JP2020139652A - Glow plug - Google Patents

Glow plug Download PDF

Info

Publication number
JP2020139652A
JP2020139652A JP2019033645A JP2019033645A JP2020139652A JP 2020139652 A JP2020139652 A JP 2020139652A JP 2019033645 A JP2019033645 A JP 2019033645A JP 2019033645 A JP2019033645 A JP 2019033645A JP 2020139652 A JP2020139652 A JP 2020139652A
Authority
JP
Japan
Prior art keywords
heating element
section
cross
element cross
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033645A
Other languages
Japanese (ja)
Other versions
JP7090570B2 (en
Inventor
裕太 渡辺
Hirota Watanabe
裕太 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019033645A priority Critical patent/JP7090570B2/en
Publication of JP2020139652A publication Critical patent/JP2020139652A/en
Application granted granted Critical
Publication of JP7090570B2 publication Critical patent/JP7090570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

To provide a glow plug which can suppress breakage of a heating element.SOLUTION: In a glow plug, on a cross section including an axis line of the glow plug, with the axis line being a boundary, a first heating element cross section, a third heating element cross section and a fifth heating element cross section are disposed sequentially on one side from a tip side, and with the axis line being a boundary, a second heating element cross section, a fourth heating element cross section and a sixth heating element cross section are disposed sequentially on the other side from the tip side. A distance A in the axis direction between the first heating element cross section and the third heating element cross section is larger than a distance B in the axis direction between the third heating element cross section and the fifth heating element cross section, and a distance C in the axis direction between the second heating element cross section and the fourth heating element cross section is larger than a distance D in the axis direction between the fourth heating element cross section and the sixth heating element cross section.SELECTED DRAWING: Figure 2

Description

本発明はグロープラグに関し、特に発熱体の破損を抑制できるグロープラグに関するものである。 The present invention relates to a glow plug, and more particularly to a glow plug capable of suppressing damage to a heating element.

筒状体の先端を閉塞する溶融部にコイル状の発熱体を接合したグロープラグが知られている。このグロープラグは、発熱体の発熱により筒状体が加熱される(例えば特許文献1)。 A glow plug in which a coil-shaped heating element is bonded to a molten portion that closes the tip of a tubular body is known. The tubular body of this glow plug is heated by the heat generated by the heating element (for example, Patent Document 1).

特開2016−3817号公報Japanese Unexamined Patent Publication No. 2016-3817

グロープラグでは耐久性の向上が求められており、グロープラグの耐久性の向上には、発熱体の溶融による短絡や断線など(以下「破損」と称す)の抑制が必要である。具体的には、グロープラグの発熱時に、発熱体の先端部位が過剰な温度になることを抑制することで、発熱体の破損を抑制できる。 Glow plugs are required to have improved durability, and in order to improve the durability of glow plugs, it is necessary to suppress short circuits and disconnections (hereinafter referred to as "damage") due to melting of the heating element. Specifically, damage to the heating element can be suppressed by suppressing the temperature of the tip portion of the heating element from becoming excessive when the glow plug generates heat.

しかし、特許文献1のようなグロープラグでは、発熱時に、発熱体の先端部位の熱エネルギーに加えて、発熱体の中間部位からの熱エネルギーの影響により、発熱体の先端部位が過剰な温度となり、発熱体に破損が生じるおそれがある。 However, in a glow plug as in Patent Document 1, when heat is generated, the tip portion of the heating element becomes excessively hot due to the influence of the heat energy from the intermediate portion of the heating element in addition to the heat energy of the tip portion of the heating element. , The heating element may be damaged.

本発明はこの要求に応えるためになされたものであり、発熱体の破損を抑制できるグロープラグを提供することを目的としている。 The present invention has been made in order to meet this demand, and an object of the present invention is to provide a glow plug capable of suppressing damage to a heating element.

この目的を達成するために本発明のグロープラグは、先端が溶融部にて閉塞された筒状体と、筒状体の内側に配置されたコイル状の発熱体と、を備えるものであり、発熱体は溶融部を介して筒状体と接合されており、グロープラグの軸線に沿うようにグロープラグを切断した軸線を含む切断面を見たときに、溶融部の外に配され、軸線を境にして一方側に配された発熱体の断面のうち最先端に位置する断面を第1発熱体断面とし、溶融部の外に配され、軸線を境にして他方側に配された発熱体の断面のうち最先端に位置する断面を第2発熱体断面とし、軸線を境にして一方側に配された発熱体の断面のうち第1発熱体断面の1つ後ろ側に位置する断面を第3発熱体断面とし、軸線を境にして他方側に配された発熱体の断面のうち第2発熱体断面の1つ後ろ側に位置する断面を第4発熱体断面とし、軸線を境にして一方側に配された発熱体の断面のうち第3発熱体断面の1つ後ろ側に位置する断面を第5発熱体断面とし、軸線を境にして他方側に配された発熱体の断面のうち第4発熱体断面の1つ後ろ側に位置する断面を第6発熱体断面とした場合に、第1発熱体断面の最後端と第3発熱体断面の最先端との間の軸線の方向における距離Aは、第3発熱体断面の最後端と第5発熱体断面の最先端との間の軸線の方向における距離Bより大きく、第2発熱体断面の最後端と第4発熱体断面の最先端との間の軸線の方向における距離Cは、第4発熱体断面の最後端と第6発熱体断面の最先端との間の軸線の方向における距離Dより大きい。 In order to achieve this object, the glow plug of the present invention includes a tubular body whose tip is closed by a melting portion and a coil-shaped heating element arranged inside the tubular body. The heating element is joined to the tubular body via the melting part, and when the cut surface including the axis where the glow plug is cut along the axis of the glow plug is seen, it is arranged outside the melting part and the axis. The most advanced cross section of the heating element arranged on one side with the above as the boundary is the first heating element cross section, which is arranged outside the melting part and is arranged on the other side with the axis as the boundary. The most advanced cross section of the body is defined as the second heating element cross section, and the cross section of the heating element arranged on one side of the axis is located one side behind the first heating element cross section. Is the third heating element cross section, and the section located one side behind the second heating element cross section of the cross section of the heating element arranged on the other side of the axis is the fourth heating element cross section, and the axis is the boundary. Of the cross sections of the heating elements arranged on one side, the section located one side behind the third heating element cross section is defined as the fifth heating element cross section, and the heating elements arranged on the other side with the axis as a boundary. When the cross section located behind the fourth heating element cross section is the sixth heating element cross section, the axis between the rearmost end of the first heating element cross section and the leading edge of the third heating element cross section. The distance A in the direction of is larger than the distance B in the direction of the axis between the rearmost end of the third heating element cross section and the leading edge of the fifth heating element cross section, and the rearmost end of the second heating element cross section and the fourth heating element. The distance C in the axial direction between the leading edge of the cross section is greater than the distance D in the axial direction between the rearmost end of the fourth heating element cross section and the leading edge of the sixth heating element cross section.

請求項1記載のグロープラグによれば、発熱体の第3発熱体断面および第4発熱体断面を構成する部位を、発熱体の第1発熱体断面および第2発熱体断面を構成する部位から後端側へ遠ざけられる。これにより発熱時に、第1発熱体断面および第2発熱体断面を構成する部位が、第3発熱体断面および第4発熱体断面を構成する部位から受ける熱エネルギーを減らすことができ、その結果、第1発熱体断面および第2発熱体断面を構成する部位が過剰な温度となることを抑制できる。さらに、第3発熱体断面および第4発熱体断面を構成する部位が、第1発熱体断面および第2発熱体断面を構成する部位から遠ざかると、第1発熱体断面および第2発熱体断面を構成する部位が加熱しなければならない筒状体の面積が相対的に大きくなるので、第1発熱体断面および第2発熱体断面を構成する部位が過剰な温度となることをさらに抑制できる。よって、発熱体の第1発熱体断面および第2発熱体断面を構成する部位の破損を抑制できる。 According to the glow plug according to claim 1, the portions constituting the third heating element cross section and the fourth heating element cross section of the heating element are separated from the portions constituting the first heating element cross section and the second heating element cross section of the heating element. Moved away to the rear end side. As a result, during heat generation, the parts constituting the first heating element cross section and the second heating element cross section can reduce the heat energy received from the parts constituting the third heating element cross section and the fourth heating element cross section, and as a result, It is possible to prevent the portions constituting the first heating element cross section and the second heating element cross section from becoming excessive temperatures. Further, when the parts constituting the third heating element cross section and the fourth heating element cross section are moved away from the parts constituting the first heating element cross section and the second heating element cross section, the first heating element cross section and the second heating element cross section are changed. Since the area of the tubular body in which the constituent portion must be heated becomes relatively large, it is possible to further prevent the portions constituting the first heating element cross section and the second heating element cross section from becoming excessively hot. Therefore, damage to the portions constituting the first heating element cross section and the second heating element cross section of the heating element can be suppressed.

請求項2記載のグロープラグによれば、軸線を含む切断面において、第1発熱体断面の軸線の方向の長さEが第3発熱体断面の軸線の方向の長さFよりも小さい、及び/又は、第2発熱体断面の軸線の方向の長さGが第4発熱体断面の軸線の方向の長さHよりも小さい。これにより、発熱体の軸線方向の全長を長くすることなく、距離Aを距離Bより大きく、及び/又は、距離Cを距離Dより大きくすることができる。そのため、発熱体を筒状体のより先端側に配置できるので、請求項1の効果に加え、グロープラグの先端側での発熱を確保できる。 According to the glow plug according to claim 2, the length E in the axial direction of the first heating element cross section is smaller than the length F in the axial direction of the third heating element cross section on the cut surface including the axis. / Or, the length G in the axial direction of the second heating element cross section is smaller than the length H in the axial direction of the fourth heating element cross section. As a result, the distance A can be made larger than the distance B and / or the distance C can be made larger than the distance D without increasing the total length of the heating element in the axial direction. Therefore, since the heating element can be arranged on the tip side of the tubular body, in addition to the effect of claim 1, heat generation on the tip side of the glow plug can be ensured.

さらに、第1発熱体断面や第2発熱体断面を構成する部位の抵抗を、第3発熱体断面や第4発熱体断面を構成する部位の抵抗よりも大きくし易くできるので、第1発熱体断面や第2発熱体断面を構成する部位が発生する熱エネルギーを、第3発熱体断面や第4発熱体断面を構成する部位が発生する熱エネルギーよりも大きくし易くできる。その結果、筒状体の溶融部付近の昇温性能を確保できる。 Further, since the resistance of the parts constituting the first heating element cross section and the second heating element cross section can be easily made larger than the resistance of the parts constituting the third heating element cross section and the fourth heating element cross section, the first heating element The thermal energy generated by the cross section or the portion constituting the second heating element cross section can be easily made larger than the thermal energy generated by the portion constituting the third heating element cross section or the fourth heating element cross section. As a result, the temperature rising performance in the vicinity of the molten portion of the tubular body can be ensured.

請求項3記載のグロープラグによれば、軸線を含む切断面において、発熱体の軸線の方向の全長の半分の位置である中間位置よりも先端側の発熱体のピッチの平均値が、中間位置よりも後端側の発熱体のピッチの平均値よりも小さい。これにより発熱体の中間位置よりも先端側の部位の抵抗を、中間位置よりも後端側の部位の抵抗よりも大きくできる。その結果、発熱体の中間位置よりも先端側の部位が発生する熱エネルギーを、中間位置よりも後端側の部位が発生する熱エネルギーよりも大きくできる。その結果、請求項1又は2の効果に加え、グロープラグの先端側での発熱をより確保できる。 According to the glow plug according to claim 3, on the cutting surface including the axis, the average value of the pitch of the heating element on the tip side of the intermediate position, which is half the total length in the direction of the axis of the heating element, is the intermediate position. It is smaller than the average value of the pitch of the heating element on the rear end side. As a result, the resistance of the portion on the tip side of the intermediate position of the heating element can be made larger than the resistance of the portion on the rear end side of the intermediate position. As a result, the thermal energy generated by the portion on the tip side of the intermediate position of the heating element can be made larger than the thermal energy generated by the portion on the rear end side of the intermediate position. As a result, in addition to the effect of claim 1 or 2, heat generation on the tip side of the glow plug can be further secured.

請求項4記載のグロープラグによれば、軸線を含む切断面において、第1発熱体断面を通り径方向に延びる直線が交わる筒状体の第1部位の平均厚さは、第3発熱体断面を通り径方向に延びる直線が交わる筒状体の第2部位の平均厚さよりも大きい。ここで、発熱体の発熱によって加熱される筒状体は、第2部位よりも先端側に位置する第1部位が、第2部位よりも高温になり易いので、第1部位が第2部位よりも酸化消耗し易い。従って、第1部位の平均厚さを第2部位の平均厚さよりも大きくすることにより、酸化消耗によって破損するまでの筒状体の寿命を長くできる。よって、請求項1から3のいずれかの効果に加え、筒状体の破損に起因する発熱体の劣化を抑制できる。 According to the glow plug according to claim 4, the average thickness of the first portion of the tubular body where straight lines extending in the radial direction through the cross section of the first heating element intersect in the cut surface including the axis is the cross section of the third heating element. It is larger than the average thickness of the second part of the tubular body where straight lines extending in the radial direction intersect. Here, in the tubular body heated by the heat generated by the heating element, the first portion located on the tip side of the second portion tends to be hotter than the second portion, so that the first portion is higher than the second portion. Is also easily oxidized and consumed. Therefore, by making the average thickness of the first portion larger than the average thickness of the second portion, it is possible to prolong the life of the tubular body until it is damaged by oxidative consumption. Therefore, in addition to the effect of any one of claims 1 to 3, deterioration of the heating element due to breakage of the tubular body can be suppressed.

グロープラグの片側断面図である。It is one side sectional view of the glow plug. 一部を拡大したグロープラグの断面図である。It is sectional drawing of the glow plug which enlarged a part. グロープラグの軸線を含む断面図である。It is sectional drawing which includes the axis of the glow plug.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1から図3を参照して本発明の一実施の形態におけるグロープラグ10について説明する。図1はグロープラグ10の軸線Oを境にした片側断面図である。図2は一部を拡大したグロープラグ10の断面図であり、図3はグロープラグ10の軸線Oを含む断面図である。図2では、発熱体50は外形が図示されている。図2及び図3ではグロープラグ10の後端側の図示が省略されている。図1から図3では、紙面下側をグロープラグ10の先端側、紙面上側をグロープラグ10の後端側という。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The glow plug 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view on one side of the glow plug 10 with the axis O as a boundary. FIG. 2 is a partially enlarged cross-sectional view of the glow plug 10, and FIG. 3 is a cross-sectional view including the axis O of the glow plug 10. In FIG. 2, the outer shape of the heating element 50 is shown. In FIGS. 2 and 3, the rear end side of the glow plug 10 is not shown. In FIGS. 1 to 3, the lower side of the paper surface is referred to as the front end side of the glow plug 10, and the upper side of the paper surface is referred to as the rear end side of the glow plug 10.

図1に示すようにグロープラグ10は、筒状体40と、筒状体40の内側に配置されたコイル状の発熱体50と、を主に備えている。グロープラグ10は、ディーゼルエンジンを始めとする内燃機関(図示せず)の始動時などに用いられる補助熱源である。軸線Oは、筒状体40の外周面に対する中心軸である。 As shown in FIG. 1, the glow plug 10 mainly includes a tubular body 40 and a coil-shaped heating element 50 arranged inside the tubular body 40. The glow plug 10 is an auxiliary heat source used when starting an internal combustion engine (not shown) such as a diesel engine. The axis O is the central axis with respect to the outer peripheral surface of the tubular body 40.

発熱体50に電力を供給する中軸20は、円柱形状の金属製(例えばステンレス鋼)の導体である。中軸20は軸線Oに沿って配置されている。中軸20の先端部に発熱体50が電気的に接続されている。中軸20は、後端部が主体金具30から突出した状態で主体金具30に挿入されている。中軸20は、本実施形態では、後端部に雄ねじからなる接続部21が形成されている。中軸20は、後端部に、先端側から順に絶縁ゴム製のOリング22、合成樹脂製の筒状部材である絶縁体23、金属製の筒状部材であるリング24、金属製のナット25が組み付けられている。接続部21は、バッテリ等の電源から電力を供給するケーブルのコネクタ(図示せず)が接続される部位である。ナット25は、接続されたコネクタ(図示せず)を固定するための部材である。 The center pole 20 that supplies electric power to the heating element 50 is a cylindrical metal (for example, stainless steel) conductor. The center pole 20 is arranged along the axis O. A heating element 50 is electrically connected to the tip of the center pole 20. The center pole 20 is inserted into the main metal fitting 30 with its rear end protruding from the main metal fitting 30. In the present embodiment, the center pole 20 has a connecting portion 21 made of a male screw formed at the rear end portion. The center pole 20 has an O-ring 22 made of insulating rubber, an insulator 23 which is a tubular member made of synthetic resin, a ring 24 which is a tubular member made of metal, and a metal nut 25 at the rear end in this order from the tip side. Is assembled. The connection portion 21 is a portion to which a connector (not shown) of a cable for supplying power from a power source such as a battery is connected. The nut 25 is a member for fixing the connected connector (not shown).

主体金具30は炭素鋼等により形成される略円筒形状の部材である。主体金具30は、軸線Oに沿って軸孔31が貫通し、外周面にねじ部32が形成されている。主体金具30は、ねじ部32よりも後端側に工具係合部33が形成されている。軸孔31は中軸20が挿入される貫通孔である。軸孔31の直径は中軸20の外径より大きいので、中軸20と軸孔31との間に空隙が形成される。ねじ部32は、内燃機関(図示せず)に嵌まり合う雄ねじである。工具係合部33は、ねじ部32を内燃機関のねじ穴(図示せず)に嵌めたり外したりするときに用いる工具(図示せず)が関わり合う形状(例えば六角形)をなす部位である。 The main metal fitting 30 is a substantially cylindrical member made of carbon steel or the like. In the main metal fitting 30, the shaft hole 31 penetrates along the axis O, and the threaded portion 32 is formed on the outer peripheral surface. The main metal fitting 30 has a tool engaging portion 33 formed on the rear end side of the screw portion 32. The shaft hole 31 is a through hole into which the center pole 20 is inserted. Since the diameter of the shaft hole 31 is larger than the outer diameter of the center pole 20, a gap is formed between the center pole 20 and the shaft hole 31. The screw portion 32 is a male screw that fits into an internal combustion engine (not shown). The tool engaging portion 33 is a portion having a shape (for example, a hexagon) in which a tool (not shown) used for fitting or disengaging the screw portion 32 into or disengaging a screw hole (not shown) of an internal combustion engine is involved. ..

主体金具30は、軸孔31の後端側において、Oリング22及び絶縁体23を介して中軸20を保持する。絶縁体23にリング24が接した状態で中軸20にリング24が加締められることで、絶縁体23は軸方向の位置が固定される。絶縁体23によって主体金具30の後端側とリング24とが絶縁される。主体金具30は、軸孔31の先端側に筒状体40が固定されている。 The main metal fitting 30 holds the center pole 20 on the rear end side of the shaft hole 31 via the O-ring 22 and the insulator 23. By crimping the ring 24 to the center pole 20 with the ring 24 in contact with the insulator 23, the position of the insulator 23 in the axial direction is fixed. The insulator 23 insulates the rear end side of the main metal fitting 30 from the ring 24. The main metal fitting 30 has a tubular body 40 fixed to the tip end side of the shaft hole 31.

筒状体40は先端が閉じた金属製の部材である。筒状体40は軸孔31に圧入されることで主体金具30に固定される。筒状体40の材料は、例えばニッケル基合金、ステンレス鋼などの耐熱合金が挙げられる。筒状体40は中軸20の先端側が挿入されている。シール材34は、中軸20と筒状体40との間に挟まれた円筒形状の絶縁部材である。シール材34は中軸20と筒状体40との間隔を維持し、中軸20と筒状体40との間を密閉する。発熱体50は軸線Oに沿って筒状体40に収容されている。絶縁粉末70は筒状体40に充填されている。 The tubular body 40 is a metal member having a closed tip. The tubular body 40 is fixed to the main metal fitting 30 by being press-fitted into the shaft hole 31. Examples of the material of the tubular body 40 include heat-resistant alloys such as nickel-based alloys and stainless steel. The tip side of the center pole 20 is inserted into the tubular body 40. The sealing material 34 is a cylindrical insulating member sandwiched between the center pole 20 and the tubular body 40. The sealing material 34 maintains a distance between the center pole 20 and the tubular body 40, and seals between the center pole 20 and the tubular body 40. The heating element 50 is housed in the tubular body 40 along the axis O. The insulating powder 70 is filled in the tubular body 40.

図2に示すように筒状体40は、溶融部42によって、筒状の母材41の先端が塞がれている。溶融部42の組織は母材41の組織とは異なる。溶融部42の組織には柱状晶が含まれている。母材41の組織には、例えば繊維状組織や鍛造組織などが含まれている。母材41や溶融部42の組織は、切断面の電解エッチング処理などの公知の手段によって確認できる。本実施形態では、筒状体40の外径は、溶融部42を除き、軸線方向の全長に亘ってほぼ同一である。 As shown in FIG. 2, in the tubular body 40, the tip of the tubular base material 41 is closed by the melting portion 42. The structure of the molten portion 42 is different from the structure of the base metal 41. Columnar crystals are contained in the structure of the molten portion 42. The structure of the base material 41 includes, for example, a fibrous structure and a forged structure. The structure of the base material 41 and the molten portion 42 can be confirmed by a known means such as electrolytic etching treatment of the cut surface. In the present embodiment, the outer diameter of the tubular body 40 is substantially the same over the entire length in the axial direction except for the molten portion 42.

発熱体50の先端部は溶融部42を介して筒状体40と接合されている。発熱体50は導体を螺旋状に巻いたコイルであり、軸線Oに沿って配置されている。発熱体50の後端部は溶接部60を介して後端コイル61と接合されている。後端コイル61は中軸20に接合されている。発熱体50の材質に制限はないが、例えばFe,Cr,Al,Ni,Mo,W及びCo等の金属、並びにこれらの元素のいずれかを主成分とする合金が挙げられる。後端コイル61の材質としては、例えば純Ni、Ni合金、Co合金などが挙げられる。後端コイル61を省略して、発熱体50を中軸20に直接接続することは当然可能である。 The tip of the heating element 50 is joined to the tubular body 40 via the melting portion 42. The heating element 50 is a coil in which a conductor is spirally wound, and is arranged along the axis O. The rear end portion of the heating element 50 is joined to the rear end coil 61 via a welded portion 60. The rear end coil 61 is joined to the center pole 20. The material of the heating element 50 is not limited, and examples thereof include metals such as Fe, Cr, Al, Ni, Mo, W, and Co, and alloys containing any of these elements as a main component. Examples of the material of the rear end coil 61 include pure Ni, Ni alloy, and Co alloy. Of course, it is possible to omit the rear end coil 61 and directly connect the heating element 50 to the center pole 20.

絶縁粉末70は電気絶縁性を有し、且つ、高温下で熱伝導性を有する粉末である。絶縁粉末70には、発熱体50から筒状体40へ熱を移動させる機能、発熱体50と筒状体40との短絡を防ぐ機能、発熱体50を振動し難くして断線を防ぐ機能がある。絶縁粉末70としては、例えばMgO、Al等の酸化物粉末が挙げられる。さらにCaO,ZrO及びSiO,Si等の粉末を添加できる。 The insulating powder 70 is a powder having electrical insulation and thermal conductivity at a high temperature. The insulating powder 70 has a function of transferring heat from the heating element 50 to the tubular body 40, a function of preventing a short circuit between the heating element 50 and the tubular body 40, and a function of making the heating element 50 difficult to vibrate and preventing disconnection. is there. The insulating powder 70, for example MgO, include oxide powders such as Al 2 O 3. Further, powders such as CaO, ZrO 2 and SiO 2 , Si can be added.

グロープラグ10は、例えば次のようにして製造される。まず、所定の組成を有する抵抗発熱線をコイル状に加工し、発熱体50及び後端コイル61をそれぞれ製造する。溶接により溶接部60を形成して発熱体50と後端コイル61とを接合し、次いで、後端コイル61を中軸20に接合する。 The glow plug 10 is manufactured, for example, as follows. First, a resistance heating wire having a predetermined composition is processed into a coil shape to manufacture a heating element 50 and a rear end coil 61, respectively. A welded portion 60 is formed by welding to join the heating element 50 and the rear end coil 61, and then the rear end coil 61 is joined to the center pole 20.

一方、所定の組成を有する金属鋼管(母材41)を筒状体40の最終寸法よりも大径に形成し、かつ、その先端を他の部分よりも減径させて、先端が開口した先窄まり状の筒状前駆体を製造する。筒状前駆体の内部に中軸20と一体となった発熱体50及び後端コイル61を挿入し、筒状前駆体の先窄まり状の開口部に発熱体50の先端部を配置する。筒状前駆体の開口部を溶融して発熱体50の先端部が埋め込まれた溶融部42を形成し、筒状前駆体の先端を閉塞する。これにより筒状体40の溶融部42に発熱体50が接合されたヒータ前駆体が得られる。 On the other hand, a metal steel pipe (base material 41) having a predetermined composition is formed to have a diameter larger than the final size of the tubular body 40, and its tip is reduced in diameter from other parts so that the tip is open. Produce a constricted tubular precursor. A heating element 50 integrated with the center pole 20 and a rear end coil 61 are inserted inside the tubular precursor, and the tip portion of the heating element 50 is arranged in the constricted opening of the tubular precursor. The opening of the tubular precursor is melted to form a molten portion 42 in which the tip of the heating element 50 is embedded, and the tip of the tubular precursor is closed. As a result, a heater precursor in which the heating element 50 is bonded to the molten portion 42 of the tubular body 40 is obtained.

次に、ヒータ前駆体の筒状体40内に絶縁粉末70を充填した後、筒状体40の後端の開口部と中軸20との間にシール材34を挿入して、筒状体40を封止する。次いで、筒状体40が所定の外径になるまで筒状体40にスウェージング加工を施す。スウェージング加工後の筒状体40を主体金具30の軸孔31に圧入固定し、中軸20の後端から主体金具30と中軸20との間にOリング22及び絶縁体23を嵌め込む。リング24で中軸20を加締めてグロープラグ10を得る。 Next, after filling the tubular body 40 of the heater precursor with the insulating powder 70, the sealing material 34 is inserted between the opening at the rear end of the tubular body 40 and the central shaft 20, and the tubular body 40 is inserted. To seal. Next, the tubular body 40 is subjected to a swaging process until the tubular body 40 has a predetermined outer diameter. The cylindrical body 40 after the swaging process is press-fitted and fixed into the shaft hole 31 of the main metal fitting 30, and the O-ring 22 and the insulator 23 are fitted between the main metal fitting 30 and the central shaft 20 from the rear end of the central shaft 20. The center pole 20 is crimped with the ring 24 to obtain the glow plug 10.

図3に示すようにグロープラグ10の軸線Oを含む切断面には、軸線Oを境にして一方側(図3左側)に配された発熱体50の断面のうち溶融部42の外の最先端に位置する第1発熱体断面51、軸線Oを境にして他方側(図3右側)に配された発熱体50の断面のうち溶融部42の外の最先端に位置する第2発熱体断面52、軸線Oを境にして一方側に配された発熱体50の断面のうち第1発熱体断面51の1つ後ろ側に位置する第3発熱体断面53、軸線Oを境にして他方側に配された発熱体50の断面のうち第2発熱体断面52の1つ後ろ側に位置する第4発熱体断面54、軸線Oを境にして一方側に配された発熱体50の断面のうち第3発熱体断面53の1つ後ろ側に位置する第5発熱体断面55、及び、軸線Oを境にして他方側に配された発熱体50の断面のうち第4発熱体断面54の1つ後ろ側に位置する第6発熱体断面56が現出する。 As shown in FIG. 3, on the cut surface including the axis O of the glow plug 10, the outermost part of the cross section of the heating element 50 arranged on one side (left side of FIG. 3) with the axis O as a boundary, outside the molten portion 42. The first heating element cross section 51 located at the tip, and the second heating element located at the most tip outside the melting portion 42 of the cross section of the heating element 50 arranged on the other side (right side of FIG. 3) with the axis O as the boundary. Of the cross sections of the heating element 50 arranged on one side with the cross section 52 and the axis O as the boundary, the third heating element cross section 53 located one side behind the first heating element cross section 51 and the other with the axis O as the boundary. Of the cross sections of the heating element 50 arranged on the side, the fourth heating element cross section 54 located one behind the second heating element cross section 52, the cross section of the heating element 50 arranged on one side with the axis O as a boundary. Of the 5th heating element cross section 55 located one behind the 3rd heating element cross section 53 and the 4th heating element cross section 54 of the cross section of the heating element 50 arranged on the other side with the axis O as the boundary. The sixth heating element cross section 56, which is located one side behind the above, appears.

グロープラグ10の切断面は、SEM等の顕微鏡を用いて観察される。発熱体50や筒状体40の断面は、画像解析ソフトを用い、視野内の画像を2値化処理して特定できる。第1発熱体断面51及び第2発熱体断面52は、溶融部42の外に断面の全体が現出する部位である。従って、溶融部42に発熱体50の断面の一部または全部が含まれる部位は、第1発熱体断面51及び第2発熱体断面52ではない。「溶融部42に発熱体50の断面の一部が含まれる」とは、発熱体50の断面と溶融部42の断面とが隣接していることを指す。 The cut surface of the glow plug 10 is observed using a microscope such as SEM. The cross section of the heating element 50 or the tubular body 40 can be identified by binarizing the image in the visual field using image analysis software. The first heating element cross section 51 and the second heating element cross section 52 are portions where the entire cross section appears outside the molten portion 42. Therefore, the portion where the molten portion 42 includes a part or all of the cross section of the heating element 50 is not the first heating element cross section 51 and the second heating element cross section 52. "The melting portion 42 includes a part of the cross section of the heating element 50" means that the cross section of the heating element 50 and the cross section of the melting portion 42 are adjacent to each other.

なお、グロープラグ10を観察する切断面としては、溶融部42に発熱体50の断面の一部が含まれる切断面よりも、溶融部42に発熱体50の一部が含まれずに、発熱体50の最先端として第1発熱体断面51及び第2発熱体断面52が現出している切断面が好ましい。さらに、グロープラグ10を観察する切断面としては、発熱体50と後端コイル61との溶接部60が現出しない切断面が好ましい。 As for the cut surface for observing the glow plug 10, the heating element 42 does not include a part of the heating element 50 as compared with the cut surface in which the melting part 42 includes a part of the cross section of the heating element 50. A cut surface in which the first heating element cross section 51 and the second heating element cross section 52 are exposed is preferable as the cutting edge of the 50. Further, as the cut surface for observing the glow plug 10, a cut surface in which the welded portion 60 between the heating element 50 and the rear end coil 61 does not appear is preferable.

第1発熱体断面51、第2発熱体断面52、第3発熱体断面53、第4発熱体断面54、第5発熱体断面55、及び、第6発熱体断面56は、軸線Oを境にして軸線Oの両側に現出する断面である。従って、軸線Oに交わる断面は、第1発熱体断面51、第2発熱体断面52、第3発熱体断面53、第4発熱体断面54、第5発熱体断面55、及び、第6発熱体断面56ではない。 The first heating element cross section 51, the second heating element cross section 52, the third heating element cross section 53, the fourth heating element cross section 54, the fifth heating element cross section 55, and the sixth heating element cross section 56 are bounded by the axis O. It is a cross section that appears on both sides of the axis O. Therefore, the cross sections intersecting the axis O are the first heating element cross section 51, the second heating element cross section 52, the third heating element cross section 53, the fourth heating element cross section 54, the fifth heating element cross section 55, and the sixth heating element. It is not a cross section 56.

本実施形態では、第1発熱体断面51は第2発熱体断面52よりも先端側に位置し、第2発熱体断面52は第3発熱体断面53よりも先端側に位置する。第3発熱体断面53は第4発熱体断面54よりも先端側に位置し、第4発熱体断面54は第5発熱体断面55よりも先端側に位置する。さらに、第5発熱体断面55は第6発熱体断面56よりも先端側に位置する。 In the present embodiment, the first heating element cross section 51 is located on the tip side of the second heating element cross section 52, and the second heating element cross section 52 is located on the tip side of the third heating element cross section 53. The third heating element cross section 53 is located on the tip side of the fourth heating element cross section 54, and the fourth heating element cross section 54 is located on the tip side of the fifth heating element cross section 55. Further, the fifth heating element cross section 55 is located closer to the tip side than the sixth heating element cross section 56.

第1発熱体断面51の最後端と第3発熱体断面53の最先端との間の軸線Oの方向における距離Aは、第3発熱体断面53の最後端と第5発熱体断面55の最先端との間の軸線Oの方向における距離Bより大きい(A>B)。さらに、第2発熱体断面52の最後端と第4発熱体断面54の最先端との間の軸線Oの方向における距離Cは、第4発熱体断面54の最後端と第6発熱体断面56の最先端との間の軸線Oの方向における距離Dより大きい(C>D)。先端側の巻線間の距離を調整した発熱体50を用いてヒータ前駆体を製造することにより、このようなグロープラグ10が得られる。 The distance A in the direction of the axis O between the rearmost end of the first heating element cross section 51 and the leading edge of the third heating element cross section 53 is the maximum of the rearmost end of the third heating element cross section 53 and the fifth heating element cross section 55. It is larger than the distance B in the direction of the axis O with the tip (A> B). Further, the distance C in the direction of the axis O between the rearmost end of the second heating element cross section 52 and the leading edge of the fourth heating element cross section 54 is the rearmost end of the fourth heating element cross section 54 and the sixth heating element cross section 56. Greater than the distance D in the direction of the axis O with the cutting edge of (C> D). Such a glow plug 10 can be obtained by manufacturing a heater precursor using a heating element 50 in which the distance between windings on the tip side is adjusted.

このようにすれば、第3発熱体断面53及び第4発熱体断面54を構成する導体を、第1発熱体断面51及び第2発熱体断面52を構成する導体から後端側へ遠ざけられる。これにより発熱時に、第1発熱体断面51及び第2発熱体断面52を構成する導体が、第3発熱体断面53及び第4発熱体断面54を構成する導体から受ける熱エネルギーを減らすことができる。よって、第1発熱体断面51及び第2発熱体断面52を構成する導体が過剰な温度となることを抑制できる。 In this way, the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54 are moved away from the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 toward the rear end side. As a result, it is possible to reduce the heat energy received by the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 from the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54 during heat generation. .. Therefore, it is possible to prevent the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 from becoming excessively hot.

さらに、第3発熱体断面53及び第4発熱体断面54を構成する導体が、第1発熱体断面51及び第2発熱体断面52を構成する導体から遠ざかると、第1発熱体断面51及び第2発熱体断面52を構成する導体が加熱しなければならない筒状体40の面積が相対的に大きくなる。これにより、第1発熱体断面51及び第2発熱体断面52を構成する導体の熱移動が促進されるので、第1発熱体断面51及び第2発熱体断面52を構成する導体が過剰な温度となることを抑制できる。よって、発熱体50の第1発熱体断面51及び第2発熱体断面52を構成する導体の溶融による破損(短絡や断線など)を抑制できる。 Further, when the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54 are moved away from the conductors constituting the first heating element cross section 51 and the second heating element cross section 52, the first heating element cross section 51 and the first heating element cross section 51 2 The area of the tubular body 40 that the conductor forming the heating element cross section 52 must heat becomes relatively large. As a result, the heat transfer of the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 is promoted, so that the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 have excessive temperatures. Can be suppressed. Therefore, damage (short circuit, disconnection, etc.) due to melting of the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 of the heating element 50 can be suppressed.

一方、発熱体50の導体間の距離がA>B且つC>Dであると、第3発熱体断面53及び第4発熱体断面54を構成する導体が、第1発熱体断面51及び第2発熱体断面52を構成する導体から遠ざかるだけでなく、発熱体50の軸線方向の全長が長くなるため、グロープラグ10の先端側での発熱が低下するおそれがある。なお、発熱体50の軸線方向の全長は、第1発熱体断面51の中心と、切断面に現出する発熱体50の複数の断面のうち最後端に位置する断面58の中心と、の間の軸線方向の距離L1+L2である。 On the other hand, when the distances between the conductors of the heating element 50 are A> B and C> D, the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54 are the first heating element cross section 51 and the second. Not only is the heating element away from the conductor forming the cross section 52, but the total length of the heating element 50 in the axial direction is increased, so that the heat generation on the tip side of the glow plug 10 may be reduced. The total length of the heating element 50 in the axial direction is between the center of the first heating element cross section 51 and the center of the cross section 58 located at the rearmost end of the plurality of cross sections of the heating element 50 appearing on the cut surface. The distance in the axial direction of is L1 + L2.

そこで、第1発熱体断面51の軸線Oの方向の長さEを、第3発熱体断面53の軸線Oの方向の長さFよりも小さくする。これにより、発熱体50の軸線方向の全長を長くすることなく、距離Aを距離Bより大きくすることができる。 Therefore, the length E in the direction of the axis O of the first heating element cross section 51 is made smaller than the length F in the direction of the axis O of the third heating element cross section 53. As a result, the distance A can be made larger than the distance B without increasing the total length of the heating element 50 in the axial direction.

また、第2発熱体断面52の軸線Oの方向の長さGを、第4発熱体断面54の軸線Oの方向の長さHよりも小さくする。これにより、発熱体50の軸線方向の全長を長くすることなく、距離Cを距離Dより大きくすることができる。 Further, the length G in the direction of the axis O of the second heating element cross section 52 is made smaller than the length H in the direction of the axis O of the fourth heating element cross section 54. As a result, the distance C can be made larger than the distance D without increasing the total length of the heating element 50 in the axial direction.

よって、第1発熱体断面51及び第2発熱体断面52を構成する導体の破損を抑制しつつ、筒状体40のより先端側に発熱体50を配置し、グロープラグ10の先端側での発熱を確保できる。 Therefore, while suppressing damage to the conductors constituting the first heating element cross section 51 and the second heating element cross section 52, the heating element 50 is arranged on the tip side of the tubular body 40 and on the tip side of the glow plug 10. Heat generation can be secured.

さらに、第1発熱体断面51や第2発熱体断面52を構成する導体の抵抗を、第3発熱体断面53や第4発熱体断面54を構成する導体の抵抗よりも大きくし易くできるので、第1発熱体断面51や第2発熱体断面52を構成する導体が発生する熱エネルギーを、第3発熱体断面53や第4発熱体断面54を構成する導体が発生する熱エネルギーよりも大きくし易くできる。その結果、筒状体40の溶融部42付近の昇温性能を確保できる
なお、第1発熱体断面51、第2発熱体断面52、第3発熱体断面53及び第4発熱体断面54の軸線方向の長さは、発熱体50の各断面に外接する角が90°の四角形(長方形または正方形)を求めて算出する。発熱体50の断面に外接する四角形の対向する2辺は軸線Oに平行な線分であり、その2辺に垂直に交わる2辺は軸線Oに垂直な線分である。各断面の軸線方向の長さは、各断面に外接する四角形のうち軸線Oに平行な線分の長さである。発熱体50の断面の軸線方向の長さは、筒状体40に施すスウェージング加工の圧力によって調整できる。これに限られるものではなく、断面の軸線方向の長さを部分的に予め異ならせた発熱体50を用いても良い。
Further, the resistance of the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 can be easily made larger than the resistance of the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54. Make the thermal energy generated by the conductors constituting the first heating element cross section 51 and the second heating element cross section 52 larger than the thermal energy generated by the conductors constituting the third heating element cross section 53 and the fourth heating element cross section 54. It can be made easy. As a result, the heating performance in the vicinity of the molten portion 42 of the tubular body 40 can be ensured. The axes of the first heating element cross section 51, the second heating element cross section 52, the third heating element cross section 53, and the fourth heating element cross section 54. The length in the direction is calculated by obtaining a quadrangle (rectangle or square) having an angle of 90 ° circumscribing each cross section of the heating element 50. The two opposite sides of the quadrangle circumscribing the cross section of the heating element 50 are line segments parallel to the axis O, and the two sides perpendicular to the two sides are line segments perpendicular to the axis O. The length of each cross section in the axial direction is the length of a line segment parallel to the axis O of the quadrangles circumscribing each cross section. The axial length of the cross section of the heating element 50 can be adjusted by the pressure of the swaging process applied to the tubular body 40. The heating element 50 is not limited to this, and a heating element 50 in which the length in the axial direction of the cross section is partially different may be used.

グロープラグ10は、軸線Oを含む切断面において、発熱体50の軸線方向の全長の半分の位置である中間位置57よりも先端側の発熱体50の断面のピッチP1の平均値が、中間位置57よりも後端側の発熱体50の断面のピッチP2の平均値よりも小さい。中間位置57は、発熱体50の軸線方向の全長の距離L1+L2の半分の位置である。中間位置57に発熱体50の断面が存在する場合と存在しない場合があるが、どちらでも構わない。 In the glow plug 10, the average value of the pitch P1 of the cross section of the heating element 50 on the tip side of the intermediate position 57, which is the position of half of the total length of the heating element 50 in the axial direction on the cutting surface including the axis O, is the intermediate position. It is smaller than the average value of the pitch P2 of the cross section of the heating element 50 on the rear end side of 57. The intermediate position 57 is a position that is half of the distance L1 + L2 of the total length in the axial direction of the heating element 50. The cross section of the heating element 50 may or may not be present at the intermediate position 57, but it does not matter.

発熱体50の断面(第1発熱体断面51や断面58等)の中心は、断面の軸線方向の長さを求める場合と同様に、第1発熱体断面51や断面58に外接する角が90°の四角形(長方形または正方形)を求めて算出する。第1発熱体断面51や断面58に外接する四角形の対向する2辺は軸線Oに平行な線分であり、その2辺に垂直に交わる2辺は軸線Oに垂直な線分である。その四角形の対角線の交点を、発熱体50の断面の中心とする。 The center of the cross section of the heating element 50 (first heating element cross section 51, cross section 58, etc.) has a 90 circumscribing angle to the first heating element cross section 51 or cross section 58, as in the case of obtaining the length of the cross section in the axial direction. Calculate by finding a quadrangle (rectangle or square) of °. The two opposing sides of the quadrangle circumscribing the first heating element cross section 51 and the cross section 58 are line segments parallel to the axis O, and the two sides perpendicular to the two sides are line segments perpendicular to the axis O. The intersection of the diagonal lines of the quadrangle is the center of the cross section of the heating element 50.

発熱体50のピッチP1,P2は、発熱体50の隣接する断面の中心間の軸線Oの方向の距離である。ピッチP1,P2は、軸線Oを境にして一方側(図3左側)に配された断面、及び、軸線Oを境にして他方側(図3右側)に配された断面についてそれぞれ求め、算術平均をとる。中間位置57に発熱体50の断面が存在する場合、その断面はピッチP1,P2の算出に使わない。なお、図3ではピッチP1,P2はそれぞれ1つのみが図示され、その他のピッチP1,P2の図示は省略されている。 The pitches P1 and P2 of the heating element 50 are distances in the direction of the axis O between the centers of adjacent cross sections of the heating element 50. The pitches P1 and P2 are calculated for the cross section arranged on one side (left side in FIG. 3) with the axis O as the boundary and the cross section arranged on the other side (right side in FIG. 3) with the axis O as the boundary. Take the average. If there is a cross section of the heating element 50 at the intermediate position 57, that cross section is not used to calculate the pitches P1 and P2. In FIG. 3, only one pitch P1 and one P2 are shown, and the other pitches P1 and P2 are not shown.

中間位置57よりも先端側の発熱体50のピッチP1の平均値を、中間位置57よりも後端側の発熱体50のピッチP2の平均値よりも小さくすることにより、発熱体50の中間位置57よりも先端側の導体の抵抗を、中間位置57よりも後端側の導体の抵抗よりも大きくできる。その結果、中間位置57よりも先端側の導体が発生する熱エネルギーを、中間位置57よりも後端側の導体が発生する熱エネルギーよりも大きくできるので、グロープラグ10の先端側での発熱をより確保できる。 By making the average value of the pitch P1 of the heating element 50 on the tip side of the intermediate position 57 smaller than the average value of the pitch P2 of the heating element 50 on the rear end side of the intermediate position 57, the intermediate position of the heating element 50 The resistance of the conductor on the front end side of 57 can be made larger than the resistance of the conductor on the rear end side of the intermediate position 57. As a result, the heat energy generated by the conductor on the tip side of the intermediate position 57 can be made larger than the heat energy generated by the conductor on the rear end side of the intermediate position 57, so that heat is generated on the tip side of the glow plug 10. More can be secured.

グロープラグ10は、第1発熱体断面51を通り径方向に延びる直線62が交わる筒状体40の第1部位43の平均厚さが、第3発熱体断面53を通り径方向に延びる直線63が交わる筒状体40の第2部位44の平均厚さよりも大きい。直線62,63は軸線Oに垂直な直線である。本実施形態では、筒状体40の母材41の内径を先端側に向かうにつれて縮径させ、筒状体40を肉厚にすることにより、第1部位43及び第2部位44が作られている。 In the glow plug 10, the average thickness of the first portion 43 of the tubular body 40 at which the straight line 62 extending in the radial direction through the first heating element cross section 51 intersects is the straight line 63 extending in the radial direction through the third heating element cross section 53. It is larger than the average thickness of the second portion 44 of the tubular body 40 where the members intersect. The straight lines 62 and 63 are straight lines perpendicular to the axis O. In the present embodiment, the inner diameter of the base material 41 of the tubular body 40 is reduced toward the tip side, and the tubular body 40 is made thicker to form the first portion 43 and the second portion 44. There is.

第1部位43の平均厚さは、少なくとも、第1発熱体断面51の最先端を通る直線62が交わる第1部位43の厚さ、第1発熱体断面51の最後端を通る直線62が交わる第1部位43の厚さ、及び、第1発熱体断面51の中心を通る直線62が交わる第1部位43の厚さの3点の観測値の算術平均から求めることができる。観測値の数をさらに増やしても良い。 The average thickness of the first portion 43 is at least the thickness of the first portion 43 where the straight line 62 passing through the leading edge of the first heating element cross section 51 intersects, and the straight line 62 passing through the rearmost end of the first heating element cross section 51 intersects. It can be obtained from the arithmetic mean of the observed values at three points of the thickness of the first part 43 and the thickness of the first part 43 where the straight line 62 passing through the center of the first heating element cross section 51 intersects. The number of observations may be further increased.

同様に第2部位44の平均厚さは、少なくとも、第3発熱体断面53の最先端を通る直線63が交わる第2部位44の厚さ、第3発熱体断面53の最後端を通る直線63が交わる第2部位44の厚さ、及び、第3発熱体断面53の中心を通る直線63が交わる第2部位44の厚さの3点の観測値の算術平均から求めることができる。観測値の数をさらに増やしても良い。 Similarly, the average thickness of the second portion 44 is at least the thickness of the second portion 44 where the straight line 63 passing through the leading edge of the third heating element cross section 53 intersects, and the straight line 63 passing through the rearmost end of the third heating element cross section 53. It can be obtained from the arithmetic mean of the observed values at three points, that is, the thickness of the second portion 44 where is intersected and the thickness of the second portion 44 where the straight line 63 passing through the center of the third heating element cross section 53 intersects. The number of observations may be further increased.

ここで、発熱体50の発熱によって加熱される筒状体40は、第2部位44よりも先端側に位置する第1部位43が、第2部位44よりも高温になり易いので、第1部位43が第2部位44よりも酸化消耗し易い。従って、第1部位43の平均厚さを第2部位44の平均厚さよりも大きくすることにより、酸化消耗によって破損するまでの筒状体40の寿命を長くできる。よって、筒状体40の破損に起因する発熱体50の劣化を抑制できる。 Here, in the tubular body 40 heated by the heat generated by the heating element 50, the first portion 43 located on the tip side of the second portion 44 tends to be hotter than the second portion 44, so that the first portion 43 is more easily oxidatively consumed than the second site 44. Therefore, by making the average thickness of the first portion 43 larger than the average thickness of the second portion 44, the life of the tubular body 40 until it is damaged by oxidative consumption can be extended. Therefore, deterioration of the heating element 50 due to breakage of the tubular body 40 can be suppressed.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(サンプルの製造)
Fe−Cr−Al合金製のコイル状の発熱体(発熱コイル)をNi基合金製の筒状体の内側に配置し、発熱体と筒状体とを接合し、発熱体と中軸とをNi製の後端コイルで接続したグロープラグのサンプルを作成した。サンプルは、筒状体の外径が3.2mm、発熱体の外径(コイル径)が1.5mm、第1発熱体断面および第2発熱体断面の軸線方向の長さが0.35mm、第3発熱体断面および第4発熱体断面の軸線方向の長さが0.40mmとなるように、発熱体を構成する導体の直径、スウェージング加工の条件などを設定した。
(Production of sample)
A coil-shaped heating element (heating coil) made of Fe-Cr-Al alloy is placed inside the tubular body made of Ni-based alloy, the heating element and the tubular body are joined, and the heating element and the central shaft are connected to Ni. A sample of a glow plug connected with a rear end coil made of aluminum was prepared. In the sample, the outer diameter of the tubular body is 3.2 mm, the outer diameter (coil diameter) of the heating element is 1.5 mm, and the axial lengths of the first heating element cross section and the second heating element cross section are 0.35 mm. The diameter of the conductor constituting the heating element, the conditions for swaging, and the like were set so that the axial lengths of the third heating element cross section and the fourth heating element cross section were 0.40 mm.

発熱体のピッチ、筒状体の肉厚などを異ならせて、発熱体の断面間の距離A,B,C,D、発熱体のピッチ比(発熱体の先端側のピッチP1の平均値/後端側のピッチP2の平均値)、筒状体の厚さ比(筒状体の第2部位の平均厚さ/第2部位の平均厚さ)が異なる、表1に示す種々のサンプル1〜6を得た。サンプル1〜6は距離A,B,C,D、発熱体のピッチ比、筒状体の厚さ比は異なるが、発熱体の巻き数、発熱体の展開長、発熱体の断面の軸線方向の長さ等のその他の要素は同一にした。 The distances A, B, C, D between the cross sections of the heating element, and the pitch ratio of the heating element (average value of the pitch P1 on the tip side of the heating element /) by making the pitch of the heating element and the wall thickness of the tubular body different. Various samples 1 shown in Table 1 in which the average value of the pitch P2 on the rear end side) and the thickness ratio of the tubular body (average thickness of the second portion of the tubular body / average thickness of the second portion) are different. I got ~ 6. Samples 1 to 6 have different distances A, B, C, D, a pitch ratio of the heating element, and a thickness ratio of the tubular body, but the number of turns of the heating element, the deployment length of the heating element, and the axial direction of the cross section of the heating element. Other factors such as the length of the are the same.

表1において、発熱体のピッチ比が1未満であるのは、発熱体の先端側のピッチP1が後端側のピッチP2より小さいことを示す。筒状体の厚さ比が1未満であるのは、第2部位が第1部位より薄いこと、即ち第1部位が第2部位より厚いことを示す。 In Table 1, the pitch ratio of the heating element is less than 1, indicating that the pitch P1 on the front end side of the heating element is smaller than the pitch P2 on the rear end side. When the thickness ratio of the tubular body is less than 1, it means that the second part is thinner than the first part, that is, the first part is thicker than the second part.

なお、各サンプルの各種部位の寸法は、筒状体の温度測定および耐久試験(後述する)を行ったサンプルと同じ条件で製造した別のサンプルを、軸線を含む平面によって切断したときの切り口に現れる部位に基づいて測定した。 In addition, the dimensions of various parts of each sample are the cut end when another sample manufactured under the same conditions as the sample subjected to the temperature measurement and durability test (described later) of the tubular body is cut by the plane including the axis. Measurements were made based on the site of appearance.

Figure 2020139652
(筒状体の温度測定)
各サンプルの中軸と主体金具との間に11Vの直流電圧を2秒間印加し、次いで中軸と主体金具との間に4.5Vの直流電圧を58秒間印加した後の筒状体の表面の温度を放射温度計で測定した。温度を測定した位置は、筒状体の先端から後端側へ2mm離れた位置、筒状体の先端から後端側へ3mm離れた位置、筒状体の先端から後端側へ4mm離れた位置の3か所であった。3か所の温度と、3つの温度の最大値と最低値との差(範囲)と、を表1に記した。
Figure 2020139652
(Temperature measurement of tubular body)
The temperature of the surface of the tubular body after applying a DC voltage of 11 V between the center pole and the main metal fitting of each sample for 2 seconds and then applying a DC voltage of 4.5 V between the center pole and the main metal fitting for 58 seconds. Was measured with a radiation thermometer. The temperature was measured at a position 2 mm away from the tip of the tubular body toward the rear end side, a position 3 mm away from the tip end side of the tubular body toward the rear end side, and a position 4 mm away from the tip end side of the tubular body. There were three locations. Table 1 shows the temperatures at the three locations and the difference (range) between the maximum and minimum values of the three temperatures.

(耐久性の評価)
筒状体の表面が最も高温になる位置(例えばサンプル1では筒状体の先端から後端側へ3mm離れた位置、サンプル2では筒状体の先端から後端側へ4mm離れた位置)が、電圧を印加してから2秒後に1000℃になるように、各サンプルの中軸と主体金具との間に直流電圧を2秒間印加した後、その位置が1100℃になるように中軸と主体金具との間に直流電圧を180秒間印加した。その後、通電を止め、その位置に常温(25℃)の空気を120秒間当てて空冷するという操作を1サイクルとして通電−空冷を繰り返し、7000サイクルを各サンプルに加える耐久試験を大気中で行った。筒状体の表面の温度は放射温度計によって測定した。
(Evaluation of durability)
The position where the surface of the tubular body becomes the hottest (for example, in sample 1, the position 3 mm away from the front end side of the tubular body, and in sample 2, the position 4 mm away from the front end side of the tubular body). After applying a DC voltage between the center shaft and the main metal fitting of each sample for 2 seconds so that the temperature becomes 1000 ° C. 2 seconds after the voltage is applied, the center shaft and the main metal fitting so that the position becomes 1100 ° C. A DC voltage was applied for 180 seconds between the two. After that, energization-air cooling was repeated with the operation of stopping the energization and applying air at room temperature (25 ° C) to the position for 120 seconds to cool the air, and 7000 cycles were added to each sample to perform a durability test in the atmosphere. .. The temperature of the surface of the tubular body was measured with a radiation thermometer.

評価は、耐久試験の7000サイクル経過時に異常(発熱体の断線)がなかったサンプルをA、5000サイクル以上7000サイクル未満で発熱体が断線したサンプルをB、3000サイクル以上5000サイクル未満で発熱体が断線したサンプルをC、3000サイクル未満で発熱体が断線したサンプルをDとした。結果は表1に記した。 The evaluation was based on the sample in which there was no abnormality (breakage of the heating element) after 7000 cycles of the durability test, the sample in which the heating element was broken in 5000 cycles or more and less than 7000 cycles, and the sample in which the heating element was broken in 3000 cycles or more and less than 5000 cycles. The broken sample was designated as C, and the sample in which the heating element was broken in less than 3000 cycles was designated as D. The results are shown in Table 1.

表1に示すように、距離A>Bであり距離C>Dであるサンプル1〜4は、筒状体の先端から後端側へ3mm離れた位置か4mm離れた位置が最高温度に到達し、5000サイクル未満では発熱体は断線しなかった。しかし、距離A<Bであり距離C<Dであるサンプル5,6は、筒状体の先端から後端側へ2mm離れた位置が最高温度に到達し、5000サイクル未満で発熱体が断線した。特にサンプル6に比べて距離A及び距離Cが短いサンプル5は、3000サイクル未満で発熱体が断線した。 As shown in Table 1, in the samples 1 to 4 having a distance A> B and a distance C> D, the maximum temperature is reached at a position 3 mm or 4 mm away from the front end side of the tubular body toward the rear end side. The heating element did not break in less than 5000 cycles. However, in samples 5 and 6 having a distance A <B and a distance C <D, the heating element reached the maximum temperature at a position 2 mm away from the tip end side of the tubular body toward the rear end side, and the heating element was disconnected in less than 5000 cycles. .. In particular, in sample 5, which has a shorter distance A and C than sample 6, the heating element was disconnected in less than 3000 cycles.

サンプル5とサンプル6とを比較すると、サンプル5の方が2mmの位置の温度が高く、さらに範囲が大きかった。サンプル5はサンプル6に比べて距離A及び距離Cが短いので、発熱体を構成する導体が過剰な温度となり、サンプル6よりも早期に断線したと推察される。このことから、距離A及び距離Cは発熱体の耐久性に大きな影響を与えることがわかる。従って、距離A>Bかつ距離C>Dとすることにより、サンプル1〜4は最高温度に到達した位置が筒状体の後端側へ移動し、その上、5000サイクル未満で発熱体が断線しなかったものと推察される。 Comparing Sample 5 and Sample 6, the temperature of Sample 5 was higher at the position of 2 mm, and the range was larger. Since the distance A and the distance C of the sample 5 are shorter than those of the sample 6, it is presumed that the conductors constituting the heating element have an excessive temperature and the wire is broken earlier than the sample 6. From this, it can be seen that the distance A and the distance C have a great influence on the durability of the heating element. Therefore, by setting the distance A> B and the distance C> D, the position where the maximum temperature is reached in the samples 1 to 4 moves to the rear end side of the tubular body, and the heating element is disconnected in less than 5000 cycles. It is presumed that he did not do it.

サンプル1,2は7000サイクル経過時に異常(発熱体の断線)がなかったが、サンプル3は5000サイクル以上7000サイクル未満で発熱体が断線した。サンプル1,2は発熱体のピッチ比が1未満であるのに対し、サンプル3は発熱体のピッチ比が1以上であった。サンプル1,2とサンプル3とを比較すると、サンプル3の方が温度の最大値が大きく、さらに範囲が大きかった。サンプル3はサンプル1,2に比べて発熱体の後端側のピッチP2の平均値が先端側のピッチP1の平均値よりも大きいので、発熱体の発熱の中心が後端側にずれる。そのため、発熱体の先端側によって所定の温度に発熱する際に、より後端側で発熱し、その結果、サンプル1,2よりも早期に断線したと推察される。 Samples 1 and 2 had no abnormality (breakage of the heating element) after 7,000 cycles, but sample 3 had the heating element broken after 5,000 cycles or more and less than 7,000 cycles. Samples 1 and 2 had a heating element pitch ratio of less than 1, whereas sample 3 had a heating element pitch ratio of 1 or more. Comparing Samples 1 and 2 with Sample 3, Sample 3 had a larger maximum temperature value and a larger range. In Sample 3, the average value of the pitch P2 on the rear end side of the heating element is larger than the average value of the pitch P1 on the tip side as compared with Samples 1 and 2, so that the center of heat generation of the heating element shifts to the rear end side. Therefore, when the tip side of the heating element generates heat to a predetermined temperature, the heat is generated on the rear end side, and as a result, it is presumed that the wire is broken earlier than the samples 1 and 2.

サンプル4も5000サイクル以上7000サイクル未満で発熱体が断線した。サンプル1,2は筒状体の厚さ比が1未満であるのに対し、サンプル4は筒状体の厚さ比が1以上であった。サンプル4は筒状体の第1部位の厚さが第2部位の厚さ以下なので、第2部位よりも先端側に位置する第1部位の酸化消耗により、発熱体が露出し、発熱体を構成する導体の劣化が生じ、サンプル1,2よりも早期に断線したと推察される。 In sample 4, the heating element was broken in 5000 cycles or more and less than 7000 cycles. Samples 1 and 2 had a tubular body thickness ratio of less than 1, whereas sample 4 had a tubular body thickness ratio of 1 or more. In sample 4, the thickness of the first part of the tubular body is less than or equal to the thickness of the second part, so the heating element is exposed due to oxidative consumption of the first part located on the tip side of the second part, and the heating element is exposed. It is presumed that the constituent conductors deteriorated and the wire was broken earlier than samples 1 and 2.

以上、実施形態に基づき本発明を説明したが、本発明はこの実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、筒状体40の形状は筒状である限り特に限定されず、軸線Oに直交する断面が円形状、楕円形状、多角形状等であってもよい。また、発熱体50の直径(コイル径)や線径、筒状体40の厚さや直径は、発熱体50や筒状体40の熱容量などを考慮して適宜設定できる。 Although the present invention has been described above based on the embodiments, the present invention is not limited to this embodiment, and it is easily possible that various improvements and modifications can be made without departing from the spirit of the present invention. It can be inferred. For example, the shape of the tubular body 40 is not particularly limited as long as it is tubular, and the cross section orthogonal to the axis O may be circular, elliptical, polygonal, or the like. Further, the diameter (coil diameter) and wire diameter of the heating element 50 and the thickness and diameter of the tubular body 40 can be appropriately set in consideration of the heat capacity of the heating element 50 and the tubular body 40 and the like.

実施形態では、第1発熱体断面51の軸線方向の長さEが第3発熱体断面53の軸線方向の長さFよりも小さく、且つ、第2発熱体断面52の軸線方向の長さGが第4発熱体断面54の軸線方向の長さHよりも小さい場合について説明したが、必ずしもこれに限られるものではない。第1発熱体断面51の軸線方向の長さEを第3発熱体断面53の軸線方向の長さFより小さくし、第2発熱体断面52の軸線方向の長さGを第4発熱体断面54の軸線方向の長さH以上にすることは当然可能である。 In the embodiment, the axial length E of the first heating element cross section 51 is smaller than the axial length F of the third heating element cross section 53, and the axial length G of the second heating element cross section 52. Although the case where is smaller than the axial length H of the fourth heating element cross section 54 has been described, the present invention is not necessarily limited to this. The axial length E of the first heating element cross section 51 is made smaller than the axial length F of the third heating element cross section 53, and the axial length G of the second heating element cross section 52 is the fourth heating element cross section. Of course, it is possible to make the length H or more in the axial direction of 54.

また、第1発熱体断面51の軸線方向の長さEを第3発熱体断面53の軸線方向の長さF以上にし、第2発熱体断面52の軸線方向の長さGを第4発熱体断面54の軸線方向の長さHより小さくすることは当然可能である。 Further, the axial length E of the first heating element cross section 51 is set to be equal to or greater than the axial length F of the third heating element cross section 53, and the axial length G of the second heating element cross section 52 is set to the fourth heating element. Of course, it is possible to make it smaller than the axial length H of the cross section 54.

実施形態では、溶融部41を除き、筒状体40の全長に亘って筒状体40の外径が同一である場合について説明したが、必ずしもこれに限られるものではない。例えば、後端側へ向かうにつれて外径が大きくなる部位を筒状体40に設けることは当然可能である。 In the embodiment, the case where the outer diameter of the tubular body 40 is the same over the entire length of the tubular body 40 except for the molten portion 41 has been described, but the present invention is not necessarily limited to this. For example, it is of course possible to provide the tubular body 40 with a portion whose outer diameter increases toward the rear end side.

実施形態では、筒状体40の溶融部42付近に第1部位43を設け、その後端側に第2部位44を設けることで、筒状体40の溶融部42付近の肉厚を厚くする場合について説明したが、必ずしもこれに限られるものではない。溶融部41を除き、筒状体40の全長に亘って肉厚を同一にすることは当然可能である。また、筒状体40の溶融部42付近の肉厚を厚くするだけでなく、筒状体40の第2部位44よりも後端側の部位の肉厚も厚くすることは当然可能である。 In the embodiment, when the first portion 43 is provided near the molten portion 42 of the tubular body 40 and the second portion 44 is provided near the rear end side, the wall thickness near the molten portion 42 of the tubular body 40 is increased. However, it is not necessarily limited to this. Of course, it is possible to make the wall thickness the same over the entire length of the tubular body 40 except for the molten portion 41. Further, it is naturally possible not only to increase the wall thickness in the vicinity of the molten portion 42 of the tubular body 40, but also to increase the wall thickness of the portion on the rear end side of the second portion 44 of the tubular body 40.

10 グロープラグ
40 筒状体
42 溶融部
43 第1部位
44 第2部位
50 発熱体
51 第1発熱体断面
52 第2発熱体断面
53 第3発熱体断面
54 第4発熱体断面
55 第5発熱体断面
56 第6発熱体断面
57 中間位置
62,63 直線
O 軸線
10 Glow plug 40 Cylindrical body 42 Melted part 43 1st part 44 2nd part 50 Heating element 51 1st heating element cross section 52 2nd heating element cross section 53 3rd heating element cross section 54 4th heating element cross section 55 5th heating element Cross section 56 6th heating element cross section 57 Intermediate position 62,63 Straight O axis

Claims (4)

先端が溶融部にて閉塞された筒状体と、
前記筒状体の内側に配置されたコイル状の発熱体と、を備えるグロープラグであって、
前記発熱体は前記溶融部を介して前記筒状体と接合されており、
前記グロープラグの軸線に沿うように前記グロープラグを切断した前記軸線を含む切断面を見たときに、
前記溶融部の外に配され、前記軸線を境にして一方側に配された前記発熱体の断面のうち最先端に位置する断面を第1発熱体断面とし、
前記溶融部の外に配され、前記軸線を境にして他方側に配された前記発熱体の断面のうち最先端に位置する断面を第2発熱体断面とし、
前記軸線を境にして一方側に配された前記発熱体の断面のうち前記第1発熱体断面の1つ後ろ側に位置する断面を第3発熱体断面とし、
前記軸線を境にして他方側に配された前記発熱体の断面のうち前記第2発熱体断面の1つ後ろ側に位置する断面を第4発熱体断面とし、
前記軸線を境にして一方側に配された前記発熱体の断面のうち前記第3発熱体断面の1つ後ろ側に位置する断面を第5発熱体断面とし、
前記軸線を境にして他方側に配された前記発熱体の断面のうち前記第4発熱体断面の1つ後ろ側に位置する断面を第6発熱体断面とした場合に、
前記第1発熱体断面の最後端と前記第3発熱体断面の最先端との間の前記軸線の方向における距離Aは、前記第3発熱体断面の最後端と前記第5発熱体断面の最先端との間の前記軸線の方向における距離Bより大きく、
前記第2発熱体断面の最後端と前記第4発熱体断面の最先端との間の前記軸線の方向における距離Cは、前記第4発熱体断面の最後端と前記第6発熱体断面の最先端との間の前記軸線の方向における距離Dより大きいグロープラグ。
A tubular body whose tip is closed by a molten part,
A glow plug comprising a coiled heating element arranged inside the tubular body.
The heating element is joined to the tubular body via the molten portion.
When looking at the cut surface including the axis of the glow plug cut along the axis of the glow plug,
The cross section located at the most end of the cross section of the heating element arranged outside the molten portion and arranged on one side of the axis is defined as the first heating element cross section.
The cross section located at the most end of the cross section of the heating element arranged outside the molten portion and arranged on the other side of the axis is defined as the second heating element cross section.
Of the cross sections of the heating element arranged on one side with the axis as a boundary, a cross section located one side behind the first heating element cross section is defined as a third heating element cross section.
Of the cross sections of the heating element arranged on the other side with the axis as a boundary, a cross section located one side behind the second heating element cross section is defined as a fourth heating element cross section.
Of the cross sections of the heating element arranged on one side with the axis as a boundary, a cross section located one side behind the third heating element cross section is defined as a fifth heating element cross section.
When the cross section of the heating element arranged on the other side of the axis line and located behind the fourth heating element cross section is defined as the sixth heating element cross section.
The distance A in the direction of the axis between the rearmost end of the first heating element cross section and the leading edge of the third heating element cross section is the maximum of the rearmost end of the third heating element cross section and the fifth heating element cross section. Greater than the distance B in the direction of the axis between the tip and
The distance C in the direction of the axis between the rearmost end of the second heating element cross section and the leading edge of the fourth heating element cross section is the maximum of the rearmost end of the fourth heating element cross section and the sixth heating element cross section. A glow plug greater than the distance D in the direction of the axis between the tip and the tip.
前記切断面において、
前記発熱体は、前記第1発熱体断面の前記軸線の方向の長さEが前記第3発熱体断面の前記軸線の方向の長さFよりも小さい、及び/又は、前記第2発熱体断面の前記軸線の方向の長さGが前記第4発熱体断面の前記軸線の方向の長さHよりも小さい請求項1記載のグロープラグ。
On the cut surface
In the heating element, the length E in the axial direction of the first heating element cross section is smaller than the length F in the axial direction of the third heating element cross section, and / or the second heating element cross section. The glow plug according to claim 1, wherein the length G in the direction of the axis is smaller than the length H in the direction of the axis of the fourth heating element cross section.
前記切断面において、
前記発熱体は、前記発熱体の前記軸線の方向の全長の半分の位置である中間位置よりも先端側の前記発熱体のピッチの平均値が、前記中間位置よりも後端側の前記発熱体のピッチの平均値よりも小さい請求項1又は2に記載のグロープラグ。
On the cut surface
In the heating element, the average value of the pitch of the heating element on the tip side of the intermediate position, which is half of the total length in the axial direction of the heating element, is on the rear end side of the intermediate position. The glow plug according to claim 1 or 2, which is smaller than the average value of the pitches of.
前記切断面において、
前記筒状体は、前記第1発熱体断面を通り径方向に延びる直線が交わる第1部位の平均厚さが、前記第3発熱体断面を通り前記径方向に延びる直線が交わる第2部位の平均厚さよりも大きい請求項1から3のいずれかに記載のグロープラグ。
On the cut surface
In the tubular body, the average thickness of the first portion where the straight lines extending in the radial direction through the first heating element cross section intersect is the second portion where the straight lines extending in the radial direction through the third heating element cross section intersect. The glow plug according to any one of claims 1 to 3, which is larger than the average thickness.
JP2019033645A 2019-02-27 2019-02-27 Glow plug Active JP7090570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033645A JP7090570B2 (en) 2019-02-27 2019-02-27 Glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033645A JP7090570B2 (en) 2019-02-27 2019-02-27 Glow plug

Publications (2)

Publication Number Publication Date
JP2020139652A true JP2020139652A (en) 2020-09-03
JP7090570B2 JP7090570B2 (en) 2022-06-24

Family

ID=72264799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033645A Active JP7090570B2 (en) 2019-02-27 2019-02-27 Glow plug

Country Status (1)

Country Link
JP (1) JP7090570B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468933A (en) * 1993-01-19 1995-11-21 Beru Ruprecht Gmbh & Co. Kg Rod flame glow plug having a CoFe alloy regulating coil and a housing having a fuel connection for a metering device
JP2001330249A (en) * 2000-03-17 2001-11-30 Denso Corp Glow plug and its manufacturing method
JP2015169346A (en) * 2014-03-05 2015-09-28 日本特殊陶業株式会社 Glow plug and internal combustion engine
JP2016223651A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Glow plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468933A (en) * 1993-01-19 1995-11-21 Beru Ruprecht Gmbh & Co. Kg Rod flame glow plug having a CoFe alloy regulating coil and a housing having a fuel connection for a metering device
JP2001330249A (en) * 2000-03-17 2001-11-30 Denso Corp Glow plug and its manufacturing method
JP2015169346A (en) * 2014-03-05 2015-09-28 日本特殊陶業株式会社 Glow plug and internal combustion engine
JP2016223651A (en) * 2015-05-28 2016-12-28 日本特殊陶業株式会社 Glow plug

Also Published As

Publication number Publication date
JP7090570B2 (en) 2022-06-24

Similar Documents

Publication Publication Date Title
JP4712693B2 (en) Resistance heating element for heating especially solid parts such as temperature probes and / or pressure probes
JP2005294267A (en) Ignition plug
EP2840314B1 (en) Glow plug
JP7090570B2 (en) Glow plug
US9065255B2 (en) Spark plug and method of manufacturing the same
JP5302183B2 (en) Glow plug and manufacturing method thereof
JP6392000B2 (en) Glow plug
JP6996848B2 (en) Glow plug
JP6080578B2 (en) Glow plug
JP6997731B2 (en) Glow plug
JP2016142458A (en) Glow plug
JP6946048B2 (en) Glow plug
JP2016020774A (en) Glow plug
JP6931566B2 (en) Glow plug
JP7045161B2 (en) Glow plug
EP3441672B1 (en) Glow plug
JP2019032151A (en) Glow plug
JP6426376B2 (en) Glow plug
EP3333483B1 (en) Glow plug
JP6965153B2 (en) Glow plug
JP7018265B2 (en) Glow plug
JP6720039B2 (en) Glow plug
JP6746453B2 (en) Glow plug
JP2008261577A (en) Glow plug and its manufacturing method
JP2004340422A (en) Glow plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220614

R150 Certificate of patent or registration of utility model

Ref document number: 7090570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150