtain a laminate showing the desired haze value.

<積層体の適用>
本発明の積層体は、上記試験例や下記実施例で示すように、水洗により、油汚れを容易に落とすことができ、親水性を容易に回復できるセルフクリーニング機能を示す。よって、油やオイルミストの付着が多い環境においても、雨水や水洗により、容易に油汚れを除去することができる。
また、下記実施例で示すように、本発明の積層体は、砂塵についても付着し難く、付着したとしても水洗により容易に除去できるという効果を有する。これは、上述したように、フッ素系アイオノマーの高いイオン化のため、帯電防止機能が得られることにより、砂塵が付着し難い表面が形成できているためと考えられる。
したがって、本発明の積層体は、砂塵や油汚れに対するバリア性の高い透明な保護基板として、光学部品や意匠部品等の様々な分野の製品に適用することができ、例えば、防犯カメラや監視カメラ等の光学素子を保護する透明カバーなどに適用することができる。
<Application of laminated body>
As shown in the above test example and the following examples, the laminate of the present invention exhibits a self-cleaning function capable of easily removing oil stains by washing with water and easily recovering hydrophilicity. Therefore, even in an environment where a large amount of oil or oil mist adheres, oil stains can be easily removed by washing with rainwater or water.
Further, as shown in the following examples, the laminate of the present invention has an effect that it is difficult for dust to adhere to it, and even if it adheres, it can be easily removed by washing with water. It is considered that this is because, as described above, due to the high ionization of the fluorine-based ionomer, the antistatic function is obtained, so that a surface on which dust does not easily adhere can be formed.
Therefore, the laminate of the present invention can be applied to products in various fields such as optical parts and design parts as a transparent protective substrate having a high barrier property against dust and oil stains. For example, a security camera or a surveillance camera It can be applied to a transparent cover or the like that protects an optical element such as.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the scope of the present invention is not limited to these Examples.

(実施例1)
スルホン酸基を側鎖に有する4フッ化エチレン樹脂(フッ素系アイオノマー樹脂)とウレタンアクリル樹脂とSiO粒子とを含有してなる親水性樹脂層を基材上に積層した積層体を形成した。
フッ素系アイオノマー樹脂は、式(1)のRfとして式(3)を有する樹脂(ダイキン工業株式会社製)を用いた。
ウレタンアクリル樹脂は、DSM株式会社製を用いた。
SiO粒子は、日産化学工業株式会社製シリカゾルIPA−ST(粒子径:12nm)を用いた。
親水性樹脂層におけるフッ素系アイオノマー樹脂の含有量は、25質量%とした。
親水性樹脂層におけるSiO粒子の含有量は、40質量%とした。
(Example 1)
A laminate was formed by laminating a hydrophilic resin layer containing a tetrafluoroethylene resin (fluorine-based ionomer resin) having a sulfonic acid group in a side chain, a urethane acrylic resin, and SiO 2 particles on a base material.
As the fluorine-based ionomer resin, a resin having the formula (3) as Rf of the formula (1) (manufactured by Daikin Industries, Ltd.) was used.
The urethane acrylic resin used was manufactured by DSM Co., Ltd.
As the SiO 2 particles, silica sol IPA-ST (particle diameter: 12 nm) manufactured by Nissan Chemical Industries, Ltd. was used.
The content of the fluorine-based ionomer resin in the hydrophilic resin layer was 25% by mass.
The content of SiO 2 particles in the hydrophilic resin layer was 40% by mass.

基材は、ポリカーボネート基材(住友ベークライト社製ECW100 t=3(厚さ3mm) 10cm角)を用いた。該ポリカーボネート基材のヘイズ値は、0.13であった。 As the base material, a polycarbonate base material (ECW100 t = 3 (thickness 3 mm) 10 cm square manufactured by Sumitomo Bakelite Co., Ltd.) was used. The haze value of the polycarbonate substrate was 0.13.

フッ素系アイオノマー樹脂を15質量部、ウレタンアクリル樹脂を14質量部、SiO粒子を20質量部、及びイソプロピルアルコールと水との混合溶剤を45質量部、均一に混合し、コーティング材を作製した。
ポリカーボネート基材上に、コーティング材をバーコータ#10で塗工し、120℃の温度で20分間乾燥させ、基材上に親水性樹脂層を積層させた積層体を得た。
親水性樹脂層の乾燥前の膜厚は20μmであり、乾燥後の膜厚は5μmであった。
A coating material was prepared by uniformly mixing 15 parts by mass of a fluorine-based ionomer resin, 14 parts by mass of a urethane acrylic resin, 20 parts by mass of SiO 2 particles, and 45 parts by mass of a mixed solvent of isopropyl alcohol and water.
A coating material was applied to a polycarbonate base material with a bar coater # 10 and dried at a temperature of 120 ° C. for 20 minutes to obtain a laminate in which a hydrophilic resin layer was laminated on the base material.
The thickness of the hydrophilic resin layer before drying was 20 μm, and the film thickness after drying was 5 μm.

親水性樹脂層の表面にギアオイルを滴下し、1時間放置した後、ベンコットで軽く擦りながら水洗いした。
積層体における親水性樹脂層の表面に対し、ギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。そして、ギアオイル滴下前の接触角と洗浄後の接触角の変化量Δ(°)を求めた。
ここで、接触角(°)は、10μLの水滴を高さ10cmの位置から積層体における親水性樹脂層の表面に滴下し、親水性樹脂層上に形成された水滴と親水性樹脂層の表面のなす角を、協和界面科学株式会社製の接触角計に搭載された多機能統合解析ソフトウェア FAMASを用いて測定した。
Gear oil was dropped on the surface of the hydrophilic resin layer, left for 1 hour, and then washed with water while gently rubbing with a Bencot.
The contact angle (°) before dropping the gear oil and the contact angle (°) after washing the gear oil with water (after washing) were measured with respect to the surface of the hydrophilic resin layer in the laminate. Then, the amount of change Δ (°) between the contact angle before dropping the gear oil and the contact angle after cleaning was determined.
Here, the contact angle (°) is such that 10 μL of water droplets are dropped from a height of 10 cm onto the surface of the hydrophilic resin layer in the laminate, and the water droplets formed on the hydrophilic resin layer and the surface of the hydrophilic resin layer are formed. The angle between the two was measured using FAMAS, a multifunctional integrated analysis software installed in a contact angle meter manufactured by Kyowa Interface Science Co., Ltd.

(実施例2)
実施例1において、ポリカーボネート基材上に、コーティング材をバーコータ#10で塗工し、コーティング材を乾燥させる際の乾燥条件を、120℃の温度で10分間乾燥させることに変更した以外は、実施例と同様にして、実施例2の積層体を作製した。
実施例2の積層体に対し、実施例1と同様にして、積層体作製時におけるギアオイル滴下前の接触角(°)とギアオイル水洗後(洗浄後)の接触角(°)を測定した。
(Example 2)
In Example 1, the coating material was coated on the polycarbonate substrate with bar coater # 10, and the drying conditions for drying the coating material were changed to drying at a temperature of 120 ° C. for 10 minutes. The laminate of Example 2 was prepared in the same manner as in the example.
With respect to the laminate of Example 2, the contact angle (°) before dropping the gear oil and the contact angle (°) after washing with the gear oil (after washing) at the time of producing the laminate were measured in the same manner as in Example 1.

(実施例3)
実施例1において、SiO粒子を含有させなかったこと以外は、実施例1と同様にして、実施例3の積層体を作製した。
実施例3の積層体に対し、実施例1と同様にして、積層体作製時におけるギアオイル滴下前の接触角(°)とギアオイル水洗後(洗浄後)の接触角(°)を測定した。
(Example 3)
A laminate of Example 3 was produced in the same manner as in Example 1 except that the SiO 2 particles were not contained in Example 1.
With respect to the laminate of Example 3, the contact angle (°) before dropping the gear oil and the contact angle (°) after washing with the gear oil (after washing) at the time of producing the laminate were measured in the same manner as in Example 1.

(比較例1)
実施例1において、バインダー樹脂の種類をフッ素樹脂エマルションに変え、フッ素系アイオノマーの含有量を10質量%に変え、SiO粒子(日産化学工業株式会社製シリカゾルIPA−STL(粒子径:45nm)の含有量を30質量%に変えたこと以外は、実施例1と同様にして、比較例1の積層体を作製した。
比較例1において、フッ素樹脂エマルションは、ダイキン工業株式会社製を用いた。
比較例1の積層体に対し、実施例1と同様にして、積層体作製時におけるギアオイル滴下前の接触角(°)とギアオイル水洗後(洗浄後)の接触角(°)を測定した。
(Comparative Example 1)
In Example 1, the type of the binder resin was changed to a fluororesin emulsion, the content of the fluorine-based ionomer was changed to 10% by mass, and the SiO 2 particles (silica sol IPA-STL (particle size: 45 nm) manufactured by Nissan Chemical Industries, Ltd.) were prepared. A laminate of Comparative Example 1 was prepared in the same manner as in Example 1 except that the content was changed to 30% by mass.
In Comparative Example 1, the fluororesin emulsion used was manufactured by Daikin Industries, Ltd.
For the laminated body of Comparative Example 1, the contact angle (°) before dropping the gear oil and the contact angle (°) after washing with the gear oil (after washing) at the time of producing the laminated body were measured in the same manner as in Example 1.

(比較例2)
比較例1において、SiO粒子を含有させなかったこと以外は、比較例1と同様にして、比較例2の積層体を作製した。
比較例2の積層体に対し、実施例1と同様にして、積層体作製時におけるギアオイル滴下前の接触角(°)とギアオイル水洗後(洗浄後)の接触角(°)を測定した。
(Comparative Example 2)
A laminate of Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that the SiO 2 particles were not contained in Comparative Example 1.
With respect to the laminated body of Comparative Example 2, the contact angle (°) before dropping the gear oil and the contact angle (°) after washing with the gear oil (after washing) at the time of producing the laminated body were measured in the same manner as in Example 1.

実施例1〜3、及び比較例1〜2における、積層体のヘイズ値(%)と、積層体にギアオイルの滴下した際の滴下前の接触角(°)と洗浄後の接触角(°)と、接触角の変化量Δ(°)との各結果を下記表3に示す。 The haze value (%) of the laminated body in Examples 1 to 3 and Comparative Examples 1 and 2, the contact angle (°) before dropping and the contact angle (°) after washing when the gear oil was dropped on the laminated body. The results of the change in contact angle Δ (°) are shown in Table 3 below.

(実施例4)
実施例1で作製した積層体を、温度・湿度の管理がされていない屋内に設置されたコンテナー内に、1年間保管した。
1年経過後の実施例1の積層体に対して、以下の実験を行った。
まず、コンテナーから出した際の1年経過後の実施例1の積層体に対して、接触角(°)を測定した。
次に、1年経過後の実施例1の積層体に対して、水洗いした後、親水性樹脂層の表面にギアオイルを滴下し、1時間放置した後、ベンコットで軽く擦りながら水洗いした。ギアオイルを滴下した箇所は、1年前のギアオイル滴下の実験の際、滴下した箇所にマーキングしていたその箇所と同一の箇所とした。
そして、1年経過後の積層体における親水性樹脂層の表面に対し、水洗後のギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。そして、ギアオイル滴下前の接触角と洗浄後の接触角との変化量Δ(°)を求めた。さらに、1年前に行った実験の際の積層体作製時におけるギアオイル滴下前の接触角(°)(初期値の接触角)と、1年後に行った実験の際の1年経過後積層体におけるギアオイル洗浄後の接触角との変化量Δ(°)も求めた。
(Example 4)
The laminate prepared in Example 1 was stored for one year in a container installed indoors in which temperature and humidity were not controlled.
The following experiment was carried out on the laminated body of Example 1 after one year had passed.
First, the contact angle (°) was measured with respect to the laminated body of Example 1 one year after it was taken out of the container.
Next, the laminate of Example 1 after one year had passed was washed with water, gear oil was dropped on the surface of the hydrophilic resin layer, left for 1 hour, and then washed with water while being lightly rubbed with a bencot. The place where the gear oil was dropped was the same as the place marked in the gear oil dropping experiment one year ago.
Then, the contact angle (°) before dropping the gear oil after washing with water and the contact angle (°) after washing with water (after washing) of the gear oil were measured with respect to the surface of the hydrophilic resin layer in the laminated body after one year. .. Then, the amount of change Δ (°) between the contact angle before dropping the gear oil and the contact angle after cleaning was determined. Furthermore, the contact angle (°) (initial value contact angle) before dropping the gear oil at the time of preparing the laminate in the experiment conducted one year ago and the laminate after one year in the experiment conducted one year later. The amount of change Δ (°) with the contact angle after cleaning the gear oil was also determined.

(実施例5)
実施例4で用いた実施例1の積層体と同様、実施例2で作製した積層体も、同じコンテナー内に、1年間保管した。
1年経過後の実施例2の積層体に対して、実施例4と同様の方法で、水洗後のギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。
(Example 5)
Similar to the laminate of Example 1 used in Example 4, the laminate prepared in Example 2 was also stored in the same container for one year.
With respect to the laminate of Example 2 after one year has passed, the contact angle (°) before dripping the gear oil after washing with water and the contact angle (° after washing) after washing with the gear oil (after washing) are performed in the same manner as in Example 4. ) Was measured respectively.

(比較例3)
実施例4で用いた実施例1の積層体と同様、比較例1で作製した積層体も、同じコンテナー内に、1年間保管した。
1年経過後の比較例1の積層体に対して、実施例4と同様の方法で、水洗後のギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。
(Comparative Example 3)
Similar to the laminate of Example 1 used in Example 4, the laminate prepared in Comparative Example 1 was also stored in the same container for one year.
The contact angle (°) before dripping gear oil after washing with water and the contact angle (°) after washing with gear oil (after washing) with respect to the laminate of Comparative Example 1 after one year has passed, in the same manner as in Example 4. ) Was measured respectively.

(比較例4)
実施例4で用いた実施例1の積層体と同様、比較例2で作製した積層体も、同じコンテナー内に、1年間保管した。
1年経過後の比較例1の積層体に対して、実施例4と同様の方法で、水洗後のギアオイル滴下前の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)をそれぞれ測定した。
(Comparative Example 4)
Similar to the laminate of Example 1 used in Example 4, the laminate prepared in Comparative Example 2 was also stored in the same container for one year.
The contact angle (°) before dripping gear oil after washing with water and the contact angle (°) after washing with gear oil (after washing) with respect to the laminate of Comparative Example 1 after one year has passed, in the same manner as in Example 4. ) Was measured respectively.

実施例4〜5、及び比較例3〜4における、1年経過後のコンテナーから出した際の接触角(°)と、水洗後(=ギアオイル滴下前)の接触角(°)と、ギアオイル水洗後(洗浄後)の接触角(°)と、接触角の変化量Δ(°)と、作製時の初期値との接触角の変化量Δ(°)との各結果を下記表4に示す。
尚、表4には、1年前の積層体作製時におけるギアオイル滴下前の接触角(°)や、ギアオイル洗浄後の接触角(°)や、接触角の変化量Δ(°)等の表3に記載の各結果も併記する。
In Examples 4 to 5 and Comparative Examples 3 to 4, the contact angle (°) when taken out of the container after one year has passed, the contact angle (°) after washing with water (= before dropping gear oil), and washing with gear oil with water. Table 4 below shows the results of the subsequent (after cleaning) contact angle (°), the amount of change in the contact angle Δ (°), and the amount of change in the contact angle Δ (°) with the initial value at the time of fabrication. ..
Table 4 shows the contact angle (°) before dropping the gear oil, the contact angle (°) after cleaning the gear oil, and the change amount Δ (°) of the contact angle when the laminate was manufactured one year ago. Each result described in 3 is also described.

(実施例6)
実施例1と同様な方法で、実施例6の積層体を作製した。
実施例6の積層体に対して、下記試験条件にて磨耗実験を行った後、実施例1に記載の方法と同様にして、接触角(°)を測定した。
<磨耗試験条件>
試験機:(トラバース磨耗試験機)
試験条件:ネル布、荷重500g/4cm、摩耗回数500、1000、1500、2000、2500往復
摩耗回数を500、1000、1500、2000、2500としたときの接触角(°)の測定結果を図8に示す。
(Example 6)
The laminate of Example 6 was prepared in the same manner as in Example 1.
After conducting a wear experiment on the laminated body of Example 6 under the following test conditions, the contact angle (°) was measured in the same manner as in the method described in Example 1.
<Abrasion test conditions>
Testing machine: (Traverse wear testing machine)
Test conditions: Nell cloth, load 500 g / 4 cm 2 , number of wears 500, 1000, 1500, 2000, 2500 reciprocations The measurement results of the contact angle (°) when the number of times of wear is 500, 1000, 1500, 2000, 2500 are shown in the figure. Shown in 8.

(実施例7)
実施例1において、基材をドーム形状のポリカーボネート基材とし、コーティング材を基材上に塗布する方法をスプレー塗布とした以外は、実施例1と同様にして、実施例7の積層体を作製した。
実施例7の積層体に対し、JIS試験用粉体1の11種(関東ローム層)をドームカバーに振りかけた。次に、ドームカバーを裏返して砂を除去した。さらに、霧吹きで水をドームカバー全体に吹き付け、水による洗浄を行った。
実施例7の積層体に対し、砂を振りかける前(試験前)の表面を撮影した写真を図9Aに、砂を振りかけている試験中の表面を撮影した写真を図9Bに、試験後、ドームカバーを裏返して砂を除去した後の表面を撮影した写真を図9Cに、さらにその後、水を吹き付け水による洗浄を行った後の表面を撮影した写真を図9Dに、それぞれ示す。
(Example 7)
In Example 1, the laminate of Example 7 was produced in the same manner as in Example 1 except that the base material was a dome-shaped polycarbonate base material and the method of applying the coating material on the base material was spray coating. did.
Eleven kinds of JIS test powder 1 (Kanto loam layer) were sprinkled on the dome cover with respect to the laminate of Example 7. The dome cover was then turned over to remove the sand. Furthermore, water was sprayed on the entire dome cover by spraying, and the dome cover was washed with water.
A photograph of the surface of the laminate of Example 7 before sprinkling sand (before the test) is shown in FIG. 9A, a photograph of the surface during the test of sprinkling sand is shown in FIG. 9B, and after the test, the dome. FIG. 9C shows a photograph of the surface after the cover was turned over to remove sand, and FIG. 9D shows a photograph of the surface after washing with water by spraying water.

実施例で示すように、本発明の積層体は、水洗により、油汚れを容易に落とすことができ、親水性を容易に回復できるセルフクリーニング機能を示し、さらに親水性を長期間安定して持続することができることがわかった。
また、図8で示すように、本発明の積層体は、摩耗回数が2500往復まで、接触角が安定した値を示しており、耐摩耗性にも優れていることがわかった。このように、本発明の積層体は、耐摩耗性に優れたものであり、基材と親水性樹脂層の密着性も優れたものとなっている。
また、図9A〜Dで示すように、本発明の積層体は、砂塵についても付着し難く、付着したとしても水洗により容易に除去できることがわかった。
As shown in Examples, the laminate of the present invention exhibits a self-cleaning function that can easily remove oil stains by washing with water and easily restore hydrophilicity, and further maintains hydrophilicity stably for a long period of time. I found that I could do it.
Further, as shown in FIG. 8, the laminate of the present invention showed a stable contact angle up to 2500 reciprocations, and was found to be excellent in wear resistance. As described above, the laminate of the present invention has excellent wear resistance, and the adhesion between the base material and the hydrophilic resin layer is also excellent.
Further, as shown in FIGS. 9A to 9D, it was found that the laminate of the present invention is difficult to adhere to dust, and even if it adheres, it can be easily removed by washing with water.

1 積層体
2 親水性樹脂層
3 基材
4 スルホン酸基を側鎖に有する4フッ化エチレン樹脂
5 バインダー樹脂
6 SiOの粒子

1 Laminate 2 Hydrophilic resin layer 3 Base material 4 Ethylene tetrafluoride resin having a sulfonic acid group in the side chain 5 Binder resin 6 Particles of SiO 2

Claims (3)

スルホン酸基を側鎖に有する4フッ化エチレン樹脂とバインダー樹脂とを含有する親水性樹脂層、及び基材を積層してなる積層体であって、
前記基材のヘイズ値が0.2%以下であり、かつ前記積層体のヘイズ値と前記基材のヘイズ値との差が1%以下であることを特徴とする積層体。
A laminate formed by laminating a hydrophilic resin layer containing a tetrafluorinated ethylene resin having a sulfonic acid group in a side chain and a binder resin, and a base material.
A laminate characterized in that the haze value of the base material is 0.2% or less, and the difference between the haze value of the laminate and the haze value of the base material is 1% or less.
前記バインダー樹脂が、ウレタンアクリル樹脂、フッ化ビニリデン共重合物、アクリル樹脂、フッ素樹脂エマルション、及び自己架橋型ポリエステル樹脂の中から選ばれる少なくともいずれかの樹脂である請求項1に記載の積層体。 The laminate according to claim 1, wherein the binder resin is at least one resin selected from a urethane acrylic resin, a vinylidene fluoride copolymer, an acrylic resin, a fluororesin emulsion, and a self-crosslinking polyester resin. 前記親水性樹脂層が、SiOの粒子を含有する請求項1又は2のいずれかに記載の積層体。

The laminate according to claim 1 or 2, wherein the hydrophilic resin layer contains particles of SiO 2 .

JP2019040513A 2019-03-06 2019-03-06 laminate Active JP7224209B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019040513A JP7224209B2 (en) 2019-03-06 2019-03-06 laminate
CN202010120224.1A CN111660617A (en) 2019-03-06 2020-02-26 Laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040513A JP7224209B2 (en) 2019-03-06 2019-03-06 laminate

Publications (2)

Publication Number Publication Date
JP2020142432A true JP2020142432A (en) 2020-09-10
JP7224209B2 JP7224209B2 (en) 2023-02-17

Family

ID=72355413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040513A Active JP7224209B2 (en) 2019-03-06 2019-03-06 laminate

Country Status (2)

Country Link
JP (1) JP7224209B2 (en)
CN (1) CN111660617A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222853A (en) * 2007-03-13 2008-09-25 Pialex Technologies Corp Photocatalytic coating composition
JP2009185107A (en) * 2008-02-04 2009-08-20 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated object
WO2010010600A1 (en) * 2008-07-24 2010-01-28 株式会社ピアレックス・テクノロジーズ Photocatalyst coating composition
JP2011072881A (en) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd Method of producing laminate, laminate, optical component, and method of forming coating film
JP2013127070A (en) * 2013-01-28 2013-06-27 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated product
JP2015222364A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Hard coat film and manufacturing method thereof
WO2016159023A1 (en) * 2015-03-31 2016-10-06 Jnc株式会社 Coating agent, coating film, laminate, and surface-protected article
JP2017217903A (en) * 2016-05-17 2017-12-14 大日本印刷株式会社 Plasmon resonance laminate, binder part formation composition, manufacturing method of plasmon resonance laminate and information recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672292B2 (en) * 2004-06-18 2011-04-20 旭化成ケミカルズ株式会社 Photocatalyst composition
JP4522784B2 (en) * 2004-08-05 2010-08-11 株式会社ピアレックス・テクノロジーズ Super-hydrophilic coating composition for coating outer wall of building, super-hydrophilic coating for coating outer wall of building, and super-hydrophilic color steel plate for coating outer wall of building
JP2006122844A (en) * 2004-10-29 2006-05-18 Asahi Kasei Chemicals Corp Photocatalyst material
JP4716776B2 (en) * 2005-04-18 2011-07-06 旭化成ケミカルズ株式会社 Photocatalyst
US20080250978A1 (en) * 2007-04-13 2008-10-16 Baumgart Richard J Hydrophobic self-cleaning coating composition
US9340648B2 (en) * 2010-02-01 2016-05-17 Asahi Kasei E-Materials Corporation Coating material and layered body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222853A (en) * 2007-03-13 2008-09-25 Pialex Technologies Corp Photocatalytic coating composition
JP2009185107A (en) * 2008-02-04 2009-08-20 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated object
WO2010010600A1 (en) * 2008-07-24 2010-01-28 株式会社ピアレックス・テクノロジーズ Photocatalyst coating composition
JP2011072881A (en) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd Method of producing laminate, laminate, optical component, and method of forming coating film
JP2013127070A (en) * 2013-01-28 2013-06-27 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated product
JP2015222364A (en) * 2014-05-23 2015-12-10 大日本印刷株式会社 Hard coat film and manufacturing method thereof
WO2016159023A1 (en) * 2015-03-31 2016-10-06 Jnc株式会社 Coating agent, coating film, laminate, and surface-protected article
JP2017217903A (en) * 2016-05-17 2017-12-14 大日本印刷株式会社 Plasmon resonance laminate, binder part formation composition, manufacturing method of plasmon resonance laminate and information recording medium

Also Published As

Publication number Publication date
JP7224209B2 (en) 2023-02-17
CN111660617A (en) 2020-09-15

Similar Documents

Publication Publication Date Title
JP6598750B2 (en) Optical member and optical member manufacturing method
JP2008500433A (en) Hydrophilic composition, method for its production, and substrate coated with such composition
EP2281019A1 (en) Silica coating for enhanced hydrophilicity/transmittivity
JP6866596B2 (en) Photocatalyst coating
US20110143924A1 (en) Photocatalyst coating composition
US20220145084A1 (en) Improvements relating to superhydrophobic surfaces
WO2011040405A1 (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
JP2002317152A (en) Coating agent having low refractive index and reflection preventive film
JP2001048590A (en) Reflection preventing material
JP2000096800A (en) Antifouling building material and manufacture thereof
TWI457386B (en) Photocatalyst-coated body and a photocatalyst coating liquid
JP2008272718A (en) Photocatalyst-applied object and photocatalytic coating liquid for this object
JP5109088B2 (en) Optically easy-adhesive polyester film and optical laminated polyester film
JP2004346202A (en) Aqueous coating composition, antibacterial member and method for forming coating film
CN111032337B (en) Water-repellent member and method for manufacturing water-repellent member
JP6046436B2 (en) Method for forming antifouling coating film and antifouling paint
CN108676442B (en) Anti-fingerprint coating composition and preparation method thereof, and anti-fingerprint coating and preparation method thereof
JP7224209B2 (en) laminate
JP2003342526A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP5540578B2 (en) Optically easy-adhesive polyester film and optical laminated polyester film
JP2016150329A (en) Organic substrate having photocatalyst layer
KR101502327B1 (en) Coating composition having anti-smudge and anti-static properties
KR20170034557A (en) A high weather-resistant and water_repellent multi-layer thin film and a method of manufacturing the same
JP2002127310A (en) Glass plate having water drop adhesion preventive property and heat ray blocking property
JP2010275541A (en) Coating liquid for forming hydrophilic film and coating film

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7224209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150