JP2020142214A - Gaseous starting material supply method and gaseous starting material supply apparatus - Google Patents

Gaseous starting material supply method and gaseous starting material supply apparatus Download PDF

Info

Publication number
JP2020142214A
JP2020142214A JP2019041953A JP2019041953A JP2020142214A JP 2020142214 A JP2020142214 A JP 2020142214A JP 2019041953 A JP2019041953 A JP 2019041953A JP 2019041953 A JP2019041953 A JP 2019041953A JP 2020142214 A JP2020142214 A JP 2020142214A
Authority
JP
Japan
Prior art keywords
raw material
gas
material gas
weight
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019041953A
Other languages
Japanese (ja)
Inventor
高橋 正
Tadashi Takahashi
正 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019041953A priority Critical patent/JP2020142214A/en
Publication of JP2020142214A publication Critical patent/JP2020142214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a gaseous starting material supply method and a gaseous starting material supply apparatus allowing for prevention of blockage of piping due to gelatinization of a gaseous starting material and thereby allowing for stable supply of the gaseous starting material.SOLUTION: There is provided the gaseous starting material supply method for supplying gaseous starting material into a supply destination 16, the method comprises the steps of: measuring a weight of a liquefaction raw material charged into a raw material vessel 12; gasifying the liquefied raw material by heating thereby generating a gaseous starting material; supplying the generated gaseous starting material into a supply destination 16 through raw material supply piping 18; heating the raw material supply piping 18 by a heater 38 thereby maintaining a gasified state of the gaseous starting material: measuring a flow rate of the gaseous starting material in the raw material supply piping 18; and controlling a temperature of the heater 38 so that a difference between a reduction of the weight of the liquefied raw material and a weight of the gaseous starting material obtained by conversion from an integrated value of the measured flow rate falls within a prescribed range.SELECTED DRAWING: Figure 1

Description

本発明は、原料ガス供給方法および原料ガス供給装置に関するものである。 The present invention relates to a raw material gas supply method and a raw material gas supply device.

従来、光ファイバプリフォームを安定に合成するには、気化原料(原料ガス)が多少変動しても、燃焼ガス流量を原料の変動に連動して変化させたり、スートが堆積する表面温度を一定になるよう制御することが一般的である。また、気化した原料が凝集、再液化しないよう配管下限温度を規定するとともに、過熱しない(熱を掛け過ぎない)よう上限温度を規定し、その範囲内で一定にすることが知られている。 Conventionally, in order to stably synthesize an optical fiber preform, even if the vaporized raw material (raw material gas) fluctuates slightly, the flow rate of combustion gas is changed in conjunction with the fluctuation of the raw material, and the surface temperature at which the suit is deposited is constant. It is common to control so that Further, it is known that the lower limit temperature of the pipe is specified so that the vaporized raw material does not agglomerate or reliquefy, and the upper limit temperature is specified so as not to overheat (excessive heat is applied) and kept constant within that range.

ところで、設備が大きくなると、気化後の配管長が長くなり、長期間使用しているとヒータの劣化や、断熱材の劣化で局所的に加熱不足が発生することがあり、そこで凝集、再液化が起こることがある。その場合、原料流量が変化することになるが、例えば表面温度制御によりそのまま製造を継続することができる(例えば、特許文献1を参照)。配管内で再液化した原料は、配管内を流れる気化原料により下流側へ移動し、そこに長時間滞留すると、過熱によりゲル化することがある(例えば、特許文献2を参照)。 By the way, as the equipment becomes larger, the length of the pipe after vaporization becomes longer, and if it is used for a long period of time, the heater may deteriorate or the heat insulating material may deteriorate, causing local heating shortage, where coagulation and reliquefaction may occur. May occur. In that case, the flow rate of the raw material changes, but the production can be continued as it is by controlling the surface temperature, for example (see, for example, Patent Document 1). The raw material reliquefied in the pipe moves to the downstream side due to the vaporized raw material flowing in the pipe, and if it stays there for a long time, it may gel due to overheating (see, for example, Patent Document 2).

特公平4−13299号公報Tokusho 4-13299 Gazette 特開2014−224007号公報Japanese Unexamined Patent Publication No. 2014-224007

ゲル化した原料は、一般的には沸点が高く、気化させることが難しくなり、やがて配管の閉塞を引き起こす。その場合、燃焼ガスなどの制御では条件を一定にコントロールできなくなり、当然製造を継続して実施できないことになる。また、一度閉塞すると、長時間設備を稼働できなくなり、配管を再施工する費用も必要となる。したがって、一次原因である液化を検出する機能があれば、ゲル化などによる二次被害のおそれを回避できるが、特許文献2の技術では液化を検出することはできない。 The gelled raw material generally has a high boiling point, which makes it difficult to vaporize and eventually causes clogging of the pipe. In that case, the conditions cannot be controlled to be constant by controlling the combustion gas or the like, and naturally the production cannot be continued. In addition, once blocked, the equipment cannot be operated for a long time, and the cost of reconstructing the piping is required. Therefore, if there is a function of detecting liquefaction, which is the primary cause, the risk of secondary damage due to gelation or the like can be avoided, but liquefaction cannot be detected by the technique of Patent Document 2.

本発明は、上記に鑑みてなされたものであって、原料ガスのゲル化による配管の閉塞を防止して、原料ガスを安定的に供給することのできる原料ガス供給方法および原料ガス供給装置を提供することを目的とする。 The present invention has been made in view of the above, and provides a raw material gas supply method and a raw material gas supply device capable of preventing blockage of a pipe due to gelation of the raw material gas and stably supplying the raw material gas. The purpose is to provide.

上記した課題を解決し、目的を達成するために、本発明に係る原料ガス供給方法は、供給先に原料ガスを供給する方法であって、原料容器に入った液化原料の重量を測定する工程と、液化原料を加熱することにより気化した原料ガスを生成する工程と、生成した原料ガスを原料供給配管を通じて供給先に供給する工程と、原料供給配管をヒータで加熱して原料ガスの気化状態を維持する工程と、原料供給配管における原料ガスの流量を測定する工程と、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータの温度を制御する工程とを有することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the raw material gas supply method according to the present invention is a method of supplying the raw material gas to the supply destination, and is a step of measuring the weight of the liquefied raw material contained in the raw material container. The process of generating vaporized raw material gas by heating the liquefied raw material, the process of supplying the generated raw material gas to the supply destination through the raw material supply pipe, and the vaporization state of the raw material gas by heating the raw material supply pipe with a heater. Difference between the process of maintaining the above, the process of measuring the flow rate of the raw material gas in the raw material supply pipe, the reduced amount of the measured weight of the liquefied raw material, and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate. It is characterized by having a step of controlling the temperature of the heater so that the temperature falls within a predetermined range.

また、本発明に係る他の原料ガス供給方法は、上述した発明において、原料容器を加熱することにより液化原料を気化して原料ガスを生成する工程を有することを特徴とする。 Further, another raw material gas supply method according to the present invention is characterized in that, in the above-described invention, it has a step of vaporizing the liquefied raw material to generate a raw material gas by heating the raw material container.

また、本発明に係る他の原料ガス供給方法は、上述した発明において、原料容器内を加圧して液化原料を原料供給配管に供給し、原料供給配管をヒータで加熱することにより液化原料を気化して原料ガスを生成する工程を有することを特徴とする。 Further, in the other raw material gas supply method according to the present invention, in the above-mentioned invention, the inside of the raw material container is pressurized to supply the liquefied raw material to the raw material supply pipe, and the raw material supply pipe is heated by a heater to care for the liquefied raw material. It is characterized by having a step of forming a raw material gas.

また、本発明に係る原料ガス供給装置は、供給先に原料ガスを供給する装置であって、原料容器に入った液化原料の重量を測定する重量測定機構と、液化原料を加熱することにより気化した原料ガスを生成する加熱機構と、生成した原料ガスを供給先に供給する原料供給配管と、原料ガスの気化状態を維持するために原料供給配管を加熱するヒータと、原料供給配管における原料ガスの流量を測定する流量測定機構と、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータの温度を制御する制御機構とを有することを特徴とする。 Further, the raw material gas supply device according to the present invention is a device that supplies the raw material gas to the supply destination, and has a weight measuring mechanism for measuring the weight of the liquefied raw material in the raw material container and vaporization by heating the liquefied raw material. A heating mechanism that generates the raw material gas, a raw material supply pipe that supplies the generated raw material gas to the supply destination, a heater that heats the raw material supply pipe to maintain the vaporization state of the raw material gas, and a raw material gas in the raw material supply pipe. The heater so that the difference between the flow rate measuring mechanism that measures the flow rate and the weight reduction of the measured liquefied raw material and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate is within a predetermined range. It is characterized by having a control mechanism for controlling the temperature.

また、本発明に係る他の原料ガス供給装置は、上述した発明において、加熱機構は、原料容器を加熱することにより気化した原料ガスを生成することを特徴とする。 Further, in the other raw material gas supply device according to the present invention, in the above-described invention, the heating mechanism is characterized in that the raw material gas is generated by heating the raw material container.

また、本発明に係る他の原料ガス供給装置は、上述した発明において、加熱機構は、原料容器を加圧する加圧機構と、原料供給配管に供給された液化原料を加熱するヒータで構成されていることを特徴とする。 Further, in the other raw material gas supply device according to the present invention, in the above-described invention, the heating mechanism includes a pressurizing mechanism for pressurizing the raw material container and a heater for heating the liquefied raw material supplied to the raw material supply pipe. It is characterized by being.

また、本発明に係る他の原料ガス供給装置は、上述した発明において、原料容器の近傍に、原料供給配管から分岐して開閉弁を介して接続したガス回避配管を有し、このガス回避配管はガス処理設備に接続していることを特徴とする。 Further, in the above-described invention, another raw material gas supply device according to the present invention has a gas avoidance pipe branched from the raw material supply pipe and connected via an on-off valve in the vicinity of the raw material container, and this gas avoidance pipe is provided. Is characterized by being connected to a gas treatment facility.

また、本発明に係る他の原料ガス供給装置は、上述した発明において、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の値を超えた場合に、これを報知する警報機構と、開閉弁を開けて原料ガスをガス回避配管に回避する回避機構の少なくとも一方を有することを特徴とする。 Further, in the other raw material gas supply device according to the present invention, in the above-described invention, the difference between the measured reduction in the weight of the liquefied raw material and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate is It is characterized by having at least one of an alarm mechanism for notifying when a predetermined value is exceeded and an avoidance mechanism for opening an on-off valve to avoid the raw material gas in the gas avoidance pipe.

本発明によれば、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータの温度を制御するので、原料ガスの凝集、再液化による極端な流量変化、ゲル化による原料供給配管の閉塞などを未然に防止することができる。このため、原料ガスを安定的に供給することができる。 According to the present invention, the temperature of the heater is controlled so that the difference between the measured reduction in the weight of the liquefied raw material and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate is within a predetermined range. Therefore, it is possible to prevent agglomeration of the raw material gas, an extreme change in the flow rate due to reliquefaction, and blockage of the raw material supply pipe due to gelation. Therefore, the raw material gas can be stably supplied.

図1は、本発明に係る原料ガス供給装置の実施例1を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing Example 1 of the raw material gas supply device according to the present invention. 図2は、実施例1の変形例を示す図である。FIG. 2 is a diagram showing a modified example of the first embodiment. 図3は、実施例1の使用原料の重量変化を示す図である。FIG. 3 is a diagram showing a change in weight of the raw material used in Example 1. 図4は、実施例1のWcの変化を示す図である。FIG. 4 is a diagram showing a change in Wc of Example 1. 図5は、本発明に係る原料ガス供給装置の実施例2を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing Example 2 of the raw material gas supply device according to the present invention. 図6は、実施例2のWcの変化を示す図である。FIG. 6 is a diagram showing a change in Wc of Example 2. 図7は、比較例のWcの変化を示す図である。FIG. 7 is a diagram showing changes in Wc of the comparative example.

以下に、本発明に係る原料ガス供給方法および原料ガス供給装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the raw material gas supply method and the embodiment of the raw material gas supply device according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.

図1に示すように、本実施の形態に係る原料ガス供給装置10は、原料容器12が入れられた恒温槽14と、原料容器12からガラス微粒子生成用バーナ(供給先)16に延びる原料供給配管18と、原料供給配管18の途中に設けられ、マスフローコントローラとして機能する流量測定器20と、制御機構22とを備える。 As shown in FIG. 1, the raw material gas supply device 10 according to the present embodiment supplies a raw material extending from a constant temperature bath 14 containing the raw material container 12 and a burner (supply destination) 16 for generating glass fine particles from the raw material container 12. It includes a pipe 18, a flow rate measuring device 20 provided in the middle of the raw material supply pipe 18 and functioning as a mass flow controller, and a control mechanism 22.

恒温槽14内の底部には、原料容器12の重量を測定可能な重量測定機構24が設置され、恒温槽14の周囲には、加熱制御機能を有する加熱機構26が設けられている。本実施の形態では、重量測定機構24はロードセルで構成され、加熱機構26はヒータで構成されている。 A weight measuring mechanism 24 capable of measuring the weight of the raw material container 12 is installed at the bottom of the constant temperature bath 14, and a heating mechanism 26 having a heating control function is provided around the constant temperature bath 14. In the present embodiment, the weight measuring mechanism 24 is composed of a load cell, and the heating mechanism 26 is composed of a heater.

原料供給配管18の上流側には、原料供給配管18に窒素ガスを送り込むための配管28と、原料供給配管18の原料ガスを排ガス処理装置30(ガス処理設備)に排出するためのガス回避配管32が接続されている。配管28とガス回避配管32には、それぞれ通過流量を調整するための開閉弁34、36が設けられている。また、原料供給配管18およびガス回避配管32の周囲には、これらを加熱するためのヒータ38が設けられている。原料供給配管18の近傍には、原料供給配管18の温度を計測するための熱電対40が設けられている。 On the upstream side of the raw material supply pipe 18, a pipe 28 for sending nitrogen gas to the raw material supply pipe 18 and a gas avoidance pipe for discharging the raw material gas of the raw material supply pipe 18 to the exhaust gas treatment device 30 (gas treatment equipment). 32 are connected. The pipe 28 and the gas avoidance pipe 32 are provided with on-off valves 34 and 36 for adjusting the passing flow rate, respectively. Further, a heater 38 for heating these is provided around the raw material supply pipe 18 and the gas avoidance pipe 32. A thermocouple 40 for measuring the temperature of the raw material supply pipe 18 is provided in the vicinity of the raw material supply pipe 18.

制御機構22は、重量測定機構24、加熱機構26、ヒータ38、熱電対40、流量測定器20、開閉弁34、36と接続しており、データ送受信により各動作を制御可能である。 The control mechanism 22 is connected to the weight measuring mechanism 24, the heating mechanism 26, the heater 38, the thermocouple 40, the flow rate measuring device 20, and the on-off valves 34 and 36, and each operation can be controlled by transmitting and receiving data.

原料ガスは、原料容器12を加熱機構26で加熱して原料容器12内の液化原料を気化することにより生成することができる。なお、本発明の加熱機構はこれに限るものではなく、例えば、図2に示すように、原料容器12を加圧する加圧機構42と、原料供給配管18に供給された液化原料を加熱するヒータ38とで加熱機構を構成してもよい。加圧機構42は、原料容器12に窒素ガスなどを送り込むための配管44で構成することができる。このようにすれば、原料容器12の内部を窒素ガスなどで加圧し、原料容器12内の液化原料を原料供給配管18に導き、原料供給配管18を加熱するヒータ38で液化原料を気化して原料ガスを生成することが可能である。 The raw material gas can be generated by heating the raw material container 12 with the heating mechanism 26 and vaporizing the liquefied raw material in the raw material container 12. The heating mechanism of the present invention is not limited to this, and for example, as shown in FIG. 2, a pressurizing mechanism 42 that pressurizes the raw material container 12 and a heater that heats the liquefied raw material supplied to the raw material supply pipe 18. The heating mechanism may be configured with 38. The pressurizing mechanism 42 can be composed of a pipe 44 for feeding nitrogen gas or the like into the raw material container 12. In this way, the inside of the raw material container 12 is pressurized with nitrogen gas or the like, the liquefied raw material in the raw material container 12 is guided to the raw material supply pipe 18, and the liquefied raw material is vaporized by the heater 38 that heats the raw material supply pipe 18. It is possible to generate a raw material gas.

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

(実施例1)
本実施例1では、液化原料として、シロキサン(融点17.5℃、沸点175℃のオクタメチルシクロテトラシロキサン(以下、OMCTSという。))を用いた。重量が既知の原料容器12にOMCTSをいれ、ロードセル(重量測定機構24)で初期のOMCTSの重量を測定したところ35.6kgであった。この測定値は制御機構22にデータとして取り込まれている。
(Example 1)
In Example 1, siloxane (octamethylcyclotetrasiloxane having a melting point of 17.5 ° C. and a boiling point of 175 ° C. (hereinafter referred to as OMCTS)) was used as a liquefying raw material. OMCTS was placed in a raw material container 12 having a known weight, and the weight of the initial OMCTS was measured by a load cell (weight measuring mechanism 24) and found to be 35.6 kg. This measured value is taken into the control mechanism 22 as data.

恒温槽14および原料供給配管18のヒータ38を用いOMCTSの沸点より高い200℃に初期温度を設定加熱して、OMCTSを気化させた。気化したOMCTSはマスフローコントローラ(流量測定器20)を介して流れ、別途供給されている助燃性ガスおよび可燃性ガスによって発生した酸水素火炎中にOMCTSガスが噴出され、熱分解酸化反応によって酸化珪素(SiO)粒子を合成する。 The OMCTS was vaporized by setting the initial temperature to 200 ° C., which is higher than the boiling point of the OMCTS, by using the constant temperature bath 14 and the heater 38 of the raw material supply pipe 18. The vaporized OMCTS flows through the mass flow controller (flow measuring device 20), and the OMCTS gas is ejected into the hydrogen acid flame generated by the separately supplied flammable gas and flammable gas, and the silicon oxide is oxidized by the thermal decomposition oxidation reaction. (SiO 2 ) Synthesize particles.

原料を供給している間、ロードセルで測定した原料の初期重量と、ロードセルで測定されている現在のOMCTSの重量から減少重量Wa(減少分)を測定した。また、OMCTSは、マスフローコントローラを流れた時間と流量が制御機構22に取り込まれて重量に換算されている。この換算された重量をWbとした。制御機構22では、Wc=Wa−Wbが一定になるように原料供給配管18のヒータ38の温度を調整した。 While the raw material was being supplied, the weight loss Wa (reduced amount) was measured from the initial weight of the raw material measured in the load cell and the weight of the current OMCTS measured in the load cell. Further, in the OMCTS, the time and the flow rate flowing through the mass flow controller are taken into the control mechanism 22 and converted into the weight. This converted weight was defined as Wb. In the control mechanism 22, the temperature of the heater 38 of the raw material supply pipe 18 was adjusted so that Wc = Wa−Wb became constant.

図3は、使用原料の時間変化をWaとWbの時間変化として表示したものである。図4は、Wcの時間変化を示したものである。これらの図に示すように、原料供給配管18に気化した原料が充填される初期を除き、Wcは時間経過による変動がない。これにより、原料供給配管18では液化なく原料が安定的に供給されていることがわかる。 FIG. 3 shows the time change of the raw material used as the time change of Wa and Wb. FIG. 4 shows the time change of Wc. As shown in these figures, Wc does not change with the passage of time except at the initial stage when the raw material supply pipe 18 is filled with the vaporized raw material. From this, it can be seen that the raw material is stably supplied in the raw material supply pipe 18 without liquefaction.

したがって、本実施の形態によれば、原料ガスの凝集、再液化による極端な流量変化、ゲル化による原料供給配管18の閉塞などを未然に防止することができる。このため、原料ガスを安定的に供給することができる。 Therefore, according to the present embodiment, it is possible to prevent agglomeration of the raw material gas, an extreme change in the flow rate due to reliquefaction, blockage of the raw material supply pipe 18 due to gelation, and the like. Therefore, the raw material gas can be stably supplied.

(実施例2)
本実施例2は、Wcが所定の値(規定値1)を超えた場合に、ガス回避配管32の開閉弁36を開けて原料供給配管18の原料ガスをガス回避配管32に回避する回避機構を備えたものである。回避機構は制御機構22の動作で実現される。本実施例2では、図5に示すように、原料供給配管18の一部のヒータAを制御機構22から独立して制御することにより、OMCTSの沸点よりも高い220℃に設定して上記の実施例1と同じように原料ガスを供給した。
(Example 2)
In the second embodiment, when Wc exceeds a predetermined value (specified value 1), the on-off valve 36 of the gas avoidance pipe 32 is opened to avoid the raw material gas of the raw material supply pipe 18 to the gas avoidance pipe 32. It is equipped with. The avoidance mechanism is realized by the operation of the control mechanism 22. In the second embodiment, as shown in FIG. 5, by controlling a part of the heater A of the raw material supply pipe 18 independently from the control mechanism 22, the temperature is set to 220 ° C., which is higher than the boiling point of OMCTS. The raw material gas was supplied in the same manner as in Example 1.

図6は、Wcの時間変化を示したものである。この図に示すように、初期は上記の実施例1と同じ挙動を示していたが、途中から微増し始め、規定値1を超えたので回避機構が作動し、原料供給配管18に接続してあるガス回避配管32の開閉弁36が開いて原料ガスは排ガス処理装置30に回避された。原料容器12が収納されている恒温槽14の加熱機構26、原料供給配管18のヒータ38も加熱を停止して自然冷却され、液化した原料は原料容器12に回収された。装置停止後、原料供給配管18を調査したがゲル状になったOMCTSは確認できなかった。 FIG. 6 shows the time change of Wc. As shown in this figure, the behavior was initially the same as that of the first embodiment, but it started to increase slightly in the middle and exceeded the specified value 1, so the avoidance mechanism was activated and connected to the raw material supply pipe 18. The on-off valve 36 of a gas avoidance pipe 32 was opened, and the raw material gas was avoided by the exhaust gas treatment device 30. The heating mechanism 26 of the constant temperature bath 14 in which the raw material container 12 is housed and the heater 38 of the raw material supply pipe 18 also stopped heating and were naturally cooled, and the liquefied raw material was collected in the raw material container 12. After the equipment was stopped, the raw material supply pipe 18 was investigated, but the gelled OMCTS could not be confirmed.

(比較例)
次に、比較例について説明する。
図7は、規定値2を設定してWcの時間変化を示したものである。この図に示すように、初期は上記の実施例2と同じ挙動を示していたが、そのまま使用を続けるとWc値が急に大きくなったので手動で加熱を停止し、原料供給配管18に接続してあるガス回避配管32の開閉弁36を開けて原料ガスを排ガス処理装置30に回避した。原料容器12が収納されている恒温槽14の加熱機構26、原料供給配管18のヒータ38も加熱は自然冷却され、液化した原料は原料容器12に回収された。装置停止後、原料供給配管18を調査したところゲル状になったOMCTSが確認された。
(Comparison example)
Next, a comparative example will be described.
FIG. 7 shows the time change of Wc by setting the specified value 2. As shown in this figure, the behavior was initially the same as that of the second embodiment, but when the use was continued as it was, the Wc value suddenly increased, so the heating was manually stopped and connected to the raw material supply pipe 18. The on-off valve 36 of the gas avoidance pipe 32 was opened to avoid the raw material gas to the exhaust gas treatment device 30. The heating mechanism 26 of the constant temperature bath 14 in which the raw material container 12 is housed and the heater 38 of the raw material supply pipe 18 were also naturally cooled, and the liquefied raw material was recovered in the raw material container 12. After the equipment was stopped, the raw material supply pipe 18 was investigated, and a gel-like OMCTS was confirmed.

以上説明したように、本実施の形態によれば、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータ38の温度を制御するので、原料ガスの凝集、再液化による極端な流量変化、ゲル化による原料供給配管18の閉塞などを未然に防止することができる。このため、原料ガスを安定的に供給することができる。 As described above, according to the present embodiment, the difference between the measured reduction in the weight of the liquefied raw material and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate is within a predetermined range. Since the temperature of the heater 38 is controlled in this way, it is possible to prevent agglomeration of the raw material gas, an extreme change in the flow rate due to reliquefaction, blockage of the raw material supply pipe 18 due to gelation, and the like. Therefore, the raw material gas can be stably supplied.

なお、上記の実施例2では、Wcが所定の値を超えた場合に、開閉弁36を開けて原料ガスをガス回避配管32に回避する回避機構を備える場合を例にとり説明したが、本発明はこれに限るものではなく、Wcが所定の値を超えた場合に、これを報知する警報機構を有してもよいし、この警報機構と回避機構の双方を有してもよい。 In the second embodiment, the case where the on-off valve 36 is opened to avoid the raw material gas in the gas avoidance pipe 32 when the Wc exceeds a predetermined value is provided as an example. Is not limited to this, and may have an alarm mechanism for notifying when Wc exceeds a predetermined value, or may have both the alarm mechanism and the avoidance mechanism.

10 原料ガス供給装置
12 原料容器
14 恒温槽
16 ガラス微粒子生成用バーナ(供給先)
18 原料供給配管
20 流量測定器
22 制御機構
24 重量測定機構
26 加熱機構
28,44 配管
30 排ガス処理装置(ガス処理設備)
32 ガス回避配管
34,36 開閉弁
38 ヒータ
40 熱電対
42 加圧機構
10 Raw material gas supply device 12 Raw material container 14 Constant temperature bath 16 Burner for producing glass fine particles (Supply destination)
18 Raw material supply piping 20 Flow measuring device 22 Control mechanism 24 Weight measuring mechanism 26 Heating mechanism 28,44 Piping 30 Exhaust gas treatment equipment (gas treatment equipment)
32 Gas avoidance piping 34, 36 On-off valve 38 Heater 40 Thermocouple 42 Pressurizing mechanism

Claims (8)

供給先に原料ガスを供給する方法であって、
原料容器に入った液化原料の重量を測定する工程と、液化原料を加熱することにより気化した原料ガスを生成する工程と、生成した原料ガスを原料供給配管を通じて供給先に供給する工程と、原料供給配管をヒータで加熱して原料ガスの気化状態を維持する工程と、原料供給配管における原料ガスの流量を測定する工程と、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータの温度を制御する工程とを有することを特徴とする原料ガス供給方法。
It is a method of supplying raw material gas to the supply destination.
The process of measuring the weight of the liquefied raw material in the raw material container, the process of generating the vaporized raw material gas by heating the liquefied raw material, the process of supplying the generated raw material gas to the supply destination through the raw material supply pipe, and the raw material. The process of heating the supply pipe with a heater to maintain the vaporized state of the raw material gas, the process of measuring the flow rate of the raw material gas in the raw material supply pipe, the amount of decrease in the weight of the measured liquefied raw material, and the integrated value of the measured flow rate. A method for supplying a raw material gas, which comprises a step of controlling the temperature of the heater so that the difference from the weight of the raw material gas obtained by converting from the above is within a predetermined range.
原料容器を加熱することにより液化原料を気化して原料ガスを生成する工程を有することを特徴とする請求項1に記載の原料ガス供給方法。 The raw material gas supply method according to claim 1, further comprising a step of vaporizing the liquefied raw material to generate a raw material gas by heating the raw material container. 原料容器内を加圧して液化原料を原料供給配管に供給し、原料供給配管をヒータで加熱することにより液化原料を気化して原料ガスを生成する工程を有することを特徴とする請求項1に記載の原料ガス供給方法。 The first aspect of claim 1 is characterized by having a step of pressurizing the inside of the raw material container to supply the liquefied raw material to the raw material supply pipe, and heating the raw material supply pipe with a heater to vaporize the liquefied raw material to generate a raw material gas. The raw material gas supply method described. 供給先に原料ガスを供給する装置であって、
原料容器に入った液化原料の重量を測定する重量測定機構と、液化原料を加熱することにより気化した原料ガスを生成する加熱機構と、生成した原料ガスを供給先に供給する原料供給配管と、原料ガスの気化状態を維持するために原料供給配管を加熱するヒータと、原料供給配管における原料ガスの流量を測定する流量測定機構と、測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の範囲となるようにヒータの温度を制御する制御機構とを有することを特徴とする原料ガス供給装置。
A device that supplies raw material gas to the supply destination,
A weight measuring mechanism that measures the weight of the liquefied raw material in the raw material container, a heating mechanism that generates vaporized raw material gas by heating the liquefied raw material, and a raw material supply pipe that supplies the generated raw material gas to the supply destination. A heater that heats the raw material supply pipe to maintain the vaporized state of the raw material gas, a flow rate measuring mechanism that measures the flow rate of the raw material gas in the raw material supply pipe, a decrease in the weight of the measured liquefied raw material, and the measured flow rate. A raw material gas supply device characterized by having a control mechanism for controlling the temperature of a heater so that the difference from the weight of the raw material gas obtained by converting from the integrated value is within a predetermined range.
加熱機構は、原料容器を加熱することにより気化した原料ガスを生成することを特徴とする請求項4に記載の原料ガス供給装置。 The raw material gas supply device according to claim 4, wherein the heating mechanism generates a vaporized raw material gas by heating the raw material container. 加熱機構は、原料容器を加圧する加圧機構と、原料供給配管に供給された液化原料を加熱するヒータで構成されていることを特徴とする請求項4に記載の原料ガス供給装置。 The raw material gas supply device according to claim 4, wherein the heating mechanism includes a pressurizing mechanism for pressurizing the raw material container and a heater for heating the liquefied raw material supplied to the raw material supply pipe. 原料容器の近傍に、原料供給配管から分岐して開閉弁を介して接続したガス回避配管を有し、このガス回避配管はガス処理設備に接続していることを特徴とする請求項4〜6のいずれか一つに記載の原料ガス供給装置。 Claims 4 to 6 include a gas avoidance pipe branched from a raw material supply pipe and connected via an on-off valve in the vicinity of the raw material container, and the gas avoidance pipe is connected to a gas treatment facility. The raw material gas supply device according to any one of the above. 測定した液化原料の重量の減少分と、測定した流量の積算値から換算して得られる原料ガスの重量との差が所定の値を超えた場合に、これを報知する警報機構と、開閉弁を開けて原料ガスをガス回避配管に回避する回避機構の少なくとも一方を有することを特徴とする請求項4〜7のいずれか一つに記載の原料ガス供給装置。 An alarm mechanism and an on-off valve that notify when the difference between the measured weight reduction of the liquefied raw material and the weight of the raw material gas obtained by converting from the integrated value of the measured flow rate exceeds a predetermined value. The raw material gas supply device according to any one of claims 4 to 7, further comprising at least one of an avoidance mechanism for avoiding the raw material gas in the gas avoidance pipe.
JP2019041953A 2019-03-07 2019-03-07 Gaseous starting material supply method and gaseous starting material supply apparatus Pending JP2020142214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041953A JP2020142214A (en) 2019-03-07 2019-03-07 Gaseous starting material supply method and gaseous starting material supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041953A JP2020142214A (en) 2019-03-07 2019-03-07 Gaseous starting material supply method and gaseous starting material supply apparatus

Publications (1)

Publication Number Publication Date
JP2020142214A true JP2020142214A (en) 2020-09-10

Family

ID=72355255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041953A Pending JP2020142214A (en) 2019-03-07 2019-03-07 Gaseous starting material supply method and gaseous starting material supply apparatus

Country Status (1)

Country Link
JP (1) JP2020142214A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218242A (en) * 1987-03-04 1988-09-12 Sumitomo Electric Ind Ltd Method for feeding raw material
JPH11236673A (en) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp Chemical vapor growth device
JP2006327916A (en) * 2005-05-30 2006-12-07 Nikon Corp Manufacturing device for quartz glass, and manufacturing method for quartz glass using the same device
JP2012146924A (en) * 2011-01-14 2012-08-02 Tokyo Electron Ltd Film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218242A (en) * 1987-03-04 1988-09-12 Sumitomo Electric Ind Ltd Method for feeding raw material
JPH11236673A (en) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp Chemical vapor growth device
JP2006327916A (en) * 2005-05-30 2006-12-07 Nikon Corp Manufacturing device for quartz glass, and manufacturing method for quartz glass using the same device
JP2012146924A (en) * 2011-01-14 2012-08-02 Tokyo Electron Ltd Film forming device

Similar Documents

Publication Publication Date Title
WO2020203087A1 (en) Hydrocarbon combustion system
US11155488B2 (en) Apparatus and method for manufacturing porous glass preform for optical fiber
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JP6978991B2 (en) Manufacturing method and manufacturing equipment for porous glass base material for optical fiber
US8747698B2 (en) Method of starting up autothermal reforming reactors
KR20110106238A (en) Systems and methods for gas supply and usage
KR20120030329A (en) Hydrogen generation apparatus, and method for operation thereof
JP2020142214A (en) Gaseous starting material supply method and gaseous starting material supply apparatus
US20100151400A1 (en) Process for the smooth controlled heating of chemical substances with difined entry and exit temperatures in a heater and apparatus for carrying out the process
JP4643143B2 (en) Hydrogen production apparatus and method of using the same
TW201520171A (en) Method for producing metal hydride
US20220081344A1 (en) Device and method for producing fine glass particle deposited body
JP2007327458A (en) Reformed fuel burning gas turbine system and operating method of reformed fuel burning gas turbine system
JP6943802B2 (en) Plumbing equipment
US5759499A (en) Thermal reactor with direct passage tube for current
JP4337546B2 (en) Raw fuel control device and raw fuel control method
JP3996834B2 (en) Fuel cell power generation system and its startup method
JP6228788B2 (en) Coal gasifier
JP7272042B2 (en) Methane production device and control method for methane production device
JP2022073751A (en) Manufacturing method and manufacturing apparatus of porous glass preform
CN112512980B (en) Method and apparatus for producing porous glass substrate for optical fiber
JP7503039B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method
JP2002098296A (en) Manufacturing equipment for supply gas
AU2023220835A1 (en) A method for the production of sponge iron from iron ore
WO2023158364A1 (en) A method for the production of sponge iron from iron ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405