JP2020138945A - Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same - Google Patents

Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same Download PDF

Info

Publication number
JP2020138945A
JP2020138945A JP2019037006A JP2019037006A JP2020138945A JP 2020138945 A JP2020138945 A JP 2020138945A JP 2019037006 A JP2019037006 A JP 2019037006A JP 2019037006 A JP2019037006 A JP 2019037006A JP 2020138945 A JP2020138945 A JP 2020138945A
Authority
JP
Japan
Prior art keywords
precursor
cyclacene
benzene ring
heterocyclacene
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019037006A
Other languages
Japanese (ja)
Inventor
宏暢 林
Hironobu Hayashi
宏暢 林
容子 山田
Yoko Yamada
容子 山田
悟 大友
Satoru Otomo
悟 大友
静香 佐藤
Shizuka Sato
静香 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2019037006A priority Critical patent/JP2020138945A/en
Publication of JP2020138945A publication Critical patent/JP2020138945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a compound that is useful for the synthesis of a zigzag type carbon nanotube.SOLUTION: The present invention is a cyclacene precursor, in which, when certain one benzene ring of a cyclacene, in which 2(m+n) benzene rings (m and n are each an integer of 2 or more) are cyclically condensed, is designated as a 1st benzene ring and numbering is done in order from there, the 1st benzene ring, the (m+1)th benzene ring, the (m+n+1)th benzene ring, and the (2 m+n+1)th benzene ring have a bridge structure represented by the following formula (1) or (2) between the 1st position and the 4th position in each benzene ring.SELECTED DRAWING: None

Description

本発明は、カーボンナノチューブの製造に用いられるテンプレート材料に関する。 The present invention relates to template materials used in the production of carbon nanotubes.

カーボンナノチューブ(以下「CNT」という)は、電子輸送特性、熱伝導性等に優れ、しかも機械的強度が大きく軽量であることから、電子デバイス材料、放熱材料、高強度複合材料等、様々な技術分野での応用が期待されている。CNTは、グラフェンシートを筒状に巻いたような構造を有しており、該グラフェンシートの巻き方(カイラリティ)によってアームチェア型、らせん型、ジグザグ型に分類される。なお、カーボンナノチューブには、単層カーボンチューブ(SWNT)と、SWNTが入れ子状になった多層カーボンナノチューブ(MWNT)があるが、特に断らない限り、本明細書ではSWNTのことをCNTという。 Carbon nanotubes (hereinafter referred to as "CNT") are excellent in electron transport characteristics, thermal conductivity, etc., and have high mechanical strength and are lightweight. Therefore, various technologies such as electronic device materials, heat dissipation materials, and high-strength composite materials are used. It is expected to be applied in the field. The CNT has a structure in which a graphene sheet is wound into a tubular shape, and is classified into an armchair type, a spiral type, and a zigzag type according to the winding method (chirality) of the graphene sheet. The carbon nanotubes include single-walled carbon tubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) in which SWNTs are nested. Unless otherwise specified, SWNTs are referred to as CNTs in the present specification.

CNTは、その巻き方によって金属又は半導体の性質を有し、アームチェア型CNTは金属性を、らせん型およびジグザグ型CNTは金属性又は半導体性を示す。らせん型CNT、ジグザグ型CNTが金属および半導体のいずれの性質を示すかは、カイラル指数(a,b)(カイラリティを表す指標)およびCNTの直径によって決まる。用途によってCNTに求められる性質は異なることから、特定の構造で且つ均一の直径のCNTを選択的に合成する技術が求められている。 CNTs have metallic or semiconductor properties depending on how they are wound, armchair-type CNTs exhibit metallic properties, and spiral-type and zigzag-type CNTs exhibit metallic properties or semiconductor properties. Whether the spiral CNT or the zigzag CNT exhibits the properties of a metal or a semiconductor is determined by the chiral index (a, b) (an index indicating chirality) and the diameter of the CNT. Since the properties required for CNTs differ depending on the application, a technique for selectively synthesizing CNTs having a specific structure and a uniform diameter is required.

ところが、従来の一般的なCNTの合成法であるレーザー蒸発法、アーク放電法、化学気相成長法(CVD法)等は、いずれも、CNTの構造や直径を制御することは不可能であり、様々な構造、様々な直径のCNTが混合した状態で合成される。このため、用途毎に適切な構造、直径のCNTを分離する必要があった。 However, it is impossible to control the structure and diameter of CNTs in any of the conventional general methods for synthesizing CNTs, such as the laser evaporation method, the arc discharge method, and the chemical vapor deposition method (CVD method). , Various structures and various diameters of CNTs are mixed and synthesized. Therefore, it is necessary to separate CNTs having an appropriate structure and diameter for each application.

これに対して、環状構造を有する有機化合物をCNT合成のテンプレートとして用いることにより、特定の構造を有し、且つ均一な直径のCNTを合成できる可能性が示唆され(非特許文献1)、これまでに、アームチェア型CNTおよびらせん型CNTのテンプレートとなり得る環状有機化合物(例えばシクロパラフェニレン、カーボンナノベルト)が合成されている。一方、ジグザグ型CNTのテンプレートとなり得る環状有機化合物は見つかっていない。 On the other hand, it has been suggested that by using an organic compound having a cyclic structure as a template for CNT synthesis, it is possible to synthesize CNTs having a specific structure and having a uniform diameter (Non-Patent Document 1). By now, cyclic organic compounds (eg, cycloparaphenylene, carbon nanobelts) that can serve as templates for armchair-type CNTs and spiral-type CNTs have been synthesized. On the other hand, no cyclic organic compound that can serve as a template for zigzag CNTs has been found.

Omachi, H.; Nakayama, T.; Takahashi, E.; Segawa, Y.; Itami, K., Nature Chemistry, 2013, 5, 572.Omachi, H .; Nakayama, T .; Takahashi, E .; Segawa, Y .; Itami, K., Nature Chemistry, 2013, 5, 572. Urgel, J.; Mishra, S.; Hayashi, H.; Wilhelm, J.; Pignedoli, C. A.; Giovannantonio, M. D.; Widmer, R.; Yamashita, M.; Hieda, N.; Ruffieux, P.; Yamada, H.; Fasel, R. Nature Communication, 2019, 10, 861.Urgel, J .; Mishra, S .; Hayashi, H .; Wilhelm, J .; Pignedoli, CA; Giovannantonio, MD; Widmer, R .; Yamashita, M .; Hieda, N .; Ruffieux, P .; Yamada, H .; Fasel, R. Nature Communication, 2019, 10, 861. Tanaka, K.; Aratani, N.; Kuzuhara, D.; Sakamoto, S.; Okujima, T.; Ono, N.; Uno, H.; Yamada, H. RSC Advances, 2013, 3, 15310-15315.Tanaka, K .; Aratani, N .; Kuzuhara, D .; Sakamoto, S .; Okujima, T .; Ono, N .; Uno, H .; Yamada, H. RSC Advances, 2013, 3, 15310-15315. Yamada, H.; Yamashita, Y.; Kikuchi, M.; Watanabe, H.; Okujima, T.; Uno, H.; Ogawa, T.; Ohara, K.; Ono, N., Chemistry − A European Journal, 2005, 6212.Yamada, H .; Yamashita, Y .; Kikuchi, M .; Watanabe, H .; Okujima, T .; Uno, H .; Ogawa, T .; Ohara, K .; Ono, N., Chemistry − A European Journal , 2005, 6212. Hasegawa, K.; Noda, S., ACS Nano, 2011, 5, 975.Hasegawa, K .; Noda, S., ACS Nano, 2011, 5, 975.

本発明が解決しようとする課題は、ジグザグ型カーボンナノチューブの合成に有用な化合物を提供することである。 An object to be solved by the present invention is to provide a compound useful for the synthesis of zigzag carbon nanotubes.

シクラセン骨格はジグザグ型カーボンナノチューブのテンプレートとして有望であるものの、シクラセンの合成手法は確立されていない。また、シクラセンは酸素に対する反応性が高いため、合成しても直ぐに分解してしまう(つまり、構造が不安定な化合物である)。そこで、本発明者は、構造安定性に優れ、且つ、シクラセンに容易に変換することができるシクラセン前駆体を合成することを考え、本発明に至った。 Although the cyclacene skeleton is promising as a template for zigzag carbon nanotubes, a method for synthesizing cyclacene has not been established. In addition, cyclacene is highly reactive with oxygen, so even if it is synthesized, it decomposes immediately (that is, it is a compound with an unstable structure). Therefore, the present inventor has arrived at the present invention with the idea of synthesizing a cyclacene precursor which is excellent in structural stability and can be easily converted into cyclacene.

すなわち、上記課題を解決するために成された本発明は、
2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、各ベンゼン環における1位と4位の間に下記式(1)又は(2)で表される架橋構造を有している、シクラセン前駆体である。
That is, the present invention made to solve the above problems is
When one benzene ring of cyclacene in which 2 (m + n) benzene rings (m and n are integers of 2 or more each) are cyclically condensed as the first benzene ring and numbered in order from there, The 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are placed between the 1st and 4th positions in each benzene ring according to the following formula (1) or It is a cyclacene precursor having a crosslinked structure represented by (2).

上記シクラセン前駆体において、架橋構造を有する箇所である1位と4位は、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環の各ベンゼン環の内部における位置をいい、シクラセン前駆体の全体における位置を示すものではない。 In the cyclacene precursor, the 1st and 4th positions having a crosslinked structure are the 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring. Refers to the position inside each benzene ring, and does not indicate the position of the cyclacene precursor as a whole.

本発明に係るシクラセン前駆体は、所定の位置のベンゼン環が式(1)又は(2)で示される架橋構造を有しているため、通常の条件下で安定性が優れる。しかも、光を照射したり加熱したりすることでベンゼン環から架橋構造が外れ、シクラセン前駆体がシクラセンに変換されるため、容易にシクラセンを得ることができる。カーボンナノチューブの合成系でシクラセン前駆体から架橋構造を外してシクラセンに変換すれば、以下に示すように、得られたシクラセンをシーズとして両側辺方向に伸長し、ジグザグ型のカーボンナノチューブに成長する。架橋構造が外されたシクラセンは不安定であるが、このようにカーボンナノチューブ合成系で一連の合成を行うことにより、シクラセンをシーズとして両側辺方向に成長したカーボンナノチューブを形成することができる。
The cyclacene precursor according to the present invention has an excellent stability under normal conditions because the benzene ring at a predetermined position has a crosslinked structure represented by the formula (1) or (2). Moreover, the crosslinked structure is removed from the benzene ring by irradiating or heating with light, and the cyclacene precursor is converted to cyclacene, so that cyclacene can be easily obtained. When the crosslinked structure is removed from the cyclacene precursor and converted to cyclacene in the carbon nanotube synthesis system, the obtained cyclacene is used as seeds and extends in both sides to grow into zigzag carbon nanotubes, as shown below. Cyclacene from which the crosslinked structure has been removed is unstable, but by performing a series of synthesis in the carbon nanotube synthesis system in this way, carbon nanotubes grown in the bilateral directions can be formed using cyclacene as seeds.

この場合、シクラセン前駆体を構成するベンゼン環の数を増やす(つまり、m、nを大きい数にする)ことにより、大きな直径のカーボンナノチューブが得られる。また、シクラセンに変換するための反応時間(光の照射時間や加熱時間)を長くしたり、カーボンナノチューブ製造工程に導入するエタノールなどの炭素源を増やしたりすることで、長いカーボンナノチューブが得られる。つまり、本発明に係るシクラセン前駆体を用いることにより、適宜の直径や長さのジグザグ型カーボンナノチューブを合成することができる。 In this case, by increasing the number of benzene rings constituting the cyclacene precursor (that is, increasing the number of m and n), carbon nanotubes having a large diameter can be obtained. In addition, long carbon nanotubes can be obtained by lengthening the reaction time (light irradiation time or heating time) for conversion to cyclacene, or by increasing the carbon source such as ethanol introduced in the carbon nanotube manufacturing process. That is, by using the cyclacene precursor according to the present invention, it is possible to synthesize zigzag carbon nanotubes having an appropriate diameter and length.

架橋構造が前記式(1)で表されるシクラセン前駆体の例として、以下の式(5)又は式(6)で表される構造が挙げられる。
Examples of the cyclacene precursor whose crosslinked structure is represented by the above formula (1) include a structure represented by the following formula (5) or formula (6).

式(5)は、ベンゼン環が縮合した個数である2(m+n)個の「m」と「n」が異なる場合(m=4、n=3)の例であり、式(6)は「m」と「n」が等しい場合(m=n=4)の例である。 Formula (5) is an example of the case where 2 (m + n) "m" and "n", which are the number of condensed benzene rings, are different (m = 4, n = 3), and formula (6) is " This is an example of the case where "m" and "n" are equal (m = n = 4).

また、架橋構造が前記式(2)で表されるシクラセン前駆体の例として、以下の式(7)で表される構造が挙げられる。
式(7)は、ベンゼン環が縮合した個数である2(m+n)個の「m」と「n」が等しい場合(m=n=4)の例である。ここには示していないが、架橋構造が前記式(2)で表されるシクラセン前駆体においても、当然、「m」と「n」が異なる構造を取り得る。
Further, as an example of the cyclacene precursor whose crosslinked structure is represented by the above formula (2), a structure represented by the following formula (7) can be mentioned.
Equation (7) is an example of the case where 2 (m + n) "m" and "n", which are the number of condensed benzene rings, are equal (m = n = 4). Although not shown here, even in the cyclacene precursor whose crosslinked structure is represented by the above formula (2), naturally, "m" and "n" may have different structures.

なお、m、nの数を変化させることにより、直径の異なるカーボンナノチューブを合成できるが、m、nの数が大きくなると、シクラセン前駆体の合成が難しくなる。合成が容易である点で、m=n=2(つまり、ベンゼン環の数が8)、m=4、n=3(つまり、ベンゼン環の数が14)、m=n=4(つまり、ベンゼン環の数が16)、m=n=5(つまり、ベンゼン環の数が20)が好ましい。 Carbon nanotubes having different diameters can be synthesized by changing the numbers of m and n, but when the number of m and n is large, it becomes difficult to synthesize a cyclacene precursor. In terms of ease of synthesis, m = n = 2 (ie, the number of benzene rings is 8), m = 4, n = 3 (ie, the number of benzene rings is 14), m = n = 4 (ie, the number of benzene rings). It is preferable that the number of benzene rings is 16) and m = n = 5 (that is, the number of benzene rings is 20).

また、本発明の別の態様はシクラセンの製造方法であって、
シクラセン前駆体を準備する工程と、
前記シクラセン前駆体に光を照射したり該シクラセン前駆体を加熱したりして、該シクラセン前駆体をシクラセンに変換する工程と
を備え、
前記シクラセン前駆体が、2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、下記式(1)又は下記(2)のいずれかに示される架橋構造を有していることを特徴とする。
Another aspect of the present invention is a method for producing cyclacene.
The process of preparing the cyclacene precursor and
The cyclacene precursor is provided with a step of irradiating the cyclacene precursor with light or heating the cyclacene precursor to convert the cyclacene precursor into cyclacene.
One benzene ring of cyclacene in which 2 (m + n) benzene rings (m and n are integers of 2 or more each) are cyclically condensed as the cyclacene precursor is used as the first benzene ring, and the benzene rings are sequentially condensed from there. When numbered, the 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are either of the following formula (1) or the following (2). It is characterized by having a crosslinked structure shown in 1.

上記式(1)、(2)で示される架橋構造を有する化合物に光を照射したり加熱したりすると、該架橋構造が外れることが知られている(例えば非特許文献3、4参照)。このことから、式(1)又は(2)で示される架橋構造を有するシクラセン前駆体に光を照射したり該シクラセン前駆体を加熱したりすると、前記シクラセン前駆体がシクラセンに変換されることは明らかである。 It is known that when a compound having a crosslinked structure represented by the above formulas (1) and (2) is irradiated with light or heated, the crosslinked structure is removed (see, for example, Non-Patent Documents 3 and 4). From this, when the cyclacene precursor having the crosslinked structure represented by the formula (1) or (2) is irradiated with light or the cyclacene precursor is heated, the cyclacene precursor is converted into cyclacene. it is obvious.

また、本発明のさらに別の態様はジグザグ型カーボンナノチューブの製造方法であって、
シクラセン前駆体を準備する工程と、
カーボンナノチューブの合成系で、前記シクラセン前駆体に光を照射したり該シクラセン前駆体を加熱したりして、該シクラセン前駆体をシクラセンに変換する工程と
を備え、
前記シクラセン前駆体が、2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、下記式(1)又は下記(2)のいずれかに示される架橋構造を有していることを特徴とする。
Yet another aspect of the present invention is a method for producing zigzag carbon nanotubes.
The process of preparing the cyclacene precursor and
A carbon nanotube synthetic system comprising a step of irradiating the cyclacene precursor with light or heating the cyclacene precursor to convert the cyclacene precursor into cyclacene.
One benzene ring of cyclacene in which 2 (m + n) benzene rings (m and n are integers of 2 or more each) are cyclically condensed as the cyclacene precursor is used as the first benzene ring, and the benzene rings are sequentially condensed from there. When numbered, the 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are either of the following formula (1) or the following (2). It is characterized by having a crosslinked structure shown in 1.

上記カーボンナノチューブの製造方法においては、シクラセン前駆体に光を照射する時間、又はシクラセン前駆体を加熱する時間を長くすることで、多くのシクラセン前駆体をシクラセンに変換したり、エタノールなどの炭素源をより多くカーボンナノチューブ製造工程に導入したりすることで、より長いカーボンナノチューブを得ることができる(非特許文献5)。上記の製造方法における、カーボンナノチューブ合成系については、例えば非特許文献1の記載を参考に構築することができる。 In the above method for producing carbon nanotubes, by prolonging the time for irradiating the cyclacene precursor with light or the time for heating the cyclacene precursor, many cyclacene precursors can be converted into cyclacene, or a carbon source such as ethanol can be used. A longer carbon nanotube can be obtained by introducing more carbon nanotubes into the carbon nanotube manufacturing process (Non-Patent Document 5). The carbon nanotube synthesis system in the above production method can be constructed with reference to, for example, the description in Non-Patent Document 1.

また、上記課題を解決するために成された本発明は、
下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ヘテロシクラセン前駆体である。
In addition, the present invention made to solve the above problems
It is a heterocyclacene precursor having a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.

上記ヘテロシクラセン前駆体は、光を照射したり加熱したりすることによりヘテロシクラセンに変換される。
従って、本発明の別の態様は、
ヘテロシクラセン前駆体を準備する工程と、
前記ヘテロシクラセン前駆体に光を照射したり該ヘテロシクラセン前駆体を加熱したりすることにより前記ヘテロシクラセン前駆体をヘテロシクラセンに変換する工程と
を備え、
前記ヘテロシクラセン前駆体が、下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ヘテロシクラセン製造方法である。
The heterocyclacen precursor is converted to heterocyclacene by irradiation with light or heating.
Therefore, another aspect of the present invention is
The process of preparing the heterocyclacene precursor and
A step of converting the heterocyclacen precursor into heterocyclase by irradiating the heterocyclacen precursor with light or heating the heterocyclacene precursor is provided.
This is a method for producing a heterocyclacen, wherein the heterocyclacen precursor has a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.

また、ヘテロシクラセン前駆体からヘテロシクラセンへの変換をカーボンナノチューブの合成系で行えば、以下に示すように、ヘテロシクラセン前駆体から変換されたヘテロシクラセンをシーズとして両側辺方向に伸長し、カーボンナノチューブに成長させることができる。
Further, if the conversion from the heterocyclacen precursor to the heterocyclacene is carried out by a carbon nanotube synthetic system, as shown below, the heterocyclacene converted from the heterocyclacene precursor is used as seeds and extends in both sides. It can be grown into carbon nanotubes.

従って、本発明のさらに別の態様は、
ヘテロシクラセン前駆体を準備する工程と、
カーボンナノチューブの合成系で、前記ヘテロシクラセン前駆体に光を照射したり該ヘテロシクラセン前駆体を加熱したりすることにより前記ヘテロシクラセン前駆体をヘテロシクラセンに変換する工程と
を備え、
前記ヘテロシクラセン前駆体が、下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ジグザグ型カーボンナノチューブ製造方法である。
Therefore, yet another aspect of the present invention is
The process of preparing the heterocyclacene precursor and
A carbon nanotube synthesis system comprising a step of converting the heterocyclacen precursor into heterocyclacene by irradiating the heterocyclacene precursor with light or heating the heterocyclacene precursor.
This is a method for producing a zigzag carbon nanotube, wherein the heterocyclacene precursor has a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.

上記ヘテロシクラセン前駆体は窒素を含む構造を有しているため、該ヘテロシクラセン前駆体をカーボンナノチューブの材料として用いることにより、窒素がドープされたジグザグ型カーボンナノチューブを得ることができる。 Since the heterocyclacene precursor has a structure containing nitrogen, a nitrogen-doped zigzag carbon nanotube can be obtained by using the heterocyclacene precursor as a material for carbon nanotubes.

上記ヘテロシクラセン前駆体、ヘテロシクラセン製造方法、およびジグザグ型カーボンナノチューブ製造方法においては、ヘテロシクラセン前駆体が、前記式(3)又は前記式(4)で表される構造単位が2個又は3個又は4個、環状に連なった構造を有することが好ましい。これらの構造のヘテロシクラセン前駆体は、比較的簡単に合成することができる。
例えば、以下の式(8)は、上記式(3)で表される構造単位が2個、環状に連なった構造のヘテロシクラセン前駆体の例である。
In the heterocyclacen precursor, the heterocyclacen production method, and the zigzag carbon nanotube production method, the heterocyclacene precursor has two structural units represented by the formula (3) or the formula (4). Alternatively, it is preferable to have a structure in which three or four pieces are connected in an annular shape. Heterocyclacene precursors of these structures can be synthesized relatively easily.
For example, the following formula (8) is an example of a heterocyclacene precursor having a structure in which two structural units represented by the above formula (3) are connected in a ring shape.

本発明に係るシクラセン前駆体、ヘテロシクラセン前駆体は、通常の条件下で安定である。従って、これらの前駆体を用いることにより、安定的にジグザグ型カーボンナノチューブを製造することができる。また、シクラセン前駆体、ヘテロシクラセン前駆体を構成するベンゼン環、ベンゼン環誘導体の数を調整することにより、また、反応時間を制御することにより、適宜の直径や長さのジグザグ型カーボンナノチューブを製造することができる。 The cyclacene precursor and the heterocyclacene precursor according to the present invention are stable under normal conditions. Therefore, by using these precursors, zigzag carbon nanotubes can be stably produced. Further, by adjusting the number of benzene rings and benzene ring derivatives constituting the cyclacene precursor and the heterocyclacene precursor, and by controlling the reaction time, zigzag carbon nanotubes having an appropriate diameter and length can be obtained. Can be manufactured.

アームチェア型、らせん型、ジグザグ型のカーボンナノチューブの構造を示す図。The figure which shows the structure of an armchair type, a spiral type, and a zigzag type carbon nanotube. 本発明の第1実施例に係るシクラセン前駆体の製造工程図。FIG. 3 is a manufacturing process diagram of a cyclacene precursor according to the first embodiment of the present invention. 化合物8のマススペクトル。Mass spectrum of compound 8. 本発明の第2実施例に係るヘテロシクラセン前駆体の製造工程図。FIG. 3 is a manufacturing process diagram of a heterocyclacen precursor according to a second embodiment of the present invention. 化合物[3+3]のマススペクトル。Mass spectrum of compound [3 + 3]. 化合物[2+2]、[3+3]、[4+4]が生成されたことを示すマススペクトル。Mass spectrum showing that compounds [2 + 2], [3 + 3], [4 + 4] were produced.

以下、本発明に係るシクラセン前駆体およびその製造方法の具体的な実施例について図面を参照しつつ詳細に説明する。なお、以下に示す実施例において合成に用いた試薬および溶媒は、市販品をそのまま使用するか、乾燥剤存在下で蒸留精製したものを使用した。 Hereinafter, specific examples of the cyclacene precursor and the method for producing the same according to the present invention will be described in detail with reference to the drawings. As the reagents and solvents used for the synthesis in the examples shown below, commercially available products were used as they were, or those purified by distillation in the presence of a desiccant were used.

<実施例1>
この実施例は、図2に記号8で表されるシクラセン前駆体を作製したものである。なお、この実施例において、H核磁気共鳴スペクトル法は日本電子株式会社製 JNM-ECX400P、JNM-ECX500およびJNM-ECA600を用いて測定し、テトラメチルシラン(TMS)を内部標準として使用した。また、質量分析は、ブルカージャパン株式会社製のマトリックス支援レーザー脱離イオン化飛行時間質量分析計(AutoflexII)を用いて行った。
<Example 1>
In this example, the cyclacene precursor represented by the symbol 8 in FIG. 2 was prepared. Incidentally, in this example, 1 H nuclear magnetic resonance spectroscopy is measured by using JEOL Ltd. JNM-ECX400P, a JNM-ECX500 and JNM-ECA600, using tetramethylsilane (TMS) as internal standard. In addition, mass spectrometry was performed using a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (AutoflexII) manufactured by Bruker Japan Co., Ltd.

[化合物2の生成=プロセスa]
図2に記号1で表される化合物(以下、化合物1といい、他の記号で表される化合物も同様とする。)を、非特許文献2に記載されている方法により合成した。続いて、化合物1(4.5 g、15 mmol)のテトラヒドロフラン溶液(150 ml)に、アルゴン雰囲気下でカリウムtert-ブトキシド(5.0 g, 44.6 mmol)をゆっくり加え、50℃で2時間撹拌した。室温に冷却後、水で反応を停止し、反応溶媒を減圧蒸留した。得られた残渣に2 Mの塩酸溶液を加え、ジクロロメタンを用いて化合物を抽出した。有機層を水と飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた残渣をカラムクロマトグフラフィー(ヘキサン:ジクロロメタン= 9:1、R= 0.38)を行うことで、オイル状の目的物を収率99%(3.4 g)で単離した。
[Formation of compound 2 = process a]
The compound represented by the symbol 1 in FIG. 2 (hereinafter, referred to as compound 1 and the same applies to the compounds represented by other symbols) was synthesized by the method described in Non-Patent Document 2. Subsequently, potassium tert-butoxide (5.0 g, 44.6 mmol) was slowly added to a solution of compound 1 (4.5 g, 15 mmol) in tetrahydrofuran (150 ml) under an argon atmosphere, and the mixture was stirred at 50 ° C. for 2 hours. After cooling to room temperature, the reaction was stopped with water, and the reaction solvent was distilled under reduced pressure. A 2 M hydrochloric acid solution was added to the obtained residue, and the compound was extracted with dichloromethane. The organic layer was washed with water and saturated brine, dried over sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was subjected to column chromatographic fluffy (hexane: dichloromethane = 9: 1, R f = 0.38) to isolate the oily target product in a yield of 99% (3.4 g).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 6.43 (m, 1H), 6.24 (m, 1H), 5.39 (s, 1H), 5.25 (s, 1H), 4.89 (s, 1H), 3.57 (dd, 1H), 3.40-3.26 (m, 5H), 1.67 (m, 1H), 1.52 (m, 1H) ppm.
上記結果から、目的物は図2の化合物2であることが確認された。
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) As a result of structural analysis by below.
1 H NMR (400 MHz, CDCl 3 ): δ 6.43 (m, 1H), 6.24 (m, 1H), 5.39 (s, 1H), 5.25 (s, 1H), 4.89 (s, 1H), 3.57 (dd , 1H), 3.40-3.26 (m, 5H), 1.67 (m, 1H), 1.52 (m, 1H) ppm.
From the above results, it was confirmed that the target product was compound 2 in FIG.

[化合物3の生成=プロセスb]
化合物2(5.3 g, 23.0 mmol)と1,2,4,5-テトラブロモベンゼン(4.5 g, 11.5 mmol)のトルエン溶液(770 ml)に対し、トルエン(150 ml)中に薄めたn-ブチルリチウムヘキサン溶液(22.5 ml, 1.6 M in hexane, 34.5 mmol)をアルゴン雰囲気下、-18℃で3時間かけてゆっくり加えた。その後、-18℃で1時間攪拌後、反応溶液を徐々に室温に戻し、一晩撹拌した。次に、反応をメタノールを用いて停止し、有機溶媒を減圧留去した。得られた残渣をカラムクロマトグフラフィー(塩化メチレン:ヘキサン=1:2, R= 0.38)を行うことで、目的物を収率43%(2.6 g)で得た。
[Formation of compound 3 = process b]
N-butyl diluted in toluene (150 ml) with respect to a toluene solution (770 ml) of compound 2 (5.3 g, 23.0 mmol) and 1,2,4,5-tetrabromobenzene (4.5 g, 11.5 mmol). A lithium hexane solution (22.5 ml, 1.6 M in hexane, 34.5 mmol) was slowly added under an argon atmosphere at -18 ° C. over 3 hours. Then, after stirring at -18 ° C. for 1 hour, the reaction solution was gradually returned to room temperature and stirred overnight. Next, the reaction was stopped with methanol, and the organic solvent was distilled off under reduced pressure. The obtained residue was subjected to column chromatographic fluffy (methylene chloride: hexane = 1: 2, R f = 0.38) to obtain the desired product in a yield of 43% (2.6 g).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果を以下に示す。
1H NMR(400 MHz, CDCl3): δ 6.93 (q, 2H), 6.59-6.56 (m, 2H), 6.36 (t, 2H), 3.84-3.03 (m, 20H), 1.74-1.46 (m, 4H) ppm.
上記結果から、目的物は図2の化合物3であることが確認された。
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) As a result of structural analysis by below.
1 1 H NMR (400 MHz, CDCl 3 ): δ 6.93 (q, 2H), 6.59-6.56 (m, 2H), 6.36 (t, 2H), 3.84-3.03 (m, 20H), 1.74-1.46 (m, 4H) ppm.
From the above results, it was confirmed that the target product was compound 3 in FIG.

[化合物4の生成=プロセスc]
アルゴン雰囲気下でクロロホルム(1.5 L)に化合物3(5.0 g, 9.4 mmol)と2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(5.0 g, 22.0 mmol)を加え、50℃で12時間撹拌した。その後、反応溶液を室温に戻し、炭酸水素ナトリウム溶液を加えた。有機層を水と飽和食塩水で洗い、硫酸ナトリウムで乾燥後、減圧留去した。得られた残渣をカラムクロマトグフラフィー(クロロホルム, R= 0.85)を行うことで、目的物を収率73%(3.6 g)で得た。
[Formation of compound 4 = process c]
Compound 3 (5.0 g, 9.4 mmol) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (5.0 g, 22.0 mmol) were added to chloroform (1.5 L) under an argon atmosphere, and the mixture was added at 50 ° C. for 12 hours. Stirred. Then, the reaction solution was returned to room temperature, and a sodium hydrogen carbonate solution was added. The organic layer was washed with water and saturated brine, dried over sodium sulfate, and evaporated under reduced pressure. The obtained residue was subjected to column chromatographic fluffy (chloroform, R f = 0.85) to obtain the desired product in a yield of 73% (3.6 g).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果を以下に示す。
1H NMR(500 MHz, CDCl3): δ 8.26 (t, 2H), 7.76 (dd, 4H), 6.73 (m, 2H), 6.54 (m, 4H), 4.16 (m, 4H), 3.55-2.87 (m, 8H), 1.84-1.79 (m, 2H), 1.70-1.67 (m, 2H) ppm. 13C NMR (CDCl3): δ 140.05, 136.99, 136.13, 133.10, 130.79, 130.52, 125.34, 122.97, 120.81, 48.41, 48.32, 47.65, 46.71, 42.51, 42.20 ppm.
上記結果から、目的物は図2の化合物4であることが確認された。
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) As a result of structural analysis by below.
1 1 H NMR (500 MHz, CDCl 3 ): δ 8.26 (t, 2H), 7.76 (dd, 4H), 6.73 (m, 2H), 6.54 (m, 4H), 4.16 (m, 4H), 3.55-2.87 (m, 8H), 1.84-1.79 (m, 2H), 1.70-1.67 (m, 2H) ppm. 13 C NMR (CDCl 3 ): δ 140.05, 136.99, 136.13, 133.10, 130.79, 130.52, 125.34, 122.97, 120.81, 48.41, 48.32, 47.65, 46.71, 42.51, 42.20 ppm.
From the above results, it was confirmed that the target product was compound 4 in FIG.

[化合物5の生成=プロセスd]
アルゴン雰囲気下でテトラヒドロフラン(170 ml)に化合物4(570 mg, 1.1 mmol)を加え、カリウムtert-ブトキシド(1.5 g, 13.4 mmol)をゆっくり加えた。その後、反応溶液を加熱還流しながら20時間撹拌した。室温に冷却後、水を加えて反応を停止し、溶媒を減圧留去した。ジクロロメタンを加えて残渣を溶解し、2 M塩酸溶液で洗浄後、さらに水と飽和食塩水で洗い、硫酸ナトリウムで乾燥後、有機溶媒を減圧留去した。得られた残渣をカラムクロマトグフラフィー(クロロホルム:ヘキサン= 2:1, R=0.33)を行うことで、目的物を収率78%(330 mg)で得た。
[Formation of compound 5 = process d]
Compound 4 (570 mg, 1.1 mmol) was added to tetrahydrofuran (170 ml) under an argon atmosphere, and potassium tert-butoxide (1.5 g, 13.4 mmol) was added slowly. Then, the reaction solution was stirred with heating under reflux for 20 hours. After cooling to room temperature, water was added to stop the reaction, and the solvent was distilled off under reduced pressure. Dichloromethane was added to dissolve the residue, which was washed with a 2 M hydrochloric acid solution, further washed with water and saturated brine, dried over sodium sulfate, and the organic solvent was evaporated under reduced pressure. The obtained residue was subjected to column chromatographic fluffy (chloroform: hexane = 2: 1, R f = 0.33) to obtain the desired product in a yield of 78% (330 mg).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果を以下に示す。
1H NMR(500 MHz, CDCl3): δ 8.20 (s, 2H), 7.72 (s, 4H), 6.68-6.66 (m, 4H), 5.3 (d, 4H), 5.08 (d, 4H), 4.59 (t, 4H) ppm. 13C NMR (CDCl3): δ = 143.98, 139.00, 134.47, 130.83, 125.25, 120.42, 104.74 ppm.
上記結果から、目的物は図2の化合物5であることが確認された。
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) As a result of structural analysis by below.
1 1 H NMR (500 MHz, CDCl 3 ): δ 8.20 (s, 2H), 7.72 (s, 4H), 6.68-6.66 (m, 4H), 5.3 (d, 4H), 5.08 (d, 4H), 4.59 (t, 4H) ppm. 13 C NMR (CDCl3): δ = 143.98, 139.00, 134.47, 130.83, 125.25, 120.42, 104.74 ppm.
From the above results, it was confirmed that the target product was compound 5 in FIG.

[化合物6の生成=プロセスe]
化合物5(500 mg, 1.6 mmol)と1,2,4,5-テトラブロモベンゼン(610 mg, 1.6 mmol)のトルエン溶液(410ml)に対し、トルエン(80 ml)中に薄めたn-ブチルリチウムヘキサン溶液(6.2 ml, 1.6. M in hexane, 9.2 mmol)をアルゴン雰囲気下、-5℃で50分間かけてゆっくり加えた。その後、-5℃で1時間攪拌後、反応溶液を徐々に室温に戻し、一晩撹拌した。次に、反応をメタノールを用いて停止し、有機溶媒を減圧留去した。得られた残渣をクロロホルムとヘキサンを用いて再沈殿させることで、目的物を収率55% (390 mg, 0.43 mmol)で得た。
[Formation of compound 6 = process e]
N-butyllithium diluted in toluene (80 ml) with respect to a toluene solution (410 ml) of compound 5 (500 mg, 1.6 mmol) and 1,2,4,5-tetrabromobenzene (610 mg, 1.6 mmol) A hexane solution (6.2 ml, 1.6. M in hexane, 9.2 mmol) was slowly added under an argon atmosphere at -5 ° C for 50 minutes. Then, after stirring at -5 ° C. for 1 hour, the reaction solution was gradually returned to room temperature and stirred overnight. Next, the reaction was stopped with methanol, and the organic solvent was distilled off under reduced pressure. The obtained residue was reprecipitated with chloroform and hexane to give the desired product in a yield of 55% (390 mg, 0.43 mmol).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果およびマススペクトルの結果を以下に示す。
1H NMR(500 MHz, CDCl3): δ 7.98 (m, br, 4H), 7.54 (m, br, 8H), 6.87 (m, br, 12H), 4.62 (m, br, 8H), 3.54 (m, br, 16H) ppm.
HR-MS (SPIRAL-TOF): calcd. for C72H48, 912.3751 [M]+; found, 912.3745.
上記結果から、目的物は図2の化合物6であることが確認された。
For the compound is shown 1 H-nuclear magnetic resonance spectroscopy (1 H NMR) results subjected to structural analysis by and the results of mass spectrum below.
1 1 H NMR (500 MHz, CDCl 3 ): δ 7.98 (m, br, 4H), 7.54 (m, br, 8H), 6.87 (m, br, 12H), 4.62 (m, br, 8H), 3.54 ( m, br, 16H) ppm.
HR-MS (SPIRAL-TOF): calcd. For C 72 H 48 , 912.3751 [M] + ; found, 912.3745.
From the above results, it was confirmed that the target product was compound 6 in FIG.

[化合物7の生成=プロセスf]
アルゴン雰囲気下でクロロホルム(40 ml)に化合物6(150 mg, 0.16 mmol)と2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(300 mg, 1.32 mmol)を加え、50℃で12時間撹拌した。その後、反応溶液を室温に戻し、炭酸水素ナトリウム溶液を加え、有機層を水と飽和食塩水で洗い、硫酸ナトリウムで乾燥後、減圧留去した。得られた残渣をカラムクロマトグフラフィー(クロロホルム, Rf = 0.85)を行うことで、目的物を収率56%(81 mg)で得た。
[Formation of compound 7 = process f]
Compound 6 (150 mg, 0.16 mmol) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (300 mg, 1.32 mmol) were added to chloroform (40 ml) under an argon atmosphere, and the mixture was added at 50 ° C. for 12 hours. Stirred. Then, the reaction solution was returned to room temperature, a sodium hydrogen carbonate solution was added, the organic layer was washed with water and saturated brine, dried over sodium sulfate, and evaporated under reduced pressure. The obtained residue was subjected to column chromatographic fluffy (chloroform, Rf = 0.85) to obtain the desired product in a yield of 56% (81 mg).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果および質量分析を行った結果を以下に示す。質量分析は、ブルカージャパン株式会社製のマトリックス支援レーザー脱離イオン化飛行時間質量分析計(AutoflexII)を用いて行った。
1H NMR (500 MHz, CDCl3): δ 8.10 (m, br, 8H), 7.77 (m, br, 16H), 7.02 (m, br, 8H), 5.26 (m, br, 8H) ppm.
HR-MS: calcd. for C72H40, 904.3125 [M]+; found, 904.3117.
上記結果から、目的物は図2の化合物7であることが確認された。
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) results of results and mass spectrometry was subjected to structural analysis by below. Mass spectrometry was performed using a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (AutoflexII) manufactured by Bruker Japan Co., Ltd.
1 1 H NMR (500 MHz, CDCl 3 ): δ 8.10 (m, br, 8H), 7.77 (m, br, 16H), 7.02 (m, br, 8H), 5.26 (m, br, 8H) ppm.
HR-MS: calcd. For C 72 H 40 , 904.3125 [M] + ; found, 904.3117.
From the above results, it was confirmed that the target product was compound 7 of FIG.

[化合物8の生成=プロセスg]
化合物7(10 mg, 0.011 mmol)のテトラヒドロフラン溶液(16 ml)にパラジウム炭素(Pd 10%, 3.5 mg)を加え、水素バブリングを行った。その後、水素雰囲気下、室温で4時間撹拌した。濾過によりPd/Cを取り除き、溶媒を減圧留去することで、目的物を収率25%(2.5 mg)で得た。
目的物について、質量分析を行った結果を以下および図3に示す。質量分析は、ブルカージャパン株式会社製のマトリックス支援レーザー脱離イオン化飛行時間質量分析計(AutoflexII)を用いて行った。
MALDI-TOF Mass : 913.1981.
上記結果から、目的物は図2の化合物8であるシクラセン前駆体であることが確認された。
[Formation of compound 8 = process g]
Palladium on carbon (Pd 10%, 3.5 mg) was added to a tetrahydrofuran solution (16 ml) of compound 7 (10 mg, 0.011 mmol), and hydrogen bubbling was performed. Then, the mixture was stirred at room temperature for 4 hours under a hydrogen atmosphere. Pd / C was removed by filtration, and the solvent was distilled off under reduced pressure to obtain the desired product in a yield of 25% (2.5 mg).
The results of mass spectrometry on the target product are shown below and in FIG. Mass spectrometry was performed using a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (AutoflexII) manufactured by Bruker Japan Co., Ltd.
MALDI-TOF Mass: 913.1981.
From the above results, it was confirmed that the target substance was the cyclacene precursor which is the compound 8 of FIG.

<実施例2>
この実施例は、図4に記号[2+2]、[3+3]、[4+4]で表されるシクラセン前駆体を作製したものである。なお、この実施例において、H核磁気共鳴スペクトル法は日本電子株式会社製 JNM-ECX400P、JNM-ECX500およびJNM-ECA600を用いて測定し、テトラメチルシラン(TMS)を内部標準として使用した。また、質量分析は、ブルカージャパン株式会社製のマトリックス支援レーザー脱離イオン化飛行時間質量分析計(AutoflexII)を用いて行った。
<Example 2>
In this example, a cyclacene precursor represented by the symbols [2 + 2], [3 + 3], and [4 + 4] in FIG. 4 was prepared. Incidentally, in this example, 1 H nuclear magnetic resonance spectroscopy is measured by using JEOL Ltd. JNM-ECX400P, a JNM-ECX500 and JNM-ECA600, using tetramethylsilane (TMS) as internal standard. In addition, mass spectrometry was performed using a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (AutoflexII) manufactured by Bruker Japan Co., Ltd.

[化合物10の生成=プロセスa]
化合物9を非特許文献3に記載されている方法により合成した。続いて、アルゴン雰囲気下、テトラヒドロフラン(50 ml)中に懸濁させた化合物9(506 mg, 1.39 mmol)に、氷浴下で水素化アルミニウムリチウム(545 mg, 14.3 mmol)をゆっくり加えた。その後、反応溶液を加熱還流しながら1時間撹拌した。氷浴下で0℃に冷却後、6 M 塩酸溶液(35 ml)をゆっくり加えたのち、反応溶液を加熱還流しながら1時間撹拌した。室温に冷却後、得られた沈殿をろ過し、固体を水とメタノールで洗浄した。次に、得られた固体を、アルゴン雰囲気下、テトラヒドロフラン(50 ml)中に懸濁させ、氷浴下で水素化アルミニウムリチウム(545 mg, 14.3 mmol)をゆっくり加えた。その後、反応溶液を加熱還流しながら1時間撹拌した。氷浴下で0℃に冷却後、6 M 塩酸溶液(35 ml)をゆっくり加えたのち、反応溶液を加熱還流しながら1時間撹拌した。室温に冷却後、得られた沈殿をろ過し、固体を水とメタノールで洗浄した。その残渣を、カラムクロマトグフラフィー(クロロホルム:ヘキサン=1:1, R=0.8)を行うことで精製し、目的物を収率39%(180 mg)で得た。
[Formation of compound 10 = process a]
Compound 9 was synthesized by the method described in Non-Patent Document 3. Subsequently, lithium aluminum hydride (545 mg, 14.3 mmol) was slowly added to Compound 9 (506 mg, 1.39 mmol) suspended in tetrahydrofuran (50 ml) under an argon atmosphere under an ice bath. Then, the reaction solution was stirred with heating under reflux for 1 hour. After cooling to 0 ° C. under an ice bath, a 6 M hydrochloric acid solution (35 ml) was slowly added, and then the reaction solution was stirred with heating under reflux for 1 hour. After cooling to room temperature, the resulting precipitate was filtered and the solid was washed with water and methanol. The resulting solid was then suspended in tetrahydrofuran (50 ml) under an argon atmosphere and lithium aluminum hydride (545 mg, 14.3 mmol) was slowly added under an ice bath. Then, the reaction solution was stirred with heating under reflux for 1 hour. After cooling to 0 ° C. under an ice bath, a 6 M hydrochloric acid solution (35 ml) was slowly added, and then the reaction solution was stirred with heating under reflux for 1 hour. After cooling to room temperature, the resulting precipitate was filtered and the solid was washed with water and methanol. The residue was purified by performing column chromatographic fluffy (chloroform: hexane = 1: 1, R f = 0.8) to obtain the desired product in a yield of 39% (180 mg).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果および質量分析を行った結果および質量分析を行った結果を以下に示す。
1H-NMR (400 MHz, CDCl3): 8.20 (s, 2H), 7.64 (s, 4H), 6.56-6.58 (m, 4H), 4.00 (s, 4H), 1.62-1.67 (m, 8H).
HR-MS: calcd for C26H22, 334.1716 [M]+; found, 334.1717.
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) result of the results was performed The results were subjected to structural analysis and mass spectrometry and mass spectrometry by below.
1 1 H-NMR (400 MHz, CDCl 3 ): 8.20 (s, 2H), 7.64 (s, 4H), 6.56-6.58 (m, 4H), 4.00 (s, 4H), 1.62-1.67 (m, 8H) ..
HR-MS: calcd for C 26 H 22 , 334.1716 [M] + ; found, 334.1717.

[化合物11の生成=プロセスb]
アセトン(250 mL)に化合物10(229 mg, 0.686 mmol)を懸濁させ、N-メチルモルホリン-N-オキシド(0.793 g, 6.77 mmol)とマイクロカプセル化酸化オスミウム(VIII)(10% microcapsule, 210 mg, 0.826 mmol)を加え、室温で4日間反応させた。その後、飽和亜ジチオン酸ナトリウム水溶液(50 ml)を加えて反応をク停止し、10分撹拌した。溶媒を減圧留去した後に、水と酢酸エチルを加えた。有機層を分離後、有機層を飽和食塩水で洗い、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をクロロホルムに分散し、得られた沈殿をろ過し、メタノールで洗浄することで目的物を収率40% (143 mg)で得た。
[Formation of compound 11 = process b]
Compound 10 (229 mg, 0.686 mmol) suspended in acetone (250 mL) with N-methylmorpholin-N-oxide (0.793 g, 6.77 mmol) and microencapsulated osmium oxide (VIII) (10% microcapsule, 210) mg, 0.826 mmol) was added and reacted at room temperature for 4 days. Then, a saturated aqueous sodium dithionite solution (50 ml) was added to stop the reaction, and the mixture was stirred for 10 minutes. After distilling off the solvent under reduced pressure, water and ethyl acetate were added. After separating the organic layer, the organic layer was washed with saturated brine and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was dispersed in chloroform, and the obtained precipitate was filtered and washed with methanol to obtain the desired product in a yield of 40% (143 mg).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果および質量分析を行った結果および質量分析を行った結果を以下に示す。
1H-NMR (400 MHz, CDCl3): 8.34 (s, 2H), 7.68 (s, 4H), 4.40 (s, br, 4H), 4.00 (s, 4H), 3.05 (s, 4H), 1.76-1.77 (m, 4H), 1.36-1.40 (m, 4H).
HR-MS: calcd for C26H26O4, 402.1826 [M]+; found, 402.1829.
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) result of the results was performed The results were subjected to structural analysis and mass spectrometry and mass spectrometry by below.
1 1 H-NMR (400 MHz, CDCl 3 ): 8.34 (s, 2H), 7.68 (s, 4H), 4.40 (s, br, 4H), 4.00 (s, 4H), 3.05 (s, 4H), 1.76 -1.77 (m, 4H), 1.36-1.40 (m, 4H).
HR-MS: calcd for C 26 H 26 O 4 , 402.1826 [M] + ; found, 402.1829.

[化合物12の生成=プロセスc]
アルゴン雰囲気下でジメチルスルホキシド(1.4 ml, 20 mmol)と塩化メチレン(70 ml)の混合溶液に-80℃で無水トリフルオロ酢酸(1.4 ml, 10.0 mmol)を20分間かけて滴下した。滴下終了から1時間後、ジメチルスルホキシド(7 ml)と塩化メチレン(45 ml)の混合溶媒に溶かした化合物11(134 mg, 0.333 mmol)を3時間かけて滴下した。その後、-80℃で2時間攪拌し、ジイソプロピルエチルアミン(3.5 ml, 20 mmol)を5分間かけて滴下することで反応を停止させ、さらに-80℃で1時間撹拌した。反応溶液を室温に戻した後、さらに1時間撹し、この反応溶液に3 M塩酸溶液を加えたのち、ジクロロメタンで抽出を行った。有機層を分離後、有機層を水と飽和食塩水で洗い、硫酸ナトリウムで乾燥した。溶媒を減圧留去後、得られた残渣をジクロロメタンとヘキサンで再沈殿させることで目的物を収率89%(117 mg)で単離した。
[Formation of compound 12 = process c]
Under an argon atmosphere, trifluoroacetic anhydride (1.4 ml, 10.0 mmol) was added dropwise at -80 ° C to a mixed solution of dimethyl sulfoxide (1.4 ml, 20 mmol) and methylene chloride (70 ml) over 20 minutes. After 1 hour from the completion of the dropwise addition, compound 11 (134 mg, 0.333 mmol) dissolved in a mixed solvent of dimethyl sulfoxide (7 ml) and methylene chloride (45 ml) was added dropwise over 3 hours. Then, the mixture was stirred at -80 ° C for 2 hours, diisopropylethylamine (3.5 ml, 20 mmol) was added dropwise over 5 minutes to stop the reaction, and the mixture was further stirred at -80 ° C for 1 hour. After returning the reaction solution to room temperature, the mixture was further stirred for 1 hour, a 3 M hydrochloric acid solution was added to the reaction solution, and then extraction was performed with dichloromethane. After separating the organic layer, the organic layer was washed with water and saturated brine, and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was reprecipitated with dichloromethane and hexane to isolate the desired product in a yield of 89% (117 mg).

目的物について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果および質量分析を行った結果および質量分析を行った結果を以下に示す。
1H-NMR (400 MHz, CDCl3): 8.42 (s, 2H), 7.91 (s, 4H), 4.18 (s, 4H), 2.38-2.40 (m, 4H), 2.16-2.17 (m, 4H).
HR-MS: calcd for C26H18O4Na, 417.1097 [M+Na]+; found, 417.1095.
For the desired product, a 1 H nuclear magnetic resonance spectroscopy (1 H NMR) result of the results was performed The results were subjected to structural analysis and mass spectrometry and mass spectrometry by below.
1 1 H-NMR (400 MHz, CDCl 3 ): 8.42 (s, 2H), 7.91 (s, 4H), 4.18 (s, 4H), 2.38-2.40 (m, 4H), 2.16-2.17 (m, 4H) ..
HR-MS: calcd for C 26 H 18 O 4 Na, 417.1097 [M + Na] + ; found, 417.1095.

[化合物[2+2]、[3+3]、[4+4]の生成=プロセスd]
アルゴン雰囲気下でエタノール(18 ml)と酢酸(30 ml)の混合溶液に、化合物11(30 mg, 0.0761 mmol)と1,2,4,5-ベンゼンテトラアミン-4塩酸塩(22 mg, 0.0761 mmol)を加え、100℃で加熱しながら4時間撹拌した。その後、トリエチルアミン(1.5 ml)を加え、130℃で18時間撹拌した。室温に冷却後、得られた沈殿をろ過し、固体をメタノールで洗浄し、化合物[3+3]を収率80%(35 mg)、化合物[2+2]と化合物[4+4]をそれぞれ少量ずつ得た。
[Formation of compounds [2 + 2], [3 + 3], [4 + 4] = process d]
Compound 11 (30 mg, 0.0761 mmol) and 1,2,4,5-benzenetetraamine-4 hydrochloride (22 mg, 0.0761) in a mixed solution of ethanol (18 ml) and acetic acid (30 ml) under an argon atmosphere. mmol) was added, and the mixture was stirred for 4 hours while heating at 100 ° C. Then, triethylamine (1.5 ml) was added, and the mixture was stirred at 130 ° C. for 18 hours. After cooling to room temperature, the obtained precipitate was filtered and the solid was washed with methanol to obtain 80% (35 mg) of compound [3 + 3] and a small amount of compound [2 + 2] and a small amount of compound [4 + 4].

化合物[2+2]について、H核磁気共鳴スペクトル法(H NMR)によって構造解析を行った結果および質量分析を行った結果を以下に示す。
1H-NMR (400 MHz, CDCl3) for [3+3]: 8.67 (s, br, 6H), 8.28 (s, br 6H), 7.92 (s, br, 12H), 4.77 (s, br, 12H), 2.19 (s, br, 24H).
HR-MS (SPIRAL-TOF) for [3+3]: calcd for C96H60N12, 1380.5058 [M+]; found, 1380.5058.
Compounds for [2 + 2], the 1 H nuclear magnetic resonance spectroscopy (1 H NMR) results of results and mass spectrometry was subjected to structural analysis by below.
1 1 H-NMR (400 MHz, CDCl 3 ) for [3 + 3]: 8.67 (s, br, 6H), 8.28 (s, br 6H), 7.92 (s, br, 12H), 4.77 (s, br, 12H), 2.19 (s, br, 24H).
HR-MS (SPIRAL-TOF) for [3 + 3]: calcd for C 96 H 60 N 12 , 1380.5058 [M + ]; found, 1380.5058.

図5は目的物(化合物[2+2]、[3+3]、[4+4])の質量分析の結果を示すマススペクトルである。図5より、化合物[2+2]、[3+3]、[4+4]が生成されていることが確認された。また、図6は化合物[3+3]のHR−MSマススペクトルである。 FIG. 5 is a mass spectrum showing the results of mass spectrometry of the target product (compound [2 + 2], [3 + 3], [4 + 4]). From FIG. 5, it was confirmed that the compounds [2 + 2], [3 + 3], and [4 + 4] were produced. Further, FIG. 6 is an HR-MS mass spectrum of compound [3 + 3].

Claims (9)

2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、各ベンゼン環における1位と4位の間に、下記式(1)又は(2)で表される架橋構造を有している、シクラセン前駆体。
When one benzene ring of cyclacene in which 2 (m + n) benzene rings (m and n are integers of 2 or more each) are cyclically condensed as the first benzene ring and numbered in order from there, The 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are placed between the 1st and 4th positions in each benzene ring by the following formula (1). Alternatively, a cyclacene precursor having a crosslinked structure represented by (2).
シクラセン前駆体を準備する工程と、
前記シクラセン前駆体に光を照射したり該シクラセン前駆体を加熱したりして、該シクラセン前駆体をシクラセンに変換する工程と
を備え、
前記シクラセン前駆体が、2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、下記式(1)又は下記(2)のいずれかに示される架橋構造を有している、シクラセン製造方法。
The process of preparing the cyclacene precursor and
The cyclacene precursor is provided with a step of irradiating the cyclacene precursor with light or heating the cyclacene precursor to convert the cyclacene precursor into cyclacene.
One benzene ring of cyclacene obtained by cyclically condensing 2 (m + n) benzene rings (m and n are integers of 2 or more each) of the cyclacene precursor as the first benzene ring, and in order from there. When numbered, the 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are either of the following formula (1) or the following (2). A method for producing cyclacene, which has a crosslinked structure shown in 1.
シクラセン前駆体を準備する工程と、
カーボンナノチューブの合成系で、前記シクラセン前駆体に光を照射したり該シクラセン前駆体に加熱したりして、該シクラセン前駆体をシクラセンに変換する工程と
を備え、
前記シクラセン前駆体が、2(m+n)個(m、nはそれぞれ2以上の整数)のベンゼン環が環状に縮合したシクラセンの、ある1個のベンゼン環を1番目のベンゼン環とし、そこから順に番号を付したとき、1番目のベンゼン環、(m+1)番目のベンゼン環、(m+n+1)番目のベンゼン環、および(2m+n+1)番目のベンゼン環が、下記式(1)又は下記(2)のいずれかに示される架橋構造を有している、ジグザグ型カーボンナノチューブ製造方法。
The process of preparing the cyclacene precursor and
A carbon nanotube synthetic system comprising a step of irradiating the cyclacene precursor with light or heating the cyclacene precursor to convert the cyclacene precursor into cyclacene.
One benzene ring of cyclacene obtained by cyclically condensing 2 (m + n) benzene rings (m and n are integers of 2 or more each) of the cyclacene precursor as the first benzene ring, and in order from there. When numbered, the 1st benzene ring, the (m + 1) th benzene ring, the (m + n + 1) th benzene ring, and the (2m + n + 1) th benzene ring are either of the following formula (1) or the following (2). A method for producing a zigzag carbon nanotube having a crosslinked structure shown in 1.
下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ヘテロシクラセン前駆体。
A heterocyclacene precursor having a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.
前記式(3)又は前記式(4)で表される構造単位が2個又は3個又は4個、環状に連なった構造を有する、請求項4に記載のヘテロシクラセン前駆体。 The heterocyclacene precursor according to claim 4, wherein the structural unit represented by the formula (3) or the formula (4) has a structure in which two, three or four structural units are connected in a ring shape. ヘテロシクラセン前駆体を準備する工程と、
前記ヘテロシクラセン前駆体に光を照射したり該ヘテロシクラセン前駆体を加熱したりすることにより前記ヘテロシクラセン前駆体をヘテロシクラセンに変換する工程と
を備え、
前記ヘテロシクラセン前駆体が、下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ヘテロシクラセン製造方法。
The process of preparing the heterocyclacene precursor and
A step of converting the heterocyclacen precursor into heterocyclase by irradiating the heterocyclacen precursor with light or heating the heterocyclacene precursor is provided.
A method for producing a heterocyclacen, wherein the heterocyclacen precursor has a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.
前記式(3)又は前記式(4)で表される構造単位が2個又は3個又は4個、環状に連なった構造を有する、請求項7に記載のヘテロシクラセン製造方法。 The method for producing heterocyclacen according to claim 7, wherein the structural unit represented by the formula (3) or the formula (4) has a structure in which two, three or four structural units are connected in a ring shape. ヘテロシクラセン前駆体を準備する工程と、
カーボンナノチューブの合成系で、前記ヘテロシクラセン前駆体に光を照射したり該ヘテロシクラセン前駆体を加熱したりすることにより前記ヘテロシクラセン前駆体をヘテロシクラセンに変換する工程と
を備え、
前記ヘテロシクラセン前駆体が、下記式(3)又は下記式(4)で表される構造単位が複数個、環状に連なった構造を有する、ジグザグ型カーボンナノチューブ製造方法。
The process of preparing the heterocyclacene precursor and
A carbon nanotube synthesis system comprising a step of converting the heterocyclacen precursor into heterocyclacene by irradiating the heterocyclacene precursor with light or heating the heterocyclacene precursor.
A method for producing a zigzag carbon nanotube, wherein the heterocyclacene precursor has a structure in which a plurality of structural units represented by the following formula (3) or the following formula (4) are connected in a ring shape.
前記式(3)又は前記式(4)で表される構造単位が2個又は3個又は4個、環状に連なった構造を有する、請求項8に記載のジグザグ型カーボンナノチューブの製造方法。 The method for producing a zigzag-type carbon nanotube according to claim 8, wherein the structural unit represented by the formula (3) or the formula (4) has two, three, or four structural units connected in a ring shape.
JP2019037006A 2019-02-28 2019-02-28 Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same Pending JP2020138945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037006A JP2020138945A (en) 2019-02-28 2019-02-28 Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037006A JP2020138945A (en) 2019-02-28 2019-02-28 Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same

Publications (1)

Publication Number Publication Date
JP2020138945A true JP2020138945A (en) 2020-09-03

Family

ID=72279825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037006A Pending JP2020138945A (en) 2019-02-28 2019-02-28 Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2020138945A (en)

Similar Documents

Publication Publication Date Title
JP5940548B2 (en) Novel spirobifluorene compounds
US7943110B2 (en) Crosslinked carbon nanotube
KR101212717B1 (en) Method of forming high-quality hexagonal boron nitride nanosheet using multi component eutectic point system
JP3985025B2 (en) Amphiphilic compound, soluble carbon nanotube composite
JP5971656B2 (en) Cyclopolyarylene compounds and methods for producing them
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
EP3131849B1 (en) Process for preparing single wall carbon nanotubes of pre-defined chirality
JP5892841B2 (en) Carbon nanotube production method and carbon nanotube production catalyst
Qiu et al. Isolation of a carbon nanohoop with Möbius topology
JP6516570B2 (en) Method of producing graphite film
JP2020138945A (en) Cyclacene precursor and method for producing the same, and heterocyclacene precursor and method for producing the same
Athans et al. Hydrogen-protected acenes
WO2016039262A1 (en) Method for producing fullerene derivative
KR20160062810A (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
CN109786542B (en) Porphyrin/carbon nanotube composite thermoelectric material and preparation method thereof
Yao et al. Molecular Möbius strips: twist for a bright future
JP2024004495A (en) Method for producing deuterated aromatic compound
Kay et al. The first fullerene (C60)-substituted [2.2](2, 7) fluorenophane
US20190248655A1 (en) Hemp-derived Dicarboxylic acid-functionalized Graphene
CN114507237B (en) Azapolycyclic fused ring compound based on acenaphthopyrazinooxaline and synthetic method
Malinčík Chiral carbon nanohoops: topology, luminescence and aromaticity
JP2005306857A (en) Preparation method for polyacene compound
Aljhdli Development of New Synthetic Methods for Carbon Nanohoops
JP2020200224A (en) Metal-carbon hybrid material and method for producing the same
Merryman A Cyclophane-Based Approach to [n] Cycloparaphenylenes and an Allylic Arylation Strategy for Regioselective Triphenylene Synthesis