JP2020142251A - Resistance spot welding device and resistance spot welding method - Google Patents

Resistance spot welding device and resistance spot welding method Download PDF

Info

Publication number
JP2020142251A
JP2020142251A JP2019038934A JP2019038934A JP2020142251A JP 2020142251 A JP2020142251 A JP 2020142251A JP 2019038934 A JP2019038934 A JP 2019038934A JP 2019038934 A JP2019038934 A JP 2019038934A JP 2020142251 A JP2020142251 A JP 2020142251A
Authority
JP
Japan
Prior art keywords
electrode
welding
resistance spot
spot welding
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038934A
Other languages
Japanese (ja)
Other versions
JP7197405B2 (en
Inventor
励一 鈴木
Reiichi Suzuki
励一 鈴木
恭兵 前田
Kyohei Maeda
恭兵 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019038934A priority Critical patent/JP7197405B2/en
Publication of JP2020142251A publication Critical patent/JP2020142251A/en
Application granted granted Critical
Publication of JP7197405B2 publication Critical patent/JP7197405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

To provide a resistance spot welding device and a resistance spot welding method capable of performing resistance spot welding of sheet assembly of which at least one sheet of steel plate has a galvanized layer of a plurality of steel plates which are superimposed, without welding defect.SOLUTION: A resistance spot welding device includes one assembly of electrodes 50, 60 which are arranged opposite to each other so as to hold a plate assembly 20 there between and can move so as to approach or space to each other. Therein, one assembly of the electrodes 50, 60 respectively have main electrodes 51, 61, at the same time, one side of electrode 50 has an auxiliary electrode 52 arranged on the neighborhood of the main electrode 51 and movable independent of the main electrode 51. The resistance spot welding device includes an electric power source 70 respectively conductible between the main electrode 51 and the auxiliary electrode 52, and between one assembly of main electrodes 51, 61, and further includes switches 75, 76. 77 capable of switching to either one side of conduction between the main electrode 51 and the auxiliary electrode 52 or conduction between one assembly of main electrodes 51, 61.SELECTED DRAWING: Figure 1

Description

本発明は、抵抗スポット溶接装置及び抵抗スポット溶接方法に関し、より詳細には、亜鉛系めっき層を有する鋼板を少なくとも1枚含む板組を、粒界脆化割れのない良好な状態で溶接することができる抵抗スポット溶接装置及び抵抗スポット溶接方法に関する。 The present invention relates to a resistance spot welding apparatus and a resistance spot welding method. More specifically, a plate set containing at least one steel plate having a zinc-based plating layer is welded in a good state without grain boundary brittle cracking. The present invention relates to a resistance spot welding apparatus and a resistance spot welding method capable of performing.

近年、自動車分野では、低燃費化やCO排出量の削減、車体の軽量化、衝突安全性の向上のため、車体部材を高強度化することが求められており、車体部材や各種部品などに超ハイテン鋼板が使用されている。また、車体の高防錆化の観点から、超ハイテン鋼板に亜鉛系めっき処理を施した亜鉛系めっき鋼板が使用され、抵抗スポット溶接によって車体の組立や部品の取付けなどが行われている。 In recent years, in the automobile field, in order to reduce fuel consumption, reduce CO 2 emissions, reduce the weight of the vehicle body, and improve collision safety, it has been required to increase the strength of the vehicle body member, such as the body member and various parts. Ultra high-tensile steel sheet is used for. Further, from the viewpoint of high rust prevention of the vehicle body, a zinc-based plated steel sheet obtained by subjecting an ultra-high-tensile steel sheet to a zinc-based plating treatment is used, and the vehicle body is assembled and parts are attached by resistance spot welding.

しかし、超ハイテン鋼板は溶接性で劣る問題があり、特に、亜鉛めっき処理された超ハイテン鋼板は、抵抗スポット溶接時に、電極の加圧力や、鋼板の熱膨張及び収縮による引張応力が溶接箇所に加わり、該溶接箇所の鋼板表面で溶融した亜鉛や、亜鉛と電極の銅との合金が、鋼板の結晶粒界に侵入して粒界強度を低下させる、LME(Liquid Metal Embrittlement)と呼ばれる粒界脆化割れが起きやすいことが知られている。LME割れの最大の原因は、鋼板の合金成分量(C,Si)の増加である。 However, the ultra-high-tensile steel sheet has a problem of inferior weldability. In particular, the zinc-plated ultra-high-tensile steel sheet is subject to electrode pressure and tensile stress due to thermal expansion and contraction of the steel sheet at the welded part during resistance spot welding. In addition, zinc melted on the surface of the steel sheet at the welded portion and an alloy of zinc and copper at the electrode invade the grain boundaries of the steel sheet to reduce the grain boundary strength, called grain boundaries called LME (Liquid Metal Embryment). It is known that brittle cracking is likely to occur. The biggest cause of LME cracking is an increase in the alloy component amount (C, Si) of the steel sheet.

したがって、この合金成分量の値を下げつつ、鋼板強度を高める鋼板製造手段が最も有効であるが、現実的にはかなり難しい。そこで、溶接技術面からのLME割れ抑制が望まれ、各種の抑制方法が長年に亘って鉄鋼メーカーで検討されている。 Therefore, the steel sheet manufacturing means for increasing the steel sheet strength while lowering the value of the alloy component amount is the most effective, but it is actually quite difficult. Therefore, suppression of LME cracking is desired from the aspect of welding technology, and various suppression methods have been studied by steel makers for many years.

ここで特許文献1には、溶接電極間の溶接通電終了時から、溶接電極と被溶接部材とを非接触とするまでの溶接後保持時間Ht(秒)を長くして、溶接部が完全に固まるまで待ち、LME割れを抑制して継手強度の向上を図ったスポット溶接方法が開示されている。 Here, in Patent Document 1, the post-weld holding time Ht (seconds) from the end of welding energization between the weld electrodes to the non-contact between the weld electrodes and the member to be welded is lengthened to completely complete the welded portion. A spot welding method in which LME cracking is suppressed and joint strength is improved by waiting until it hardens is disclosed.

特許第6108017号公報Japanese Patent No. 6108017

しかしながら、特許文献1の技術によると、通電後の保持時間が長くなるため、溶接能率が低下するという問題がある。また、亜鉛を溶接部に存在させたまま溶接すれば、亜鉛起因のLME割れを完全に防止することは困難である。そこで、物理的に溶接部の亜鉛を溶接前に除去できていれば、LME割れは原理的に発生しないことになる。部分的な亜鉛除去方法としては、グラインダーのような機械的研削手段や、レーザやプラズマアークで蒸発除去する方法があるが、溶接前工程として設備導入や人的労力をかけることになり、極めて多大なコストアップになる。 However, according to the technique of Patent Document 1, there is a problem that the welding efficiency is lowered because the holding time after energization is long. Further, if zinc is welded while being present in the welded portion, it is difficult to completely prevent LME cracking caused by zinc. Therefore, if zinc in the welded portion can be physically removed before welding, LME cracking will not occur in principle. As a partial zinc removal method, there are a mechanical grinding method such as a grinder and a method of evaporating and removing with a laser or a plasma arc, but it requires equipment introduction and human labor as a pre-welding process, which is extremely large. It will increase the cost.

また、部品段階で亜鉛を除去すると、溶接時に亜鉛除去部分(すなわち、溶接予定箇所)を合わせて組み付ける必要があり、自動車産業用途では現実的ではない。また、亜鉛除去部分が溶接予定箇所に対して広大であると、当該部分は防錆機能が損なわれる問題もある。したがって、溶接とほぼ同工程で短時間に、自動的、かつ、溶接予定箇所のみの亜鉛を除去する方法が望まれている。 Further, if zinc is removed at the component stage, it is necessary to assemble the zinc-removed portion (that is, the planned welding location) together at the time of welding, which is not realistic for the automobile industry application. Further, if the zinc-removed portion is large with respect to the planned welding portion, there is a problem that the rust preventive function of the portion is impaired. Therefore, there is a demand for a method of automatically removing zinc only at a planned welding site in a short time in almost the same process as welding.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる抵抗スポット溶接装置及び抵抗スポット溶接方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to form a plate assembly in which at least one steel plate has a zinc-based plating layer among a plurality of superposed steel plates without welding defects. It is an object of the present invention to provide a resistance spot welding apparatus and a resistance spot welding method capable of welding.

したがって、本発明の上記目的は、抵抗スポット溶接装置に係る下記(1)の構成により達成される。
(1) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な1組の電極を備え、
前記1組の電極はそれぞれ主電極を有するとともに、
前記1組の電極のうち少なくとも一方は、前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有し、
前記主電極及びその近傍に配置される前記補助電極の間、並びに、1組の前記主電極の間を、それぞれ通電可能な電源を備え、
前記主電極及びその近傍に配置される前記補助電極の間の通電、又は、1組の前記主電極の間の通電のいずれか一方に切り替え可能な制御部をさらに備える、抵抗スポット溶接装置。
Therefore, the above object of the present invention is achieved by the configuration of the following (1) relating to the resistance spot welding apparatus.
(1) A resistance spot welding apparatus for performing resistance spot welding on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
It is provided with a set of electrodes that are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
Each of the pair of electrodes has a main electrode and
At least one of the pair of electrodes has an auxiliary electrode that is located in the vicinity of the main electrode and can move independently of the main electrode.
A power source capable of energizing between the main electrode and the auxiliary electrodes arranged in the vicinity thereof and between a set of the main electrodes is provided.
A resistance spot welding apparatus further comprising a control unit capable of switching between energization between the main electrode and the auxiliary electrodes arranged in the vicinity thereof, or energization between a set of the main electrodes.

また、抵抗スポット溶接装置に係る本発明の好ましい実施形態は、下記(2)〜(5)に関する。
(2) 前記補助電極は、その近傍に配置される前記主電極の周囲を囲うようにリング状に形成される、(1)に記載の抵抗スポット溶接装置。
(3) 前記電源と、前記主電極若しくは前記補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、(1)又は(2)に記載の抵抗スポット溶接装置。
(4) 前記電源は1つである、(1)〜(3)のいずれか1つに記載の抵抗スポット溶接装置。
(5) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(1)〜(4)のいずれか1つに記載の抵抗スポット溶接装置。
Further, preferred embodiments of the present invention relating to the resistance spot welding apparatus relate to the following (2) to (5).
(2) The resistance spot welding apparatus according to (1), wherein the auxiliary electrode is formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof.
(3) The resistor according to (1) or (2), wherein each electric path between the power source and the main electrode or the auxiliary electrode is provided with a switch for connecting or disconnecting the respective electric paths. Spot welding equipment.
(4) The resistance spot welding apparatus according to any one of (1) to (3), wherein the power source is one.
(5) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (1). The resistance spot welding apparatus according to any one of (4).

また、本発明の上記目的は、抵抗スポット溶接方法に係る下記(6)の構成により達成される。
(6) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置されるとともに、それぞれ主電極を有し、少なくとも一方が前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有する1組の電極の間に、前記板組を配置する工程と、
前記主電極及びその近傍に配置される前記補助電極の間で通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記1組の主電極の間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
Further, the above object of the present invention is achieved by the configuration of the following (6) according to the resistance spot welding method.
(6) A resistance spot welding method in which resistance spot welding is performed on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
Between a set of electrodes that are arranged to face each other and each have a main electrode, at least one of which is placed in the vicinity of the main electrode and has an auxiliary electrode that can move independently of the main electrode. The process of arranging the board and
A step of partially removing the zinc-based plating layer by energizing between the main electrode and the auxiliary electrode arranged in the vicinity thereof, and
A step of joining the plate assembly by resistance spot welding by energizing between the pair of main electrodes while pressurizing the plate assembly.
A resistance spot welding method.

また、抵抗スポット溶接方法に係る本発明の好ましい実施形態は、下記(7)〜(10)に関する。
(7) 前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における前記電極を、前記板組に当接させた状態で行われる、(6)に記載の抵抗スポット溶接方法。
(8) 前記補助電極として、その近傍に配置される前記主電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、(6)又は(7)に記載の抵抗スポット溶接方法。
(9) 前記主電極及びその近傍に配置される前記補助電極の間、又は、前記1組の主電極の間で行われる通電は、1つの電源と、前記主電極若しくは前記補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、(6)〜(8)のいずれか1つに記載の抵抗スポット溶接方法。
(10) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(6)〜(9)のいずれか1つに記載の抵抗スポット溶接方法。
Further, preferred embodiments of the present invention relating to the resistance spot welding method relate to the following (7) to (10).
(7) The resistance spot welding method according to (6), wherein the step of partially removing the zinc-based plating layer is performed in a state where the electrode on the non-energized side is in contact with the plate assembly. ..
(8) The resistance spot welding method according to (6) or (7), wherein each of the auxiliary electrodes is formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof.
(9) The energization performed between the main electrode and the auxiliary electrodes arranged in the vicinity thereof, or between the set of main electrodes is between one power source and the main electrode or the auxiliary electrode. The resistance spot welding method according to any one of (6) to (8), which is performed by switching a switch for connecting or disconnecting each electric path.
(10) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (6). The resistance spot welding method according to any one of (9).

また、本発明の上記目的は、抵抗スポット溶接装置に係る下記(11)の構成により達成される。
(11) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な第1複合電極及び第2複合電極を備え、
前記第1複合電極は、第1溶接電極と、該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極と、を有するとともに、
前記第2複合電極は、第2溶接電極と、該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極と、を有し、
前記第1溶接電極と前記第1補助電極との間、前記第2溶接電極と前記第2補助電極との間、及び前記第1溶接電極と前記第2溶接電極との間を、それぞれ通電可能な電源をさらに備える、抵抗スポット溶接装置。
Further, the above object of the present invention is achieved by the following configuration (11) relating to the resistance spot welding apparatus.
(11) A resistance spot welding apparatus for performing resistance spot welding on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
It is provided with a first composite electrode and a second composite electrode which are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
The first composite electrode has a first welding electrode and a first auxiliary electrode that is arranged in the vicinity of the first welding electrode and can move independently of the first welding electrode.
The second composite electrode has a second weld electrode and a second auxiliary electrode that is arranged in the vicinity of the second weld electrode and can move independently of the second weld electrode.
Energization is possible between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, and between the first welding electrode and the second welding electrode. A resistance spot welding device equipped with an additional power source.

また、抵抗スポット溶接装置に係る本発明の好ましい実施形態は、下記(12)〜(16)に関する。
(12) 前記第1溶接電極と前記第1補助電極との間の通電、前記第2溶接電極と前記第2補助電極との間の通電、又は、前記第1溶接電極と前記第2溶接電極との間の通電に切り替え可能な制御部をさらに備える、(11)に記載の抵抗スポット溶接装置。
(13) 前記第1補助電極及び前記第2補助電極は、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成される、(11)又は(12)に記載の抵抗スポット溶接装置。
(14) 前記電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、(11)〜(13)のいずれか1つに記載の抵抗スポット溶接装置。
(15) 前記電源は1つである、(11)〜(14)のいずれか1つに記載の抵抗スポット溶接装置。
(16) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(11)〜(15)のいずれか1つに記載の抵抗スポット溶接装置。
Further, preferred embodiments of the present invention relating to the resistance spot welding apparatus relate to the following (12) to (16).
(12) Energization between the first welding electrode and the first auxiliary electrode, energization between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode. The resistance spot welding apparatus according to (11), further comprising a control unit capable of switching between energization and energization.
(13) The first auxiliary electrode and the second auxiliary electrode are formed in a ring shape so as to surround the first welding electrode and the second welding electrode, respectively, according to (11) or (12). Resistance spot welding equipment.
(14) A switch that connects or cuts off each electric path to each electric path between the power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode. The resistance spot welding apparatus according to any one of (11) to (13), respectively.
(15) The resistance spot welding apparatus according to any one of (11) to (14), wherein the power source is one.
(16) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (11). The resistance spot welding apparatus according to any one of (15).

また、本発明の上記目的は、抵抗スポット溶接方法に係る下記(17)の構成により達成される。
(17) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置され、第1溶接電極及び該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極を有する第1複合電極と、第2溶接電極及び該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極を有する第2複合電極、との間に、前記板組を配置する工程と、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の少なくとも一方に通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記第1溶接電極及び前記第2溶接電極との間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
Further, the above object of the present invention is achieved by the configuration of the following (17) according to the resistance spot welding method.
(17) A resistance spot welding method in which resistance spot welding is performed on a plate assembly in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
A first composite electrode having a first auxiliary electrode which is arranged to face each other and is arranged in the vicinity of the first welding electrode and the first welding electrode and can move independently of the first welding electrode, and a second welding electrode. And the step of arranging the plate assembly between the second welding electrode and the second composite electrode having the second auxiliary electrode that can move independently from the second welding electrode.
The zinc-based plating layer is partially removed by energizing at least one between the first welding electrode and the first auxiliary electrode and between the second welding electrode and the second auxiliary electrode. Process and
A step of joining the plate assembly by resistance spot welding by energizing between the first welding electrode and the second welding electrode while pressurizing the plate assembly.
A resistance spot welding method.

また、抵抗スポット溶接方法に係る本発明の好ましい実施形態は、下記(18)〜(22)に関する。
(18) 前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における、前記第1溶接電極及び前記第1補助電極、又は、前記第2溶接電極及び前記第2補助電極を、前記板組に当接させた状態で行われる、(17)に記載の抵抗スポット溶接方法。
(19) 前記板組における最外層の鋼板の両方が亜鉛系めっき層を有する場合において、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の通電を同時に行わない、(17)又は(18)に記載の抵抗スポット溶接方法。
(20) 前記第1補助電極及び前記第2補助電極として、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、(17)〜(19)のいずれか1つに記載の抵抗スポット溶接方法。
(21) 前記第1溶接電極及び前記第1補助電極の間、前記第2溶接電極及び前記第2補助電極の間、又は、前記第1溶接電極及び前記第2溶接電極との間で行われる通電は、1つの電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、(17)〜(20)のいずれか1つに記載の抵抗スポット溶接方法。
(22) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(17)、(18)、(20)又は(21)のいずれか1つに記載の抵抗スポット溶接方法。
Further, preferred embodiments of the present invention relating to the resistance spot welding method relate to the following (18) to (22).
(18) In the step of partially removing the zinc-based plating layer, the first welding electrode and the first auxiliary electrode, or the second welding electrode and the second auxiliary electrode on the non-energized side are removed. The resistance spot welding method according to (17), which is performed in a state of being in contact with the plate assembly.
(19) When both the outermost steel sheets in the plate assembly have a zinc-based plating layer,
The resistance spot welding method according to (17) or (18), wherein energization is not performed simultaneously between the first welding electrode and the first auxiliary electrode, and between the second welding electrode and the second auxiliary electrode. ..
(20) As the first auxiliary electrode and the second auxiliary electrode, those formed in a ring shape so as to surround the first welding electrode and the second welding electrode are used, respectively, (17) to (19). ). The resistance spot welding method according to any one of.
(21) It is performed between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode. Energization is performed by switching a switch that connects or cuts off each electric path between one power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode. The resistance spot welding method according to any one of (17) to (20).
(22) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (17). , (18), (20) or (21). The resistance spot welding method according to any one of (18), (20) and (21).

本発明の抵抗スポット溶接装置及び抵抗スポット溶接方法によれば、対向して配置されるとともに、それぞれ主電極を有し、少なくとも一方が前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有する1組の電極の間に、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を配置し、主電極及び補助電極の間で通電を行うことで亜鉛系めっき層を部分的に除去した後、板組を加圧しながら、1組の主電極の間で通電を行うため、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる。 According to the resistance spot welding apparatus and the resistance spot welding method of the present invention, they are arranged so as to face each other and each has a main electrode, and at least one of them is arranged in the vicinity of the main electrode and is independent of the main electrode. A plate set in which at least one steel plate has a zinc-based plating layer is arranged between a set of electrodes having a movable auxiliary electrode, and a zinc-based plating layer is applied by energizing between the main electrode and the auxiliary electrode. Is partially removed, and then electricity is applied between one set of main electrodes while pressurizing the plate assembly. Therefore, a plate assembly in which at least one steel plate has a zinc-based plating layer is spot-welded without welding defects. can do.

図1は、本発明の第1実施形態に係る抵抗スポット溶接装置の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a resistance spot welding apparatus according to a first embodiment of the present invention. 図2は、図1に示す抵抗スポット溶接装置により、亜鉛系めっき鋼板と亜鉛系めっき層を有しない鋼板とからなる板組を抵抗スポット溶接する手順を示す図である。FIG. 2 is a diagram showing a procedure of resistance spot welding of a plate set composed of a zinc-based plated steel plate and a steel plate having no zinc-based plating layer by the resistance spot welding apparatus shown in FIG. 図3は、補助電極の形状が周方向に断続的に形成されている場合の、抵抗スポット溶接装置の概略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a resistance spot welding apparatus when the shape of the auxiliary electrode is intermittently formed in the circumferential direction. 図4は、本発明の第2実施形態に係る抵抗スポット溶接装置の概略構成を示す斜視図である。FIG. 4 is a perspective view showing a schematic configuration of a resistance spot welding apparatus according to a second embodiment of the present invention. 図5は、図4に示す抵抗スポット溶接装置により、2枚の亜鉛系めっき鋼板が重ね合わされてなる板組を抵抗スポット溶接する手順を示す図である。FIG. 5 is a diagram showing a procedure of resistance spot welding of a plate set in which two galvanized steel sheets are laminated by the resistance spot welding apparatus shown in FIG. 図6は、図4に示す抵抗スポット溶接装置により、亜鉛系めっき層を有しない鋼板が、2枚の亜鉛系めっき鋼板により挟持された3枚の鋼板からなる板組を抵抗スポット溶接する手順を示す図である。FIG. 6 shows a procedure in which a steel plate having no zinc-based plating layer performs resistance spot welding of a plate set consisting of three steel plates sandwiched between two galvanized steel plates by the resistance spot welding apparatus shown in FIG. It is a figure which shows.

以下、本発明に係る各抵抗スポット溶接装置及び該抵抗スポット溶接装置を用いた抵抗スポット溶接方法の各実施形態を、図面に基づいて詳細に説明する。 Hereinafter, each resistance spot welding apparatus according to the present invention and each embodiment of the resistance spot welding method using the resistance spot welding apparatus will be described in detail with reference to the drawings.

<第1実施形態>
(抵抗スポット溶接装置)
図1は、本発明の第1実施形態に係る抵抗スポット溶接装置の概略構成図である。図1に示すように、本実施形態に係る抵抗スポット溶接装置10は、表面に亜鉛系めっき層31を有する鋼板30(以後、亜鉛系めっき鋼板30とも言う)と、亜鉛系めっき層を有しない鋼板40が重ね合わされた、複数の鋼板30,40からなる板組20を抵抗スポット溶接で接合するための溶接装置である。
<First Embodiment>
(Resistance spot welding equipment)
FIG. 1 is a schematic configuration diagram of a resistance spot welding apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the resistance spot welding apparatus 10 according to the present embodiment does not have a steel plate 30 having a zinc-based plating layer 31 on its surface (hereinafter, also referred to as a zinc-based plating steel sheet 30) and a zinc-based plating layer. This is a welding device for joining a plate set 20 composed of a plurality of steel plates 30 and 40 on which steel plates 40 are laminated by resistance spot welding.

なお、亜鉛系めっき鋼板30としては、例えば、合金化溶融亜鉛めっき鋼板(GA)、溶融亜鉛めっき鋼板(GI)、電気亜鉛めっき鋼板(EG)などが挙げられる。また、亜鉛めっき鋼板30の引張強度(TS)は特に限定されないが、例えば、980MPa以上、好ましくは1180MPa以上の高張力鋼板(High Tensile Strength Steel:HTSS)である。 Examples of the galvanized steel sheet 30 include alloyed hot-dip galvanized steel sheets (GA), hot-dip galvanized steel sheets (GI), and electrogalvanized steel sheets (EG). The tensile strength (TS) of the galvanized steel sheet 30 is not particularly limited, but is, for example, a high-strength steel sheet (High Tensile Steel Steel: HTSS) of 980 MPa or more, preferably 1180 MPa or more.

抵抗スポット溶接装置10は、板組20を挟むように、図中上下方向に対向して配置され、互いに接近又は離間するように移動可能な1組の電極50,60を備える。一方の電極50(以後、第1複合電極50とも言う)は、複合電極であり、主電極51(以後、第1溶接電極51とも言う)と、該主電極51の周囲を囲むように配置されたリング状の補助電極52とを備える。主電極51及び補助電極52は、例えば、エア式や電動式(サーボ式)などの公知の駆動装置(図示せず)により駆動され、独立して図中上下方向、すなわち、板組20に接近又は離間する方向に移動可能である。なお、本実施形態において、電極50は、板組20のうち亜鉛系めっき鋼板30側に配置される。 The resistance spot welding device 10 is provided with a set of electrodes 50, 60 which are arranged so as to sandwich the plate assembly 20 so as to face each other in the vertical direction in the drawing and can be moved so as to approach or separate from each other. One electrode 50 (hereinafter, also referred to as the first composite electrode 50) is a composite electrode, and is arranged so as to surround the main electrode 51 (hereinafter, also referred to as the first welding electrode 51) and the periphery of the main electrode 51. A ring-shaped auxiliary electrode 52 is provided. The main electrode 51 and the auxiliary electrode 52 are driven by a known driving device (not shown) such as an air type or an electric type (servo type), and independently approach the plate assembly 20 in the vertical direction in the drawing. Or it can move in the direction of separation. In this embodiment, the electrode 50 is arranged on the zinc-based plated steel sheet 30 side of the plate assembly 20.

他方の電極60は、補助電極を備えず、主電極61(以後、第2溶接電極61とも言う)のみで構成され、一方の電極50と同様に、エア式や電動式などの公知の駆動装置(図示せず)により駆動され、図中上下方向、すなわち、板組20に接近又は離間する方向に移動可能である。電極50及び電極60は、互いに独立して移動可能である。なお、本実施形態において、電極60は、板組20のうち亜鉛系めっき層を有しない鋼板40側に配置される。 The other electrode 60 is not provided with an auxiliary electrode and is composed of only a main electrode 61 (hereinafter, also referred to as a second welding electrode 61), and like the one electrode 50, a known driving device such as an air type or an electric type. It is driven by (not shown) and can move in the vertical direction in the figure, that is, in the direction of approaching or separating from the plate set 20. The electrode 50 and the electrode 60 can move independently of each other. In the present embodiment, the electrode 60 is arranged on the steel plate 40 side of the plate assembly 20 which does not have the zinc-based plating layer.

主電極51及び主電極61は、抵抗スポット溶接を実施するのに要する、比較的強い加圧力で板組20を押圧可能になっている。また、補助電極52は、主電極51との間に通電できる程度に亜鉛系めっき鋼板30に接触していればよく、主電極51,61の加圧力ほどの力は要しない。 The main electrode 51 and the main electrode 61 can press the plate assembly 20 with a relatively strong pressing force required for performing resistance spot welding. Further, the auxiliary electrode 52 only needs to be in contact with the galvanized steel sheet 30 to the extent that it can be energized with the main electrode 51, and does not require as much force as the pressing force of the main electrodes 51 and 61.

また、抵抗スポット溶接装置10は、1つの電源70を備える。電源70は、電気経路71により主電極51と接続されるとともに、電気経路72により補助電極52と接続されている。電気経路71の途中には、電気経路71を接続又は遮断する制御部であるスイッチ75が設けられ、電気経路72の途中には、電気経路72を接続又は遮断する制御部であるスイッチ76が設けられている。また、電源70は、電気経路73により主電極61とも接続されている。電気経路73の途中には、電気経路73を接続又は遮断する制御部であるスイッチ77が設けられている。 Further, the resistance spot welding device 10 includes one power supply 70. The power source 70 is connected to the main electrode 51 by an electric path 71 and is connected to an auxiliary electrode 52 by an electric path 72. A switch 75, which is a control unit for connecting or disconnecting the electric path 71, is provided in the middle of the electric path 71, and a switch 76, which is a control unit for connecting or disconnecting the electric path 72, is provided in the middle of the electric path 72. Has been done. The power supply 70 is also connected to the main electrode 61 by an electric path 73. A switch 77, which is a control unit for connecting or disconnecting the electric path 73, is provided in the middle of the electric path 73.

これにより、スイッチ75,76,77を適宜、接続又は遮断することで、主電極51及びその近傍に配置される補助電極52の間の通電、又は、1組の主電極51,61の間の通電のいずれか一方に切り替えることができる。 As a result, by appropriately connecting or disconnecting the switches 75, 76, 77, energization between the main electrode 51 and the auxiliary electrodes 52 arranged in the vicinity thereof, or between a set of main electrodes 51, 61 It can be switched to either energization.

なお、図1に示すように、電源70は1つの電源により構成されているが、例えば、主電極51,61や補助電極52ごとに個別の電源を設置するといったように、複数の電源により構成してもよい。また、電源は交流電源であっても、直流電源であってもよく、公知の抵抗スポット溶接に用いられる一般的な電源が使用可能である。 As shown in FIG. 1, the power supply 70 is composed of one power supply, but is composed of a plurality of power supplies, for example, an individual power supply is installed for each of the main electrodes 51 and 61 and the auxiliary electrode 52. You may. Further, the power source may be an AC power source or a DC power source, and a known general power source used for resistance spot welding can be used.

(抵抗スポット溶接方法)
次に、抵抗スポット溶接装置10を用いて、亜鉛系めっき鋼板30と亜鉛系めっき層を有しない鋼板40との板組20を抵抗スポット溶接する方法について、図2を参照して詳述する。
(Resistance spot welding method)
Next, a method of resistance spot welding of the plate assembly 20 of the zinc-based plated steel sheet 30 and the steel plate 40 having no zinc-based plating layer using the resistance spot welding apparatus 10 will be described in detail with reference to FIG.

図2に示すように、本実施形態に係る抵抗スポット溶接方法は、まず、互いに離間した状態の1組の電極50,60の間に、亜鉛系めっき鋼板30及び亜鉛系めっき層を有しない鋼板40からなる板組20を配置する。その際、電極50すなわち主電極51及び補助電極52は、亜鉛系めっき鋼板30側に配置され、また、電極60すなわち主電極61は、亜鉛系めっき層を有しない鋼板40側に配置される(Step1)。 As shown in FIG. 2, in the resistance spot welding method according to the present embodiment, first, a zinc-based plated steel sheet 30 and a steel sheet having no zinc-based plated layer are provided between a set of electrodes 50 and 60 separated from each other. A plate set 20 composed of 40 is arranged. At that time, the electrode 50, that is, the main electrode 51 and the auxiliary electrode 52 are arranged on the zinc-based plated steel sheet 30 side, and the electrode 60, that is, the main electrode 61 is arranged on the steel plate 40 side that does not have the zinc-based plated layer ( Step1).

次いで、不図示の駆動装置を作動させて電極50(主電極51、補助電極52)を板組20に向けて移動させ、主電極51及び補助電極52を亜鉛系めっき鋼板30に接触させる。そして、スイッチ75,76を閉じ、亜鉛系めっき鋼板30を介して主電極51及び補助電極52間に通電する。これにより、主電極51から補助電極52に向けて、又は、その逆の方向に、電流が亜鉛系めっき鋼板30の面内方向において放射状に流れ、亜鉛系めっき鋼板30には加熱領域32が形成される(Step2)。 Next, a drive device (not shown) is operated to move the electrodes 50 (main electrode 51, auxiliary electrode 52) toward the plate assembly 20, and the main electrode 51 and the auxiliary electrode 52 are brought into contact with the galvanized steel sheet 30. Then, the switches 75 and 76 are closed, and electricity is applied between the main electrode 51 and the auxiliary electrode 52 via the galvanized steel sheet 30. As a result, a current radiates from the main electrode 51 toward the auxiliary electrode 52 or in the opposite direction in the in-plane direction of the galvanized steel sheet 30, and a heating region 32 is formed in the galvanized steel sheet 30. Is done (Step 2).

主電極51及び補助電極52間の領域が加熱されることで、亜鉛系めっき鋼板30における、融点が低い亜鉛系めっき層31が蒸発して除去され、亜鉛系めっき層31のない生の鋼板が露出した露出領域33が、亜鉛系めっき鋼板30の上下面に形成される(Step3)。 By heating the region between the main electrode 51 and the auxiliary electrode 52, the zinc-based plating layer 31 having a low melting point in the galvanized steel sheet 30 is evaporated and removed, and the raw steel sheet without the zinc-based plating layer 31 is removed. The exposed exposed region 33 is formed on the upper and lower surfaces of the galvanized steel sheet 30 (Step 3).

熱により蒸発した亜鉛ガスは、亜鉛系めっき鋼板30の上面からは直接外部に排出される。また、鋼板40に接触する亜鉛系めっき鋼板30の下面から蒸発した亜鉛ガスは、亜鉛系めっき鋼板30と鋼板40との隙間から外部に排出される。該隙間を適正に確保して亜鉛ガスの排出を円滑に行うためにも、上記した亜鉛系めっき層31の除去工程において、亜鉛系めっき鋼板30及び鋼板40を過度に押圧しないことが望ましい。 The zinc gas evaporated by heat is directly discharged to the outside from the upper surface of the galvanized steel sheet 30. Further, the zinc gas evaporated from the lower surface of the galvanized steel sheet 30 in contact with the steel sheet 40 is discharged to the outside through the gap between the galvanized steel sheet 30 and the steel sheet 40. In order to properly secure the gap and smoothly discharge the zinc gas, it is desirable not to excessively press the zinc-based plated steel sheet 30 and the steel sheet 40 in the above-mentioned removal step of the zinc-based plated layer 31.

また、補助電極52の形状は、リング状に限定されないが、リング状に形成することで(図1を参照)、加熱領域32及び露出領域33も円形となり、亜鉛の理想的な蒸発状態を作ることができるため、その後に行う抵抗スポット溶接に好適な形状で亜鉛系めっき層31を除去することができる。 Further, the shape of the auxiliary electrode 52 is not limited to the ring shape, but by forming the auxiliary electrode 52 into a ring shape (see FIG. 1), the heating region 32 and the exposed region 33 also become circular, and an ideal evaporation state of zinc is created. Therefore, the zinc-based plating layer 31 can be removed in a shape suitable for the subsequent resistance spot welding.

なお、補助電極52の形状は、周方向に連続的にリング状に形成されているものだけでなく、例えば図3に示すように、補助電極52の長手方向における少なくとも一部が、補助電極52の周方向において断続的に(不連続に)形成されているものであってもよい(なお、図3において、電源、電気経路及びスイッチの図示は省略する。)。このように補助電極52が断続的に形成されることで、補助電極52が鋼板30,40と接する部分を小さくすることができるため、図3に示すような、鋼板30,40の少なくとも一方が、プレス成形等の加工により溶接予定箇所が狭隘となる場合の溶接に好適に用いることができる。 The shape of the auxiliary electrode 52 is not limited to the one formed in a ring shape continuously in the circumferential direction. For example, as shown in FIG. 3, at least a part of the auxiliary electrode 52 in the longitudinal direction is the auxiliary electrode 52. It may be formed intermittently (discontinuously) in the circumferential direction of the above (note that the power supply, the electric path, and the switch are not shown in FIG. 3). By forming the auxiliary electrode 52 intermittently in this way, the portion where the auxiliary electrode 52 contacts the steel plates 30 and 40 can be made smaller, so that at least one of the steel plates 30 and 40 as shown in FIG. , It can be suitably used for welding when the planned welding location becomes narrow due to processing such as press forming.

次いで、駆動装置を作動させて電極50の主電極51と、電極60の主電極61を、それぞれ板組20に向けて移動させて、主電極51,61間で板組20を強く挟持し、所定の加圧力を加えながらスイッチ75,77を閉じて、亜鉛系めっき鋼板30及び鋼板40を介して、主電極51,61間に通電する。これにより、亜鉛系めっき鋼板30及び鋼板40間に、溶接金属部であるナゲット34が形成された後に板組20を冷却する(Step4)。 Next, the drive device is operated to move the main electrode 51 of the electrode 50 and the main electrode 61 of the electrode 60 toward the plate assembly 20, respectively, and the plate assembly 20 is strongly sandwiched between the main electrodes 51 and 61. The switches 75 and 77 are closed while applying a predetermined pressing force, and electricity is applied between the main electrodes 51 and 61 via the galvanized steel plate 30 and the steel plate 40. As a result, the plate assembly 20 is cooled after the nugget 34, which is a weld metal portion, is formed between the galvanized steel sheet 30 and the steel sheet 40 (Step 4).

その後、板組20から電極50,60を離間させることで、亜鉛系めっき鋼板30と鋼板40との抵抗スポット溶接を完了する(Step5)。 After that, resistance spot welding between the galvanized steel sheet 30 and the steel sheet 40 is completed by separating the electrodes 50 and 60 from the plate assembly 20 (Step 5).

なお、亜鉛系めっき層31を部分的に除去する工程は、通電されていない側における電極60を、板組20に当接させた状態で行ってもよい。このように亜鉛系めっき層31を除去する際に、電極60を板組20に当接させてスタンバイ状態としておくことで、その後の板組20を抵抗スポット溶接する工程を直ちに行うことができ、溶接能率が向上する。なお、その際、亜鉛系めっき鋼板30に接触させた主電極51は、亜鉛系めっき層31の除去工程後に板組20から離間させる必要はない。 The step of partially removing the zinc-based plating layer 31 may be performed in a state where the electrode 60 on the non-energized side is in contact with the plate assembly 20. When the zinc-based plating layer 31 is removed in this way, the electrode 60 is brought into contact with the plate assembly 20 to be in a standby state, so that the subsequent step of resistance spot welding of the plate assembly 20 can be performed immediately. Welding efficiency is improved. At that time, the main electrode 51 in contact with the zinc-based plated steel sheet 30 does not need to be separated from the plate assembly 20 after the step of removing the zinc-based plated layer 31.

また、板組20を抵抗スポット溶接する工程において、必ずしも補助電極52を離間させる必要はないが、補助電極52を退避させておくことで、不可避的に発生するチリ(すなわち、電極と鋼板間で発生するスパッタ)が、主電極51と補助電極52との隙間に堆積して、主電極51及び補助電極52間が常時通電状態になる等のトラブルの発生を防止することができる。 Further, in the step of resistance spot welding of the plate assembly 20, it is not always necessary to separate the auxiliary electrodes 52, but by retracting the auxiliary electrodes 52, dust that is inevitably generated (that is, between the electrodes and the steel plate) is generated. Sputter) is accumulated in the gap between the main electrode 51 and the auxiliary electrode 52, and it is possible to prevent troubles such as the main electrode 51 and the auxiliary electrode 52 being constantly energized.

このように、本実施形態の抵抗スポット溶接装置10によれば、亜鉛系めっき鋼板30における溶接予定箇所の亜鉛系めっき層31のみを、亜鉛の蒸発により除去して、露出領域33を形成した後、該露出領域33と亜鉛系めっき層を有しない鋼板40とを抵抗スポット溶接するため、亜鉛による影響を排除して、粒界脆化割れ(LME割れ)を防止し、溶接欠陥のない良好な状態で溶接を行うことができる。 As described above, according to the resistance spot welding apparatus 10 of the present embodiment, only the zinc-based plating layer 31 at the planned welding portion of the zinc-based plated steel plate 30 is removed by evaporation of zinc to form the exposed region 33. Since the exposed region 33 and the steel plate 40 having no zinc-based plating layer are spot-welded by resistance spot welding, the influence of zinc is eliminated, grain boundary brittle cracks (LME cracks) are prevented, and there are no welding defects. Welding can be performed in the state.

また、亜鉛系めっき層31が除去される範囲(露出領域33)は、リング状の補助電極52の内側、すなわち、溶接部(すなわち、溶接予定箇所)のみが位置精度よく除去され、不必要に広い範囲の亜鉛系めっき層31が除去されないので、防錆効果が損なわれることがなく、かつ、溶接とほぼ同工程で短時間に亜鉛系めっき層31を除去することができる。 Further, in the range where the zinc-based plating layer 31 is removed (exposed area 33), only the inside of the ring-shaped auxiliary electrode 52, that is, the welded portion (that is, the planned welding portion) is removed with high positional accuracy, which is unnecessary. Since the zinc-based plating layer 31 in a wide range is not removed, the rust preventive effect is not impaired, and the zinc-based plating layer 31 can be removed in a short time in substantially the same process as welding.

<第2実施形態>
(抵抗スポット溶接装置)
続いて、第2実施形態に係る抵抗スポット溶接装置について説明する。図4は、本発明の第2実施形態に係る抵抗スポット溶接装置の概略構成図である。図4に示すように、本実施形態に係る抵抗スポット溶接装置10Aは、表面に亜鉛系めっき層31を有する複数(図に示す実施形態では2枚)の亜鉛系めっき鋼板30A,30Bが重ね合わされた板組20を抵抗スポット溶接で接合する。
<Second Embodiment>
(Resistance spot welding equipment)
Subsequently, the resistance spot welding apparatus according to the second embodiment will be described. FIG. 4 is a schematic configuration diagram of a resistance spot welding apparatus according to a second embodiment of the present invention. As shown in FIG. 4, in the resistance spot welding apparatus 10A according to the present embodiment, a plurality of zinc-based plated steel sheets 30A and 30B having a zinc-based plating layer 31 on the surface (two in the embodiment shown in the figure) are superposed. The plate assembly 20 is joined by resistance spot welding.

抵抗スポット溶接装置10Aは、板組20を挟むように、図中上下方向に対向して配置され、互いに接近又は離間するように移動可能な第1複合電極50と、第2複合電極60を備える。第1複合電極50及び第2複合電極60は、それぞれ主電極(第1溶接電極)51及び主電極(第2溶接電極)61と、該第1溶接電極51及び該第2溶接電極61の周囲をそれぞれ囲むように配置された、リング状の第1補助電極52及び第2補助電極62とを備える。 The resistance spot welding device 10A includes a first composite electrode 50 and a second composite electrode 60, which are arranged so as to sandwich the plate assembly 20 so as to face each other in the vertical direction in the drawing and can move so as to approach or separate from each other. .. The first composite electrode 50 and the second composite electrode 60 are the main electrode (first weld electrode) 51 and the main electrode (second weld electrode) 61, respectively, and the periphery of the first weld electrode 51 and the second weld electrode 61. A ring-shaped first auxiliary electrode 52 and a second auxiliary electrode 62 are provided so as to surround the two auxiliary electrodes.

なお、第1溶接電極51、第2溶接電極61、第1補助電極52及び第2補助電極62は、例えば、エア式や電動式などの公知の駆動装置で駆動され、独立して図中上下方向、すなわち、板組20に接近又は離間する方向に移動可能である。 The first welding electrode 51, the second welding electrode 61, the first auxiliary electrode 52, and the second auxiliary electrode 62 are driven by a known driving device such as an air type or an electric type, and are independently moved up and down in the drawing. It is movable in a direction, that is, in a direction that approaches or separates from the plate assembly 20.

第1溶接電極51及び第2溶接電極61は、抵抗スポット溶接を実施するのに要する、比較的強い加圧力で板組20を押圧可能になっている。また、第1補助電極52及び第2補助電極62は、それぞれ第1溶接電極51及び第2溶接電極61との間に通電できる程度に亜鉛系めっき鋼板30に接触していればよく、第1溶接電極51や第2溶接電極61の加圧力ほどの力は要しない。 The first welding electrode 51 and the second welding electrode 61 can press the plate assembly 20 with a relatively strong pressing force required for performing resistance spot welding. Further, the first auxiliary electrode 52 and the second auxiliary electrode 62 may be in contact with the zinc-based plated steel plate 30 to such an extent that they can be energized between the first welding electrode 51 and the second welding electrode 61, respectively. It does not require as much force as the pressing force of the welding electrode 51 and the second welding electrode 61.

また、抵抗スポット溶接装置10Aは、1つの電源70を備える。電源70は、電気経路71により第1溶接電極51と接続されるとともに、電気経路72により第1補助電極52と接続されている。電気経路71の途中には、電気経路71を接続又は遮断する制御部であるスイッチ75が設けられ、電気経路72の途中には、電気経路72を接続又は遮断する制御部であるスイッチ76が設けられている。また、電源70は、電気経路73により第2溶接電極61と接続されるとともに、電気経路74により第2補助電極62と接続されている。電気経路73の途中には、電気経路73を接続又は遮断する制御部であるスイッチ77が設けられ、電気経路74の途中には、電気経路74を接続又は遮断する制御部であるスイッチ78が設けられている。 Further, the resistance spot welding device 10A includes one power supply 70. The power source 70 is connected to the first welding electrode 51 by an electric path 71 and is connected to the first auxiliary electrode 52 by an electric path 72. A switch 75, which is a control unit for connecting or disconnecting the electric path 71, is provided in the middle of the electric path 71, and a switch 76, which is a control unit for connecting or disconnecting the electric path 72, is provided in the middle of the electric path 72. Has been done. Further, the power source 70 is connected to the second welding electrode 61 by the electric path 73, and is connected to the second auxiliary electrode 62 by the electric path 74. A switch 77, which is a control unit for connecting or disconnecting the electric path 73, is provided in the middle of the electric path 73, and a switch 78, which is a control unit for connecting or disconnecting the electric path 74, is provided in the middle of the electric path 74. Has been done.

これにより、スイッチ75,76,77,78を適宜、接続又は遮断することで、第1溶接電極51及び第1補助電極52の間、第2溶接電極61及び第2補助電極62の間、並びに第1溶接電極51及び第2溶接電極61の間を、それぞれ通電又は遮断することができる。 As a result, by appropriately connecting or disconnecting the switches 75, 76, 77, 78, between the first welding electrode 51 and the first auxiliary electrode 52, between the second welding electrode 61 and the second auxiliary electrode 62, and It is possible to energize or shut off between the first welding electrode 51 and the second welding electrode 61, respectively.

なお、図4に示すように、電源70は1つの電源により構成されているが、第1実施形態と同様、複数の電源により構成してもよい。また、電源は交流電源であっても、直流電源であってもよく、公知の抵抗スポット溶接に用いられる一般的な電源が使用可能である。 As shown in FIG. 4, the power supply 70 is composed of one power supply, but may be composed of a plurality of power supplies as in the first embodiment. Further, the power source may be an AC power source or a DC power source, and a known general power source used for resistance spot welding can be used.

(抵抗スポット溶接方法)
次に、抵抗スポット溶接装置10Aを用いて、複数の亜鉛系めっき鋼板30からなる板組20を抵抗スポット溶接する方法について、図5を参照して詳述する。
(Resistance spot welding method)
Next, a method of resistance spot welding of a plate set 20 composed of a plurality of galvanized steel sheets 30 using the resistance spot welding apparatus 10A will be described in detail with reference to FIG.

図5に示すように、本実施形態に係る抵抗スポット溶接方法は、まず、互いに離間した状態の第1複合電極50と第2複合電極60の間に、複数(図に示す実施形態では2枚)の亜鉛系めっき鋼板30A,30Bなる板組20を配置する(Step1)。 As shown in FIG. 5, in the resistance spot welding method according to the present embodiment, first, a plurality of resistance spot welding methods are used between the first composite electrode 50 and the second composite electrode 60 in a state of being separated from each other (two in the embodiment shown in the figure). ), The zinc-based plated steel plates 30A and 30B are arranged (Step 1).

次いで、不図示の駆動装置を作動させて第1複合電極50(第1溶接電極51、第1補助電極52)を板組20に向けて移動させ、第1溶接電極51及び第1補助電極52を、上側に配置された亜鉛系めっき鋼板30Aに接触させる。そして、スイッチ75,76を閉じ、亜鉛系めっき鋼板30Aを介して第1溶接電極51及び第1補助電極52間に通電する。これにより、第1溶接電極51から第1補助電極52に向けて、又は、その逆の方向に、電流が亜鉛系めっき鋼板30Aの面内方向において放射状に流れ、上側の亜鉛系めっき鋼板30Aには加熱領域32が形成される(Step2)。 Next, a drive device (not shown) is operated to move the first composite electrode 50 (first welding electrode 51, first auxiliary electrode 52) toward the plate assembly 20, and the first welding electrode 51 and the first auxiliary electrode 52 are moved. Is brought into contact with the zinc-based plated steel sheet 30A arranged on the upper side. Then, the switches 75 and 76 are closed, and electricity is applied between the first welding electrode 51 and the first auxiliary electrode 52 via the galvanized steel sheet 30A. As a result, a current radiates from the first welding electrode 51 toward the first auxiliary electrode 52 or in the opposite direction in the in-plane direction of the galvanized steel sheet 30A, and flows to the upper galvanized steel sheet 30A. The heating region 32 is formed (Step 2).

第1溶接電極51及び第1補助電極52間の領域が加熱されることで、亜鉛系めっき鋼板30Aにおける、融点が低い亜鉛系めっき層31が蒸発して除去され、亜鉛系めっき層31のない生の鋼板が露出した露出領域33が、亜鉛系めっき鋼板30Aの上下面に形成される(Step3)。 By heating the region between the first welding electrode 51 and the first auxiliary electrode 52, the zinc-based plating layer 31 having a low melting point in the galvanized steel sheet 30A is evaporated and removed, and there is no zinc-based plating layer 31. The exposed region 33 where the raw steel sheet is exposed is formed on the upper and lower surfaces of the galvanized steel sheet 30A (Step 3).

次いで、第1複合電極50を亜鉛系めっき鋼板30Aから離間させ、亜鉛系めっき鋼板30Bの下方に配置された第2複合電極60(第2溶接電極61、第2補助電極62)を板組20に向けて移動させ、第2溶接電極61及び第2補助電極62を、下側に配置された亜鉛系めっき鋼板30Bに接触させる。そして、スイッチ77,78を閉じ、亜鉛系めっき鋼板30Bを介して第2溶接電極61及び第2補助電極62間に通電する。これにより、第2溶接電極61から第2補助電極62に向けて、又は、その逆の方向に、電流が亜鉛系めっき鋼板30Bの面内方向において放射状に流れ、下側の亜鉛系めっき鋼板30Bにも加熱領域32が形成される(Step4)。 Next, the first composite electrode 50 is separated from the galvanized steel sheet 30A, and the second composite electrode 60 (second welding electrode 61, second auxiliary electrode 62) arranged below the galvanized steel sheet 30B is assembled into a plate 20. The second welding electrode 61 and the second auxiliary electrode 62 are brought into contact with the galvanized steel sheet 30B arranged on the lower side. Then, the switches 77 and 78 are closed, and electricity is applied between the second welding electrode 61 and the second auxiliary electrode 62 via the galvanized steel sheet 30B. As a result, currents flow radially from the second welding electrode 61 toward the second auxiliary electrode 62 or in the opposite direction in the in-plane direction of the galvanized steel sheet 30B, and the lower galvanized steel sheet 30B A heating region 32 is also formed in (Step 4).

第2溶接電極61及び第2補助電極62間の領域が加熱されることで、亜鉛系めっき鋼板30Bにおける、融点が低い亜鉛系めっき層31が蒸発して除去され、亜鉛系めっき層31のない生の鋼板が露出した露出領域33が、亜鉛系めっき鋼板30Bの上下面にも形成される(Step5)。 By heating the region between the second welding electrode 61 and the second auxiliary electrode 62, the zinc-based plating layer 31 having a low melting point in the galvanized steel sheet 30B is evaporated and removed, and there is no zinc-based plating layer 31. The exposed region 33 where the raw steel sheet is exposed is also formed on the upper and lower surfaces of the galvanized steel sheet 30B (Step 5).

これにより、亜鉛系めっき鋼板30A,30Bの溶接予定箇所にある亜鉛系めっき層31は、完全に除去される。 As a result, the zinc-based plating layer 31 at the planned welding location of the zinc-based plated steel sheets 30A and 30B is completely removed.

引き続いて、駆動装置を作動させて第1複合電極50の第1溶接電極51と、第2複合電極60の第2溶接電極61を、それぞれ板組20に向けて移動させて、第1溶接電極51及び第2溶接電極61間で板組20を強く挟持し、所定の加圧力を加えながらスイッチ75,77を閉じて、亜鉛系めっき鋼板30A,30Bを介して、第1溶接電極51及び第2溶接電極61間に通電する。これにより、亜鉛系めっき鋼板30A,30B間に、溶接金属部であるナゲット34が形成された後に板組20を冷却する(Step6)。 Subsequently, the drive device is operated to move the first welding electrode 51 of the first composite electrode 50 and the second welding electrode 61 of the second composite electrode 60 toward the plate assembly 20, respectively, and the first welding electrode. The plate set 20 is strongly sandwiched between the 51 and the second welding electrode 61, the switches 75 and 77 are closed while applying a predetermined pressing force, and the first welding electrode 51 and the first welding electrode 51 and the first welding electrode 51 and the first welding electrode 51 and the first welding electrode 51 and the first welding electrode 51 and the 1st welding electrode 51 and the 2 2 Energize between the welding electrodes 61. As a result, the plate assembly 20 is cooled after the nugget 34, which is a weld metal portion, is formed between the galvanized steel sheets 30A and 30B (Step 6).

その後、板組20から第1溶接電極51及び第2溶接電極61を離間させることで、亜鉛系めっき鋼板30A,30Bの抵抗スポット溶接を完了する(Step7)。 After that, the resistance spot welding of the galvanized steel sheets 30A and 30B is completed by separating the first welding electrode 51 and the second welding electrode 61 from the plate assembly 20 (Step 7).

上記したように、板組20の上下に、一対の第1複合電極50及び第2複合電極60を配置し、板組20の溶接に先立って、亜鉛系めっき鋼板30A,30Bの亜鉛系めっき層31を別工程で除去するようにしたため、亜鉛系めっき層31の蒸発除去工程での亜鉛系めっき鋼板30A,30B間の通電が防止される。これにより、偏った温度上昇が抑制され、亜鉛の蒸発が不安定になることがなく、安定して亜鉛系めっき層31を除去することができる。 As described above, a pair of the first composite electrode 50 and the second composite electrode 60 are arranged above and below the plate assembly 20, and the zinc-based plating layers of the zinc-based plated steel plates 30A and 30B are arranged prior to the welding of the plate assembly 20. Since 31 is removed in a separate step, energization between the zinc-based plated steel plates 30A and 30B in the evaporation removal step of the zinc-based plating layer 31 is prevented. As a result, the uneven temperature rise is suppressed, the evaporation of zinc is not unstable, and the zinc-based plating layer 31 can be stably removed.

このように、本実施形態の抵抗スポット溶接装置10Aによれば、上下に配置された亜鉛系めっき鋼板30A,30Bの溶接予定箇所の亜鉛系めっき層31のみを、亜鉛の蒸発により除去して、露出領域33を形成した後、該露出領域33同士を抵抗スポット溶接するため、亜鉛による影響を排除して、粒界脆化割れ(LME割れ)を防止し、溶接欠陥のない良好な状態で溶接を行うことができる。 As described above, according to the resistance spot welding apparatus 10A of the present embodiment, only the zinc-based plating layers 31 at the planned welding points of the zinc-based plated steel plates 30A and 30B arranged above and below are removed by evaporation of zinc. After forming the exposed region 33, resistance spot welding is performed between the exposed regions 33, so that the influence of zinc is eliminated, grain boundary brittle cracking (LME cracking) is prevented, and welding is performed in a good condition without welding defects. It can be performed.

また、亜鉛系めっき層31が除去される範囲(露出領域33)は、リング状の第1補助電極52及び第2補助電極62の内側、すなわち、溶接部のみが位置精度よく除去され、不必要に広い範囲の亜鉛系めっき層31が除去されないので、防錆効果が損なわれることがなく、かつ、溶接とほぼ同工程で短時間に亜鉛系めっき層31を除去することができる。 Further, the range from which the zinc-based plating layer 31 is removed (exposed area 33) is unnecessary because only the inside of the ring-shaped first auxiliary electrode 52 and the second auxiliary electrode 62, that is, the welded portion is removed with high positional accuracy. Since the zinc-based plating layer 31 in a wide range is not removed, the rust preventive effect is not impaired, and the zinc-based plating layer 31 can be removed in a short time in substantially the same process as welding.

(抵抗スポット溶接方法の変形例)
上記の説明では、板組20が2枚の鋼板(亜鉛系めっき鋼板30と亜鉛系めっき層を有しない鋼板40、又は2枚の亜鉛系めっき鋼板30A,30B)で構成された例について説明したが、板組20は3枚以上の鋼板で構成されてもよい。
(Variation example of resistance spot welding method)
In the above description, an example in which the plate set 20 is composed of two steel plates (a galvanized steel plate 30 and a steel plate 40 having no galvanized plating layer, or two galvanized steel plates 30A and 30B) has been described. However, the plate set 20 may be composed of three or more steel plates.

図6は、3枚の鋼板からなる板組20を抵抗スポット溶接する手順を示す図である。図6に示すように、板組20は、亜鉛系めっき層を有しない鋼板40の両面を2枚の亜鉛系めっき鋼板30A,30Bで挟持した構成となっている。中間部に亜鉛系めっき層を有しない鋼板40を配置することは、LME割れのない良好な溶接を実現する上で好ましい。なお、中間部に配置する亜鉛系めっき層を有しない鋼板40は、1枚であってもよいが、板組20が溶接可能であれば2枚以上であってもよい。 FIG. 6 is a diagram showing a procedure for resistance spot welding of a plate set 20 composed of three steel plates. As shown in FIG. 6, the plate assembly 20 has a structure in which both sides of a steel plate 40 having no zinc-based plating layer are sandwiched between two zinc-based plated steel plates 30A and 30B. It is preferable to arrange the steel plate 40 having no zinc-based plating layer in the intermediate portion in order to realize good welding without LME cracking. The number of steel plates 40 having no zinc-based plating layer arranged in the intermediate portion may be one, but may be two or more as long as the plate assembly 20 can be welded.

なお、3枚の鋼板30A,40,30Bからなる板組20の溶接も、上記第2実施形態で説明した抵抗スポット溶接装置10Aにより実施可能である。 Welding of the plate assembly 20 composed of three steel plates 30A, 40, and 30B can also be performed by the resistance spot welding apparatus 10A described in the second embodiment.

具体的には、まず、互いに離間した状態の第1複合電極50及び第2複合電極60の間に、3枚の鋼板30A,40,30Bからなる板組20を配置する(Step1)。 Specifically, first, a plate set 20 composed of three steel plates 30A, 40, and 30B is arranged between the first composite electrode 50 and the second composite electrode 60 in a state of being separated from each other (Step 1).

次いで、不図示の駆動装置を作動させて第1複合電極50(第1溶接電極51、第1補助電極52)を板組20に向けて移動させ、第1溶接電極51及び第1補助電極52を、上側に配置された亜鉛系めっき鋼板30Aに接触させる。そして、スイッチ75,76を閉じ、亜鉛系めっき鋼板30Aを介して第1溶接電極51及び第1補助電極52間に通電する。これにより、第1溶接電極51から第1補助電極52に向けて、又は、その逆の方向に、電流が亜鉛系めっき鋼板30Aの面内方向において放射状に流れ、上側の亜鉛系めっき鋼板30Aには加熱領域32が形成される(Step2)。 Next, a drive device (not shown) is operated to move the first composite electrode 50 (first welding electrode 51, first auxiliary electrode 52) toward the plate assembly 20, and the first welding electrode 51 and the first auxiliary electrode 52 are moved. Is brought into contact with the zinc-based plated steel sheet 30A arranged on the upper side. Then, the switches 75 and 76 are closed, and electricity is applied between the first welding electrode 51 and the first auxiliary electrode 52 via the galvanized steel sheet 30A. As a result, a current radiates from the first welding electrode 51 toward the first auxiliary electrode 52 or in the opposite direction in the in-plane direction of the galvanized steel sheet 30A, and flows to the upper galvanized steel sheet 30A. The heating region 32 is formed (Step 2).

第1溶接電極51及び第1補助電極52間の領域が加熱されることで、亜鉛系めっき鋼板30Aにおける、融点が低い亜鉛系めっき層31が蒸発して除去され、亜鉛系めっき層31のない生の鋼板が露出した露出領域33が、亜鉛系めっき鋼板30Aの上下面に形成される(Step3)。 By heating the region between the first welding electrode 51 and the first auxiliary electrode 52, the zinc-based plating layer 31 having a low melting point in the galvanized steel sheet 30A is evaporated and removed, and there is no zinc-based plating layer 31. The exposed region 33 where the raw steel sheet is exposed is formed on the upper and lower surfaces of the galvanized steel sheet 30A (Step 3).

次いで、第1複合電極50を亜鉛系めっき鋼板30Aから離間させ、亜鉛系めっき鋼板30Bの下方に配置された第2複合電極60(第2溶接電極61、第2補助電極62)を板組20に向けて移動させ、第2溶接電極61及び第2補助電極62を、下側に配置された亜鉛系めっき鋼板30Bに接触させる。そして、スイッチ77,78を閉じ、亜鉛系めっき鋼板30Bを介して第2溶接電極61及び第2補助電極62間に通電する。これにより、第2溶接電極61から第2補助電極62に向けて、又は、その逆の方向に、電流が亜鉛系めっき鋼板30Bの面内方向において放射状に流れ、下側の亜鉛系めっき鋼板30Bにも加熱領域32が形成される(Step4)。 Next, the first composite electrode 50 is separated from the galvanized steel sheet 30A, and the second composite electrode 60 (second welding electrode 61, second auxiliary electrode 62) arranged below the galvanized steel sheet 30B is assembled into a plate 20. The second welding electrode 61 and the second auxiliary electrode 62 are brought into contact with the galvanized steel sheet 30B arranged on the lower side. Then, the switches 77 and 78 are closed, and electricity is applied between the second welding electrode 61 and the second auxiliary electrode 62 via the galvanized steel sheet 30B. As a result, currents flow radially from the second welding electrode 61 toward the second auxiliary electrode 62 or in the opposite direction in the in-plane direction of the galvanized steel sheet 30B, and the lower galvanized steel sheet 30B A heating region 32 is also formed in (Step 4).

第2溶接電極61及び第2補助電極62間の領域が加熱されることで、亜鉛系めっき鋼板30Bにおける、融点が低い亜鉛系めっき層31が蒸発して除去され、亜鉛系めっき層31のない生の鋼板が露出した露出領域33が、亜鉛系めっき鋼板30Bの上下面にも形成される(Step5)。 By heating the region between the second welding electrode 61 and the second auxiliary electrode 62, the zinc-based plating layer 31 having a low melting point in the galvanized steel sheet 30B is evaporated and removed, and there is no zinc-based plating layer 31. The exposed region 33 where the raw steel sheet is exposed is also formed on the upper and lower surfaces of the galvanized steel sheet 30B (Step 5).

これにより、亜鉛系めっき鋼板30A,30Bの溶接予定箇所にある亜鉛系めっき層31は、完全に除去される。 As a result, the zinc-based plating layer 31 at the planned welding location of the zinc-based plated steel sheets 30A and 30B is completely removed.

引き続いて、駆動装置を作動させて第1複合電極50の第1溶接電極51と、第2複合電極60の第2溶接電極61を、それぞれ板組20に向けて移動させて、第1溶接電極51及び第2溶接電極61間で板組20を強く挟持し、所定の加圧力を加えながらスイッチ75,77を閉じて、3枚の鋼板30A,40,30Bを介して、第1溶接電極51及び第2溶接電極61間に通電する。これにより、3枚の鋼板30A,40,30B間に、溶接金属部であるナゲット34が形成された後に板組20を冷却する(Step6)。 Subsequently, the drive device is operated to move the first welding electrode 51 of the first composite electrode 50 and the second welding electrode 61 of the second composite electrode 60 toward the plate assembly 20, respectively, and the first welding electrode. The plate assembly 20 is strongly sandwiched between the 51 and the second welding electrode 61, the switches 75 and 77 are closed while applying a predetermined pressing force, and the first welding electrode 51 is passed through the three steel plates 30A, 40 and 30B. And energize between the second welding electrodes 61. As a result, the plate assembly 20 is cooled after the nugget 34, which is a weld metal portion, is formed between the three steel plates 30A, 40, and 30B (Step 6).

その後、板組20から第1溶接電極51及び第2溶接電極61を離間させることで、3枚の鋼板30A,40,30Bの抵抗スポット溶接を完了する(Step7)。 After that, the resistance spot welding of the three steel plates 30A, 40, and 30B is completed by separating the first welding electrode 51 and the second welding electrode 61 from the plate assembly 20 (Step 7).

その他の構成、作用は、第2実施形態の抵抗スポット溶接装置10Aと同様である。 Other configurations and operations are the same as those of the resistance spot welding apparatus 10A of the second embodiment.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。 The present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like.

以上の通り、本明細書には次の事項が開示されている。
(1) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な1組の電極を備え、
前記1組の電極はそれぞれ主電極を有するとともに、
前記1組の電極のうち少なくとも一方は、前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有し、
前記主電極及びその近傍に配置される前記補助電極の間、並びに、1組の前記主電極の間を、それぞれ通電可能な電源を備え、
前記主電極及びその近傍に配置される前記補助電極の間の通電、又は、1組の前記主電極の間の通電のいずれか一方に切り替え可能な制御部をさらに備える、抵抗スポット溶接装置。
As described above, the following matters are disclosed in this specification.
(1) A resistance spot welding apparatus for performing resistance spot welding on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
It is provided with a set of electrodes that are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
Each of the pair of electrodes has a main electrode and
At least one of the pair of electrodes has an auxiliary electrode that is located in the vicinity of the main electrode and can move independently of the main electrode.
A power source capable of energizing between the main electrode and the auxiliary electrodes arranged in the vicinity thereof and between a set of the main electrodes is provided.
A resistance spot welding apparatus further comprising a control unit capable of switching between energization between the main electrode and the auxiliary electrodes arranged in the vicinity thereof, or energization between a set of the main electrodes.

この構成によれば、主電極と、他の主電極及び該主電極の近傍に配置された補助電極を有する電極との、1組の電極の間に、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を配置し、主電極及び補助電極の間で通電して亜鉛系めっき層を部分的に除去した後、板組を加圧しながら、1組の主電極の間で通電を行って板組を抵抗スポット溶接するので、複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる。 According to this configuration, at least one steel plate is a zinc-based plating layer between a set of electrodes of the main electrode and another main electrode and an electrode having an auxiliary electrode arranged in the vicinity of the main electrode. After arranging the plate assembly with the above and energizing between the main electrode and the auxiliary electrode to partially remove the zinc-based plating layer, energizing between one set of main electrodes while pressurizing the plate assembly. Since the plate assembly is resistance spot welded, it is possible to perform resistance spot welding of a plate assembly in which at least one of the plurality of steel plates has a zinc-based plating layer without welding defects.

(2) 前記補助電極は、その近傍に配置される前記主電極の周囲を囲うようにリング状に形成される、(1)に記載の抵抗スポット溶接装置。
この構成によれば、加熱領域及び露出領域も円形となり、亜鉛の理想的な蒸発状態を作ることができるため、その後に行う抵抗スポット溶接に好適な形状で亜鉛系めっき層を除去することができる。また、抵抗スポット溶接される範囲近傍のみの亜鉛系めっき層を除去することができ、防食効果の低下を抑制することができる。
(2) The resistance spot welding apparatus according to (1), wherein the auxiliary electrode is formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof.
According to this configuration, the heating region and the exposed region are also circular, and an ideal evaporation state of zinc can be created. Therefore, the zinc-based plating layer can be removed in a shape suitable for the subsequent resistance spot welding. .. In addition, the zinc-based plating layer can be removed only in the vicinity of the resistance spot welded range, and the deterioration of the anticorrosion effect can be suppressed.

(3) 前記電源と、前記主電極若しくは前記補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、(1)又は(2)に記載の抵抗スポット溶接装置。
この構成によれば、スイッチを切り換えることで、亜鉛系めっき鋼板からの亜鉛系めっき層の除去と、板組の抵抗スポット溶接とを容易に実施することができる。
(3) The resistor according to (1) or (2), wherein each electric path between the power source and the main electrode or the auxiliary electrode is provided with a switch for connecting or disconnecting the respective electric paths. Spot welding equipment.
According to this configuration, by switching the switch, it is possible to easily remove the zinc-based plating layer from the zinc-based plated steel sheet and perform resistance spot welding of the plate assembly.

(4) 前記電源は1つである、(1)〜(3)のいずれか1つに記載の抵抗スポット溶接装置。
この構成によれば、主電極や補助電極ごとに個別の電源を設置する場合に比較して設備コストが大幅に低減する。
(4) The resistance spot welding apparatus according to any one of (1) to (3), wherein the power source is one.
According to this configuration, the equipment cost is significantly reduced as compared with the case where a separate power supply is installed for each of the main electrode and the auxiliary electrode.

(5) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(1)〜(4)のいずれか1つに記載の抵抗スポット溶接装置。
この構成によれば、亜鉛系めっき鋼板を含む3枚の鋼板からなる板組をLME欠陥なく、良好に抵抗スポット溶接できる。
(5) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (1). The resistance spot welding apparatus according to any one of (4).
According to this configuration, a plate set composed of three steel plates including a galvanized steel plate can be satisfactorily spot-welded by resistance spot welding without LME defects.

(6) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置されるとともに、それぞれ主電極を有し、少なくとも一方が前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有する1組の電極の間に、前記板組を配置する工程と、
前記主電極及びその近傍に配置される前記補助電極の間で通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記1組の主電極の間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
(6) A resistance spot welding method in which resistance spot welding is performed on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
Between a set of electrodes that are arranged to face each other and each have a main electrode, at least one of which is placed in the vicinity of the main electrode and has an auxiliary electrode that can move independently of the main electrode. The process of arranging the board and
A step of partially removing the zinc-based plating layer by energizing between the main electrode and the auxiliary electrode arranged in the vicinity thereof, and
A step of joining the plate assembly by resistance spot welding by energizing between the pair of main electrodes while pressurizing the plate assembly.
A resistance spot welding method.

この構成によれば、複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる。 According to this configuration, it is possible to perform resistance spot welding of a steel plate in which at least one of the plurality of steel plates has a zinc-based plating layer without welding defects.

(7) 前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における前記電極を、前記板組に当接させた状態で行われる、(6)に記載の抵抗スポット溶接方法。
この構成によれば、亜鉛系めっき層を除去する際に、電極を板組に当接させてスタンバイ状態としておくことで、その後の板組を抵抗スポット溶接する工程を直ちに行うことができ、溶接能率が向上する。
(7) The resistance spot welding method according to (6), wherein the step of partially removing the zinc-based plating layer is performed in a state where the electrode on the non-energized side is in contact with the plate assembly. ..
According to this configuration, when the zinc-based plating layer is removed, the electrode is brought into contact with the plate assembly to be in the standby state, so that the subsequent step of resistance spot welding of the plate assembly can be performed immediately, and welding can be performed. Efficiency is improved.

(8) 前記補助電極として、その近傍に配置される前記主電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、(6)又は(7)に記載の抵抗スポット溶接方法。
この構成によれば、加熱領域及び露出領域も円形となり、亜鉛の理想的な蒸発状態を作ることができるため、その後に行う抵抗スポット溶接に好適な形状で亜鉛系めっき層を除去することができる。また、抵抗スポット溶接される範囲近傍のみの亜鉛系めっき層を除去することができ、防食効果の低下を抑制することができる。
(8) The resistance spot welding method according to (6) or (7), wherein each of the auxiliary electrodes is formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof.
According to this configuration, the heating region and the exposed region are also circular, and an ideal evaporation state of zinc can be created. Therefore, the zinc-based plating layer can be removed in a shape suitable for the subsequent resistance spot welding. .. In addition, the zinc-based plating layer can be removed only in the vicinity of the resistance spot welded range, and the deterioration of the anticorrosion effect can be suppressed.

(9) 前記主電極及びその近傍に配置される前記補助電極の間、又は、前記1組の主電極の間で行われる通電は、1つの電源と、前記主電極若しくは前記補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、(6)〜(8)のいずれか1つに記載の抵抗スポット溶接方法。
この構成によれば、電源設備のコストが低減するとともに、スイッチを切り換えることで、亜鉛系めっき層の除去と、板組の抵抗スポット溶接とを容易に実施することができる。
(9) The energization performed between the main electrode and the auxiliary electrodes arranged in the vicinity thereof, or between the set of main electrodes is between one power source and the main electrode or the auxiliary electrode. The resistance spot welding method according to any one of (6) to (8), which is performed by switching a switch for connecting or disconnecting each electric path.
According to this configuration, the cost of the power supply equipment is reduced, and by switching the switch, the zinc-based plating layer can be easily removed and the resistance spot welding of the plate assembly can be easily performed.

(10) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(6)〜(9)のいずれか1つに記載の抵抗スポット溶接方法。
この構成によれば、亜鉛系めっき鋼板を含む3枚の鋼板からなる板組をLME欠陥なく、良好に抵抗スポット溶接できる。
(10) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (6). The resistance spot welding method according to any one of (9).
According to this configuration, a plate set composed of three steel plates including a galvanized steel plate can be satisfactorily spot-welded by resistance spot welding without LME defects.

(11) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な第1複合電極及び第2複合電極を備え、
前記第1複合電極は、第1溶接電極と、該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極と、を有するとともに、
前記第2複合電極は、第2溶接電極と、該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極と、を有し、
前記第1溶接電極と前記第1補助電極との間、前記第2溶接電極と前記第2補助電極との間、及び前記第1溶接電極と前記第2溶接電極との間を、それぞれ通電可能な電源をさらに備える、抵抗スポット溶接装置。
(11) A resistance spot welding apparatus for performing resistance spot welding on a plate set in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
It is provided with a first composite electrode and a second composite electrode which are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
The first composite electrode has a first welding electrode and a first auxiliary electrode that is arranged in the vicinity of the first welding electrode and can move independently of the first welding electrode.
The second composite electrode has a second weld electrode and a second auxiliary electrode that is arranged in the vicinity of the second weld electrode and can move independently of the second weld electrode.
Energization is possible between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, and between the first welding electrode and the second welding electrode. A resistance spot welding device equipped with an additional power source.

この構成によれば、第1複合電極及び第2複合電極の間に、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を配置し、第1溶接電極と第1補助電極との間、及び、第2溶接電極と第2補助電極との間の少なくとも一方に通電することで、亜鉛めっき層を除去した後、板組を加圧しながら、第1溶接電極及び第2溶接電極の間で通電を行って板組を抵抗スポット溶接するので、複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる。 According to this configuration, a plate set in which at least one steel plate has a zinc-based plating layer is arranged between the first composite electrode and the second composite electrode, and between the first welding electrode and the first auxiliary electrode, After removing the zinc plating layer by energizing at least one of the second welding electrode and the second auxiliary electrode, the plate assembly is pressurized between the first welding electrode and the second welding electrode. Since the plate assembly is subjected to resistance spot welding by energizing, the plate assembly in which at least one of the plurality of steel plates has a zinc-based plating layer can be resistance spot welded without welding defects.

また、亜鉛系めっき層を有する複数の亜鉛系めっき鋼板が重ね合わされた板組を抵抗スポット溶接で接合する場合において、第1溶接電極と第1補助電極との間、及び、第2溶接電極と第2補助電極との間に通電することができるため、複数枚の亜鉛系めっき鋼板からなる板組(特には、板組のうち、最外層の鋼板の両方が亜鉛めっき層を有する場合)であっても、複数の亜鉛めっき鋼板の亜鉛めっき層を除去することができ、溶接欠陥なく抵抗スポット溶接することができる。 Further, in the case of joining a plate set in which a plurality of galvanized steel sheets having a galvanized layer are superposed by resistance spot welding, between the first welding electrode and the first auxiliary electrode, and with the second welding electrode. Since it is possible to energize between the second auxiliary electrode, a plate set consisting of a plurality of galvanized steel sheets (particularly, when both of the outermost steel sheets of the plate set have a galvanized layer). Even if there is, the galvanized layers of a plurality of galvanized steel sheets can be removed, and resistance spot welding can be performed without welding defects.

(12) 前記第1溶接電極と前記第1補助電極との間の通電、前記第2溶接電極と前記第2補助電極との間の通電、又は、前記第1溶接電極と前記第2溶接電極との間の通電に切り替え可能な制御部をさらに備える、(11)に記載の抵抗スポット溶接装置。
この構成によれば、制御部により、亜鉛系めっき鋼板から亜鉛系めっき層の除去と、亜鉛系めっき鋼板の抵抗スポット溶接を切り換えて実施することができる。
(12) Energization between the first welding electrode and the first auxiliary electrode, energization between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode. The resistance spot welding apparatus according to (11), further comprising a control unit capable of switching between energization and energization.
According to this configuration, the control unit can switch between removing the zinc-based plating layer from the zinc-based plated steel sheet and resistance spot welding of the zinc-based plated steel sheet.

(13) 前記第1補助電極及び前記第2補助電極は、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成される、(11)又は(12)に記載の抵抗スポット溶接装置。
この構成によれば、加熱領域及び露出領域も円形となり、亜鉛の理想的な蒸発状態を作ることができるため、その後に行う抵抗スポット溶接に好適な形状で亜鉛系めっき層を除去することができる。また、抵抗スポット溶接される範囲近傍のみの亜鉛系めっき層を除去することができ、防食効果の低下を抑制することができる。
(13) The first auxiliary electrode and the second auxiliary electrode are formed in a ring shape so as to surround the first welding electrode and the second welding electrode, respectively, according to (11) or (12). Resistance spot welding equipment.
According to this configuration, the heating region and the exposed region are also circular, and an ideal evaporation state of zinc can be created. Therefore, the zinc-based plating layer can be removed in a shape suitable for the subsequent resistance spot welding. .. In addition, the zinc-based plating layer can be removed only in the vicinity of the resistance spot welded range, and the deterioration of the anticorrosion effect can be suppressed.

(14) 前記電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、(11)〜(13)のいずれか1つに記載の抵抗スポット溶接装置。
この構成によれば、スイッチを切り換えることで、亜鉛系めっき鋼板からの亜鉛系めっき層の除去と、板組の抵抗スポット溶接とを容易に実施することができる。
(14) A switch that connects or cuts off each electric path to each electric path between the power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode. The resistance spot welding apparatus according to any one of (11) to (13), respectively.
According to this configuration, by switching the switch, it is possible to easily remove the zinc-based plating layer from the zinc-based plated steel sheet and perform resistance spot welding of the plate assembly.

(15) 前記電源は1つである、(11)〜(14)のいずれか1つに記載の抵抗スポット溶接装置。
この構成によれば、第1溶接電極、第1補助電極、第2溶接電極、第2補助電極ごとに個別の電源を設置する場合に比較して設備コストが大幅に低減する。
(15) The resistance spot welding apparatus according to any one of (11) to (14), wherein the power source is one.
According to this configuration, the equipment cost is significantly reduced as compared with the case where individual power supplies are installed for each of the first welding electrode, the first auxiliary electrode, the second welding electrode, and the second auxiliary electrode.

(16) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(11)〜(15)のいずれか1つに記載の抵抗スポット溶接装置。
この構成によれば、亜鉛系めっき鋼板を含む3枚の鋼板からなる板組を溶接欠陥なく、良好に抵抗スポット溶接できる。
(16) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (11). The resistance spot welding apparatus according to any one of (15).
According to this configuration, a plate assembly composed of three steel plates including a galvanized steel plate can be satisfactorily spot-welded by resistance spot welding without welding defects.

(17) 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置され、第1溶接電極及び該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極を有する第1複合電極と、第2溶接電極及び該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極を有する第2複合電極、との間に、前記板組を配置する工程と、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の少なくとも一方に通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記第1溶接電極及び前記第2溶接電極との間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
(17) A resistance spot welding method in which resistance spot welding is performed on a plate assembly in which at least one of a plurality of stacked steel plates has a zinc-based plating layer.
A first composite electrode having a first auxiliary electrode which is arranged to face each other and is arranged in the vicinity of the first welding electrode and the first welding electrode and can move independently of the first welding electrode, and a second welding electrode. And the step of arranging the plate assembly between the second welding electrode and the second composite electrode having the second auxiliary electrode that can move independently from the second welding electrode.
The zinc-based plating layer is partially removed by energizing at least one between the first welding electrode and the first auxiliary electrode and between the second welding electrode and the second auxiliary electrode. Process and
A step of joining the plate assembly by resistance spot welding by energizing between the first welding electrode and the second welding electrode while pressurizing the plate assembly.
A resistance spot welding method.

この構成によれば、第1複合電極及び第2複合電極の間に、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を配置し、第1溶接電極と第1補助電極との間、及び、第2溶接電極と第2補助電極との間の少なくとも一方に通電することで、亜鉛めっき層を除去した後、板組を加圧しながら、第1溶接電極及び第2溶接電極の間で通電を行って板組を抵抗スポット溶接するので、複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組を、溶接欠陥なく抵抗スポット溶接することができる。 According to this configuration, a plate set in which at least one steel plate has a zinc-based plating layer is arranged between the first composite electrode and the second composite electrode, and between the first welding electrode and the first auxiliary electrode, After removing the zinc plating layer by energizing at least one of the second welding electrode and the second auxiliary electrode, the plate assembly is pressurized between the first welding electrode and the second welding electrode. Since the plate assembly is subjected to resistance spot welding by energizing, the plate assembly in which at least one of the plurality of steel plates has a zinc-based plating layer can be resistance spot welded without welding defects.

また、亜鉛系めっき層を有する複数の亜鉛系めっき鋼板が重ね合わされた板組を抵抗スポット溶接で接合する場合において、第1溶接電極と第1補助電極との間、及び、第2溶接電極と第2補助電極との間に通電することができるため、複数枚の亜鉛系めっき鋼板からなる板組(特には、板組のうち、最外層の鋼板の両方が亜鉛めっき層を有する場合)であっても、複数の亜鉛めっき鋼板の亜鉛めっき層を除去することができ、溶接欠陥なく抵抗スポット溶接することができる。 Further, in the case of joining a plate set in which a plurality of galvanized steel sheets having a galvanized layer are superposed by resistance spot welding, between the first welding electrode and the first auxiliary electrode, and with the second welding electrode. Since it is possible to energize between the second auxiliary electrode, a plate set consisting of a plurality of galvanized steel sheets (particularly, when both of the outermost steel sheets of the plate set have a galvanized layer). Even if there is, the galvanized layers of a plurality of galvanized steel sheets can be removed, and resistance spot welding can be performed without welding defects.

(18) 前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における、前記第1溶接電極及び前記第1補助電極、又は、前記第2溶接電極及び前記第2補助電極を、前記板組に当接させた状態で行われる、(17)に記載の抵抗スポット溶接方法。
この構成によれば、亜鉛系めっき層を除去する際に、電極を板組に当接させてスタンバイ状態としておくことで、その後の板組を抵抗スポット溶接する工程を直ちに行うことができ、溶接能率が向上する。
(18) In the step of partially removing the zinc-based plating layer, the first welding electrode and the first auxiliary electrode, or the second welding electrode and the second auxiliary electrode on the non-energized side are removed. The resistance spot welding method according to (17), which is performed in a state of being in contact with the plate assembly.
According to this configuration, when the zinc-based plating layer is removed, the electrode is brought into contact with the plate assembly to be in the standby state, so that the subsequent step of resistance spot welding of the plate assembly can be performed immediately, and welding can be performed. Efficiency is improved.

(19) 前記板組における最外層の鋼板の両方が亜鉛系めっき層を有する場合において、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の通電を同時に行わない、(17)又は(18)に記載の抵抗スポット溶接方法。
この構成によれば、亜鉛系めっき層の除去工程において、上下の亜鉛系めっき鋼板間の通電が防止されるので、偏った温度上昇が抑制されて、亜鉛の蒸発が不安定にならずに安定して除去することができる。
(19) When both the outermost steel sheets in the plate assembly have a zinc-based plating layer,
The resistance spot welding method according to (17) or (18), wherein energization is not performed simultaneously between the first welding electrode and the first auxiliary electrode, and between the second welding electrode and the second auxiliary electrode. ..
According to this configuration, in the step of removing the zinc-based plating layer, energization between the upper and lower zinc-based plated steel sheets is prevented, so that the uneven temperature rise is suppressed and the zinc evaporation is stable without becoming unstable. Can be removed.

(20) 前記第1補助電極及び前記第2補助電極として、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、(17)〜(19)のいずれか1つに記載の抵抗スポット溶接方法。
この構成によれば、加熱領域及び露出領域も円形となり、亜鉛の理想的な蒸発状態を作ることができるため、その後に行う抵抗スポット溶接に好適な形状で亜鉛系めっき層を除去することができる。また、抵抗スポット溶接される範囲近傍のみの亜鉛系めっき層を除去することができ、防食効果の低下を抑制することができる。
(20) As the first auxiliary electrode and the second auxiliary electrode, those formed in a ring shape so as to surround the first welding electrode and the second welding electrode are used, respectively, (17) to (19). ). The resistance spot welding method according to any one of.
According to this configuration, the heating region and the exposed region are also circular, and an ideal evaporation state of zinc can be created. Therefore, the zinc-based plating layer can be removed in a shape suitable for the subsequent resistance spot welding. .. Further, the zinc-based plating layer only in the vicinity of the resistance spot welded range can be removed, and the deterioration of the anticorrosion effect can be suppressed.

(21) 前記第1溶接電極及び前記第1補助電極の間、前記第2溶接電極及び前記第2補助電極の間、又は、前記第1溶接電極及び前記第2溶接電極との間で行われる通電は、1つの電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、(17)〜(20)のいずれか1つに記載の抵抗スポット溶接方法。
この構成によれば、電源設備のコストが低減するとともに、スイッチを切り換えることで、亜鉛系めっき層の除去と、板組の抵抗スポット溶接とを容易に実施することができる。
(21) It is performed between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode. Energization is performed by switching a switch that connects or cuts off each electric path between one power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode. The resistance spot welding method according to any one of (17) to (20).
According to this configuration, the cost of the power supply equipment is reduced, and by switching the switch, the zinc-based plating layer can be easily removed and the resistance spot welding of the plate assembly can be easily performed.

(22) 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、(17)、(18)、(20)又は(21)のいずれか1つに記載の抵抗スポット溶接方法。
この構成によれば、亜鉛系めっき鋼板を含む3枚の鋼板からなる板組をLME欠陥なく、良好に抵抗スポット溶接できる。
(22) The plate assembly has a zinc-based plating layer on at least one of the outermost layers and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), (17). , (18), (20) or (21). The resistance spot welding method according to any one of (18), (20) and (21).
According to this configuration, a plate set composed of three steel plates including a galvanized steel plate can be satisfactorily spot-welded by resistance spot welding without LME defects.

10,10A 抵抗スポット溶接装置
20 板組
30,30A,30B 亜鉛系めっき鋼板(鋼板)
31 亜鉛系めっき層
32 加熱領域
33 露出領域
34 ナゲット
40 亜鉛系めっき層を有しない鋼板(鋼板)
50 第1複合電極(電極)
51 主電極(第1溶接電極)
52 補助電極(第1補助電極)
60 第2複合電極(電極)
61 主電極(第2溶接電極)
62 第2補助電極
70 電源
71,72,73,74 電気経路
75,76,77,78 スイッチ(制御部)
10,10A Resistance spot welding equipment 20 Plate assembly 30,30A, 30B Galvanized steel plate (steel plate)
31 Zinc-based plating layer 32 Heating region 33 Exposed region 34 Nugget 40 Steel plate (steel plate) without zinc-based plating layer
50 First composite electrode (electrode)
51 Main electrode (first welding electrode)
52 Auxiliary electrode (1st auxiliary electrode)
60 Second composite electrode (electrode)
61 Main electrode (second welding electrode)
62 Second auxiliary electrode 70 Power supply 71, 72, 73, 74 Electrical path 75, 76, 77, 78 Switch (control unit)

Claims (22)

重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な1組の電極を備え、
前記1組の電極はそれぞれ主電極を有するとともに、
前記1組の電極のうち少なくとも一方は、前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有し、
前記主電極及びその近傍に配置される前記補助電極の間、並びに、1組の前記主電極の間を、それぞれ通電可能な電源を備え、
前記主電極及びその近傍に配置される前記補助電極の間の通電、又は、1組の前記主電極の間の通電のいずれか一方に切り替え可能な制御部をさらに備える、抵抗スポット溶接装置。
A resistance spot welding apparatus for performing resistance spot welding on a sheet structure in which at least one of a plurality of superposed steel sheets has a zinc-based plating layer.
It is provided with a set of electrodes that are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
Each of the pair of electrodes has a main electrode and
At least one of the pair of electrodes has an auxiliary electrode that is located in the vicinity of the main electrode and can move independently of the main electrode.
A power source capable of energizing between the main electrode and the auxiliary electrodes arranged in the vicinity thereof and between a set of the main electrodes is provided.
A resistance spot welding apparatus further comprising a control unit capable of switching between energization between the main electrode and the auxiliary electrodes arranged in the vicinity thereof, or energization between a set of the main electrodes.
前記補助電極は、その近傍に配置される前記主電極の周囲を囲うようにリング状に形成される、請求項1に記載の抵抗スポット溶接装置。 The resistance spot welding apparatus according to claim 1, wherein the auxiliary electrode is formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof. 前記電源と、前記主電極若しくは前記補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、請求項1又は2に記載の抵抗スポット溶接装置。 The resistance spot welding apparatus according to claim 1 or 2, wherein each electric path between the power source and the main electrode or the auxiliary electrode is provided with a switch for connecting or disconnecting the respective electric paths. 前記電源は1つである、請求項1〜3のいずれか1項に記載の抵抗スポット溶接装置。 The resistance spot welding apparatus according to any one of claims 1 to 3, wherein the power source is one. 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、請求項1〜4のいずれか1項に記載の抵抗スポット溶接装置。 The plate assembly has a zinc-based plating layer on at least one of the outermost layers, and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), claim 1 to 4. The resistance spot welding apparatus according to any one item. 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置されるとともに、それぞれ主電極を有し、少なくとも一方が前記主電極の近傍に配置され、前記主電極と独立して移動可能な補助電極を有する1組の電極の間に、前記板組を配置する工程と、
前記主電極及びその近傍に配置される前記補助電極の間で通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記1組の主電極の間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
This is a resistance spot welding method in which resistance spot welding is performed on a steel plate having a zinc-based plating layer at least one of a plurality of superposed steel plates.
Between a set of electrodes that are arranged to face each other and each have a main electrode, at least one of which is placed in the vicinity of the main electrode and has an auxiliary electrode that can move independently of the main electrode. The process of arranging the board and
A step of partially removing the zinc-based plating layer by energizing between the main electrode and the auxiliary electrode arranged in the vicinity thereof, and
A step of joining the plate assembly by resistance spot welding by energizing between the pair of main electrodes while pressurizing the plate assembly.
A resistance spot welding method.
前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における前記電極を、前記板組に当接させた状態で行われる、請求項6に記載の抵抗スポット溶接方法。 The resistance spot welding method according to claim 6, wherein the step of partially removing the zinc-based plating layer is performed in a state where the electrode on the non-energized side is in contact with the plate assembly. 前記補助電極として、その近傍に配置される前記主電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、請求項6又は7に記載の抵抗スポット溶接方法。 The resistance spot welding method according to claim 6 or 7, wherein as the auxiliary electrode, one formed in a ring shape so as to surround the main electrode arranged in the vicinity thereof is used. 前記主電極及びその近傍に配置される前記補助電極の間、又は、前記1組の主電極の間で行われる通電は、1つの電源と、前記主電極若しくは前記補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、請求項6〜8のいずれか1項に記載の抵抗スポット溶接方法。 The energization performed between the main electrode and the auxiliary electrodes arranged in the vicinity thereof or between the set of main electrodes is the electricity between one power supply and the main electrode or the auxiliary electrode. The resistance spot welding method according to any one of claims 6 to 8, which is performed by switching a switch for connecting or disconnecting the path. 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、請求項6〜9のいずれか1項に記載の抵抗スポット溶接方法。 The plate assembly has a zinc-based plating layer on at least one of the outermost layers, and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), claim 6 to 9. The resistance spot welding method according to any one item. 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行うための抵抗スポット溶接装置であって、
前記板組を挟むように対向して配置され、互いに接近又は離間するように移動可能な第1複合電極及び第2複合電極を備え、
前記第1複合電極は、第1溶接電極と、該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極と、を有するとともに、
前記第2複合電極は、第2溶接電極と、該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極と、を有し、
前記第1溶接電極と前記第1補助電極との間、前記第2溶接電極と前記第2補助電極との間、及び前記第1溶接電極と前記第2溶接電極との間を、それぞれ通電可能な電源をさらに備える、抵抗スポット溶接装置。
A resistance spot welding apparatus for performing resistance spot welding on a sheet structure in which at least one of a plurality of superposed steel sheets has a zinc-based plating layer.
It is provided with a first composite electrode and a second composite electrode which are arranged so as to sandwich the plate assembly and can be moved so as to approach or separate from each other.
The first composite electrode has a first welding electrode and a first auxiliary electrode that is arranged in the vicinity of the first welding electrode and can move independently of the first welding electrode.
The second composite electrode has a second weld electrode and a second auxiliary electrode that is arranged in the vicinity of the second weld electrode and can move independently of the second weld electrode.
Energization is possible between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, and between the first welding electrode and the second welding electrode. A resistance spot welding device equipped with an additional power source.
前記第1溶接電極と前記第1補助電極との間の通電、前記第2溶接電極と前記第2補助電極との間の通電、又は、前記第1溶接電極と前記第2溶接電極との間の通電に切り替え可能な制御部をさらに備える、請求項11に記載の抵抗スポット溶接装置。 Energization between the first welding electrode and the first auxiliary electrode, energization between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode. The resistance spot welding apparatus according to claim 11, further comprising a control unit capable of switching to energization. 前記第1補助電極及び前記第2補助電極は、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成される、請求項11又は12に記載の抵抗スポット溶接装置。 The resistance spot welding apparatus according to claim 11 or 12, wherein the first auxiliary electrode and the second auxiliary electrode are formed in a ring shape so as to surround the first welding electrode and the second welding electrode, respectively. .. 前記電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路には、該各電気経路を接続又は遮断するスイッチがそれぞれ設けられる、請求項11〜13のいずれか1項に記載の抵抗スポット溶接装置。 Each electric path between the power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode is provided with a switch for connecting or disconnecting the respective electric paths. The resistance spot welding apparatus according to any one of claims 11 to 13. 前記電源は1つである、請求項11〜14のいずれか1項に記載の抵抗スポット溶接装置。 The resistance spot welding apparatus according to any one of claims 11 to 14, wherein the power source is one. 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、請求項11〜15のいずれか1項に記載の抵抗スポット溶接装置。 The plate assembly has a zinc-based plating layer on at least one of the outermost layers, and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), claim 11 to 15. The resistance spot welding apparatus according to any one item. 重ね合わされた複数の鋼板のうち、少なくとも1枚の鋼板が亜鉛系めっき層を有する板組に抵抗スポット溶接を行う抵抗スポット溶接方法であって、
対向して配置され、第1溶接電極及び該第1溶接電極の近傍に配置され、該第1溶接電極と独立して移動可能な第1補助電極を有する第1複合電極と、第2溶接電極及び該第2溶接電極の近傍に配置され、該第2溶接電極と独立して移動可能な第2補助電極を有する第2複合電極、との間に、前記板組を配置する工程と、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の少なくとも一方に通電を行うことで、前記亜鉛系めっき層を部分的に除去する工程と、
前記板組を加圧しながら、前記第1溶接電極及び前記第2溶接電極との間で通電を行うことで、前記板組を抵抗スポット溶接により接合する工程と、
を備える、抵抗スポット溶接方法。
This is a resistance spot welding method in which resistance spot welding is performed on a steel plate having a zinc-based plating layer at least one of a plurality of superposed steel plates.
A first composite electrode having a first auxiliary electrode which is arranged to face each other and is arranged in the vicinity of the first welding electrode and the first welding electrode and can move independently of the first welding electrode, and a second welding electrode. And the step of arranging the plate assembly between the second welding electrode and the second composite electrode having the second auxiliary electrode that can move independently from the second welding electrode.
The zinc-based plating layer is partially removed by energizing at least one between the first welding electrode and the first auxiliary electrode and between the second welding electrode and the second auxiliary electrode. Process and
A step of joining the plate assembly by resistance spot welding by energizing between the first welding electrode and the second welding electrode while pressurizing the plate assembly.
A resistance spot welding method.
前記亜鉛系めっき層を部分的に除去する工程は、通電されていない側における、前記第1溶接電極及び前記第1補助電極、又は、前記第2溶接電極及び前記第2補助電極を、前記板組に当接させた状態で行われる、請求項17に記載の抵抗スポット溶接方法。 In the step of partially removing the zinc-based plating layer, the first welding electrode and the first auxiliary electrode, or the second welding electrode and the second auxiliary electrode on the non-energized side are removed from the plate. The resistance spot welding method according to claim 17, which is performed in a state of being in contact with the set. 前記板組における最外層の鋼板の両方が亜鉛系めっき層を有する場合において、
前記第1溶接電極及び前記第1補助電極の間、及び、前記第2溶接電極及び前記第2補助電極の間の通電を同時に行わない、請求項17又は18に記載の抵抗スポット溶接方法。
When both the outermost steel sheets in the plate assembly have a zinc-based plating layer,
The resistance spot welding method according to claim 17 or 18, wherein energization is not performed simultaneously between the first welding electrode and the first auxiliary electrode, and between the second welding electrode and the second auxiliary electrode.
前記第1補助電極及び前記第2補助電極として、前記第1溶接電極及び前記第2溶接電極の周囲を囲うようにリング状にそれぞれ形成されたものを用いる、請求項17〜19のいずれか1項に記載の抵抗スポット溶接方法。 Any one of claims 17 to 19, wherein as the first auxiliary electrode and the second auxiliary electrode, those formed in a ring shape so as to surround the first welding electrode and the second welding electrode are used. The resistance spot welding method described in the section. 前記第1溶接電極及び前記第1補助電極の間、前記第2溶接電極及び前記第2補助電極の間、又は、前記第1溶接電極及び前記第2溶接電極との間で行われる通電は、1つの電源と、前記第1溶接電極、前記第1補助電極、前記第2溶接電極若しくは前記第2補助電極との間の各電気経路を、接続又は遮断するスイッチを切り替えることで行われる、請求項17〜20のいずれか1項に記載の抵抗スポット溶接方法。 The energization performed between the first welding electrode and the first auxiliary electrode, between the second welding electrode and the second auxiliary electrode, or between the first welding electrode and the second welding electrode is. A claim made by switching a switch that connects or cuts off each electric path between one power source and the first welding electrode, the first auxiliary electrode, the second welding electrode, or the second auxiliary electrode. Item 2. The resistance spot welding method according to any one of Items 17 to 20. 前記板組は、最外層の少なくとも一方に亜鉛系めっき層を有し、かつ、中間層には亜鉛系めっき層を有しない(前記中間層を有しない場合を含む)、請求項17、18、20又は21のいずれか1項に記載の抵抗スポット溶接方法。 The plate assembly has a zinc-based plating layer on at least one of the outermost layers, and does not have a zinc-based plating layer on the intermediate layer (including the case where the intermediate layer is not provided), claims 17 and 18. The resistance spot welding method according to any one of 20 and 21.
JP2019038934A 2019-03-04 2019-03-04 Resistance spot welding device and resistance spot welding method Active JP7197405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019038934A JP7197405B2 (en) 2019-03-04 2019-03-04 Resistance spot welding device and resistance spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038934A JP7197405B2 (en) 2019-03-04 2019-03-04 Resistance spot welding device and resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2020142251A true JP2020142251A (en) 2020-09-10
JP7197405B2 JP7197405B2 (en) 2022-12-27

Family

ID=72355050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038934A Active JP7197405B2 (en) 2019-03-04 2019-03-04 Resistance spot welding device and resistance spot welding method

Country Status (1)

Country Link
JP (1) JP7197405B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023013804A (en) * 2021-07-16 2023-01-26 本田技研工業株式会社 Joining device and joining method for friction stir joining and resistance welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343775A (en) * 1986-08-07 1988-02-24 Toyota Motor Corp Spot welding method for galvanized steel sheet
JP2012076124A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Indirect feeding type welding device
JP2014076491A (en) * 2013-12-24 2014-05-01 Honda Motor Co Ltd Spot welding method and device for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343775A (en) * 1986-08-07 1988-02-24 Toyota Motor Corp Spot welding method for galvanized steel sheet
JP2012076124A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Indirect feeding type welding device
JP2014076491A (en) * 2013-12-24 2014-05-01 Honda Motor Co Ltd Spot welding method and device for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023013804A (en) * 2021-07-16 2023-01-26 本田技研工業株式会社 Joining device and joining method for friction stir joining and resistance welding
JP7353329B2 (en) 2021-07-16 2023-09-29 本田技研工業株式会社 Welding device and method for friction stir welding and resistance welding
US11794275B2 (en) 2021-07-16 2023-10-24 Honda Motor Co., Ltd. Bonding device and bonding method for friction stir bonding and resistance welding

Also Published As

Publication number Publication date
JP7197405B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
US8253056B2 (en) Resistance welding method and resistance welding apparatus
JP5411792B2 (en) Resistance welding method and apparatus
US20150352659A1 (en) Cover plate with intruding feature to improve al-steel spot welding
JP5599553B2 (en) Resistance spot welding method
JP2007268604A (en) Resistance spot welding method
JP4502873B2 (en) Resistance spot welding method for aluminum and iron materials
KR20190126098A (en) Method of manufacturing resistance spot welded joints
JP5261984B2 (en) Resistance spot welding method
KR102127991B1 (en) Resistance spot welding method and welded structure
JP5519457B2 (en) Spot welding method and apparatus
JP2009241136A (en) Series spot or indirect spot welding method for high tensile strength steel sheet
JP5549153B2 (en) Indirect spot welding method
JP2012071333A (en) Spot welding method and spot welding apparatus
CN111770807B (en) Resistance spot welding method and method for manufacturing welded member
JP2020142251A (en) Resistance spot welding device and resistance spot welding method
JP5609966B2 (en) Resistance spot welding method
WO2003018245A1 (en) Conductive heat seam welding
JP6519510B2 (en) Method of manufacturing spot welds and manufacturing apparatus therefor
JPWO2016013212A1 (en) Resistance spot welding method
JP5430530B2 (en) Spot welding equipment
KR20180011320A (en) Resistance spot welding method
JP5347416B2 (en) High-strength steel with excellent one-side spot weldability and one-side spot welding method
JP2020011253A (en) Resistance spot welding method
JP7508031B1 (en) Resistance Spot Welding Method
JP5822904B2 (en) Spot welding method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R150 Certificate of patent or registration of utility model

Ref document number: 7197405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150