JP2020141597A - Fruit wine filtration and clarification method - Google Patents

Fruit wine filtration and clarification method Download PDF

Info

Publication number
JP2020141597A
JP2020141597A JP2019040781A JP2019040781A JP2020141597A JP 2020141597 A JP2020141597 A JP 2020141597A JP 2019040781 A JP2019040781 A JP 2019040781A JP 2019040781 A JP2019040781 A JP 2019040781A JP 2020141597 A JP2020141597 A JP 2020141597A
Authority
JP
Japan
Prior art keywords
filtration
resin
porous membrane
film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019040781A
Other languages
Japanese (ja)
Other versions
JP7252790B2 (en
Inventor
浩平 中元
Kohei Nakamoto
浩平 中元
堀内 俊輔
Shunsuke Horiuchi
俊輔 堀内
幸生 中澤
Yukio Nakazawa
幸生 中澤
智 志岐
Satoshi Shiki
智 志岐
大祐 岡村
Daisuke Okamura
大祐 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019040781A priority Critical patent/JP7252790B2/en
Publication of JP2020141597A publication Critical patent/JP2020141597A/en
Application granted granted Critical
Publication of JP7252790B2 publication Critical patent/JP7252790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

To provide a fruit wine filtration and clarification process, in which the change in chromaticity component before and after filtration is small, the removal rate of grounds component is high, and the water permeability recovery after the cleaning step and the resistance to the cleaning solution (chemical solution) are also high.SOLUTION: A method for producing fruit wine, including the following steps: a fermentation step of fermenting a fruit to yield a fruit wine that contains aggregates of grounds components; and a filtration/clarification step of passing the fruit wine obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure to separate the filtrate from the aggregates of the grounds components, and in which, characterized, the porous membrane is a particular membrane having a high intercommunication property, and, when setting the absorbance, at an arbitrary wavelength of 250 nm to 650 nm, of the fruit wine before the filtration/clarification step as X1 and the absorbance of fruit wine after the filtration/clarification step as X2, satisfies the relationship of X2/X1≥0.75.SELECTED DRAWING: None

Description

本発明は、多孔質膜を用いた果実酒のろ過・清澄化程を含む果実酒の製造方法に関する。より詳しくは、本発明は、発酵後に酵母や澱成分を含有する果実酒から該凝集物を除去するための多孔質膜を用いるろ過・清澄化工程を含む果実酒の製造方法において、ろ過前後の色度成分の変化が小さく、澱成分の除去率が高く、多孔質膜の洗浄工程後の透水量回復性や洗浄液(薬液)耐性も高い方法に関する。 The present invention relates to a method for producing fruit liquor, which comprises filtering and clarification of fruit liquor using a porous membrane. More specifically, the present invention relates to a method for producing fruit liquor, which comprises a filtration / clarification step using a porous membrane for removing the aggregates from the fruit liquor containing yeast and starch components after fermentation, before and after filtration. The present invention relates to a method in which the change in the chromaticity component is small, the removal rate of the yeast component is high, the water permeability recovery after the cleaning step of the porous film and the resistance to the cleaning liquid (chemical solution) are high.

従来、果実酒は、果実原料を準備し、発酵工程、清澄化工程、熟成工程を経て製造されているが、その品質を安定させるために必要となる要素は多岐にわたる。例えば、赤ワインの場合、その色調を安定させることは品質維持の観点から重要である。加えてより濃い色調の赤ワインは消費者にとって高級感をもたらすほか、アントシアニン等の有用成分を多く含むため好まれる傾向にある。
赤ワインの色度は、原料となるぶどうの品種と栽培環境に大きく影響を受ける。例えば、赤ワインの代表的な品種であるカベルネ・ソービニヨンやメルローは濃い赤味を発現できる品種として知られているが、天候や栽培地域により日照時間を確保できなかったものを原料として使用した赤ワインでは、期待するほどの色度に届かない場合がある。
白ワインにおいても、原料の品種や、栽培される地域や天候によって、生産されたワインの色度が変化する。白ワインの場合、生産管理の観点から、色度に一定の下限値を設けている銘柄がある。赤ワインと同じく色度は主に原料に依存するため、常に一定以上の色度を確保することは困難な場合がある。
このような色調や色度に関する問題に対して、醸し前又は醸し期間中の任意の時点で超音波を作用させる方法(以下、特許文献1参照)や、ワイン原料にペクチナーゼを添加してブドウ果皮を軟化させ、果皮中の色度成分を効率よく溶出させる手法(以下、特許文献2参照)が報告されている。
Conventionally, fruit liquor is produced by preparing fruit raw materials and undergoing a fermentation process, a clarification process, and an aging process, but there are various elements required to stabilize the quality. For example, in the case of red wine, it is important to stabilize its color tone from the viewpoint of quality maintenance. In addition, darker red wines tend to be preferred because they give consumers a sense of luxury and are rich in useful ingredients such as anthocyanins.
The chromaticity of red wine is greatly influenced by the grape varieties used as raw materials and the cultivation environment. For example, Cabernet Sauvignon and Merlot, which are typical varieties of red wine, are known as varieties that can express a deep redness, but red wine that uses sunshine hours that could not be secured due to the weather and cultivation area is used as a raw material. , It may not reach the expected chromaticity.
Even in white wine, the color of the produced wine changes depending on the variety of raw materials, the area where it is cultivated, and the weather. In the case of white wine, some brands have a certain lower limit for chromaticity from the viewpoint of production control. As with red wine, the chromaticity mainly depends on the raw material, so it may be difficult to always secure a chromaticity above a certain level.
To deal with such problems related to color tone and chromaticity, a method of applying ultrasonic waves before or during the brewing period (see Patent Document 1 below), or by adding pectinase to wine raw materials to produce grape skins. Has been reported as a method for efficiently eluting the chromaticity component in the pericarp (see Patent Document 2 below).

特開2001−258540号公報Japanese Unexamined Patent Publication No. 2001-258540 特開平11−46747号公報Japanese Unexamined Patent Publication No. 11-46747

しかしながら、超音波を作用させる場合、果皮中の色度成分は効率良く溶出させることができるものの、その他の有用成分を分解してしまう可能性がある。また、ペクチナーゼの添加により色度成分の溶出を促進できるものの、添加量の調整を原料ごとに行わなければならないという煩雑性がある。
このような果実酒における色度の低下という問題に対して、本発明者らは、鋭意検討し実験を重ねた結果、果実酒の色度を決定する要因は、原料や原料からの色度成分の抽出方法に起因するものだけではなく、その後段の製造工程にも影響されることを発見した。その中でも、アルコール発酵後、果実酒の清澄化のために従来から行われる珪藻土ろ過において、色度に関わる成分が相当量吸着されてしまい、ろ過前に比べてろ過後の色度が低下するという問題があることを新たに突き止めた。
However, when ultrasonic waves are applied, the chromaticity component in the pericarp can be efficiently eluted, but other useful components may be decomposed. Further, although the elution of the chromaticity component can be promoted by adding pectinase, there is a complexity that the amount of addition must be adjusted for each raw material.
As a result of diligent studies and experiments on the problem of chromaticity decrease in fruit wine, the factors that determine the chromaticity of fruit wine are the raw materials and the chromaticity component from the raw materials. It was discovered that it is affected not only by the extraction method of but also by the manufacturing process of the subsequent stage. Among them, in the diatomaceous earth filtration conventionally performed for clarification of fruit wine after alcoholic fermentation, a considerable amount of components related to chromaticity are adsorbed, and the chromaticity after filtration is lower than that before filtration. I found out that there was a problem.

他方、近年、珪藻土ろ過に代替される除濁方法として膜ろ過法が報告されている。膜ろ過法の利点としては、(1)得られる水質の除濁レベルが高く、かつ、安定している(得られる水の安全性が高い)こと、(2)ろ過装置の設置スペースが小さくてすむこと、(3)自動運転が容易であること、(4)使用済み珪藻土の廃棄費用を抑えられること等が挙げられる。膜ろ過による除濁操作には、平均孔径が数nm〜数百nmの範囲の平膜又は中空糸状の多孔質限外ろ過膜や精密ろ過膜が用いられる。このように、膜ろ過法による除濁操作は、珪藻土ろ過にはない利点が多くあるために、従来法の代替又は補完手段として、各種ろ過用途への採用が進んでいる。
しかしながら、樹脂素材で多孔質ろ過膜を作製する際、製膜方法が異なると膜を構成する素材のミクロ構造に差異が現れる。また、発酵後の果実酒に含まれる澱成分の除去のためのろ過においては、澱成分の除去率を高く維持しつつ、前述した色度成分の低下を極力抑制することが要求される。さらに、通常、ろ過運転を継続すると膜は目詰まりを起こすため、多孔質ろ過膜を用いたろ過方法の運転には、洗浄工程が伴う。他方、洗浄工程に薬剤を使用すると、膜の強度劣化を誘発する。このとき、多孔質ろ過膜を構成する素材のミクロ構造に差異があると、繰り返される洗浄工程で使用する洗浄液(薬液)による多孔質ろ過膜へのダメージの程度が異なる結果、ろ過性能や寿命に影響を及ぼすという問題もある。
On the other hand, in recent years, a membrane filtration method has been reported as an alternative turbidity method to diatomaceous earth filtration. The advantages of the membrane filtration method are (1) the turbidity level of the obtained water is high and stable (the safety of the obtained water is high), and (2) the installation space of the filtration device is small. It can be done, (3) automatic operation is easy, and (4) the disposal cost of used diatomaceous earth can be suppressed. For the turbidity operation by membrane filtration, a flat membrane or hollow filament-like porous ultrafiltration membrane or microfiltration membrane having an average pore diameter in the range of several nm to several hundred nm is used. As described above, the turbidity operation by the membrane filtration method has many advantages over the diatomaceous earth filtration, and therefore, it is being adopted for various filtration applications as an alternative or complementary means to the conventional method.
However, when a porous filtration membrane is produced from a resin material, the microstructure of the material constituting the membrane differs depending on the film forming method. Further, in the filtration for removing the starch component contained in the fruit wine after fermentation, it is required to suppress the above-mentioned decrease in the chromaticity component as much as possible while maintaining a high removal rate of the starch component. Further, since the membrane is usually clogged when the filtration operation is continued, the operation of the filtration method using the porous filtration membrane involves a cleaning step. On the other hand, the use of chemicals in the cleaning process induces deterioration of the strength of the membrane. At this time, if there is a difference in the microstructure of the materials constituting the porous filtration membrane, the degree of damage to the porous filtration membrane by the cleaning solution (chemical solution) used in the repeated cleaning process differs, resulting in filtration performance and life. There is also the problem of affecting.

かかる問題に鑑み、本発明が解決しようとする課題は、澱成分の凝集物を含有する発酵後の果実酒から該凝集物を除去するための多孔質膜を用いるろ過・清澄化工程を含む果実酒の製造方法において、ろ過前後の色度成分の変化が低く、澱成分の除去率が高く、多孔質膜の洗浄工程後の透水量回復性や洗浄液(薬液)耐性も高い方法を提供することである。 In view of this problem, the problem to be solved by the present invention is a fruit including a filtration / clarification step using a porous membrane for removing the aggregate from the fermented fruit liquor containing the aggregate of the starch component. Provided is a method for producing liquor, which has a low change in chromaticity component before and after filtration, a high removal rate of starch component, a high water permeability recovery after a cleaning process of a porous membrane, and a high resistance to a washing liquid (chemical solution). Is.

本発明者らは、前記した課題を解決すべく鋭意検討し実験を重ねた結果、多孔質ろ過膜の被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用することで、澱成分の凝集物を含有する果実酒から該凝集物を除去するための多孔質膜を用いるろ過工程を含む果実酒の製造方法において、ろ過前後の果実酒の色度成分の変化が低く、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができることを予想外に見出し、本発明を完成するに至ったものである。 As a result of diligent studies and repeated experiments in order to solve the above-mentioned problems, the present inventors have found that the pores extending from the inside of the membrane on the liquid side to be treated to the outside of the membrane on the filtrate side of the porous filtration membrane. In a method for producing fruit liquor, which comprises a filtration step using a porous membrane for removing the aggregates from the fruit liquor containing aggregates of starch components by using a membrane having good communication properties, before and after filtration. The change in the color component of fruit liquor is low, the removal rate of the starch component is high, and the cleaning solution (chemical solution) used in the cleaning process is hot water at 50 ° C to 90 ° C and / or 0.05% by weight or more 0. Even when an aqueous solution containing 5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide is used, deterioration of the membrane can be minimized. Unexpectedly, the present invention was completed.

すなわち、本発明は以下のとおりのものである。
[1]以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
[2]以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
[3]以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
[4]前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、前記[1]〜[3]のいずれかに記載の方法。
[5]前記ろ過・清澄化工程において、発酵工程で得られた果実酒とベントナイトを混合したものを、3次元網目構造の樹脂から構成される多孔質膜に通過させる、前記[1]〜[4]のいずれかに記載の方法。
[6]前記多孔質膜の表面開口率は25〜60%である、前記[1]〜[5]のいずれかに記載の方法。
[7]前記多孔質膜は中空糸膜である、前記[1]〜[6]のいずれかに記載の方法。
[8]前記多孔質膜を構成する樹脂は熱可塑性樹脂である、前記[1]〜[7]のいずれかに記載の方法。
[9]前記熱可塑性樹脂はフッ素樹脂である、前記[8]に記載の方法。
[10]前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれらの樹脂の混合物からなる群から選ばれるいずれか1種である、前記[9]に記載の方法。
[11]前記熱可塑性樹脂はポリエチレン(PE)である、前記[8]に記載の方法。
[12]前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃〜90℃の湯である、前記[1]〜[11]のいずれかに記載の方法。
[13]前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、前記[1]〜[11]のいずれかに記載の方法。
[14]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、前記[12]又は[13]に記載の方法。
[15]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、前記[12]又は[13]に記載の方法。
[16]前記ろ過・清澄化工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、前記[12]又は[13]に記載の方法。
[17]前記ろ過・清澄化工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、X/L0×100≧90%である、前記[12]又は[13]に記載の方法。
[18]前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、前記[12]〜[17]のいずれかに記載の方法。
[19]前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、前記[18]に記載の方法。
[20]前記リンス工程後に前記ろ過・清澄化工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、前記[18]又は[19]に記載の方法。
That is, the present invention is as follows.
[1] The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the visual fields between these visual fields were photographed at equal intervals. Total of visual fields In each region of the four visual fields, the total area of the resin portion having an area of 1 μm 2 or less is 70% or more of the total area of the resin portion, and
When the absorbance of fruit wine before the filtration / clarification step is X1 and the absorbance of fruit wine after the filtration / clarification step is X2 at an arbitrary wavelength of 250 nm to 650 nm, X2 / X1 ≧ 0.75. Satisfy the relationship,
A method for producing fruit wine, which is characterized by the fact that.
[2] The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the intervals between these visual fields were photographed at equal intervals. Total of the visual fields In each region of the four visual fields, the total area of the resin portion having an area of 10 μm 2 or more is 15% or less of the total area of the resin portion, and at an arbitrary wavelength of 250 nm to 650 nm. When the absorbance of the fruit liquor before the filtration / clarification step is X1 and the absorbance of the fruit liquor after the filtration / clarification step is X2, the relationship of X2 / X1 ≧ 0.75 is satisfied.
A method for producing fruit wine, which is characterized by the fact that.
[3] The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the intervals between these visual fields were photographed at equal intervals. A resin having an area of 10 μm 2 or more and 70% or more of the total area of the resin portion having an area of 1 μm 2 or less in each region of the total four visual fields. The total area of the part is 15% or less of the total area of the resin part, and the absorbance of the fruit liquor before the filtration / clarification step at an arbitrary wavelength of 250 nm to 650 nm is X1, the filtration / When the absorbance of the fruit liquor after the clarification step is X2, the relationship of X2 / X1 ≧ 0.75 is satisfied.
A method for producing fruit wine, which is characterized by the fact that.
[4] The porous film is a visual field including the inner surface, a visual field including the outer surface of the film, and a visual field thereof in an SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film. in 2 field each region a total of four field of between was taken at regular intervals of, 1 [mu] m 2 total area of the resin portion having an area of less than super 10 [mu] m 2 is at most 15% of the total area of the resin portion The method according to any one of the above [1] to [3].
[5] In the filtration / clarification step, a mixture of fruit wine and bentonite obtained in the fermentation step is passed through a porous membrane made of a resin having a three-dimensional network structure. 4] The method according to any one of.
[6] The method according to any one of [1] to [5] above, wherein the surface aperture ratio of the porous membrane is 25 to 60%.
[7] The method according to any one of [1] to [6] above, wherein the porous membrane is a hollow fiber membrane.
[8] The method according to any one of [1] to [7] above, wherein the resin constituting the porous film is a thermoplastic resin.
[9] The method according to [8] above, wherein the thermoplastic resin is a fluororesin.
[10] The fluororesin includes vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), and ethylene-monochromelotrifluoroethylene copolymer (ECTFE). ), Hexafluoropropylene resin, and any one selected from the group consisting of a mixture of these resins, according to the method according to [9] above.
[11] The method according to [8] above, wherein the thermoplastic resin is polyethylene (PE).
[12] After the filtration / clarification step, a cleaning step of passing or immersing the cleaning liquid in the porous membrane to clean the inside of the porous membrane is further included, and the cleaning liquid is hot water at 50 ° C. to 90 ° C. The method according to any one of the above [1] to [11].
[13] After the filtration / clarification step, a cleaning step of passing or immersing the cleaning liquid in the porous membrane to clean the inside of the porous membrane is further included, and the cleaning liquid is 0.05% by weight or more 0. The method according to any one of the above [1] to [11], which is an aqueous solution containing 5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide.
[14] The relationship between the tensile elongation at break E0 of the porous membrane before the cleaning step and the tensile elongation at break E1 of the porous membrane after the cleaning step is E1 / E0 × 100 ≧ 80%. , The method according to the above [12] or [13].
[15] The tensile elongation at break E0 of the porous membrane before the cleaning step, and the porous membrane after repeating the cleaning step X times (where X is an integer of 2 to 100). The method according to the above [12] or [13], wherein the relationship with the tensile elongation at break EX is EX / E0 × 100 ≧ 70%.
[16] The relationship between the flux L0 of the porous membrane before the filtration / clarification step and the flux L1 of the porous membrane after the cleaning step is L1 / L0 × 100 ≧ 95%. 12] or the method according to [13].
[17] The flux L0 of the porous membrane before the filtration / clarification step and the cleaning step of the porous membrane after being repeated X times (where X is an integer of 2 to 100). The method according to the above [12] or [13], wherein the relationship with the flux LX is X / L0 × 100 ≧ 90%.
[18] The cleaning step of the above [12] to [17] includes a cleaning liquid step of cleaning with the cleaning liquid and a rinsing step of rinsing with rinsing water for removing the remaining cleaning liquid component. The method described in either.
[19] The method according to [18], wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane.
[20] The chlorine concentration in the filtrate after restarting the filtration / clarification step after the rinsing step is 0.1 ppm or less, and the pH of the filtrate is 8.6 or less. ] Or the method according to [19].

本発明に係る果実酒の製造方法におけるろ過・清澄化工程は、多孔質ろ過膜の被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、ろ過前後の果実酒の色度の変化が低く、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができる。それゆえ、本発明に係る果実酒の製造方法は、ろ過性能、及びその回復性、薬液耐性に優れ、かつ、高寿命の方法である。具合的には、本発明に係る果実酒の製造方法におけるろ過・清澄化工程に用いる多孔質膜は多孔の連通性が高いため、果実酒の色度成分の膜への吸着が少なく、ろ過前後での色度の変化が25%以下であり、かつ、澱成分の除去率は95%超である。さらに、洗浄工程において、4重量%と比較的低い濃度の水酸化ナトリウム水溶液を洗浄液として使用した場合であっても、多孔質膜の透水量を十分に回復させることができる。 In the filtration / clarification step in the method for producing fruit liquor according to the present invention, the pores from the inside of the membrane on the liquid side to be treated to the outside of the membrane on the filtrate side of the porous filtration membrane have good communication. Since a membrane is used, the change in color of fruit liquor before and after filtration is low, the removal rate of starch components is high, and as a cleaning solution (chemical solution) used in the cleaning process, hot water at 50 ° C to 90 ° C and / Alternatively, even when an aqueous solution containing 0.05% by weight or more and 0.5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide is used, the film is deteriorated. Can be minimized. Therefore, the method for producing fruit liquor according to the present invention is a method having excellent filtration performance, its resilience, chemical resistance, and a long life. Specifically, since the porous film used in the filtration / clarification step in the method for producing fruit wine according to the present invention has high porous communication, the chromaticity component of fruit wine is less adsorbed on the film, and before and after filtration. The change in chromaticity is 25% or less, and the removal rate of the starch component is more than 95%. Further, even when an aqueous sodium hydroxide solution having a relatively low concentration of 4% by weight is used as the cleaning liquid in the cleaning step, the water permeability of the porous membrane can be sufficiently restored.

本実施形態の果実酒の製造方法におけるろ過・清澄化工程に用いる多孔質膜の断面のSEM画像の一例である(黒部分は樹脂、白部分は細孔(開孔)を示す)。This is an example of an SEM image of a cross section of a porous membrane used in the filtration / clarification step in the method for producing fruit wine of the present embodiment (black portion indicates resin, white portion indicates pores (opening)). 実施例1で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。In the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane used in Example 1, the visual field including the inner surface, the visual field including the outer surface of the membrane, and the space between these visual fields, etc. 6 is a histogram showing the ratio (%) of the total area of the resin portion having a predetermined area to the total area of the resin portion in each region (circles 1 to 4) of a total of 4 visual fields of 2 visual fields photographed at intervals. 実施例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。In the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane used in Example 2, the visual field including the inner surface, the visual field including the outer surface of the membrane, and the space between these visual fields, etc. 6 is a histogram showing the ratio (%) of the total area of the resin portion having a predetermined area to the total area of the resin portion in each region (circles 1 to 4) of a total of 4 visual fields of 2 visual fields photographed at intervals. 実施例3で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。In the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane used in Example 3, the visual field including the inner surface, the visual field including the outer surface of the membrane, and the space between these visual fields, etc. 6 is a histogram showing the ratio (%) of the total area of the resin portion having a predetermined area to the total area of the resin portion in each region (circles 1 to 4) of a total of 4 visual fields of 2 visual fields photographed at intervals. 比較例3で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film used in Comparative Example 3, the field of view including the inner surface, the field of view including the outer surface of the film, and the space between these fields of view, etc. 6 is a histogram showing the ratio (%) of the total area of the resin portion having a predetermined area to the total area of the resin portion in each region (circles 1 to 4) of a total of 4 visual fields of 2 visual fields photographed at intervals.

以下、本発明の実施形態(以下、本実施形態ともいう。)について詳細に説明する。尚、本発明は本実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention (hereinafter, also referred to as the present embodiment) will be described in detail. The present invention is not limited to the present embodiment.

<果実酒の製造方法>
本実施形態の果実酒の製造方法は、以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする。
X2/X1≧0.85であることが好ましく、より好ましくはX2/X1≧0.9である。
多孔質膜の形状としては特に制限はなく、平膜、管状膜、中空糸膜であることができるが、ろ過装置の省スペース性の観点から、すなわち、膜モジュール単位体積当たりの膜面積を大きくすることができるため、中空糸膜が好ましい。
<Manufacturing method of fruit wine>
The method for producing fruit wine of the present embodiment is as follows:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the visual fields between these visual fields were photographed at equal intervals. Total of visual fields In each region of the four visual fields, the total area of the resin portion having an area of 1 μm 2 or less is 70% or more of the total area of the resin portion, and
When the absorbance of fruit wine before the filtration / clarification step is X1 and the absorbance of fruit wine after the filtration / clarification step is X2 at an arbitrary wavelength of 250 nm to 650 nm, X2 / X1 ≧ 0.75. Satisfy the relationship,
It is characterized by that.
It is preferable that X2 / X1 ≧ 0.85, and more preferably X2 / X1 ≧ 0.9.
The shape of the porous membrane is not particularly limited and may be a flat membrane, a tubular membrane, or a hollow fiber membrane, but from the viewpoint of space saving of the filtration device, that is, the membrane area per unit volume of the membrane module is increased. Hollow fiber membranes are preferred because they can be used.

本実施形態の果実酒の製造方法におけるろ過工程としては、例えば、多孔質中空糸膜の中空部(内側表面)に発酵により凝集した澱成分の凝集物を含有する果実酒(被処理液)を供給し、多孔質中空糸膜の膜厚(肉厚)部を通過させ、多孔質中空糸膜の外側表面から滲み出した液体をろ液として取り出す、いわゆる内圧式のろ過工程であってもよいし、多孔質中空糸膜の外側表面から被処理液を供給し、多孔質中空糸膜の内側表面から滲み出したろ液を、中空部を介して取り出す、いわゆる外圧式のろ過工程であってもよい。また、果実酒の種類としては、例えば、赤ワイン、白ワイン、シードル(りんご酒)、あんず酒、ゆず酒、梅酒などが挙げられるが、これらに限定されるものではない。また醸造工程を含まないソフトドリンクの清澄化に関しても限定されるものではない。
本明細書中、用語「多孔質膜の内部」とは、多数の細孔が形成されている膜厚(肉厚)部を指す。
As a filtration step in the method for producing fruit liquor of the present embodiment, for example, fruit liquor (processed liquid) containing agglomerates of starch components aggregated by fermentation in the hollow portion (inner surface) of the porous hollow fiber membrane is used. It may be a so-called internal pressure type filtration step in which the liquid is supplied, passed through the film thickness (thickness) portion of the porous hollow fiber membrane, and the liquid exuded from the outer surface of the porous hollow fiber membrane is taken out as a filtrate. Even in the so-called external pressure type filtration step, in which the liquid to be treated is supplied from the outer surface of the porous hollow fiber membrane and the filtrate exuded from the inner surface of the porous hollow fiber membrane is taken out through the hollow portion. Good. In addition, examples of the types of fruit liquor include, but are not limited to, red wine, white wine, cider (apple liquor), anzu liquor, yuzu liquor, and plum wine. Further, the clarification of soft drinks that do not include the brewing process is not limited.
In the present specification, the term "inside of a porous membrane" refers to a film thickness (thickness) portion in which a large number of pores are formed.

好ましくは、本実施形態の果実酒の製造方法は、前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液は50℃〜90℃の湯(以下、熱水ともいう。)であることができる。
より好ましくは、本実施形態の果実酒の製造方法は、前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液(以下、薬液ともいう。)であることができる。上記洗浄工程においては、熱水洗浄の後に、薬液洗浄をすることが好ましい。
洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含むことができる。洗浄液が熱水の場合、熱水の温度は、好ましくは55℃以上85℃以下、より好ましくは60℃以上80℃以下であることができる。洗浄液が前記薬液の場合、薬液の温度は、好ましくは15℃以上35℃以下、より好ましくは20℃以上35℃以下であることができる。また、前記薬液中の水酸化ナトリウムの濃度は、0.7重量%以上4重量%以下がより好ましく、1重量%以上4重量%以下がさらに好ましい。前記薬液中の次亜塩素酸ナトリウムの濃度は、0.1重量%以上0.5重量%以下がより好ましく、0.2重量%以上0.5重量%以下がさらに好ましい。洗浄工程としては、例えば、ろ過工程における果実酒の流れ方向とは逆方向に、すなわち、ろ液側から原液側に洗浄液を通過させることによって多孔質膜のろ過面(原液側表面)から付着物(不溶解成分)を引き離して、除去する逆圧水洗浄、エアによって多孔質膜を揺らして多孔質膜に付着した不溶解成分を振るい落とすエアスクラビングなどが挙げられる。前記リンス工程で使用するリンス水の量は、好ましくは、前記多孔質膜の単位面積当たり100L/m以下、より好ましくは50L/m以下であることができる。また、前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下であることが好ましい。
ろ過・清澄化工程前の原液には、ろ過助剤を予め添加してもよい。ろ過助剤としては、活性炭、ポリビニルポリピロリドン(PVPP)、コロイダルシリカ、ベントナイト等が挙げられる。添加時の濃度は原液の種類にもよるが、50ppm〜5000ppm程度の間で適宜調整できる。添加時の濃度が低すぎる場合、凝集効果が十分ではない場合がある。また、添加時の濃度が高すぎる場合、ろ過時に悪影響を与える可能性がある。ろ過助剤のサイズは吸着させたい物質にもよるが、中空糸膜の細孔に十分に大きく、詰まりづらく、中空糸膜表面を擦過しづらいものが好適に用いられる。
本実施形態の果実酒の製造方法におけるろ過工程に用いる多孔質膜の構造、素材(材料)、及び製造方法を、以下、詳述する。
Preferably, the method for producing fruit wine of the present embodiment further includes a cleaning step of passing or immersing a cleaning liquid in the porous membrane to clean the inside of the porous membrane after the filtration / clarification step. The cleaning liquid can be hot water at 50 ° C. to 90 ° C. (hereinafter, also referred to as hot water).
More preferably, in the method for producing fruit liquor of the present embodiment, after the filtration / clarification step, a cleaning step of passing or immersing the cleaning solution in the porous membrane to clean the inside of the porous membrane is further performed. An aqueous solution (hereinafter, also referred to as a chemical solution) containing 0.05% by weight or more and 0.5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide. Can be. In the above cleaning step, it is preferable to perform chemical solution cleaning after hot water cleaning.
The cleaning step can include a cleaning liquid step of cleaning with the cleaning liquid and a rinsing step of rinsing with rinsing water for removing the remaining cleaning liquid component. When the cleaning liquid is hot water, the temperature of the hot water can be preferably 55 ° C. or higher and 85 ° C. or lower, more preferably 60 ° C. or higher and 80 ° C. or lower. When the cleaning liquid is the chemical solution, the temperature of the chemical solution can be preferably 15 ° C. or higher and 35 ° C. or lower, and more preferably 20 ° C. or higher and 35 ° C. or lower. The concentration of sodium hydroxide in the chemical solution is more preferably 0.7% by weight or more and 4% by weight or less, and further preferably 1% by weight or more and 4% by weight or less. The concentration of sodium hypochlorite in the chemical solution is more preferably 0.1% by weight or more and 0.5% by weight or less, and further preferably 0.2% by weight or more and 0.5% by weight or less. In the cleaning step, for example, deposits are deposited from the filtration surface (stock solution side surface) of the porous membrane by passing the cleaning solution in the direction opposite to the flow direction of the fruit liquor in the filtration step, that is, from the filtrate side to the stock solution side. Examples thereof include reverse pressure water washing that separates and removes (insoluble components), and air scrubbing that shakes the porous membrane with air to shake off the insoluble components adhering to the porous membrane. The amount of rinsing water used in the rinsing step, it is preferable that the porous film per unit area 100L / m 2 or less of, and more preferably at 50L / m 2 or less. Further, it is preferable that the chlorine concentration in the filtrate after restarting the filtration step after the rinsing step is 0.1 ppm or less and the pH of the filtrate is 8.6 or less.
A filtration aid may be added in advance to the undiluted solution before the filtration / clarification step. Examples of the filtration aid include activated carbon, polyvinylpolypyrrolidone (PVPP), colloidal silica, bentonite and the like. The concentration at the time of addition depends on the type of the stock solution, but can be appropriately adjusted between about 50 ppm and 5000 ppm. If the concentration at the time of addition is too low, the aggregation effect may not be sufficient. In addition, if the concentration at the time of addition is too high, it may adversely affect the filtration. The size of the filtration aid depends on the substance to be adsorbed, but one that is sufficiently large in the pores of the hollow fiber membrane, is hard to be clogged, and is hard to scratch the surface of the hollow fiber membrane is preferably used.
The structure, material (material), and production method of the porous membrane used in the filtration step in the method for producing fruit wine of the present embodiment will be described in detail below.

<多孔質膜>
多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であるもの;同各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;のいずれかである。好ましい多孔質膜は、同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるものである。
<Porous membrane>
The porous film is defined as a field of view including the inner surface, a field of view including the outer surface of the film, and between these fields in an SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film. The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each region of a total of 4 visual fields of 2 visual fields photographed at intervals; in each region. The total area of the resin part having an area of 10 μm 2 or more is 15% or less of the total area of the resin part; in each region, the total area of the resin part having an area of 1 μm 2 or less. However, the total area of the resin part having an area of 10 μm 2 or more is 15% or less with respect to the total area of the resin part, which is 70% or more with respect to the total area of the resin part; Is one of. Preferred porous membranes in the respective regions, the total area of the resin portion having an area of 1 [mu] m 2 or less, is 70% or more of the total area of the resin portion, an area of less than 1 [mu] m 2 Ultra 10 [mu] m 2 The total area of the resin part is 15% or less of the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the total area of the resin part. It is less than 15%.

図1は、本実施形態の果実酒の製造方法におけるろ過・清澄化工程に用いる多孔質膜の断面のSEM画像の一例である。かかるSEM画像は、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、内側に最も近い領域の内、内側に最も近い領域内の所定視野を撮影して得たSEM画像写真を二値化処理した画像である。
尚、前記各領域内では、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面と、該内側表面に平行する断面との間では、樹脂部の存在分布の差異、すなわち、孔の連通性の異方性は事実上無視することができる。
本明細書中、用語「樹脂部」とは、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分である。図1に黒色で示す部分が樹脂部であり、白色の部分が孔である。
多孔質膜内部には、膜の内側から外側まで屈曲しながら連通している連通孔が形成されており、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であれば、孔の連通性が高い(すなわち、膜内部の連通孔の存在割合が高い)ものとなり、被処理液のフラックス(透水量、透水性)、洗浄後の透水量保持率が高く、引張破断伸度で指標される薬液洗浄後の膜へのダメージも軽減される。しかしながら、樹脂部の総面積に対する1μm以下の面積を有する樹脂部の面積の合計の割合が高すぎると、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎるものとなるため、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であることを維持しつつ、1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在するものが好ましく、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下で存在するものがより好ましく、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上15%以下で存在するものがさらに好ましい。1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在すれば、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎないため、多孔質膜の強度、引張破断伸度を適切に維持することができる。
FIG. 1 is an example of an SEM image of a cross section of a porous membrane used in the filtration / clarification step in the method for producing fruit wine of the present embodiment. Such an SEM image is a field of view including the inner surface, a field of view including the outer surface of the film, and between these fields of view in the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the hollow yarn porous film. An image obtained by binarizing an SEM image photograph obtained by photographing a predetermined field of view in the area closest to the inside and the area closest to the inside among the areas of a total of 4 fields of view of 2 fields taken at equal intervals. is there.
In each of the regions, the difference in the presence distribution of the resin portion between the cross section in the film thickness direction orthogonal to the inner surface of the hollow fiber porous membrane and the cross section parallel to the inner surface, that is, the pores. The anisotropy of communication is virtually negligible.
In the present specification, the term "resin portion" is a dendritic skeleton portion having a three-dimensional network structure composed of resin, which forms a large number of pores in a porous membrane. The black portion in FIG. 1 is the resin portion, and the white portion is the hole.
Inside the porous membrane, communication holes that communicate while bending from the inside to the outside of the membrane are formed, and the inside of the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane. The total area of the resin portion having an area of 1 μm 2 or less in each region of the visual field including the surface, the visual field including the outer surface of the film, and the two visual fields photographed at equal intervals between the two visual fields. However, if it is 70% or more of the total area of the resin portion, the pores have high communication properties (that is, the presence ratio of the communication holes inside the membrane is high), and the flux of the liquid to be treated (water permeability, (Water permeability), the water permeability retention rate after washing is high, and damage to the membrane after washing with a chemical solution, which is an index of tensile elongation at break, is also reduced. However, if the total ratio of the total area of the resin portion having an area of 1 μm 2 or less to the total area of the resin portion is too high, a tree having a three-dimensional network structure composed of resin that forms a large number of pores in the porous film. Since the skeleton portion is too thin, the total area of the resin portion having an area of 1 μm 2 or less is 70% or more of the total area of the resin portion, and the total area is more than 1 μm 2 . It is preferable that the total area of the resin part having an area is 2% or more and 30% or less with respect to the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the resin. more preferably those present in more than 15% of the total area of the parts, 1 [mu] m 2 total area of the resin portion having an area of less than super 10 [mu] m 2 is located at less than 15% relative to the total area of the resin portion Moreover, it is more preferable that the total area of the resin portion having an area of 10 μm 2 or more is 2% or more and 15% or less with respect to the total area of the resin portion. If the total area of the resin portion having an area of more than 1 μm 2 is 2% or more and 30% or less with respect to the total area of the resin portion, the dendritic skeleton portion of the three-dimensional network structure composed of the resin is formed. Since it is not too thin, the strength of the porous film and the tensile elongation at break can be appropriately maintained.

図2〜5は、それぞれ、実施例1、実施例2、実施例3、比較例3で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。図1には、樹脂部が粒状に表れている。図2〜5は、この粒状の樹脂部のそれぞれの面積を計測し、その粒状の樹脂部の面積毎について、各領域内の所定サイズの視野における全樹脂部の総面積に対する面積割合をヒストグラムとして示している。図2〜5における丸1は、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、最も内側に近い領域の番号であり、丸4は、最も内側に近い領域の番号である。例えば、実施例1丸1は、実施例1の多孔質中空糸膜の最も内側の領域内の所定サイズの視野を撮影したときのヒストグラムである。多孔質中空糸膜の各領域内の樹脂部の面積分布の測定方法については、後述する。 2 to 5 show the inner surface in the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane used in Example 1, Example 2, Example 3, and Comparative Example 3, respectively. Predetermined with respect to the total area of the resin portion in each region (circles 1 to 4) of a total of 4 visual fields (rounds 1 to 4) of the visual field including, the visual field including the outer surface of the film, and 2 visual fields photographed at equal intervals between these visual fields. It is a histogram which shows the ratio (%) of the total area of the resin part which has an area. In FIG. 1, the resin portion appears in granular form. In FIGS. 2 to 5, the area of each of the granular resin portions is measured, and the area ratio of the area ratio of the granular resin portion to the total area of the total resin portion in the visual field of a predetermined size in each region is used as a histogram. Shown. Circles 1 in FIGS. 2 to 5 indicate a field of view including the inner surface, a field of view including the outer surface of the film, and these fields of view in the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film. The number of the region closest to the innermost side is the number of the region closest to the innermost side, and the circle 4 is the number of the region closest to the innermost side, out of the total four fields of view of the two fields of view taken at equal intervals. For example, Example 1 circle 1 is a histogram when a visual field of a predetermined size in the innermost region of the porous hollow fiber membrane of Example 1 is photographed. The method for measuring the area distribution of the resin portion in each region of the porous hollow fiber membrane will be described later.

多孔質膜の表面開口率は25〜60%であることが好ましく、より好ましくは25〜50%であり、更に好ましくは25〜45%である。処理対象液と接触する側の表面開口率が25%以上であれば、目詰まり、膜表面擦過による透水性能の劣化が小さくなるため、ろ過安定性を高めることができる。他方、表面開口率が高く、孔径が大きすぎると、要求される分離性能を発揮できないおそれがある。そのため、多孔質膜の平均細孔径は100〜700nmであることが好ましく、100〜600nmがより好ましい。平均細孔径が100〜700nmであれば、分離性能は十分であり、孔の連通性も確保できる。表面開口率、平均細孔径の測定方法については、それぞれ後述する。 The surface aperture ratio of the porous membrane is preferably 25 to 60%, more preferably 25 to 50%, and even more preferably 25 to 45%. When the surface aperture ratio on the side in contact with the liquid to be treated is 25% or more, the deterioration of the water permeability due to clogging and scratching of the film surface is reduced, so that the filtration stability can be improved. On the other hand, if the surface aperture ratio is high and the pore diameter is too large, the required separation performance may not be exhibited. Therefore, the average pore diameter of the porous membrane is preferably 100 to 700 nm, more preferably 100 to 600 nm. When the average pore diameter is 100 to 700 nm, the separation performance is sufficient and the pore communication can be ensured. The methods for measuring the surface aperture ratio and the average pore diameter will be described later.

多孔質膜の膜厚は、好ましくは80〜1,000μmであり、より好ましくは100〜300μmである。膜厚が80μm以上であれば、膜の強度が確保でき、他方、1000μm以下であれば、膜抵抗による圧損が小さくなる。 The film thickness of the porous film is preferably 80 to 1,000 μm, more preferably 100 to 300 μm. When the film thickness is 80 μm or more, the strength of the film can be ensured, while when the film thickness is 1000 μm or less, the pressure loss due to the film resistance becomes small.

多孔質中空糸膜の形状としては、円環状の単層膜を挙げることができるが、分離層と分離層を支持する支持層とで違う孔径を持つ多層膜であってもよい。また、膜の内側表面と外側表面で、突起を持つなど異形断面構造であてもよい。 Examples of the shape of the porous hollow fiber membrane include an annular single-layer membrane, but a multilayer film having different pore diameters between the separation layer and the support layer that supports the separation layer may be used. Further, the inner surface and the outer surface of the film may have irregular cross-sectional structures such as having protrusions.

(多孔質膜の素材(材質))
多孔質膜を構成する樹脂は、好ましくは熱可塑性樹脂であり、フッ素樹脂がより好ましい。フッ素樹脂としては、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる少なくとも1種が挙げられる。
熱可塑性樹脂として、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、それらの混合物が挙げられる。熱可塑性樹脂として、例えば、ポリエチレン(PE)、ポリプロピレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、これらの混合物が挙げられる。これらの樹脂は、は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン樹脂、テトラフルオロエチレン樹脂、ヘキサフルオロプロピレン樹脂又はそれらの混合物、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー又はコポリマー、あるいは、ホモポリマーとコポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合物、エチレン−テトラフルオロエチレン共重合物、エチレン−クロロトリフルオロエチレン共重合体等のフッ素樹脂が挙げられる。
(Material of porous membrane (material))
The resin constituting the porous film is preferably a thermoplastic resin, and a fluororesin is more preferable. Examples of the fluororesin include vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochromelotrifluoroethylene copolymer (ECTFE), and hexa. At least one selected from the group consisting of fluoropropylene resins and mixtures of these resins can be mentioned.
Examples of the thermoplastic resin include polyolefins, copolymers of olefins and halogenated olefins, halogenated polyolefins, and mixtures thereof. Examples of the thermoplastic resin include polyethylene (PE), polypropylene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride (which may contain a domain of hexafluoropropylene), and the like. Can be mentioned. These resins are excellent as a film material because they are thermoplastic and therefore easy to handle and tough. Among these, vinylidene fluoride resin, tetrafluoroethylene resin, hexafluoropropylene resin or a mixture thereof, homopolymers or copolymers of ethylene, tetrafluoroethylene and chlorotrifluoroethylene, or mixtures of homopolymers and copolymers are mechanical. It is preferable because it has excellent strength and chemical strength (chemical resistance) and good moldability. More specifically, fluororesins such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, and ethylene-chlorotrifluoroethylene copolymer can be mentioned.

多孔質膜は、熱可塑性樹脂以外の成分(不純物等)を5質量%程度まで含み得る。例えば、多孔質膜製造時に用いる溶剤が含まれる。後述するように、多孔質膜の製造時に溶剤として用いた第1の溶剤(以下、非溶剤ともいう)、第2の溶剤(以下、良溶剤若しくは貧溶剤ともいう)、又はその両方が含まれる。これらの溶剤は、熱分解GC−MS(ガスクロマトグラフィー質量分析法)により検出することができる。 The porous membrane may contain components (impurities, etc.) other than the thermoplastic resin up to about 5% by mass. For example, a solvent used in producing a porous membrane is included. As will be described later, the first solvent (hereinafter, also referred to as non-solvent) used as a solvent in the production of the porous membrane, the second solvent (hereinafter, also referred to as good solvent or poor solvent), or both are included. .. These solvents can be detected by thermal decomposition GC-MS (gas chromatography-mass spectrometry).

第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。
また、第2の溶剤は、第1の溶剤と異なり、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。炭素数6以上30以下の脂肪酸としては、カプリン酸、ラウリン酸、オレイン酸等が挙げられる。また、エポキシ化植物油としては、エポキシ大豆油、エポキシ化亜麻仁油等が挙げられる。
第1の溶剤は、熱可塑性樹脂と第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、熱可塑性樹脂が第1の溶剤に均一に溶解しない非溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度で熱可塑性樹脂が第2の溶剤に均一に溶解する良溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃では熱可塑性樹脂が第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度では熱可塑性樹脂が第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。
The first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 or more and 30 or less. It can be at least one selected from the group consisting of the ester of the ester and the epoxidized vegetable oil.
The second solvent is different from the first solvent in that it contains sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, and phosphorus. It can be at least one selected from the group consisting of acid esters, fatty acids having 6 to 30 carbon atoms, and epoxidized vegetable oils. Examples of fatty acids having 6 to 30 carbon atoms include capric acid, lauric acid, and oleic acid. Examples of the epoxidized vegetable oil include epoxy soybean oil and epoxidized linseed oil.
The first solvent is a first mixed solution in which the ratio of the thermoplastic resin to the first solvent is 20:80, and even if the temperature of the first mixed solution is raised to the boiling point of the first solvent, the first solvent is thermoplastic. It is preferable that the resin is a non-solvent that does not uniformly dissolve in the first solvent.
The second solvent is a second mixed solution in which the ratio of the thermoplastic resin to the second solvent is 20:80, and the temperature of the second mixed solution is higher than 25 ° C. and lower than the boiling point of the second solvent. It is preferable that the thermoplastic resin is a good solvent that is uniformly dissolved in the second solvent at such a temperature.
The second solvent is a second mixed solution in which the ratio of the thermoplastic resin to the second solvent is 20:80, and when the temperature of the second mixed solution is 25 ° C., the thermoplastic resin is uniform with the second solvent. It is more likely that the thermoplastic resin is a poor solvent that does not dissolve in the second solvent and the temperature of the second mixed solution is higher than 100 ° C. and lower than the boiling point of the second solvent. preferable.

また、本実施形態の果実酒の製造方法におけるろ過・清澄化工程においては、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用いた多孔質中空糸膜であって、第1の溶剤(非溶剤)を含むものを用いることができる。
この場合、第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、ポリフッ化ビニリデンが第1の溶剤に均一に溶解しない非溶剤であることができる。非溶媒としては、アジピン酸ビス2−エチルヘキシル(DOA)が好ましい。
また、上記多孔質中空糸膜は、第1の溶剤とは異なる第2の溶剤を含んでもよい。この場合、第2の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度でポリフッ化ビニリデンが第2の溶剤に均一に溶解する良い溶剤であることが好ましい。また、第2の溶剤は、第2の混合液の温度が25℃ではポリフッ化ビニリデンが第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度ではポリフッ化ビニリデンが第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。貧溶媒としては、アセチルクエン酸トリブチル(ATBC)が好ましい。
Further, in the filtration / clarification step in the method for producing fruit wine of the present embodiment, a porous hollow fiber membrane using polyvinylidene fluoride (PVDF) as a thermoplastic resin is used as a first solvent (non-solvent). Can be used.
In this case, the first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 The first mixture in the first mixture, which is at least one selected from the group consisting of 30 or less fatty acids and epoxidized vegetable oils and has a ratio of polyvinylidene fluoride to the first solvent of 20:80. Even if the temperature of the liquid is raised to the boiling point of the first solvent, the polyvinylidene fluoride can be a non-solvent that does not uniformly dissolve in the first solvent. As the non-solvent, bis2-ethylhexyl adipate (DOA) is preferable.
Further, the porous hollow fiber membrane may contain a second solvent different from the first solvent. In this case, the second solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 A second mixture in a second mixture having a ratio of polyvinylidene fluoride and a second solvent of 20:80, which is at least one selected from the group consisting of 30 or less fatty acids and epoxidized vegetable oils. It is preferable that the temperature of the liquid is higher than 25 ° C. and the polyvinylidene fluoride is uniformly dissolved in the second solvent at any temperature below the boiling point of the second solvent. Further, in the second solvent, when the temperature of the second mixed solution is 25 ° C., polyvinylidene fluoride does not dissolve uniformly in the second solvent, and the temperature of the second mixed solution is higher than 100 ° C. and the second solvent is used. It is more preferable that the polyvinylidene fluoride is a poor solvent that is uniformly dissolved in the second solvent at any temperature below the boiling point of. As the poor solvent, tributyl acetylcitrate (ATBC) is preferable.

(多孔質膜の物性)
多孔質膜は、引張破断伸度の初期値は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上、特に好ましくは120%以上である。引張破断伸度の測定方法については後述する。
(Physical properties of porous membrane)
The initial value of the tensile elongation at break of the porous membrane is preferably 60% or more, more preferably 80% or more, still more preferably 100% or more, and particularly preferably 120% or more. The method for measuring the tensile elongation at break will be described later.

また、実用上の観点から、多孔質膜の圧縮強度は0.2MPa以上が好ましく、より好ましくは0.3〜1.0MPa、更に好ましくは0.4〜1.0MPaである。 From a practical point of view, the compressive strength of the porous membrane is preferably 0.2 MPa or more, more preferably 0.3 to 1.0 MPa, and even more preferably 0.4 to 1.0 MPa.

<多孔質膜の製造方法>
以下、多孔質中空糸膜の製造方法について説明する。但し、本実施形態の果実酒の製造方法におけるろ過・清澄化工程に用いる多孔質中空糸膜の製造方法は、以下の製造方法に限定されるものではない。
本実施形態の果実酒の製造方法におけるろ過・清澄化工程に用い多孔質中空糸膜の製造方法は、(a)溶融混練物を準備する工程と、(b)溶融混練物を多重構造の紡糸ノズルに供給し、紡糸ノズルから溶融混練物を押し出すことによって中空糸膜を得る工程と、(c)可塑剤を中空糸膜から抽出する工程とを含むものであることができる。溶融混練物が添加剤を含む場合には、工程(c)の後に、(d)添加剤を中空糸膜から抽出する工程をさらに含んでもよい。
<Manufacturing method of porous membrane>
Hereinafter, a method for producing a porous hollow fiber membrane will be described. However, the method for producing the porous hollow fiber membrane used in the filtration / clarification step in the method for producing fruit wine of the present embodiment is not limited to the following production methods.
The method for producing a porous hollow fiber membrane used in the filtration / clarification step in the method for producing fruit liquor of the present embodiment includes (a) a step of preparing a melt-kneaded product and (b) spinning a melt-kneaded product having a multiple structure. It can include a step of obtaining a hollow fiber membrane by supplying it to a nozzle and extruding a melt-kneaded product from the spinning nozzle, and (c) a step of extracting a plasticizer from the hollow fiber membrane. If the melt-kneaded product contains an additive, the step (c) may be followed by the step (d) of extracting the additive from the hollow fiber membrane.

溶融混練物の熱可塑性樹脂の濃度は好ましくは20〜60質量%であり、より好ましくは25〜45質量%であり、更に好ましくは30〜45質量%である。この値が20質量%以上であれば、機械的強度を高くすることができ、他方、60質量%以下であれば、透水性能を高くすることができる。溶融混練物は添加剤を含んでもよい。
溶融混練物は、熱可塑性樹脂と溶剤の二成分からなるものであってもよく、熱可塑性樹脂、添加剤、及び溶剤の三成分からなるものであってもよい。溶剤は、後述するように、少なくとも非溶剤を含む。
工程(c)で使用する抽出剤としては、塩化メチレンや各種アルコールなど熱可塑性樹脂は溶けないが可塑剤と親和性が高い液体を使用することが好ましい。
添加剤を含まない溶融混練物を使用する場合には、工程(c)を経て得られる中空糸膜を多孔質中空糸膜として使用してもよい。添加剤を含む溶融混練物を使用して多孔質中空糸膜を製造する場合には、工程(c)後に、中空糸膜から(d)添加剤を抽出除去して多孔性中空糸膜を得る工程をさらに経ることが好ましい。工程(d)における抽出剤には、湯、又は酸、アルカリなど使用した添加剤を溶解できるが熱可塑性樹脂は溶解しない液体を使用することが好ましい。
The concentration of the thermoplastic resin in the melt-kneaded product is preferably 20 to 60% by mass, more preferably 25 to 45% by mass, and further preferably 30 to 45% by mass. If this value is 20% by mass or more, the mechanical strength can be increased, while if it is 60% by mass or less, the water permeability can be increased. The melt-kneaded product may contain additives.
The melt-kneaded product may be composed of two components of a thermoplastic resin and a solvent, or may be composed of three components of a thermoplastic resin, an additive, and a solvent. The solvent includes at least a non-solvent, as described below.
As the extractant used in the step (c), it is preferable to use a liquid such as methylene chloride or various alcohols, which is insoluble in thermoplastic resins but has a high affinity with the plasticizer.
When a melt-kneaded product containing no additive is used, the hollow fiber membrane obtained through the step (c) may be used as the porous hollow fiber membrane. When a porous hollow fiber membrane is produced using a melt-kneaded product containing an additive, (d) the additive is extracted and removed from the hollow fiber membrane after the step (c) to obtain a porous hollow fiber membrane. It is preferable to go through further steps. As the extractant in the step (d), it is preferable to use a liquid that can dissolve hot water or additives such as acid and alkali but does not dissolve the thermoplastic resin.

添加剤として無機物を使用してもよい。無機物は無機微粉が好ましい。溶融混練物に含まれる無機微粉の一次粒径は、好ましくは50nm以下であり、より好ましくは5nm以上30nm未満である。無機微粉の具体例としては、シリカ(微粉シリカを含む)、酸化チタン、塩化リチウム、塩化カルシウム、有機クレイ等が挙げられ、これらのうち、コストの観点から微粉シリカが好ましい。上述の「無機微粉の一次粒径」は電子顕微鏡写真の解析から求めた値を意味する。すなわち、まず無機微粉の一群をASTM D3849の方法によって前処理を行う。その後、透過型電子顕微鏡写真に写された3000〜5000個の粒子直径を測定し、これらの値を算術平均することで無機微粉の一次粒径を算出することができる。
多孔質中空糸膜内部の無機微粉について、蛍光X線等により存在する元素を同定することで、存在する無機微粉の素材(材料)を同定することができる。
添加剤として有機物を使用する場合、ポリビニルピロリドン、ポリエチレングリコールなどの親水性高分子を使用すると中空糸膜に親水性を付与することができる。また、グリセリン、エチレングリコールなど粘度の高い添加剤を使用すると溶融混練物の粘度をコントロールすることができる。
Inorganic substances may be used as additives. The inorganic substance is preferably an inorganic fine powder. The primary particle size of the inorganic fine powder contained in the melt-kneaded product is preferably 50 nm or less, more preferably 5 nm or more and less than 30 nm. Specific examples of the inorganic fine powder include silica (including fine powder silica), titanium oxide, lithium chloride, calcium chloride, organic clay and the like, and among these, fine powder silica is preferable from the viewpoint of cost. The above-mentioned "primary particle size of inorganic fine powder" means a value obtained from the analysis of electron micrographs. That is, first, a group of inorganic fine powders is pretreated by the method of ASTM D3849. Then, the diameters of 3000 to 5000 particles captured in the transmission electron micrograph are measured, and the primary particle size of the inorganic fine powder can be calculated by arithmetically averaging these values.
By identifying the element existing in the inorganic fine powder inside the porous hollow fiber membrane by fluorescent X-ray or the like, the material of the existing inorganic fine powder can be identified.
When an organic substance is used as an additive, hydrophilicity can be imparted to the hollow fiber membrane by using a hydrophilic polymer such as polyvinylpyrrolidone or polyethylene glycol. Further, the viscosity of the melt-kneaded product can be controlled by using a highly viscous additive such as glycerin or ethylene glycol.

次に、本実施形態の多孔質中空糸膜の製造方法における(a)溶融混練物を準備する工程について詳細に説明する。
本実施形態の多孔質中空糸膜の製造方法では、熱可塑性樹脂の非溶剤を、良溶剤又は貧溶剤に混合させる。混合後の混合溶媒は、使用する熱可塑性樹脂の非溶剤である。このように膜の原材料として非溶剤を用いると、3次元網目構造を持つ多孔質中空糸膜が得られる。その作用機序は必ずしも明らかではないが、非溶剤を混合させて、より溶解性を低くした溶剤を用いた方がポリマーの結晶化が適度に阻害され、3次元網目構造になりやすいと考えられる。例えば、非溶剤、及び貧溶剤又は良溶剤は、フタル酸エステル、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油等の各種エステル等からなる群から選ばれる。
熱可塑性樹脂を常温で溶解させることができる溶剤を良溶剤、常温では溶解できないが高温にして溶解させることができる溶剤をその熱可塑性樹脂の貧溶剤、高温にしても溶解させることができない溶剤を非溶剤と呼ぶが、良溶剤、貧溶剤、及び非溶剤は、以下のようにして判定することができる。
試験管に2g程度の熱可塑性樹脂と8g程度の溶剤を入れ、試験管用ブロックヒーターにて10℃刻み程度でその溶剤の沸点まで加温し、スパチュラなどで試験管内を混合し、熱可塑性樹脂が溶解するものが良溶剤又は貧溶剤、溶解しないものが非溶剤である。100℃以下の比較的低温で溶解するものが良溶剤、100℃以上沸点以下の高温にしないと溶解しないものを貧溶剤と判定する。
例えば、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用い、溶剤としてアセチルクエン酸トリブチル(ATBC)、セバシン酸ジブチル又はアジピン酸ジブチルを用いると、200℃程度でPVDFはこれらの溶剤に均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)、アジピン酸ジイソノニル、又はセバシン酸ビス2エチルヘキシルを用いると温度を250℃まで上げても、PVDFはこれらの溶剤には溶解しない。
また、熱可塑性樹脂としてエチレン−テトラフルオロエチレン共重合体(ETFE)を用い、溶剤としてアジピン酸ジエチルを用いると、200℃程度でETFEは均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DIBA)を用いると溶解しない。
また、熱可塑性樹脂としてエチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)を用い、溶剤としてクエン酸トリエチルを用いると200℃程度で均一に溶解し、トリフェニル亜リン酸(TPP)を用いると溶解しない。
Next, the step (a) of preparing the melt-kneaded product in the method for producing the porous hollow fiber membrane of the present embodiment will be described in detail.
In the method for producing a porous hollow fiber membrane of the present embodiment, a non-solvent of a thermoplastic resin is mixed with a good solvent or a poor solvent. The mixed solvent after mixing is a non-solvent of the thermoplastic resin used. When a non-solvent is used as the raw material of the membrane in this way, a porous hollow fiber membrane having a three-dimensional network structure can be obtained. Although the mechanism of action is not always clear, it is considered that polymer crystallization is moderately inhibited and a three-dimensional network structure is likely to be formed by using a solvent in which a non-solvent is mixed and the solubility is lowered. .. For example, non-solvents and poor or good solvents are phthalates, sebacic acids, citrates, acetylcitrates, adipates, trimellitic acids, oleic acids, palmitates, stearate. , Phosphoric acid esters, fatty acids with 6 to 30 carbon atoms, various esters such as epoxidized vegetable oils, and the like.
A good solvent is a solvent that can dissolve a thermoplastic resin at room temperature, a solvent that cannot be dissolved at room temperature but can be dissolved at a high temperature is a poor solvent for the thermoplastic resin, and a solvent that cannot be dissolved even at a high temperature. Although it is called a non-solvent, a good solvent, a poor solvent, and a non-solvent can be determined as follows.
Put about 2 g of thermoplastic resin and about 8 g of solvent in a test tube, heat it to the boiling point of the solvent in steps of about 10 ° C with a block heater for test tubes, and mix the inside of the test tube with a spatula or the like to release the thermoplastic resin. Those that dissolve are good or poor solvents, and those that do not dissolve are non-solvents. A solvent that dissolves at a relatively low temperature of 100 ° C. or lower is determined to be a good solvent, and a solvent that does not dissolve unless the temperature is 100 ° C. or higher and a boiling point or lower is determined to be a poor solvent.
For example, when polyvinylidene fluoride (PVDF) is used as the thermoplastic resin and tributyl acetylcitrate (ATBC), dibutyl sebacate or dibutyl adipate is used as the solvent, PVDF is uniformly mixed with these solvents at about 200 ° C. Dissolve. On the other hand, when bis2-ethylhexyl adipate (DOA), diisononyl adipate, or bis2-ethylhexyl sebacate is used as the solvent, PVDF does not dissolve in these solvents even when the temperature is raised to 250 ° C.
When ethylene-tetrafluoroethylene copolymer (ETFE) is used as the thermoplastic resin and diethyl adipate is used as the solvent, ETFE is uniformly mixed and dissolved at about 200 ° C. On the other hand, when bis2-ethylhexyl adipate (DIBA) is used as the solvent, it does not dissolve.
Further, when ethylene-monochromelotrifluoroethylene copolymer (ECTFE) is used as the thermoplastic resin and triethyl citrate is used as the solvent, it dissolves uniformly at about 200 ° C., and when triphenylphosphorous acid (TPP) is used, it dissolves. do not do.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。実施例、比較例における各物性値は以下の方法で各々求めた。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The physical property values in Examples and Comparative Examples were obtained by the following methods.

(1)多孔質中空糸膜の外径、内径
多孔質中空糸膜を、長さ方向に直交する断面でカミソリを使って薄くスライスし、100倍拡大鏡にて、外径と内径を測定した。一つのサンプルについて、長さ方法に30mm間隔で60箇所の切断面で測定を行い、平均値を中空糸膜の外径と内径とした。
(1) Outer diameter and inner diameter of the porous hollow fiber membrane The porous hollow fiber membrane was sliced thinly with a razor at a cross section orthogonal to the length direction, and the outer diameter and inner diameter were measured with a 100x magnifying glass. .. One sample was measured at 60 cut surfaces at intervals of 30 mm according to the length method, and the average values were taken as the outer diameter and inner diameter of the hollow fiber membrane.

(2)電子顕微鏡撮影
多孔質中空糸膜を、長さ方向に直交する断面で円環状に裁断し、10%リンタングステン酸+四酸化オスミウム染色を実施し、エポキシ樹脂に包埋した。次いで、トリミング後、試料断面にBIB加工を施して平滑断面を作製し、導電処理し、検鏡試料を作製した。作製した検鏡試料を、HITACHI製電子顕微鏡SU8000シリーズを使用し、加速電圧1kVで膜の断面の電子顕微鏡(SEM)画像を5,000〜30,000倍で、膜厚(肉厚部)断面の内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(図2〜5における丸1〜丸4)内で所定の視野で撮影した。平均孔径に応じて倍率を変えて測定することができ、具体的には、平均孔径が0.1μm以上の場合には、5000倍、平均孔径が0.05μm以上0.1μm未満の場合には、10,000倍、平均孔径が0.05μm未満の場合には、30,000倍とした。尚、視野のサイズは、2560×1920ピクセルとした。
画像処理には、ImageJを用い、撮影したSEM画像に対してThreshold処理(Image−Adjust−Treshold:大津法(Otsuを選択))を施すことより、孔の部分と樹脂部とで二値化した。
表面開口率:二値化画像の樹脂部と孔部との割合を算出することにより表面開口率を測定した。
樹脂部の面積分布:ImageJの「Analyze Particle」コマンド(Analyz Particle:Size0.10−Infinity)を使用し、撮影したSEM画像に含まれる二値化された粒状の樹脂部の大きさをそれぞれ計測した。SEM画像に含まれる全樹脂部の総面積をΣSとし、1μm以下の樹脂部の面積をΣS(<1μm)とした場合に、ΣS(<1μm)/ΣSを算出することによって、1μm以下の面積を有する樹脂部の面積割合を算出した。同様に、所定範囲の面積を有する樹脂部の面積割合を算出した。
尚、二値化処理を施す際のノイズ除去については、0.1μm未満の面積の樹脂部をノイズとして除去し、0.1μm以上の面積の樹脂部を分析対象とした。また、ノイズ除去は、メディアンフィルタ処理(Process−Filters−Median:Radius:3.0pixels)を施すことによって行った。
また、SEM画像の端で切れている粒状の樹脂部についても計測対象とした。また、「Incude Holes」(穴をうめる)の処理は行わなかった。また、「雪だるま」型を「扁平」型などに形状を補正する処理は行わなかった。
平均細孔孔径:ImageJの「Plugins−Bone J−Thickness」コマンドを使用して測定した。尚、空間サイズは空隙に入る最大の円サイズとして定義した。
(2) Electron Microscopy A porous hollow fiber membrane was cut into an annular shape with a cross section orthogonal to the length direction, stained with 10% phosphotungstate + osmium tetroxide, and embedded in an epoxy resin. Next, after trimming, the sample cross section was subjected to BIB processing to prepare a smooth cross section, which was subjected to conductive treatment to prepare a speculum sample. Using the electron microscope SU8000 series manufactured by HITACHI, the prepared microscope sample was used to obtain an electron microscope (SEM) image of the cross section of the film at an acceleration voltage of 1 kV at a magnification of 5,000 to 30,000 times, and a film thickness (thick part) cross section. Within each region (circles 1 to 4 in FIGS. 2 to 5) of the visual field including the inner surface of the film, the visual field including the outer surface of the film, and the two visual fields photographed at equal intervals between these visual fields. Was taken with a predetermined field of view. The magnification can be changed according to the average pore diameter, and specifically, when the average pore diameter is 0.1 μm or more, it is 5000 times, and when the average pore diameter is 0.05 μm or more and less than 0.1 μm, it is measured. When it was 10,000 times and the average pore size was less than 0.05 μm, it was set to 30,000 times. The size of the field of view was 2560 × 1920 pixels.
ImageJ was used for the image processing, and the SEM image taken was subjected to Thrashold processing (Image-Adjust-Treshold: Otsu method (selecting Otsu)) to binarize the hole portion and the resin portion. ..
Surface aperture ratio: The surface aperture ratio was measured by calculating the ratio of the resin portion and the hole portion of the binarized image.
Area distribution of resin part: Using ImageJ's "Analyze Particle" command (Analyz Partile: Size0.10-Infinity), the size of the binarized granular resin part contained in the captured SEM image was measured. .. When the total area of all resin parts included in the SEM image is ΣS and the area of the resin part of 1 μm 2 or less is ΣS (<1 μm 2 ), ΣS (<1 μm 2 ) / ΣS is calculated to be 1 μm. The area ratio of the resin portion having an area of 2 or less was calculated. Similarly, the area ratio of the resin portion having an area within a predetermined range was calculated.
Regarding noise removal during the binarization treatment, the resin portion having an area of less than 0.1 μm 2 was removed as noise, and the resin portion having an area of 0.1 μm 2 or more was analyzed. Further, the noise removal was performed by performing a median filter treatment (Process-Filters-Media: Radius: 3.0pixels).
In addition, the granular resin portion cut off at the edge of the SEM image was also measured. In addition, the treatment of "Incube Holes" (filling holes) was not performed. In addition, the process of correcting the shape of the "snowman" type to the "flat" type was not performed.
Average pore size: Measured using the ImageJ "Plugins-Bone J-Thickness" command. The space size was defined as the maximum circle size that fits in the void.

(3)フラックス(透水性、初期純水フラックス)
多孔質中空糸膜をエタノールに浸漬した後、純水浸漬を数回繰り返した後、約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内に注射針を挿入し、25℃の環境下にて注射針から0.1MPaの圧力で25℃の純水を注入し、膜の外側表面から透過してくる純水量を測定し、下記式:
初期純水フラックス[L/m/h]=60×(透過水量[L])/{π×(膜外径[m])×(膜有効長[m])×(測定時間[min])}
により純水フラックスを決定し、透水性を評価した。
尚、「膜有効長」は、注射針が挿入されている部分を除いた、正味の膜長を指す。
(3) Flux (water permeability, initial pure water flux)
After immersing the porous hollow fiber membrane in ethanol and repeating soaking in pure water several times, one end of the wet hollow fiber membrane having a length of about 10 cm is sealed, and an injection needle is inserted into the hollow portion of the other end. Inject pure water at 25 ° C from an injection needle in an environment of ° C at a pressure of 0.1 MPa, measure the amount of pure water permeating from the outer surface of the membrane, and use the following formula:
Initial pure water flux [L / m 2 / h] = 60 × (permeated water amount [L]) / {π × (membrane outer diameter [m]) × (membrane effective length [m]) × (measurement time [min] )}
The pure water flux was determined and the water permeability was evaluated.
The "effective membrane length" refers to the net membrane length excluding the portion where the injection needle is inserted.

(4)実液ろ過時の透水性能保持率
次に(i)循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取し、初期透水量とした。
次いで、(ii)配管内の水を抜いた後、循環タンクに果実酒原液を投入し、膜間差圧=0.15MPaになるように循環ろ過した。
次いで、(iii)配管の中の果実酒残液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過し、水洗を行った。
次いで、(iv)配管の中の水を抜いた後、循環容器に調合した薬液を投入し、膜循環ろ過を行って30分薬液洗浄を行った。薬液には0.2重量%の次亜塩素酸ナトリウムと1重量%の苛性ソーダを混合させた水溶液を用いた。
次いで、(v)薬液洗浄後、配管の中の薬液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行い、出てきた透過水を10L/mのタイミングで繰り返し採取、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了し、そのリンスの水量を記録した。また、引き続き同じ膜間差圧で循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較し、これを実液ろ過時の透水性能保持率とした。
各パラメーターは、下記式で算出した:
膜間差圧={(入圧)+(出圧)}/2
膜内表面積[m]=π×(中空糸膜内径[m])×(中空糸膜有効長[m])
膜面線速[m/s]=4×(循環水量[m/s])/{π×(膜内径[m])}。また、操作は全て25℃、膜面線速1.0m/秒で行った。
(4) Permeability retention rate during actual liquid filtration Next, (i) Pour pure water into the circulation tank, perform circulation filtration so that the differential pressure between membranes = 0.05 MPa, and collect permeated water for 1 minute. The initial water permeability was used.
Then, (ii) after draining the water in the pipe, the undiluted fruit liquor was put into the circulation tank and circulated and filtered so that the intermembrane differential pressure = 0.15 MPa.
Next, after draining the residual liquid of fruit wine in the (iii) pipe, pure water was put into the circulation tank, and the mixture was circulated and filtered so that the differential pressure between the membranes was 0.05 MPa, and washed with water.
Next, after draining the water in the (iv) pipe, the prepared chemical solution was put into the circulation container, membrane circulation filtration was performed, and the chemical solution was washed for 30 minutes. An aqueous solution prepared by mixing 0.2% by weight of sodium hypochlorite and 1% by weight of caustic soda was used as the chemical solution.
Next, (v) after cleaning the chemical solution, drain the chemical solution in the pipe, put pure water into the circulation tank, perform circulation filtration so that the differential pressure between the membranes = 0.05 MPa, and remove the permeated water that has come out. Repeated sampling at a timing of 10 L / m 2 , washing was completed when the chlorine concentration of the permeated water became 0.1 ppm or less and the pH became 8.6 or less, and the amount of rinse water was recorded. Further, continuous circulation filtration was performed with the same intermembrane differential pressure, and permeated water was collected for 1 minute to obtain the water permeation amount, which was compared with the initial water permeation amount and used as the water permeation performance retention rate during actual liquid filtration.
Each parameter was calculated by the following formula:
Intermembrane differential pressure = {(input pressure) + (extrusion pressure)} / 2
Surface area in the membrane [m 2 ] = π × (hollow fiber membrane inner diameter [m]) × (hollow fiber membrane effective length [m])
Membrane surface linear velocity [m / s] = 4 × (circulating water volume [m 3 / s]) / {π × (membrane inner diameter [m]) 2 }. All operations were performed at 25 ° C. and a film surface linear velocity of 1.0 m / sec.

(5)引張破断伸度(%)
サンプルとして多孔質中空糸膜をそのまま用い、張破断伸度をJIS K7161に従って算出した。引張破断時の荷重と変位を以下の条件で測定した。
測定機器:インストロン型引張試験機(島津製作所製AGS-5D)
チャック間距離:5cm
引張り速度:20cm/分
(5) Tensile breaking elongation (%)
Using the porous hollow fiber membrane as it is as a sample, the stretch elongation at break was calculated according to JIS K 7161. The load and displacement at the time of tensile break were measured under the following conditions.
Measuring equipment: Instron type tensile tester (AGS-5D manufactured by Shimadzu Corporation)
Distance between chucks: 5 cm
Tensile speed: 20 cm / min

(6)吸光度
吸光度の測定にはSHIMADZU製UVmini-1240を使用した。スキャン範囲を250nmから700nmとし、ろ過前後の果実酒を石英セルに入れ測定した。光路長は果実酒の種類、及び希釈倍率によって、1cm又は5cmの2種類を適宜選択した。液温は20℃にて測定を実施した。ろ過前後の果実酒の測定前に、予め純水にてバックグラウンド測定を行った後、試料液でセルを3回共洗いした後測定を実施した。測定後、420nm、520nm、620nmの吸光度から、各試料液の色調、及び色彩強度を算出した。ここでいう色調とは(420nmの吸光度)/(520nmの吸光度)の値であり、果実酒の鮮やかさの指標として用いられる。また、色彩強度とは(420nmの吸光度)+(520nmの吸光度)+(620nmの吸光度)の値であり、果実酒の持つ色の濃さを示す指標として用いた。
(6) Absorbance UVmini-1240 manufactured by SHIMADZU was used for the measurement of absorbance. The scan range was set to 250 nm to 700 nm, and fruit wine before and after filtration was placed in a quartz cell for measurement. Two types of optical path lengths, 1 cm or 5 cm, were appropriately selected depending on the type of fruit wine and the dilution ratio. The liquid temperature was measured at 20 ° C. Prior to the measurement of fruit liquor before and after filtration, background measurement was performed with pure water in advance, and then the cells were co-washed with the sample solution three times before measurement. After the measurement, the color tone and color intensity of each sample solution were calculated from the absorbances at 420 nm, 520 nm, and 620 nm. The color tone referred to here is a value of (absorbance at 420 nm) / (absorbance at 520 nm), and is used as an index of the vividness of fruit wine. The color intensity is a value of (absorbance at 420 nm) + (absorbance at 520 nm) + (absorbance at 620 nm), and was used as an index indicating the color intensity of fruit wine.

(7)pH
果実酒のpHの測定にはHORIBA製 pH METER F-22を使用した。測定前にpH = 4.01, 6.86, 9.18の標準液にて校正を行った後、液温20℃におけるろ過前後の果実液のpHを測定した。
(7) pH
HORIBA's pH METER F-22 was used to measure the pH of fruit wine. After calibration with a standard solution of pH = 4.01, 6.86, 9.18 before measurement, the pH of the fruit solution before and after filtration was measured at a solution temperature of 20 ° C.

(8)糖度
果実酒の糖度の測定にはATAGO製 ポケット糖度計 PAL-Sを使用した。試料液0.5 mLをステージに滴下し、液温20℃における試料液の糖度を測定した。
(8) Sugar content A ATAGO pocket sugar content meter PAL-S was used to measure the sugar content of fruit wine. 0.5 mL of the sample solution was added dropwise to the stage, and the sugar content of the sample solution was measured at a solution temperature of 20 ° C.

(9)濁度
果実酒の濁度の測定には、HACH製 2100P TURBIDIMETERを使用した。試料液15 mLをガラスセルに入れ、液温20℃における試料液の濁度を測定した。
(9) Turbidity A HACH 2100P TURBI DIMETER was used to measure the turbidity of fruit wine. 15 mL of the sample solution was placed in a glass cell, and the turbidity of the sample solution was measured at a solution temperature of 20 ° C.

(10)粘度
果実酒の粘度の測定には、山一電機株式会社製 VISCOMATE 粘度計 MODEL VM-1Gを使用した。試料液30 mLを50 mL容器ガラスビーカーに入れ、液温20℃における試料液の粘度を測定した。
(10) Viscosity A VISCOMATE viscometer MODEL VM-1G manufactured by Yamaichi Electric Co., Ltd. was used to measure the viscosity of fruit wine. 30 mL of the sample solution was placed in a 50 mL container glass beaker, and the viscosity of the sample solution was measured at a solution temperature of 20 ° C.

(11)ヘイズ(Haze)
果実酒のヘイズの測定には、は日本電色工業株式会社製 Haze Meter NDH4000を使用した。試料液20 mLをガラスセルに入れ、液温20℃における試料液の曇り度を測定した。
(11) Haze
The Haze Meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. was used to measure the haze of fruit wine. 20 mL of the sample solution was placed in a glass cell, and the cloudiness of the sample solution was measured at a solution temperature of 20 ° C.

(12)アルカリ耐性試験
前記(4)に記載した実液ろ過後、多孔性中空糸膜を10cmにカットし、20本を500mlの4%水酸化ナトリウム水溶液に浸漬させ、10日間40℃に保持した。水酸化ナトリウムに浸漬前後の膜の引張破断伸度をn20で測定し、その平均値を算出した。NaOH浸漬後伸度保持率を、以下の式:
NaOH浸漬後伸度保持率=(浸漬後の引張破断伸度)/(浸漬前の引張破断伸度)×100
で定義し、アルカリ耐性を評価した。尚、浸漬前の引張破断伸度は、洗浄工程前における引張破断伸度に相当し、浸漬後の引張破断伸度は、洗浄工程後の引張破断伸度に相当する。
また、上述した実液ろ過後、上述した4%水酸化ナトリウム水溶液への浸漬による洗浄工程を10回繰り返した。そして、引張破断伸度の初期値(浸漬前の引張破断伸度)をE0とし、洗浄工程を10回繰り返した後の多孔性中空糸膜の引張破断強度の値をEXとし、EX/E0×100を「10サイクル繰り返し洗浄後の伸度保持率」として算出してアルカリ耐性を評価した。
また、上述した実液ろ過後、中空糸膜を4%水酸化ナトリウム水溶液に浸漬させ、10日間40℃に保持した。水酸化ナトリウムに浸漬後、上述した初期純水透水量を測定したときと同じろ過圧力にて10分間ろ過を行い、ろ過8分目から10分目までの2分間透過水を採取し、洗浄工程後透水量とした。初期純粋透水量をLO(フラックスL0)とし、洗浄工程後透水量をL1(フラックスL1)とし、L1/L0×100をNaOH浸漬後透水量保持率として算出した。
また、上述した実液ろ過後、上述した4%水酸化ナトリウム水溶液への中空糸膜の浸漬による洗浄工程を10回繰り返した。そして、上述した初期純水透水量を測定したときと同じろ過圧力にて10分間ろ過を行い、ろ過8分目から10分目までの2分間透過水を採取し、繰り返し洗浄工程後透水量とした。初期純粋透水量をLO(フラックスL0)とし、繰り返し洗浄工程後透水量をLX(フラックスLX、X=10)とし、LX/L0×100を「10サイクル繰り返し洗浄後の透水量保持率」として算出した。
(12) Alkali resistance test After the actual solution filtration described in (4) above, the porous hollow fiber membrane is cut to 10 cm, 20 of them are immersed in 500 ml of a 4% sodium hydroxide aqueous solution, and kept at 40 ° C. for 10 days. did. The tensile elongation at break of the film before and after immersion in sodium hydroxide was measured at n20, and the average value was calculated. The elongation retention rate after immersion in NaOH is calculated by the following formula:
Elongation retention after NaOH immersion = (tensile breaking elongation after immersion) / (tensile breaking elongation before immersion) x 100
And the alkali resistance was evaluated. The tensile elongation at break before immersion corresponds to the elongation at break before the cleaning step, and the elongation at break after immersion corresponds to the elongation at break after the cleaning step.
Further, after the above-mentioned actual liquid filtration, the washing step by immersing in the above-mentioned 4% sodium hydroxide aqueous solution was repeated 10 times. Then, the initial value of the tensile elongation at break (tensile elongation at break before immersion) is set to E0, and the value of the tensile breaking strength of the porous hollow fiber membrane after repeating the cleaning step 10 times is set to EX, and EX / E0 × 100 was calculated as "elongation retention rate after repeated washing for 10 cycles" to evaluate alkali resistance.
Further, after the above-mentioned actual liquid filtration, the hollow fiber membrane was immersed in a 4% aqueous sodium hydroxide solution and kept at 40 ° C. for 10 days. After immersion in sodium hydroxide, filtration is performed for 10 minutes at the same filtration pressure as when the above-mentioned initial pure water permeability was measured, and permeated water is collected for 2 minutes from the 8th to 10th minutes of filtration, and a washing step is performed. The amount of water permeation was used. The initial pure water permeability was LO (flux L0), the water permeability after the cleaning step was L1 (flux L1), and L1 / L0 × 100 was calculated as the water permeability retention rate after immersion in NaOH.
Further, after the above-mentioned actual liquid filtration, the washing step of immersing the hollow fiber membrane in the above-mentioned 4% sodium hydroxide aqueous solution was repeated 10 times. Then, filtration is performed for 10 minutes at the same filtration pressure as when the above-mentioned initial amount of pure water permeation is measured, and permeated water is collected for 2 minutes from the 8th to 10th minutes of filtration. did. The initial pure water permeability is LO (flux L0), the water permeability after the repeated cleaning step is LX (flux LX, X = 10), and LX / L0 × 100 is calculated as the “water permeability retention rate after 10 cycles of repeated cleaning”. did.

[実施例1]
熱可塑性樹脂としてPVDF樹脂(クレハ社製、KF−W#1000)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)27.7質量%と、貧溶剤としてアセチルクエン酸トリブチル(ATBC, 沸点343℃)9.3質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとATBCを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
[Example 1]
40% by mass of PVDF resin (KF-W # 1000, manufactured by Kureha) as a thermoplastic resin, 23% by mass of fine powder silica (primary particle size: 16 nm), and bis2-ethylhexyl adipate (DOA) 27. A melt-kneaded product was prepared using 7% by mass and 9.3% by mass of tributyl acetylcitrate (ATBC, boiling point 343 ° C.) as a poor solvent. The temperature of the obtained molten mixture was 240 ° C. The obtained molten mixture was passed through a spinning nozzle having a double tube structure, a hollow filamentous extruded product was passed through an idle distance of 120 mm, and then solidified in water at 30 ° C., and a porous structure was obtained by a heat-induced phase separation method. Developed. The obtained hollow filamentous extruded product was taken up at a speed of 5 m / min and wound up in a skein. The wound hollow fiber extruded product was immersed in isopropyl alcohol to extract and remove DOA and ATBC, then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then 70 in a 20 mass% NaOH aqueous solution. The mixture was immersed at ° C. for 1 hour and then washed with water repeatedly to extract and remove fine silica powder to prepare a porous hollow fiber membrane.
Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the membrane had high flux (water permeability) and high communication.

得られた中空糸膜を用いてろ過・清澄化工程を実施した。処理液には鴇ヤマ・ソーヴィニヨンの赤ワイン(秋田ワイナリー)を使用した。下記の器具によりろ過実験系を構築した。送液ポンプには、コールパーマー社製のマスターフレックス(登録商標、型番7523-60)を使用した。ポンプヘッドには同じくコールパーマー社製のマスターフレックス(登録商標)イージーロード(型番7518-10)を使用した。送液チュープはファーメッド(登録商標)BPTポンプチューブ(型番06508-25)、及びマスターフレックス(登録商標)シリコンチューブ(型番96400-16)を使用した。有効膜面積 120cm2、全長130mmのモジュールを作製し、ろ過評価に供した。
中空糸膜内表面側に原液を導入できるよう、モジュール下部を供給側、上部を循環側、上部のサイドノズルをろ過側となるようポンプチューブを繋いだ後、100 mLの原液を氷冷浴にて20 ℃以下に冷却した状態とし、送液ポンプにより600 L/minの速度で循環送液することでモジュール内を共洗いした。10分間の共洗いの後、循環液をすべて排出した。その後2000 mLの原液を氷冷浴にて20 ℃以下に冷却した状態とし、送液ポンプにより600 L/minの速度で送液した。循環側の出圧が55 kPaとなるようろ過弁を開放し、20分間クロスフローろ過を行った。その際、ろ過液は原液タンクへ移送し混合を続けた。その後循環側の出圧が55 kPaとなるようろ過弁を開放し、20分間クロスフローろ過を行った。計1900 mLのろ過液をメスシリンダーで回収した。ろ過終了後、原液とろ過液の吸光度、pH、糖度、濁度、粘度、ヘイズをそれぞれ測定し評価した。
ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.98、520nmにおいて0.98、620nmにおいて0.95となった。また、ろ過前後の色彩強度の比率は0.99となった。
また、実液ろ過時の透水性能保持率は75%であり、NaOH浸漬後伸度保持率は80%であり、NaOH浸漬後透水量保持率は99%であり、10サイクル繰り返し洗浄後の伸度保持率は70%であり、そして10サイクル繰り返し洗浄後の透水量保持率は95%であった。
また、前記(4)実液ろ過時の透水性能保持率の測定において、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了したときのリンスの水量は40(L/m)であった。
A filtration and clarification step was carried out using the obtained hollow fiber membrane. Red wine (Akita Winery) from Koyama Sauvignon was used as the treatment liquid. A filtration experiment system was constructed using the following instruments. For the liquid feed pump, Masterflex (registered trademark, model number 7523-60) manufactured by Cole Palmer was used. For the pump head, Masterflex (registered trademark) Easy Road (model number 7518-10) also manufactured by Cole Palmer was used. The liquid delivery tube used was Farmed (registered trademark) BPT pump tube (model number 06508-25) and Masterflex (registered trademark) silicon tube (model number 96400-16). A module with an effective film area of 120 cm 2 and a total length of 130 mm was prepared and used for filtration evaluation.
After connecting the pump tube so that the lower part of the module is on the supply side, the upper part is on the circulation side, and the upper side nozzle is on the filtration side so that the undiluted solution can be introduced into the inner surface side of the hollow fiber membrane, 100 mL of the undiluted solution is placed in an ice cold bath. The inside of the module was washed together by circulating the liquid at a speed of 600 L / min with a liquid feed pump while cooling the temperature to 20 ° C or lower. After 10 minutes of co-washing, all circulating fluid was drained. After that, 2000 mL of the undiluted solution was cooled to 20 ° C. or lower in an ice-cooled bath, and the solution was pumped at a rate of 600 L / min. The filtration valve was opened so that the output pressure on the circulation side was 55 kPa, and cross-flow filtration was performed for 20 minutes. At that time, the filtrate was transferred to the undiluted solution tank and mixing was continued. After that, the filtration valve was opened so that the output pressure on the circulation side became 55 kPa, and cross-flow filtration was performed for 20 minutes. A total of 1900 mL of filtrate was collected in a graduated cylinder. After completion of filtration, the absorbance, pH, sugar content, turbidity, viscosity, and haze of the undiluted solution and the filtered solution were measured and evaluated.
When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.98 at 420 nm, 0.98 at 520 nm, and 0.95 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.99.
The water permeability retention rate during actual liquid filtration is 75%, the elongation retention rate after NaOH immersion is 80%, the water permeability retention rate after NaOH immersion is 99%, and the elongation after repeated cleaning for 10 cycles. The degree retention was 70%, and the water permeability retention after repeated washing for 10 cycles was 95%.
Further, in the measurement of the water permeability performance retention rate at the time of (4) actual liquid filtration, the rinse when the water washing is completed when the chlorine concentration of the permeated water becomes 0.1 ppm or less and the pH becomes 8.6 or less. The amount of water in the water was 40 (L / m 2 ).

[実施例2]
熱可塑性樹脂としてETFE樹脂(旭硝子社製、TL−081)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)18.5質量%と、貧溶剤としてアジピン酸ジイソブチル(DIBA)18.5質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとDIBAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
得られた中空糸膜を用いてろ過工程を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの赤ワインを使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.98、520nmにおいて0.98、620nmにおいて0.97となった。またろ過前後の色彩強度の比率は1.00となった。
また、実液ろ過時の透水性能保持率は70%であり、NaOH浸漬後伸度保持率は98%であり、NaOH浸漬後透水量保持率は100%であり、10サイクル繰り返し洗浄後の伸度保持率は90%であり、そして10サイクル繰り返し洗浄後の透水量保持率は96%であった。
また、前記(4)実液ろ過時の透水性能保持率の測定において、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了したときのリンスの水量は35(L/m)であった。
[Example 2]
40% by mass of ETFE resin (TL-081 manufactured by Asahi Glass Co., Ltd.) as a thermoplastic resin, 23% by mass of fine powder silica (primary particle size: 16 nm), and 18.5% by mass of bis2-ethylhexyl adipate (DOA) as a non-solvent. A melt-kneaded product was prepared using% and 18.5% by mass of diisobutyl adipate (DIBA) as a poor solvent. The temperature of the obtained molten mixture was 240 ° C. The obtained molten mixture was passed through a spinning nozzle having a double tube structure, a hollow filamentous extruded product was passed through an idle distance of 120 mm, and then solidified in water at 30 ° C., and a porous structure was obtained by a heat-induced phase separation method. Developed. The obtained hollow filamentous extruded product was taken up at a speed of 5 m / min and wound up in a skein. The wound hollow fiber extruded product was immersed in isopropyl alcohol to extract and remove DOA and DIBA, then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then 70 in a 20 mass% NaOH aqueous solution. The mixture was immersed at ° C. for 1 hour and then washed with water repeatedly to extract and remove fine silica powder to prepare a porous hollow fiber membrane.
Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the membrane had high flux (water permeability) and high communication.
A filtration step was carried out using the obtained hollow fiber membrane. As the treatment liquid, red wine of Koyama Sauvignon was used as in Example 1. The filtration experiment method was carried out with the same specifications as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.98 at 420 nm, 0.98 at 520 nm, and 0.97 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 1.00.
In addition, the water permeability retention rate during actual liquid filtration is 70%, the elongation retention rate after NaOH immersion is 98%, the water permeability retention rate after NaOH immersion is 100%, and the elongation after repeated washing for 10 cycles. The degree retention was 90%, and the water permeability retention after 10 cycles of repeated washing was 96%.
Further, in the measurement of the water permeability performance retention rate at the time of (4) actual liquid filtration, the rinse when the water washing is completed when the chlorine concentration of the permeated water becomes 0.1 ppm or less and the pH becomes 8.6 or less. The amount of water in the water was 35 (L / m 2 ).

[実施例3]
熱可塑性樹脂として熱可塑性樹脂としてECTFE樹脂(ソルベイスペシャルティポリマーズ社製、Halar901)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてトリフェニル亜リン酸(TPP)29.6質量%と、貧溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)7.4質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてTPPとDOAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
得られた中空糸膜を用いてろ過工程を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの無ろ過赤ワイン(秋田ワイナリー)を使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.99、520nmにおいて0.98、620nmにおいて0.98となった。また、ろ過前後の色彩強度の比率は0.99となった。
また、実液ろ過時の透水性能保持率は80%であり、NaOH浸漬後伸度保持率は97%であり、NaOH浸漬後透水量保持率は98%であり、10サイクル繰り返し洗浄後の伸度保持率は95%であり、そして10サイクル繰り返し洗浄後の透水量保持率は95%であった。
また、前記(4)実液ろ過時の透水性能保持率の測定において、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了したときのリンスの水量は50(L/m)であった。
[Example 3]
As a thermoplastic resin 40% by mass of ECTFE resin (Halar901, manufactured by Solvay Specialty Polymers) as a thermoplastic resin, 23% by mass of fine powder silica (primary particle size: 16 nm), and triphenylphosphorous acid (TPP) 29 as a non-solvent. A melt-kneaded product was prepared using .6% by mass and 7.4% by mass of bis2-ethylhexyl adipate (DOA) as a poor solvent. The temperature of the obtained molten mixture was 240 ° C. The obtained molten mixture was passed through a spinning nozzle having a double tube structure, a hollow filamentous extruded product was passed through an idle distance of 120 mm, and then solidified in water at 30 ° C., and a porous structure was obtained by a heat-induced phase separation method. Developed. The obtained hollow filamentous extruded product was taken up at a speed of 5 m / min and wound up in a skein. The wound hollow fiber extruded product was immersed in isopropyl alcohol to extract and remove TPP and DOA, then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then 70 in a 20 mass% NaOH aqueous solution. The mixture was immersed at ° C. for 1 hour and then washed with water repeatedly to extract and remove fine silica powder to prepare a porous hollow fiber membrane.
Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the membrane had high flux (water permeability) and high communication.
A filtration step was carried out using the obtained hollow fiber membrane. As the treatment liquid, unfiltered red wine (Akita Winery) of Koyama Sauvignon was used as in Example 1. The filtration experiment method was carried out with the same specifications as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.99 at 420 nm, 0.98 at 520 nm, and 0.98 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.99.
The water permeability retention rate during actual liquid filtration is 80%, the elongation retention rate after NaOH immersion is 97%, and the water permeability retention rate after NaOH immersion is 98%, and the elongation after repeated cleaning for 10 cycles. The degree retention was 95%, and the water permeability retention after 10 cycles of repeated washing was 95%.
Further, in the measurement of the water permeability performance retention rate at the time of (4) actual liquid filtration, the rinse when the water washing is completed when the chlorine concentration of the permeated water becomes 0.1 ppm or less and the pH becomes 8.6 or less. The amount of water in the water was 50 (L / m 2 ).

[比較例1]
発酵工程後のワインをスタンダードスーパーセル(セライト社製)の珪藻土と混合し、内外醸機社製フィルタープレスにより圧力=1.0MPaとなるようにろ過を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの赤ワインを使用した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.68、520nmにおいて0.67、620nmにおいて0.64となった。また、ろ過前後の色彩強度の比率は0.67となった。
[Comparative Example 1]
The wine after the fermentation process was mixed with diatomaceous earth of Standard Supercell (manufactured by Celite) and filtered by a filter press manufactured by Naigai Brewery Co., Ltd. so that the pressure was 1.0 MPa. As the treatment liquid, red wine of Koyama Sauvignon was used as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.68 at 420 nm, 0.67 at 520 nm, and 0.64 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.67.

[比較例2]
溶剤をATBCのみとしたこと以外は、実施例1と同様にして製膜し、比較例2の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスが低く、連通性の低い膜であった。
得られた中空糸膜を用いてろ過工程を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの赤ワインを使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.70、520nmにおいて0.70、620nmにおいて0.69となった。また、ろ過前後の色彩強度の比率は0.7となった。
また、実液ろ過時の透水性能保持率は30%であり、NaOH浸漬後伸度保持率は30%であり、NaOH浸漬後透水量保持率は150%であり、10サイクル繰り返し洗浄後の伸度保持率は20%であり、そして10サイクル繰り返し洗浄後の透水量保持率は200%であった。
また、前記(4)実液ろ過時の透水性能保持率の測定において、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了したときのリンスの水量は140(L/m)であった。
[Comparative Example 2]
A film was formed in the same manner as in Example 1 except that the solvent was only ATBC, to obtain a hollow fiber membrane of Comparative Example 2. Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the film had a low flux and low communication.
A filtration step was carried out using the obtained hollow fiber membrane. As the treatment liquid, red wine of Koyama Sauvignon was used as in Example 1. The filtration experiment method was carried out with the same specifications as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.70 at 420 nm, 0.70 at 520 nm, and 0.69 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.7.
Further, the water permeability retention rate during actual liquid filtration is 30%, the elongation retention rate after NaOH immersion is 30%, the water permeability retention rate after NaOH immersion is 150%, and the elongation after repeated washing for 10 cycles. The degree retention was 20%, and the water permeability retention after 10 cycles of repeated washing was 200%.
Further, in the measurement of the water permeability performance retention rate at the time of (4) actual liquid filtration, the rinse when the water washing is completed when the chlorine concentration of the permeated water becomes 0.1 ppm or less and the pH becomes 8.6 or less. The amount of water in the water was 140 (L / m 2 ).

[比較例3]
微粉シリカを0%とし、溶剤をγ-ブチロラクトンのみとしたこと以外は、実施例1と同様にして製膜し、比較例3の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
得られた中空糸膜を用いてろ過工程を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの赤ワインを使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.68、520nmにおいて0.68、620nmにおいて0.67となった。また、ろ過前後の色彩強度の比率は0.68となった。 また、実液ろ過時の透水性能保持率は30%であり、NaOH浸漬後伸度保持率は30%であり、NaOH浸漬後透水量保持率は160%であり、10サイクル繰り返し洗浄後の伸度保持率は20%であり、そして10サイクル繰り返し洗浄後の透水量保持率は180%であった。
また、前記(4)実液ろ過時の透水性能保持率の測定において、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了したときのリンスの水量は150(L/m)であった。
[Comparative Example 3]
A film was formed in the same manner as in Example 1 except that the fine silica was 0% and the solvent was only γ-butyrolactone, to obtain a hollow fiber membrane of Comparative Example 3. Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the flux was low and the film had low connectivity.
A filtration step was carried out using the obtained hollow fiber membrane. As the treatment liquid, red wine of Koyama Sauvignon was used as in Example 1. The filtration experiment method was carried out with the same specifications as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.68 at 420 nm, 0.68 at 520 nm, and 0.67 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.68. Further, the water permeability retention rate during actual liquid filtration is 30%, the elongation retention rate after NaOH immersion is 30%, the water permeability retention rate after NaOH immersion is 160%, and the elongation after repeated washing for 10 cycles. The degree retention was 20%, and the water permeability retention after 10 cycles of repeated washing was 180%.
Further, in the measurement of the water permeability performance retention rate at the time of (4) actual liquid filtration, the rinse when the water washing is completed when the chlorine concentration of the permeated water becomes 0.1 ppm or less and the pH becomes 8.6 or less. The amount of water in the water was 150 (L / m 2 ).

[比較例4]
溶剤をDOAのみとした以外は、実施例3と同様にして製膜し、比較例4の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
得られた中空糸膜を用いてろ過工程を実施した。処理液には実施例1と同じく鴇ヤマ・ソーヴィニヨンの赤ワインを使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の赤ワインの吸光度を測定したところ、ろ過前後の吸光度の比率は以下の表2に示す通り、420nmにおいて0.61、520nmにおいて0.60、620nmにおいて0.57となった。また、ろ過前後の色彩強度の比率は0.6となった。
[Comparative Example 4]
A film was formed in the same manner as in Example 3 except that the solvent was only DOA, to obtain a hollow fiber membrane of Comparative Example 4. Table 1 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the flux was low and the film had low connectivity.
A filtration step was carried out using the obtained hollow fiber membrane. As the treatment liquid, red wine of Koyama Sauvignon was used as in Example 1. The filtration experiment method was carried out with the same specifications as in Example 1. When the absorbance of red wine before and after the filtration step was measured, the ratio of the absorbance before and after filtration was 0.61 at 420 nm, 0.60 at 520 nm, and 0.57 at 620 nm, as shown in Table 2 below. The ratio of color intensity before and after filtration was 0.6.

[実施例4]
中空糸膜の成膜条件は実施例1と同じ条件で実施した。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表3に示す。処理液には複数の種類をブレンドした濃縮果汁を発酵した直後の赤ワインを原液として使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Example 4]
The film formation conditions of the hollow fiber membrane were the same as those in Example 1. Table 3 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. As the treatment liquid, red wine immediately after fermenting the concentrated juice obtained by blending multiple types was used as the undiluted solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[比較例5]
ろ過方法は比較例1と同じく珪藻土ろ過を選択した。処理液には実施例4と同じ原液を使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表2に示す。
[Comparative Example 5]
As the filtration method, diatomaceous earth filtration was selected as in Comparative Example 1. The same stock solution as in Example 4 was used as the treatment solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 2 below shows the results of various analyzes before and after the filtration process.

[実施例5]
中空糸膜の成膜条件は実施例1と同じ条件で実施した。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表3に示す。処理液にはリースリング・フォルテ種の無ろ過白ワイン(朝日町ワイン)を原液として使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Example 5]
The film formation conditions of the hollow fiber membrane were the same as those in Example 1. Table 3 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. Riesling Forte unfiltered white wine (Asahimachi wine) was used as the undiluted solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[比較例6]
ろ過方法は比較例1と同じく珪藻土ろ過を選択した。処理液には実施例5と同じ原液を使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Comparative Example 6]
As the filtration method, diatomaceous earth filtration was selected as in Comparative Example 1. The same stock solution as in Example 5 was used as the treatment solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[実施例6]
中空糸膜の成膜条件は実施例1と同じ条件で実施した。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表3に示す。処理液には青森県産りんごを使用した無ろ過シードル(弘前シードル工房)を原液として使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Example 6]
The film formation conditions of the hollow fiber membrane were the same as those in Example 1. Table 3 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. Unfiltered cider (Hirosaki Cider Kobo) using apples from Aomori prefecture was used as the undiluted solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[比較例7]
ろ過方法は比較例1と同じく珪藻土ろ過を選択した。処理液には実施例6と同じ原液を使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Comparative Example 7]
As the filtration method, diatomaceous earth filtration was selected as in Comparative Example 1. The same stock solution as in Example 6 was used as the treatment solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[実施例7]
中空糸膜の成膜条件は実施例1と同じ条件で実施した。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表3に示す。処理液には杏露酒(キリンビバレッジ)を原液として使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Example 7]
The film formation conditions of the hollow fiber membrane were the same as those in Example 1. Table 3 below shows the composition, production conditions, and various physical properties of the obtained porous membrane. Kirin Beverage was used as the undiluted solution for the treatment solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

[比較例8]
ろ過方法は比較例1と同じく珪藻土ろ過を選択した。処理液には実施例7と同じ原液を使用した。ろ過実験方法は実施例1と同様の仕様にて実施した。ろ過工程前後の各種分析結果を以下の表4に示す。
[Comparative Example 8]
As the filtration method, diatomaceous earth filtration was selected as in Comparative Example 1. The same stock solution as in Example 7 was used as the treatment solution. The filtration experiment method was carried out with the same specifications as in Example 1. Table 4 below shows the results of various analyzes before and after the filtration process.

以上の結果から、連通性が良好な膜は、ろ過性能、色度成分の透過性、薬液耐性に優れ、かつ、高寿命であることが分かった。 From the above results, it was found that a film having good communication properties has excellent filtration performance, chromaticity component permeability, chemical resistance, and a long life.

本発明に係る果実酒の製造方法におけるろ過・清澄化工程は、多孔質ろ過膜の(被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、ろ過前後の果実酒の色度の低下が小さく、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができる。それゆえ、本発明に係る果実酒の製造方法は、ろ過性能、薬液耐性に優れ、かつ、高寿命の方法である。 In the filtration / clarification step in the method for producing fruit liquor according to the present invention, the pores of the porous filtration membrane (from the inside of the membrane on the side to be treated to the outside of the membrane on the filtrate side) have good communication. Since a thin film is used, the decrease in color of fruit liquor before and after filtration is small, the removal rate of starch components is high, and the cleaning solution (chemical solution) used in the cleaning process is hot water at 50 ° C to 90 ° C and / Or even when an aqueous solution containing 0.05% by weight or more and 0.5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide is used. Deterioration can be minimized. Therefore, the method for producing fruit liquor according to the present invention is a method having excellent filtration performance, chemical resistance, and long life.

Claims (20)

以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the visual fields between these visual fields were photographed at equal intervals. Total of visual fields In each region of the four visual fields, the total area of the resin portion having an area of 1 μm 2 or less is 70% or more of the total area of the resin portion, and
When the absorbance of fruit wine before the filtration / clarification step is X1 and the absorbance of fruit wine after the filtration / clarification step is X2 at an arbitrary wavelength of 250 nm to 650 nm, X2 / X1 ≧ 0.75. Satisfy the relationship,
A method for producing fruit wine, which is characterized by the fact that.
以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the intervals between these visual fields were photographed at equal intervals. Total of the visual fields In each region of the four visual fields, the total area of the resin portion having an area of 10 μm 2 or more is 15% or less of the total area of the resin portion, and at an arbitrary wavelength of 250 nm to 650 nm. When the absorbance of the fruit liquor before the filtration / clarification step is X1 and the absorbance of the fruit liquor after the filtration / clarification step is X2, the relationship of X2 / X1 ≧ 0.75 is satisfied.
A method for producing fruit wine, which is characterized by the fact that.
以下の工程:
果実を発酵させて、澱成分の凝集体を含有する果実酒を得る発酵工程;及び
発酵工程で得られた果実酒を、3次元網目構造の樹脂から構成される多孔質膜に通過させて、該澱成分の凝集体からろ液を分離するろ過・清澄化工程;
を含む果実酒の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ
250nm〜650nmの任意の波長における、該ろ過・清澄化工程前の果実酒の吸光度をX1、該ろ過・清澄化工程後の果実酒の吸光度をX2とするとき、X2/X1≧0.75の関係を満たす、
ことを特徴とする果実酒の製造方法。
The following steps:
Fermentation step of fermenting fruits to obtain fruit liquor containing aggregates of starch components; and passing the fruit liquor obtained in the fermentation step through a porous membrane composed of a resin having a three-dimensional network structure. A filtration / clarification step that separates the filtrate from the aggregates of the starch components;
It is a method of producing fruit liquor containing
In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film, the visual field including the inner surface, the visual field including the outer surface of the film, and the intervals between these visual fields were photographed at equal intervals. A resin having an area of 10 μm 2 or more and 70% or more of the total area of the resin portion having an area of 1 μm 2 or less in each region of the total four visual fields. The total area of the part is 15% or less of the total area of the resin part, and the absorbance of the fruit liquor before the filtration / clarification step at an arbitrary wavelength of 250 nm to 650 nm is X1, the filtration / When the absorbance of the fruit liquor after the clarification step is X2, the relationship of X2 / X1 ≧ 0.75 is satisfied.
A method for producing fruit wine, which is characterized by the fact that.
前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、請求項1〜3のいずれか1項に記載の方法。 The porous film is formed between a field of view including the inner surface, a field of view including the outer surface of the film, and between these fields of view in an SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film. in each area of a total of four field of 2 field taken at regular intervals, the total area of the resin portion having an area of less than 1 [mu] m 2 ultra 10 [mu] m 2 is 15% or less relative to the total area of the resin portion, wherein Item 3. The method according to any one of Items 1 to 3. 前記ろ過・清澄化工程において、発酵工程で得られた果実酒とベントナイトを混合したものを、3次元網目構造の樹脂から構成される多孔質膜に通過させる、請求項1〜4のいずれか1項に記載の方法。 Any one of claims 1 to 4, wherein in the filtration / clarification step, a mixture of fruit wine and bentonite obtained in the fermentation step is passed through a porous membrane made of a resin having a three-dimensional network structure. The method described in the section. 前記多孔質膜の表面開口率は25〜60%である、請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the surface aperture ratio of the porous membrane is 25 to 60%. 前記多孔質膜は中空糸膜である、請求項1〜6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the porous membrane is a hollow fiber membrane. 前記多孔質膜を構成する樹脂は熱可塑性樹脂である、請求項1〜7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the resin constituting the porous film is a thermoplastic resin. 前記熱可塑性樹脂はフッ素樹脂である、請求項8に記載の方法。 The method according to claim 8, wherein the thermoplastic resin is a fluororesin. 前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれらの樹脂の混合物からなる群から選ばれるいずれか1種である、請求項9に記載の方法。 The fluororesin includes vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochromelotrifluoroethylene copolymer (ECTFE), and hexa. The method according to claim 9, wherein the method is any one selected from the group consisting of a fluoropropylene resin and a mixture of these resins. 前記熱可塑性樹脂はポリエチレン(PE)である、請求項8に記載の方法。 The method according to claim 8, wherein the thermoplastic resin is polyethylene (PE). 前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃〜90℃の湯である、請求項1〜11のいずれか1項に記載の方法。 After the filtration / clarification step, a cleaning step of passing or immersing the cleaning liquid in the porous membrane to clean the inside of the porous membrane is further included, and the cleaning liquid is hot water at 50 ° C. to 90 ° C. The method according to any one of claims 1 to 11. 前記ろ過・清澄化工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、請求項1〜11のいずれか1項に記載の方法。 After the filtration / clarification step, a cleaning step of passing or immersing the cleaning liquid in the porous membrane to clean the inside of the porous membrane is further included, and the cleaning liquid is 0.05% by weight or more and 0.5% by weight. The method according to any one of claims 1 to 11, which is an aqueous solution containing% or less sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、請求項12又は13に記載の方法。 The claim that the relationship between the tensile elongation at break E0 of the porous membrane before the cleaning step and the tensile elongation at break E1 of the porous membrane after the cleaning step is E1 / E0 × 100 ≧ 80%. 12 or 13 according to the method. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、請求項12又は13に記載の方法。 The tensile elongation at break E0 of the porous membrane before the cleaning step and the tensile elongation at break of the porous membrane after repeating the cleaning step X times (where X is an integer of 2 to 100). The method according to claim 12 or 13, wherein the relationship with the degree EX is EX / E0 × 100 ≧ 70%. 前記ろ過・清澄化工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、請求項12又は13に記載の方法。 Claim 12 or 13 that the relationship between the flux L0 of the porous membrane before the filtration / clarification step and the flux L1 of the porous membrane after the cleaning step is L1 / L0 × 100 ≧ 95%. The method described in. 前記ろ過・清澄化工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、X/L0×100≧90%である、請求項12又は13に記載の方法。 The flux L0 of the porous membrane before the filtration / clarification step and the flux LX of the porous membrane after repeating the cleaning step X times (where X is an integer of 2 to 100). The method according to claim 12 or 13, wherein the relationship is X / L0 × 100 ≧ 90%. 前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、請求項12〜17のいずれか1項に記載の方法。 The cleaning step according to any one of claims 12 to 17, wherein the cleaning step includes a cleaning liquid step of cleaning with the cleaning liquid and a rinsing step of rinsing with rinsing water for removing the remaining cleaning liquid component. the method of. 前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、請求項18に記載の方法。 The method according to claim 18, wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane. 前記リンス工程後に前記ろ過・清澄化工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、請求項18又は19に記載の方法。 18 or 19, claim 18 or 19, wherein the chlorine concentration in the filtrate after restarting the filtration / clarification step after the rinsing step is 0.1 ppm or less, and the pH of the filtrate is 8.6 or less. The method described.
JP2019040781A 2019-03-06 2019-03-06 Filtration and clarification method for fruit wine Active JP7252790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040781A JP7252790B2 (en) 2019-03-06 2019-03-06 Filtration and clarification method for fruit wine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040781A JP7252790B2 (en) 2019-03-06 2019-03-06 Filtration and clarification method for fruit wine

Publications (2)

Publication Number Publication Date
JP2020141597A true JP2020141597A (en) 2020-09-10
JP7252790B2 JP7252790B2 (en) 2023-04-05

Family

ID=72354792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040781A Active JP7252790B2 (en) 2019-03-06 2019-03-06 Filtration and clarification method for fruit wine

Country Status (1)

Country Link
JP (1) JP7252790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907940A (en) * 2022-05-23 2022-08-16 绍兴海纳膜技术有限公司 Yellow wine deacidification process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284471A (en) * 2006-11-28 2008-11-27 Toyobo Co Ltd Polymeric porous hollow fiber membrane
WO2009051168A1 (en) * 2007-10-19 2009-04-23 Toyo Boseki Kabushiki Kaisha Hollow fiber membrane for treating liquids
JP2016152777A (en) * 2015-02-20 2016-08-25 サントリーホールディングス株式会社 Fruit wine
WO2017155004A1 (en) * 2016-03-09 2017-09-14 旭化成株式会社 Porous hollow fiber membrane, production method therefor, and filtration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284471A (en) * 2006-11-28 2008-11-27 Toyobo Co Ltd Polymeric porous hollow fiber membrane
WO2009051168A1 (en) * 2007-10-19 2009-04-23 Toyo Boseki Kabushiki Kaisha Hollow fiber membrane for treating liquids
JP2009095808A (en) * 2007-10-19 2009-05-07 Toyobo Co Ltd Hollow fiber membrane for liquid processing
JP2016152777A (en) * 2015-02-20 2016-08-25 サントリーホールディングス株式会社 Fruit wine
WO2017155004A1 (en) * 2016-03-09 2017-09-14 旭化成株式会社 Porous hollow fiber membrane, production method therefor, and filtration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907940A (en) * 2022-05-23 2022-08-16 绍兴海纳膜技术有限公司 Yellow wine deacidification process
CN114907940B (en) * 2022-05-23 2024-02-23 绍兴海纳膜技术有限公司 Yellow wine acid reducing process

Also Published As

Publication number Publication date
JP7252790B2 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
EP3427818B1 (en) Porous hollow fiber membrane, production method therefor, and filtration method
JP7237656B2 (en) Hollow fiber membrane module and seawater filtration method using the same
JP7252790B2 (en) Filtration and clarification method for fruit wine
US11534723B2 (en) Method of filtration using porous membranes
JP7244426B2 (en) Porous hollow fiber membrane, method for producing porous hollow fiber membrane, and filtration method
JP7169129B2 (en) Method for producing saccharified liquid using porous membrane
JP7204382B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7165000B2 (en) Method for producing tea beverage using porous membrane
JP7082681B2 (en) Filtration method using a porous membrane
JP2018144006A (en) Porous hollow fiber membrane and manufacturing method of the same
US11471834B2 (en) Filtration method using porous membrane
JP7185448B2 (en) Porous hollow fiber membrane, manufacturing method thereof, and filtration method
JP6832440B2 (en) Method of producing brewed liquor using a porous membrane
JP7182960B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7105654B2 (en) Method for filtration of culture broth using porous membrane
JP6920833B2 (en) Porous hollow fiber membrane and its manufacturing method
JP2019042735A (en) Method for producing porous hollow membrane containing separation layer, porous hollow membrane and filtration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R150 Certificate of patent or registration of utility model

Ref document number: 7252790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150