JP2020138158A - Demulsifier - Google Patents

Demulsifier Download PDF

Info

Publication number
JP2020138158A
JP2020138158A JP2019036213A JP2019036213A JP2020138158A JP 2020138158 A JP2020138158 A JP 2020138158A JP 2019036213 A JP2019036213 A JP 2019036213A JP 2019036213 A JP2019036213 A JP 2019036213A JP 2020138158 A JP2020138158 A JP 2020138158A
Authority
JP
Japan
Prior art keywords
oil
water
demulsifier
acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019036213A
Other languages
Japanese (ja)
Other versions
JP7228186B2 (en
Inventor
哲史 木島
Satoshi Kijima
哲史 木島
吉山 金海
Yoshiyama Kaneumi
吉山 金海
英夫 澤田
Hideo Sawada
英夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Hirosaki University NUC
Original Assignee
Unimatec Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd, Hirosaki University NUC filed Critical Unimatec Co Ltd
Priority to JP2019036213A priority Critical patent/JP7228186B2/en
Publication of JP2020138158A publication Critical patent/JP2020138158A/en
Application granted granted Critical
Publication of JP7228186B2 publication Critical patent/JP7228186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

To provide a demulsifier easily, inexpensively and effectively used for an oil-water separation method including demulsification.SOLUTION: A demulsifier is made of composite particles being the reaction product of a compound having magnetic particles and at least one phosphonic acid part. The demulsifier can obtain hydrophilicity by using a compound having the phosphonic acid part. The composite particles can have magnetism by using magnetic particles such as magnetite fine particles and the like and water can be effectively recovered from emulsion such as polluted oil-containing water and the like discharged from an oil gas field, a chemical plant, a gas station and a restaurant.SELECTED DRAWING: None

Description

本発明は、解乳化剤に関する。さらに詳しくは、エマルジョンの解乳化に有効に用いられる解乳化剤に関する。 The present invention relates to a demulsifier. More specifically, it relates to a deemulsifier that is effectively used for deemulsifying an emulsion.

従来、油ガス田、化学プラント、ガソリンスタンド、飲食店等から排出される油を含んだ汚染水を処理するために、比重差による分離、微生物処理、化学的処理などで油と水との分離を行っている。 Conventionally, in order to treat contaminated water containing oil discharged from oil and gas fields, chemical plants, gas stations, restaurants, etc., oil and water are separated by separation by specific gravity difference, microbial treatment, chemical treatment, etc. It is carried out.

また、汚染水の他、水と油のように互いに混ざり合わない2種以上の液体が、洗剤等の界面活性剤の存在下で、一方の液体中が他方の液体中に微粒子状に分散した安定なエマルジョンを形成することがあるため、エマルジョンの破壊である解乳化が必要となることが多い。 In addition to contaminated water, two or more liquids that are immiscible with each other, such as water and oil, were dispersed in the presence of a surfactant such as detergent in the form of fine particles in one liquid in the other liquid. Since stable emulsions may be formed, deemulsification, which is the destruction of emulsions, is often required.

解乳化方法としては、特定のオキシアルキル化第1脂肪族アミンとジカルボン酸とのエステル化生成物を油中水型の石油エマルジョンに添加する方法(特許文献1)などの化学的方法、容器の外側から電界、好ましくは交流電界を印加することにより、非接触で油中水型エマルジョンの解乳化を行う方法(特許文献2)など等の電気的方法、全くの機械的方法(特許文献3〜4)などがあるが、これらは処理時間、コストがかかるなどの問題があり、簡便かつ廉価な解乳化を含む油水分離方法とはいい難い。 The emulsification method includes a chemical method such as a method of adding an esterification product of a specific oxyalkylated primary aliphatic amine and a dicarboxylic acid to a water-in-oil type petroleum emulsion (Patent Document 1), or a container. An electrical method such as a method of non-contact demulsification of a water-in-oil emulsion by applying an electric field, preferably an AC electric field, from the outside (Patent Document 2), or a completely mechanical method (Patent Documents 3 to 3). There are 4) and the like, but these have problems such as processing time and cost, and it is hard to say that they are oil-water separation methods including simple and inexpensive emulsification.

特開平6−128558号公報Japanese Unexamined Patent Publication No. 6-128558 特開2008−49267号公報Japanese Unexamined Patent Publication No. 2008-49267 特開2018−94530号公報JP-A-2018-94530 WO 2015/156386 A1WO 2015/156386 A1

本発明の目的は、簡便かつ廉価に解乳化を含む油水分離方法に有効に用いられる解乳化剤を提供することにある。 An object of the present invention is to provide an emulsifier that can be effectively used in an oil-water separation method including emulsification easily and inexpensively.

かかる本発明の目的は、磁性粒子および少なくとも1個のホスホン酸部位を有する化合物の反応生成物であるコンポジット粒子よりなる解乳化剤によって達成される。 Such an object of the present invention is achieved by a demulsifier consisting of magnetic particles and composite particles which are reaction products of a compound having at least one phosphonic acid moiety.

ホスホン酸部位を有する化合物を用いることによって親水性を得ることができ、またマグネタイト微粒子等の磁性粒子を用いることで、コンポジット粒子に磁性を持たせることができる。 Hydrophilicity can be obtained by using a compound having a phosphonic acid moiety, and magnetic particles can be imparted to composite particles by using magnetic particles such as magnetite fine particles.

このようにコンポジット粒子が親水性と磁性とを持つことにより、コンポジット粒子を水と油からなるエマルジョン溶液に分散させた状態とし、磁石によってコンポジット粒子および水を引き寄せることで、エマルジョンの破壊が可能となり、水と油を分離することができる。 Since the composite particles have hydrophilicity and magnetism in this way, the composite particles are dispersed in an emulsion solution consisting of water and oil, and the composite particles and water are attracted by a magnet, so that the emulsion can be destroyed. , Water and oil can be separated.

すなわち、本発明のコンポジット粒子の親水性によって、コンポジット粒子は界面活性剤によってミセル中の水が安定分散したエマルジョンを破壊する解乳化剤として働き、ミセル中の水を油中に引き込むことでエマルジョンの解乳化が可能となる。 That is, due to the hydrophilicity of the composite particles of the present invention, the composite particles act as a demulsifier that destroys the emulsion in which the water in the micelles is stably dispersed by the surfactant, and the water in the micelles is drawn into the oil to solve the emulsion. Emulsification is possible.

解乳化効率は、エマルジョンがどの程度破壊されたかを示す値であり、本発明では、その値は90%以上であり、油中に安定分散したミセル内部からの水の分離性が高いことを示している。しかも、コンポジット粒子を解乳化剤として6回くり返して使用しても、解乳化効率は80%以上を維持している。 The deemulsification efficiency is a value indicating how much the emulsion is destroyed, and in the present invention, the value is 90% or more, which indicates that the separability of water from the inside of the micelle stably dispersed in the oil is high. ing. Moreover, even if the composite particles are repeatedly used as an emulsifier 6 times, the emulsification efficiency is maintained at 80% or more.

エマルジョンの解乳化作用を応用することにより、油ガス田、化学プラント、ガソリンスタンド、飲食店から排出される油を含んだ汚染水等のエマルジョンからの水分の有効な回収を図ることができるという効果がもたらされる。 By applying the emulsifying action of the emulsion, it is possible to effectively recover the water from the emulsion such as contaminated water containing oil discharged from oil and gas fields, chemical plants, gas stations, and restaurants. Is brought.

本発明のコンポジット粒子は、磁性粒子およびホスホン酸部位含有化合物からなる。 The composite particles of the present invention consist of magnetic particles and a phosphonic acid site-containing compound.

磁性粒子としては、例えばマグネタイト、フェライト、マグヘマイト、けい素鉄、パーマロイ、アモルファス金属等の微粒子、好ましくはマグネタイトのナノ微粒子等が用いられる。一般に、その平均粒径が約50〜200nmのものが用いられる。 As the magnetic particles, for example, fine particles such as magnetite, ferrite, maghemite, ferrous iron, permalloy, and amorphous metal, preferably magnetite nanoparticles and the like are used. Generally, those having an average particle size of about 50 to 200 nm are used.

少なくとも1個のホスホン酸部位を有する化合物として、例えば
1-ヒドロキシエタン-1,1-ジホスホン酸〔HEDP〕

Figure 2020138158
2-ホスホノブタン-1,2,4-トリカルボン酸〔PBTC〕
Figure 2020138158
ニトリロトリス(メチレンホスホン酸)〔NTMP〕
Figure 2020138158
等が挙げられ、好ましくは1-ヒドロキシエタン-1,1-ジホスホン酸または2-ホスホノブタン-1,2,4-トリカルボン酸が用いられる。 As a compound having at least one phosphonic acid moiety, for example
1-Hydroxyethane-1,1-diphosphonic acid [HEDP]
Figure 2020138158
2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC]
Figure 2020138158
Nitrilotris (methylenephosphonic acid) [NTMP]
Figure 2020138158
Etc., and 1-hydroxyethane-1,1-diphosphonic acid or 2-phosphonobutane-1,2,4-tricarboxylic acid is preferably used.

磁性粒子は、用いられるホスホン酸部位含有化合物の種類に応じて、それぞれ異なった割合で用いられる。1-ヒドロキシエタン-1,1-ジホスホン酸または2-ホスホノブタン-1,2,4-トリカルボン酸の場合には、それらの約60〜20重量%、好ましくは約60〜40重量%に対し、磁性粒子が約40〜80重量%、好ましくは約40〜60重量%の割合で用いられ、ニトリロトリス(メチレンホスホン酸)の場合には、それの約60〜35重量%、好ましくは約60〜50重量%に対し、磁性粒子が約40〜65重量%、好ましくは約40〜50重量%の割合で用いられる。 The magnetic particles are used in different proportions depending on the type of phosphonic acid site-containing compound used. In the case of 1-hydroxyethane-1,1-diphosphonic acid or 2-phosphonobutane-1,2,4-tricarboxylic acid, the magnetic force is based on about 60 to 20% by weight, preferably about 60 to 40% by weight of them. The particles are used in a proportion of about 40-80% by weight, preferably about 40-60% by weight, and in the case of nitrilotris (methylenephosphonic acid), about 60-35% by weight, preferably about 60-50% by weight. Magnetic particles are used in a proportion of about 40 to 65% by weight, preferably about 40 to 50% by weight, based on% by weight.

コンポジット粒子の調製は、磁性粒子をテトラヒドロフラン中約40℃以下で約3〜5時間超音波攪拌した後、ホスホン酸部位含有化合物を加え、同様の条件下で超音波攪拌することにより行われる。 The composite particles are prepared by ultrasonically stirring the magnetic particles in tetrahydrofuran at about 40 ° C. or lower for about 3 to 5 hours, adding a phosphonic acid site-containing compound, and ultrasonically stirring under the same conditions.

溶媒を除去した粗生成物は、一夜テトラヒドロフラン中に分散させた後、磁石により生成物を沈殿させ、分離された生成物を数回テトラヒドロフランで洗浄し、溶媒除去後約50〜70℃で減圧乾燥することにより、コンポジット粒子が取得される。 The crude product from which the solvent has been removed is dispersed in tetrahydrofuran overnight, the product is precipitated by a magnet, the separated product is washed with tetrahydrofuran several times, and after the solvent is removed, it is dried under reduced pressure at about 50 to 70 ° C. By doing so, composite particles are obtained.

得られたコンポジット粒子は、そのままあるいはテトラヒドロフラン分散液として、油中水型あるいは水中油型のエマルジョンに添加し、攪拌される。その添加割合は、油中水型エマルジョンにあっては、1kg当り約1〜50g、好ましくは約5〜20gである。その際、磁石を用いることが好ましい。 The obtained composite particles are added to a water-in-oil or oil-in-water emulsion as it is or as a tetrahydrofuran dispersion, and stirred. The addition ratio of the water-in-oil emulsion is about 1 to 50 g, preferably about 5 to 20 g per 1 kg. At that time, it is preferable to use a magnet.

本発明のコンポジット粒子は、親水性をもつ親水剤として有効であり、油水の分離用途にも効果的に用いることもできる。 The composite particles of the present invention are effective as a hydrophilic agent having hydrophilicity, and can also be effectively used for oil-water separation.

次に、実施例について本発明を説明する。 Next, the present invention will be described with respect to Examples.

実施例1
容量13.5mlの反応容器に、マグネタイトナノ粒子(戸田工業製品、平均粒径50〜200nm)100mgおよびテトラヒドロフラン5mlを仕込み、30℃以下で3時間超音波攪拌した。その後、1-ヒドロキシエタン-1,1-ジホスホン酸〔HEDP〕(60重量%水溶液)を純分として30mgを加え、さらに3時間超音波攪拌した。
Example 1
In a reaction vessel having a capacity of 13.5 ml, 100 mg of magnetite nanoparticles (Toda Industrial Product, average particle size 50 to 200 nm) and 5 ml of tetrahydrofuran were charged and ultrasonically stirred at 30 ° C. or lower for 3 hours. Then, 30 mg of 1-hydroxyethane-1,1-diphosphonic acid [HEDP] (60 wt% aqueous solution) was added as a pure content, and the mixture was further ultrasonically stirred for 3 hours.

超音波攪拌後、85℃、減圧条件下で溶媒を除去し、粗生成物を新たなテトラヒドロフラン中に一夜分散させた。その後、磁石で生成物を沈殿させ、分離された生成物をテトラヒドロフランで数回洗浄した。溶媒除去後に、50℃で減圧乾燥させることにより、コンポジット粒子を得た。 After ultrasonic stirring, the solvent was removed under reduced pressure at 85 ° C. and the crude product was dispersed in fresh tetrahydrofuran overnight. The product was then precipitated with a magnet and the separated product was washed several times with tetrahydrofuran. After removing the solvent, the particles were dried under reduced pressure at 50 ° C. to obtain composite particles.

実施例2
実施例1において、HEDP量が60mgに変更された。
Example 2
In Example 1, the amount of HEDP was changed to 60 mg.

実施例3
実施例1において、HEDP量が90mgに変更された。
Example 3
In Example 1, the amount of HEDP was changed to 90 mg.

実施例4
実施例1において、HEDP量が120mgに変更された。
Example 4
In Example 1, the amount of HEDP was changed to 120 mg.

実施例5
実施例1において、HEDPの代わりに、2-ホスホノブタン-1,2,4-トリカルボン酸〔PBTC〕(50重量%水溶液)が30mg用いられた。
Example 5
In Example 1, 30 mg of 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC] (50 wt% aqueous solution) was used instead of HEDP.

実施例6
実施例1において、HEDPの代わりに、2-ホスホノブタン-1,2,4-トリカルボン酸〔PBTC〕(50重量%水溶液)が60mg用いられた。
Example 6
In Example 1, 60 mg of 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC] (50 wt% aqueous solution) was used instead of HEDP.

実施例7
実施例1において、HEDPの代わりに、2-ホスホノブタン-1,2,4-トリカルボン酸〔PBTC〕(50重量%水溶液)が90mg用いられた。
Example 7
In Example 1, 90 mg of 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC] (50 wt% aqueous solution) was used instead of HEDP.

実施例8
実施例1において、HEDPの代わりに、2-ホスホノブタン-1,2,4-トリカルボン酸〔PBTC〕(50重量%水溶液)が120mg用いられた。
Example 8
In Example 1, 120 mg of 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC] (50 wt% aqueous solution) was used instead of HEDP.

実施例9
実施例1において、HEDPの代わりに、ニトリロトリス(メチレンホスホン酸)〔NTMP〕(50重量%水溶液)が60mg用いられた。
Example 9
In Example 1, 60 mg of nitrilotris (methylenephosphonic acid) [NTMP] (50 wt% aqueous solution) was used instead of HEDP.

実施例10
実施例1において、HEDPの代わりに、ニトリロトリス(メチレンホスホン酸)〔NTMP〕(50重量%水溶液)が90mg用いられた。
Example 10
In Example 1, 90 mg of nitrilotris (methylenephosphonic acid) [NTMP] (50 wt% aqueous solution) was used instead of HEDP.

実施例11
実施例1において、HEDPの代わりに、ニトリロトリス(メチレンホスホン酸)〔NTMP〕(50重量%水溶液)が120mg用いられた。
Example 11
In Example 1, 120 mg of nitrilotris (methylenephosphonic acid) [NTMP] (50 wt% aqueous solution) was used instead of HEDP.

以上の各実施例で得られたコンポジット粒子について、次のようにして解乳化効率Dを測定した。
(1) n-ドデカン 80重量部、水10重量部およびノニオン系界面活性剤(シグマアルドリッチ製品Span 80)10重量部を混合して、エマルジョン溶液を調製
(2) このエマルジョン溶液を、n-ドデカンで30倍に希釈
(3) 希釈溶液をUV-Visで、500nmにおける吸光度(A0)を測定
(4) 測定後、希釈溶液にコンポジット粒子を20g/Lの濃度になるように添加し、5分間超音波照射して分散させる
(5) 超音波照射後、磁石を近付けてコンポジット粒子と水とを回収し、残った溶液の吸光度(Ae)を測定
(6) 下記式に従って、解乳化効率Dを算出する
D (%) = (A0 − Ae) / A0×100
The emulsification efficiency D of the composite particles obtained in each of the above examples was measured as follows.
(1) Prepare an emulsion solution by mixing 80 parts by weight of n-dodecane, 10 parts by weight of water and 10 parts by weight of a nonionic surfactant (Sigma-Aldrich product Span 80).
(2) Dilute this emulsion solution 30-fold with n-dodecane.
(3) Measure the absorbance (A 0 ) at 500 nm with UV-Vis of the diluted solution.
(4) After measurement, add composite particles to the diluted solution to a concentration of 20 g / L, and irradiate with ultrasonic waves for 5 minutes to disperse.
(5) After ultrasonic irradiation, a magnet is brought close to collect the composite particles and water, and the absorbance (Ae) of the remaining solution is measured.
(6) Calculate the emulsification efficiency D according to the following formula.
D (%) = (A 0 − Ae) / A 0 × 100

得られた結果は、次の表1に示される。なお、Fe3O4(50〜200nm)単独のD値は、45%であった。
表1
実施例 D (%)
1 96
2 99
3 88
4 97
5 97
6 96
7 99
8 98
9 89
10 84
11 90
The results obtained are shown in Table 1 below. The D value of Fe 3 O 4 (50 to 200 nm) alone was 45%.
Table 1
Example D (%)
1 96
2 99
3 88
4 97
5 97
6 96
7 99
8 98
9 89
10 84
11 90

また、120mgのHEDPまたはPBTCが用いられた実施例4または8について、リサイクル性解乳化効率D′が測定された。
(1) 上記解乳化効率Dの測定方法(5)で回収したコンポジット粒子をアセトンで洗浄し、乾燥する
(2) 得られた乾燥コンポジット粒子を用いて、上記解乳化効率Dの測定方法(3)〜(6)をくり返す
In addition, the recyclable emulsification efficiency D'was measured for Example 4 or 8 in which 120 mg of HEDP or PBTC was used.
(1) The composite particles recovered in the above method for measuring the emulsification efficiency D (5) are washed with acetone and dried.
(2) Using the obtained dried composite particles, the above-mentioned measurement methods (3) to (6) for the emulsification efficiency D are repeated.

得られた結果は、次の表2に示される。

表2
実施例 くり返し回数(回) D′(%)
4 1 97
2 97
3 93
4 95
5 87
6 93
8 1 95
2 99
3 98
4 90
5 88
6 85
The results obtained are shown in Table 2 below.

Table 2
Example Number of repetitions (times) D'(%)
4 1 97
2 97
3 93
4 95
5 87
6 93
8 1 95
2 99
3 98
4 90
5 88
6 85

Claims (5)

磁性粒子および少なくとも1個のホスホン酸部位を有する化合物の反応生成物であるコンポジット粒子よりなる解乳化剤。 A deemulsifier consisting of magnetic particles and composite particles that are reaction products of a compound having at least one phosphonic acid moiety. 磁性粒子がマグネタイトである請求項1記載の解乳化剤。 The deemulsifier according to claim 1, wherein the magnetic particles are magnetite. 少なくとも1個のホスホン酸部位を有する化合物が、1-ヒドロキシエタン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸またはニトリロトリス(メチレンホスホン酸)である請求項1記載の解乳化剤。 The first aspect of claim 1, wherein the compound having at least one phosphonic acid moiety is 1-hydroxyethane-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid or nitrilotris (methylenephosphonic acid). Demulsifier. 磁性粒子40〜80重量%に対し、ホスホン酸部位含有化合物である1-ヒドロキシエタン-1,1-ジホスホン酸または2-ホスホノブタン-1,2,4-トリカルボン酸が60〜20重量%の割合で用いられる請求項1または3記載の解乳化剤。 The ratio of 1-hydroxyethane-1,1-diphosphonic acid or 2-phosphonobutane-1,2,4-tricarboxylic acid, which are phosphonic acid site-containing compounds, to 40 to 80% by weight of the magnetic particles is 60 to 20% by weight. The demulsifier according to claim 1 or 3 used. 磁性粒子40〜65重量%に対し、ホスホン酸部位含有化合物であるニトリロトリス(メチレンホスホン酸)が60〜35重量%の割合で用いられる請求項1または3記載の解乳化剤。 The deemulsifier according to claim 1 or 3, wherein the phosphonic acid moiety-containing compound nitrilotris (methylenephosphonic acid) is used in a ratio of 60 to 35% by weight based on 40 to 65% by weight of the magnetic particles.
JP2019036213A 2019-02-28 2019-02-28 Demulsifier Active JP7228186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036213A JP7228186B2 (en) 2019-02-28 2019-02-28 Demulsifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036213A JP7228186B2 (en) 2019-02-28 2019-02-28 Demulsifier

Publications (2)

Publication Number Publication Date
JP2020138158A true JP2020138158A (en) 2020-09-03
JP7228186B2 JP7228186B2 (en) 2023-02-24

Family

ID=72279699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036213A Active JP7228186B2 (en) 2019-02-28 2019-02-28 Demulsifier

Country Status (1)

Country Link
JP (1) JP7228186B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117973A (en) * 1975-04-10 1976-10-16 Taihoo Kogyo Kk A method for separating and removing liquid material from the liquid p hase containing water-uncompatible liquid material and water
JPS6342751A (en) * 1986-08-06 1988-02-23 Hiroyoshi Shirai Method for recovering oil
US5868939A (en) * 1993-06-08 1999-02-09 Exportech Company, Inc. Method and apparatus for breaking emulsions of immiscible liquids by magnetostatic coalescence
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117973A (en) * 1975-04-10 1976-10-16 Taihoo Kogyo Kk A method for separating and removing liquid material from the liquid p hase containing water-uncompatible liquid material and water
JPS6342751A (en) * 1986-08-06 1988-02-23 Hiroyoshi Shirai Method for recovering oil
US5868939A (en) * 1993-06-08 1999-02-09 Exportech Company, Inc. Method and apparatus for breaking emulsions of immiscible liquids by magnetostatic coalescence
JP2016064408A (en) * 2014-07-30 2016-04-28 三菱マテリアル株式会社 Oil-water separation filtration device, oil-water separation body recovery method

Also Published As

Publication number Publication date
JP7228186B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
Liang et al. Demulsification of oleic-acid-coated magnetite nanoparticles for cyclohexane-in-water nanoemulsions
Liang et al. Magnetic demulsification of diluted crude oil-in-water nanoemulsions using oleic acid-coated magnetite nanoparticles
Wang et al. Recyclable amine-functionalized magnetic nanoparticles for efficient demulsification of crude oil-in-water emulsions
Ko et al. RETRACTED ARTICLE: Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation
Adewunmi et al. Application of magnetic nanoparticles in demulsification: A review on synthesis, performance, recyclability, and challenges
Zhang et al. Facile fabrication of cyclodextrin-modified magnetic particles for effective demulsification from various types of emulsions
Huang et al. Demulsification of a new magnetically responsive bacterial demulsifier for water-in-oil emulsions
Pacwa-Płociniczak et al. Environmental applications of biosurfactants: recent advances
Long et al. Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil
CN102264631B (en) Magnetic nano-particle is utilized to carry out the method for liquid purifying
Zaman et al. Effect of pH and salinity on stability and dynamic properties of magnetic composite amphiphilic demulsifier molecules at the oil-water interface
Li et al. Surface engineering superparamagnetic nanoparticles for aqueous applications: design and characterization of tailored organic bilayers
JP2017521856A (en) Amphiphilic magnetic nanoparticles and aggregates to remove hydrocarbons and metal ions and their synthesis
Chen et al. Magnetically recoverable efficient demulsifier for water‐in‐oil emulsions
US3806449A (en) Separation of liquid-liquid multiphase mixtures
Ko et al. Oil droplet removal from produced water using nanoparticles and their magnetic separation
Feng et al. Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers
Yau et al. Magnetically recoverable magnetite-reduced graphene oxide as a demulsifier for surfactant stabilized crude oil-in-water emulsion
Xiong et al. Coupling magnetic particles with flocculants to enhance demulsification and separation of waste cutting emulsion for engineering applications
Husain et al. Chemical treatment of oilfield wastewater and the effect of temperature on treatment efficiency: A review
Andrade et al. Efficient demulsification of wastewater by steel furnace dust with amphiphilic and surface charge properties
JP2020138158A (en) Demulsifier
Theurer et al. Removal of residual oil from produced water using magnetic nanoparticles
EP3860739A1 (en) A method for purifying a liquid with magnetic and centrifugal forces
RU2384909C1 (en) Method of preparing magnetic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230203

R150 Certificate of patent or registration of utility model

Ref document number: 7228186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150