JP2020137176A - Motor case cylinder - Google Patents

Motor case cylinder Download PDF

Info

Publication number
JP2020137176A
JP2020137176A JP2019024420A JP2019024420A JP2020137176A JP 2020137176 A JP2020137176 A JP 2020137176A JP 2019024420 A JP2019024420 A JP 2019024420A JP 2019024420 A JP2019024420 A JP 2019024420A JP 2020137176 A JP2020137176 A JP 2020137176A
Authority
JP
Japan
Prior art keywords
cylinder
cast
hole
draft
cast hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019024420A
Other languages
Japanese (ja)
Other versions
JP7187345B2 (en
Inventor
利満 畠山
Toshimitsu Hatakeyama
利満 畠山
今川 洋一
Yoichi Imagawa
洋一 今川
幸秀 青野
Yukihide Aono
幸秀 青野
達也 日吉
Tatsuya Hiyoshi
達也 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP2019024420A priority Critical patent/JP7187345B2/en
Publication of JP2020137176A publication Critical patent/JP2020137176A/en
Application granted granted Critical
Publication of JP7187345B2 publication Critical patent/JP7187345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

To improve cooling efficiency while suppressing die cutting resistance.SOLUTION: A casting cylinder in a motor case, has a cooling passage through which a refrigerant flows. The cooling passage has cast holes 21, 22 that are cast in a direction of a center line of the cylinder. A draft angle of an inner portion 23 of wall surfaces of the casting holes 21, 22 near an inner peripheral surface of the cylinder is smaller than a draft angle of an outer portion 24 near an outer peripheral surface of the cylinder. A cross-sectional shape when the casting holes 21, 22 are cut in a direction orthogonal to the center line direction has a long flat shape in a circumferential direction of the cylinder. A draft angle of the outer portion 24 of the wall surfaces of the casting holes 21, 22 is smaller than a draft angle of both end portions 25 in the circumferential direction of the cylinder on the wall surfaces of the casting holes 21, 22.SELECTED DRAWING: Figure 3

Description

本発明は、モータケースのシリンダに関する。 The present invention relates to a cylinder of a motor case.

モータケースにはモータが収容される。モータを冷却するために、モータケースには冷却用の通路が形成される。冷却用の通路には水等の冷媒が流される。下記特許文献1では、モータケースとしてのハウジングに、冷却用の通路として鋳抜き孔が形成されている。この鋳抜き孔はハウジングの中心線方向(モータ軸の軸線方向)に沿って延びている。鋳抜き孔は、貫通していない孔である。鋳抜き孔は、ハウジングの第一の端部と第二の端部のうち第一の端部のみに開口している。鋳抜き孔は、ハウジングの第一の端部から鋳抜くことにより形成されている。鋳抜き孔の壁面(内壁面)は抜き勾配を有している。そのため、鋳抜き孔は、閉口端側から開口端側に向けて徐々にハウジングの内周面に接近していく。従って、モータは、鋳抜き孔の閉口端に近い部分よりも鋳抜き孔の開口端に近い部分の方が冷やされる。 The motor is housed in the motor case. In order to cool the motor, a cooling passage is formed in the motor case. Refrigerant such as water flows through the cooling passage. In Patent Document 1 below, a cast hole is formed in the housing as a motor case as a passage for cooling. This cast hole extends along the center line direction of the housing (the axial direction of the motor shaft). The cast hole is a hole that does not penetrate. The cast hole is opened only in the first end of the first end and the second end of the housing. The cast holes are formed by casting from the first end of the housing. The wall surface (inner wall surface) of the cast hole has a draft. Therefore, the cast hole gradually approaches the inner peripheral surface of the housing from the closed end side toward the open end side. Therefore, the motor is cooled at a portion closer to the opening end of the casting hole than at a portion near the closing end of the casting hole.

特開2015−19494号公報Japanese Unexamined Patent Publication No. 2015-19494

本発明は、金型の抜き抵抗を抑制しつつ冷却効率を向上させることを課題とする。 An object of the present invention is to improve the cooling efficiency while suppressing the die punching resistance.

本発明に係るモータケースのシリンダは、モータケースにおける鋳造製のシリンダであって、冷媒が流される冷却通路を有し、冷却通路は、シリンダの中心線方向に鋳抜かれた鋳抜き孔を有し、鋳抜き孔の壁面のうちシリンダの内周面に近い内側部分の抜き勾配は、シリンダの外周面に近い外側部分の抜き勾配よりも小さい。 The cylinder of the motor case according to the present invention is a cylinder made by casting in the motor case, and has a cooling passage through which the refrigerant flows, and the cooling passage has a cast hole cast in the direction of the center line of the cylinder. The draft of the inner portion of the wall surface of the cast hole near the inner peripheral surface of the cylinder is smaller than the draft of the outer portion near the outer peripheral surface of the cylinder.

このシリンダは、冷却通路を有している。冷却通路は、シリンダの中心線方向に鋳抜かれた鋳抜き孔を有している。鋳抜き孔の壁面のうち内側部分の抜き勾配は小さい。そのため、収容されるモータを効率良く冷却できる。 This cylinder has a cooling passage. The cooling passage has a cast hole cast in the direction of the center line of the cylinder. The draft of the inner part of the wall surface of the cast hole is small. Therefore, the housed motor can be efficiently cooled.

また、鋳造されたシリンダから金型を抜く際、ボアの存在によってシリンダは内側に収縮しようとする。そのため、鋳抜き孔の壁面の内側部分の抜き勾配が小さくても、金型を容易に抜くことができる。一方、鋳抜き孔の壁面の外側部分の抜き勾配は内側部分の抜き勾配よりも大きいので、金型の抜き抵抗、即ち離型抵抗が過度に大きくなることを抑制することができる。 Also, when removing the mold from the cast cylinder, the cylinder tends to shrink inward due to the presence of the bore. Therefore, the die can be easily pulled out even if the draft of the inner portion of the wall surface of the cast hole is small. On the other hand, since the draft of the outer portion of the wall surface of the cast hole is larger than the draft of the inner portion, it is possible to prevent the die punching resistance, that is, the mold release resistance from becoming excessively large.

特に、鋳抜き孔の壁面の内側部分の抜き勾配は、0であることが好ましい。この構成によれば、鋳抜き孔とシリンダの内周面との間の距離は、シリンダの中心線方向に沿って一定となる。そのため、収容されるモータを中心線方向に沿ってバランス良く冷却することができ、冷却効率が向上される。一方、鋳抜き孔の壁面の外側部分は抜き勾配を有しているので、離型抵抗の過度の増加を抑制できる。 In particular, the draft of the inner portion of the wall surface of the cast hole is preferably 0. According to this configuration, the distance between the cast hole and the inner peripheral surface of the cylinder is constant along the direction of the center line of the cylinder. Therefore, the housed motor can be cooled in a well-balanced manner along the center line direction, and the cooling efficiency is improved. On the other hand, since the outer portion of the wall surface of the cast hole has a draft, an excessive increase in mold release resistance can be suppressed.

また、鋳抜き孔をシリンダの中心線方向と直交する方向に切断したときの断面形状は、シリンダの周方向に長い偏平形状であり、鋳抜き孔の壁面の外側部分の抜き勾配は、鋳抜き孔の壁面のうちシリンダの周方向の両端部分の抜き勾配よりも小さいことが好ましい。このように鋳抜き孔の断面形状が偏平形状であると、モータを効率良く冷却できる。鋳抜き孔の壁面の周方向の両端部分の抜き勾配によって、鋳抜き孔の周方向の長さは鋳抜きの方向に向けて徐々に長くなる。また、鋳抜き孔の壁面の外側部分の抜き勾配によって、鋳抜き孔の径方向の長さは鋳抜きの方向に向けて徐々に長くなる。鋳抜き孔の断面形状が偏平形状である場合、鋳抜き孔の周方向の長さは径方向の長さよりも長い。鋳抜き孔の壁面の外側部分の抜き勾配と周方向の両端部分の抜き勾配が同じであると、抜き勾配による長さの変化量は径方向と周方向で同じである。その一方、元の長さは周方向の長さの方が径方向の長さよりも長い。そのため、元の長さに対する、抜き勾配による長さの変化量の比率、即ち、(抜き勾配による長さの変化量)/(元の長さ)は、周方向の方が径方向よりも小さくなる。即ち、抜き勾配が長さの変化に与える影響は、周方向の方が径方向よりも小さい。そこで、外側部分の抜き勾配を相対的に小さくし、周方向の両端部分の抜き勾配を大きくすることにより、抜き勾配が鋳抜き孔の断面形状の変化に与える影響を抑制することができると共に、壁面の抜き勾配を確保することができる。従って、金型の抜き抵抗を抑制しつつ、冷却効率を総合的に向上させることができる。 Further, the cross-sectional shape when the cast hole is cut in the direction orthogonal to the center line direction of the cylinder is a flat shape long in the circumferential direction of the cylinder, and the draft of the outer portion of the wall surface of the cast hole is cast. It is preferable that the wall surface of the hole is smaller than the draft at both ends in the circumferential direction of the cylinder. When the cross-sectional shape of the cast hole is flat as described above, the motor can be efficiently cooled. Due to the draft at both ends of the wall surface of the cast hole in the circumferential direction, the length of the cast hole in the circumferential direction gradually increases in the direction of casting. Further, the radial length of the cast hole gradually increases in the cast direction due to the draft of the outer portion of the wall surface of the cast hole. When the cross-sectional shape of the cast hole is flat, the circumferential length of the cast hole is longer than the radial length. If the draft of the outer portion of the wall surface of the cast hole and the draft of both end portions in the circumferential direction are the same, the amount of change in length due to the draft is the same in the radial direction and the circumferential direction. On the other hand, the original length is longer in the circumferential direction than in the radial direction. Therefore, the ratio of the amount of change in length due to the draft to the original length, that is, (the amount of change in length due to the draft) / (original length) is smaller in the circumferential direction than in the radial direction. Become. That is, the influence of the draft on the change in length is smaller in the circumferential direction than in the radial direction. Therefore, by making the draft of the outer portion relatively small and increasing the draft of both ends in the circumferential direction, it is possible to suppress the influence of the draft on the change in the cross-sectional shape of the cast hole. The draft of the wall surface can be secured. Therefore, the cooling efficiency can be comprehensively improved while suppressing the die punching resistance.

以上のように、鋳抜き孔の壁面の内側部分における抜き勾配が外側部分における抜き勾配よりも小さいので、金型の抜き抵抗を抑制しつつ冷却効率を向上させることができる。 As described above, since the draft in the inner portion of the wall surface of the cast hole is smaller than the draft in the outer portion, it is possible to improve the cooling efficiency while suppressing the punching resistance of the die.

本発明の一実施形態におけるモータケースのシリンダを第二の端部側から中心線方向に見た図。The figure which looked at the cylinder of the motor case in one Embodiment of this invention from the second end side toward the center line. 図1のA−A断面図。A cross-sectional view taken along the line AA of FIG. (a)は図2の要部拡大図、(b)は鋳抜き孔の断面形状を示す拡大図。(A) is an enlarged view of a main part of FIG. 2, and (b) is an enlarged view showing a cross-sectional shape of a cast hole. 同シリンダを周方向に沿って切断した展開図。A development view of the cylinder cut along the circumferential direction. 一方向に鋳抜いた鋳抜き孔のみを有するシリンダの展開図。A development view of a cylinder having only a cast hole cast in one direction. 同シリンダを鋳造するための金型の要部を示し、(a)はボア形成部と第一の鋳抜き孔形成部を先端側から中心線方向に見た正面図、(b)は第二の鋳抜き孔形成部を先端側から中心線方向に見た正面図。The main part of the mold for casting the cylinder is shown, (a) is a front view of the bore forming part and the first cast hole forming part as viewed from the tip side toward the center line, and (b) is the second. The front view of the cast hole forming portion of the above viewed from the tip side toward the center line. 同シリンダの鋳造方法を示す概略図。The schematic which shows the casting method of the cylinder. (a)は本発明の他の実施形態におけるシリンダの要部断面図、(b)は同シリンダの機械加工前の状態を示す要部断面図。(A) is a cross-sectional view of a main part of a cylinder according to another embodiment of the present invention, and (b) is a cross-sectional view of a main part showing a state of the cylinder before machining. 本発明の他の実施形態におけるシリンダを周方向に沿って切断した展開図。The development view which cut the cylinder in the other embodiment of this invention along the circumferential direction. 同シリンダの加工方法を示す図9に対応した展開図。The development view corresponding to FIG. 9 which shows the processing method of the cylinder.

以下、本発明の一実施形態にかかるモータケースのシリンダとその鋳造方法について図1〜図7を参酌しつつ説明する。図1及び図2に、本実施形態にかかるモータケースのシリンダ1を示している。図1は、シリンダ1をその第二の端部12側から見た図である。尚、以下、シリンダ1の中心線方向を、単に中心線方向と称する。モータケースは、シリンダ1と、第一のカバー2と、第二のカバー3とを備えている。シリンダ1は、ボア10を有している。ボア10は、シリンダ1を中心線方向に貫通している。シリンダ1は、第一の端部11と第二の端部12に、それぞれボア10の開口部を有している。第一のカバー2は、シリンダ1の第一の端部11にネジ止めされる。第一のカバー2は、シリンダ1の第一の端部11の開口部を覆う。第二のカバー3は、シリンダ1の第二の端部12にネジ止めされる。第二のカバー3は、シリンダ1の第二の端部12の開口部を覆う。第一のカバー2と第二のカバー3は、互いに、中心線方向に対向する。シリンダ1の両端部11,12には、それぞれ第一及び第二のカバー2,3をネジ止めするためのネジボス13が設けられている。ネジボス13は、シリンダ1の外周面から局所的に径方向外側に膨出している。尚、ボア10はシリンダ1の第一の端部11と第二の端部12にそれぞれ開口しているものでなくてもよく、第一の端部11と第二の端部12のうちの一方のみに開口するものであってもよい。 Hereinafter, the cylinder of the motor case and the casting method thereof according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7. 1 and 2 show the cylinder 1 of the motor case according to the present embodiment. FIG. 1 is a view of the cylinder 1 as viewed from the second end 12 side thereof. Hereinafter, the direction of the center line of the cylinder 1 is simply referred to as the direction of the center line. The motor case includes a cylinder 1, a first cover 2, and a second cover 3. The cylinder 1 has a bore 10. The bore 10 penetrates the cylinder 1 in the center line direction. The cylinder 1 has an opening of a bore 10 at a first end portion 11 and a second end portion 12, respectively. The first cover 2 is screwed to the first end 11 of the cylinder 1. The first cover 2 covers the opening of the first end 11 of the cylinder 1. The second cover 3 is screwed to the second end 12 of the cylinder 1. The second cover 3 covers the opening of the second end 12 of the cylinder 1. The first cover 2 and the second cover 3 face each other in the center line direction. Screw bosses 13 for screwing the first and second covers 2 and 3 are provided on both ends 11 and 12 of the cylinder 1, respectively. The screw boss 13 locally bulges outward in the radial direction from the outer peripheral surface of the cylinder 1. The bore 10 does not have to be open to the first end 11 and the second end 12 of the cylinder 1, respectively, and is among the first end 11 and the second end 12. It may be open to only one side.

モータケースには図示しないモータが収容される。モータのステータコイルは、シリンダ1の内周面14に固定される。ステータコイルは、モータの主要な発熱源である。モータケースは、モータを冷却するための冷却通路を有している。冷却通路には、水等の冷媒が流される。冷却通路の構造は種々であってよい。例えば、冷却通路は、シリンダ1と両カバー2,3とに形成される。シリンダ1は、冷却通路として複数の貫通孔20を有している。貫通孔20は、中心線方向に沿って延びていて、シリンダ1の両端部11,12にそれぞれ開口している。シリンダ1の両端部11,12は、それぞれ中心線方向に対して直交する平面である。 A motor (not shown) is housed in the motor case. The stator coil of the motor is fixed to the inner peripheral surface 14 of the cylinder 1. The stator coil is the main source of heat for the motor. The motor case has a cooling passage for cooling the motor. A refrigerant such as water flows through the cooling passage. The structure of the cooling passage may be various. For example, the cooling passage is formed in the cylinder 1 and both covers 2 and 3. The cylinder 1 has a plurality of through holes 20 as cooling passages. The through hole 20 extends along the direction of the center line and opens at both ends 11 and 12 of the cylinder 1, respectively. Both ends 11 and 12 of the cylinder 1 are planes orthogonal to the center line direction, respectively.

シリンダ1は鋳造製であり、ダイカストにより製造されている。尚、シリンダ1の両端部11,12や内周面14、ネジボス13のネジ孔13aは、鋳造後に切削加工等の機械加工により形成されている。シリンダ1の内周面14は勾配を有しないストレート形状である。貫通孔20は、シリンダ1の全長に亘って鋳抜かれた鋳抜き孔である。鋳抜き孔は鋳造時に金型によって鋳抜かれる。従って、鋳抜き孔の壁面は鋳抜きにより形成されており、機械加工されていない。複数の貫通孔20は、シリンダ1の周方向に一定間隔毎に並んでいる。貫通孔20の個数は任意であるが、好ましくは偶数であり、本実施形態では12個である。複数の貫通孔20のうち半数は第一の鋳抜き孔21であって残りの半数は第二の鋳抜き孔22である。即ち、第一の鋳抜き孔21と第二の鋳抜き孔22は、互いに同数であり、六個ずつである。第一の鋳抜き孔21は、シリンダ1の第一の端部11側から鋳抜かれている。そのため、第一の鋳抜き孔21の断面積は、シリンダ1の第二の端部12から第一の端部11に向けて徐々に大きくなっている。第二の鋳抜き孔22はシリンダ1の第二の端部12側から鋳抜かれている。そのため、第二の鋳抜き孔22の断面積は、シリンダ1の第一の端部11から第二の端部12に向けて徐々に大きくなっている。第一の鋳抜き孔21と第二の鋳抜き孔22はシリンダ1の周方向に交互に並んでいる。シリンダ1を第二の端部12側から見ると図1のようになる。シリンダ1の第二の端部12において、第一の鋳抜き孔21の開口部は小さく、第二の鋳抜き孔22の開口部は大きい。逆に、シリンダ1の第一の端部11においては、第一の鋳抜き孔21の開口部は大きく、第二の鋳抜き孔22の開口部は小さい。 The cylinder 1 is made by casting and is manufactured by die casting. The both end portions 11 and 12 of the cylinder 1, the inner peripheral surface 14, and the screw holes 13a of the screw boss 13 are formed by machining such as cutting after casting. The inner peripheral surface 14 of the cylinder 1 has a straight shape having no gradient. The through hole 20 is a cast hole cast over the entire length of the cylinder 1. The cast holes are cast by a die at the time of casting. Therefore, the wall surface of the cast hole is formed by casting and is not machined. The plurality of through holes 20 are arranged at regular intervals in the circumferential direction of the cylinder 1. The number of through holes 20 is arbitrary, but is preferably an even number, which is 12 in the present embodiment. Of the plurality of through holes 20, half are the first cast holes 21 and the other half are the second cast holes 22. That is, the number of the first cast hole 21 and the second cast hole 22 are the same as each other, and the number is six each. The first cast hole 21 is cast from the first end 11 side of the cylinder 1. Therefore, the cross-sectional area of the first cast hole 21 gradually increases from the second end portion 12 of the cylinder 1 toward the first end portion 11. The second cast hole 22 is cast from the second end 12 side of the cylinder 1. Therefore, the cross-sectional area of the second cast hole 22 gradually increases from the first end portion 11 of the cylinder 1 toward the second end portion 12. The first cast hole 21 and the second cast hole 22 are alternately arranged in the circumferential direction of the cylinder 1. When the cylinder 1 is viewed from the second end 12 side, it is as shown in FIG. At the second end 12 of the cylinder 1, the opening of the first cast hole 21 is small and the opening of the second cast hole 22 is large. On the contrary, at the first end 11 of the cylinder 1, the opening of the first cast hole 21 is large and the opening of the second cast hole 22 is small.

鋳抜き孔21,22の詳細について説明する。尚、第一の鋳抜き孔21と第二の鋳抜き孔22は、鋳抜きの方向が異なる以外は同じである。図3(b)のように、鋳抜き孔21,22は、シリンダ1の周方向に長い偏平形状である。即ち、鋳抜き孔21,22をシリンダ1の中心線方向と直交する方向に切断したときの断面形状は、シリンダ1の周方向に長くシリンダ1の径方向に短い偏平形状である。鋳抜き孔21,22は、シリンダ1の周方向に長いトラック形状である。鋳抜き孔21,22は、シリンダ1の中心線を中心として、シリンダ1の周方向に沿って断面視円弧状に湾曲している。鋳抜き孔21,22の壁面は、シリンダ1の内周面14に近い内側部分23と、シリンダ1の外周面に近い外側部分24と、シリンダ1の周方向の両端部分25とを有している。鋳抜き孔21,22の壁面の内側部分23と外側部分24は、シリンダ1の周方向に沿って径方向外側に向けて断面視円弧状に湾曲している。鋳抜き孔21,22の壁面のうちシリンダ1の周方向の両端部分25を、以下、鋳抜き孔21,22の壁面の周方向両端部分25という。この鋳抜き孔21,22の壁面の周方向両端部分25は、断面視半円状である。 The details of the cast holes 21 and 22 will be described. The first cast hole 21 and the second cast hole 22 are the same except that the casting direction is different. As shown in FIG. 3B, the cast holes 21 and 22 have a flat shape that is long in the circumferential direction of the cylinder 1. That is, the cross-sectional shape when the cast holes 21 and 22 are cut in the direction orthogonal to the center line direction of the cylinder 1 is a flat shape that is long in the circumferential direction of the cylinder 1 and short in the radial direction of the cylinder 1. The cast holes 21 and 22 have a track shape that is long in the circumferential direction of the cylinder 1. The cast holes 21 and 22 are curved in a cross-sectional arc shape along the circumferential direction of the cylinder 1 with the center line of the cylinder 1 as the center. The wall surface of the cast holes 21 and 22 has an inner portion 23 close to the inner peripheral surface 14 of the cylinder 1, an outer portion 24 close to the outer peripheral surface of the cylinder 1, and both end portions 25 in the circumferential direction of the cylinder 1. There is. The inner portion 23 and the outer portion 24 of the wall surface of the cast holes 21 and 22 are curved in an arc shape in a cross-sectional view toward the outer side in the radial direction along the circumferential direction of the cylinder 1. Of the wall surfaces of the cast holes 21 and 22, both end portions 25 in the circumferential direction of the cylinder 1 are hereinafter referred to as circumferential end portions 25 of the wall surfaces of the cast holes 21 and 22. Both end portions 25 in the circumferential direction of the wall surface of the cast holes 21 and 22 are semicircular in cross section.

鋳抜き孔21,22の壁面は抜き勾配を有している。尚、図面では、抜き勾配を誇張して示している。抜き勾配は壁面の各部で異なっている。壁面の内側部分23の抜き勾配は、壁面の外側部分24の抜き勾配よりも小さい。壁面の外側部分24の抜き勾配は、壁面の周方向両端部分25の抜き勾配よりも小さい。壁面の周方向両端部分25の抜き勾配は互いに等しい。即ち、壁面の抜き勾配は、内側部分23、外側部分24、周方向両端部分25という順で大きくなっている。壁面の内側部分23の抜き勾配は0であることが好ましい。壁面の内側部分23の抜き勾配が0であると、壁面の内側部分23は、シリンダ1の中心線と平行になる。図3(a)のように、壁面の内側部分23とシリンダ1の内周面14との間の距離は、シリンダ1の全長に亘って一定である。一方、壁面の外側部分24は所定の抜き勾配を有している。壁面の外側部分24は、鋳抜きの方向に向けて徐々にシリンダ1の外周面に接近していく。 The walls of the cast holes 21 and 22 have a draft. In the drawings, the draft is exaggerated. The draft is different for each part of the wall surface. The draft of the inner portion 23 of the wall surface is smaller than the draft of the outer portion 24 of the wall surface. The draft of the outer portion 24 of the wall surface is smaller than the draft of both end portions 25 in the circumferential direction of the wall surface. The drafts of both end portions 25 in the circumferential direction of the wall surface are equal to each other. That is, the draft of the wall surface increases in the order of the inner portion 23, the outer portion 24, and both end portions 25 in the circumferential direction. The draft of the inner portion 23 of the wall surface is preferably 0. When the draft of the inner portion 23 of the wall surface is 0, the inner portion 23 of the wall surface becomes parallel to the center line of the cylinder 1. As shown in FIG. 3A, the distance between the inner portion 23 of the wall surface and the inner peripheral surface 14 of the cylinder 1 is constant over the entire length of the cylinder 1. On the other hand, the outer portion 24 of the wall surface has a predetermined draft. The outer portion 24 of the wall surface gradually approaches the outer peripheral surface of the cylinder 1 in the direction of casting.

図4に、シリンダ1を周方向に展開した展開図を示している。上述のように第一の鋳抜き孔21と第二の鋳抜き孔22は周方向に交互に設けられている。第一の鋳抜き孔21は、シリンダ1の第二の端部12から第一の端部11に向けて徐々に幅が拡がっている。尚、幅は、周方向の寸法である。第二の鋳抜き孔22は、シリンダ1の第一の端部11から第二の端部12に向けて徐々に幅が拡がっている。第一の鋳抜き孔21と第二の鋳抜き孔22は、互いの壁面の周方向両端部分25の抜き勾配の大きさが等しくその向きが反対である。そのため、隣り合う第一の鋳抜き孔21と第二の鋳抜き孔22との間の周方向の距離は、シリンダ1の全長に亘って一定である。 FIG. 4 shows a developed view of the cylinder 1 developed in the circumferential direction. As described above, the first cast hole 21 and the second cast hole 22 are provided alternately in the circumferential direction. The width of the first cast hole 21 gradually widens from the second end portion 12 of the cylinder 1 toward the first end portion 11. The width is a dimension in the circumferential direction. The width of the second cast hole 22 gradually widens from the first end portion 11 of the cylinder 1 toward the second end portion 12. The first cast-out hole 21 and the second cast-out hole 22 have the same draft gradients at both end portions 25 in the circumferential direction of the wall surfaces and are in opposite directions. Therefore, the circumferential distance between the adjacent first cast hole 21 and the second cast hole 22 is constant over the entire length of the cylinder 1.

図5に、一方向のみの鋳抜き孔21のみが形成されたシリンダ1を示している。図5は、全ての貫通孔が第一の鋳抜き孔21である場合を示している。この場合、隣り合う鋳抜き孔21,21同士の間の周方向の距離は、シリンダ1の第一の端部11から第二の端部12に向けて徐々に大きくなる。即ち、鋳抜き孔21,21同士の間の隔壁部26の幅は、シリンダ1の第一の端部11から第二の端部12に向けて徐々に大きくなる。そのため、隔壁部26に駄肉が生じる。一方、図4のように第一の鋳抜き孔21と第二の鋳抜き孔22とが周方向に交互に設けられていると、第一の鋳抜き孔21と第二の鋳抜き孔22との間の隔壁部26はシリンダ1の全長に亘って幅一定となり、隔壁部26に駄肉が生じない。 FIG. 5 shows a cylinder 1 in which only a cast hole 21 in only one direction is formed. FIG. 5 shows a case where all the through holes are the first cast holes 21. In this case, the circumferential distance between the adjacent cast holes 21 and 21 gradually increases from the first end 11 to the second end 12 of the cylinder 1. That is, the width of the partition wall 26 between the cast holes 21 and 21 gradually increases from the first end 11 to the second end 12 of the cylinder 1. Therefore, waste meat is generated in the partition wall portion 26. On the other hand, when the first cast hole 21 and the second cast hole 22 are alternately provided in the circumferential direction as shown in FIG. 4, the first cast hole 21 and the second cast hole 22 are provided. The width of the partition wall portion 26 between the two and the partition wall portion 26 is constant over the entire length of the cylinder 1, and no waste is generated in the partition wall portion 26.

図2及び図4に示すように、両カバー2,3には冷却通路の一部が形成されている。シリンダ1の第一の端部11と対向する第一のカバー2の内面2aと、シリンダ1の第二の端部12と対向する第二のカバー3の内面3aとには、それぞれ冷却通路としての凹溝30が形成されている。凹溝30は、シリンダ1の周方向に沿って延びている。凹溝30は、隣り合う第一の鋳抜き孔21と第二の鋳抜き孔22とを連通している。冷媒が第一の鋳抜き孔21と第二の鋳抜き孔22を流れる方向は何れの方向であってもよいが、一例として、図4に矢印で冷媒の流れの方向を示している。冷媒の流れの方向は、例えば鋳抜きの方向であるが、逆であってもよい。この具体例では、第一の鋳抜き孔21を通った冷媒は、第一のカバー2の凹溝30を通って、隣の第二の鋳抜き孔22に入る。第二の鋳抜き孔22を通った冷媒は、第二のカバー3の凹溝30を通って、隣の第一の鋳抜き孔21に入る。尚、図示しないが、モータケースは、冷媒の入り口と出口を有している。入り口と出口は、例えば第一のカバー2や第二のカバー3に設けられるが、シリンダ1の外周面に設けられてもよい。 As shown in FIGS. 2 and 4, a part of the cooling passage is formed in both covers 2 and 3. The inner surface 2a of the first cover 2 facing the first end 11 of the cylinder 1 and the inner surface 3a of the second cover 3 facing the second end 12 of the cylinder 1 are respectively provided as cooling passages. The concave groove 30 is formed. The concave groove 30 extends along the circumferential direction of the cylinder 1. The concave groove 30 communicates the adjacent first cast hole 21 and the second cast hole 22. The direction in which the refrigerant flows through the first cast hole 21 and the second cast hole 22 may be any direction, but as an example, the direction of the refrigerant flow is indicated by an arrow in FIG. The direction of the refrigerant flow is, for example, the casting direction, but may be reversed. In this specific example, the refrigerant that has passed through the first cast hole 21 passes through the concave groove 30 of the first cover 2 and enters the adjacent second cast hole 22. The refrigerant that has passed through the second cast hole 22 passes through the concave groove 30 of the second cover 3 and enters the adjacent first cast hole 21. Although not shown, the motor case has an inlet and an outlet for the refrigerant. The inlet and outlet are provided on, for example, the first cover 2 and the second cover 3, but may be provided on the outer peripheral surface of the cylinder 1.

次に、シリンダ1の鋳造方法について説明する。図6及び図7に、シリンダ1を鋳造するための金型の要部を図示している。鋳造時にシリンダ1の中心線は例えば水平方向とされる。図示しない主型の型開き方向は例えばシリンダ1の中心線に対して左右方向とされる。主型は、固定型と可動型とを備えている。金型は、ボア10を形成するためのボア形成部40と、第一の鋳抜き孔21を形成するための第一の鋳抜き孔形成部41と、第二の鋳抜き孔22を形成するための第二の鋳抜き孔形成部42とを備えている。ボア形成部40と第一及び第二の鋳抜き孔形成部41,42は、中心線方向に沿って駆動される。ボア形成部40と第一及び第二の鋳抜き孔形成部41,42の移動方向は、主型の型開き方向に対して直交する方向である。第一の鋳抜き孔形成部41と第二の鋳抜き孔形成部42は、鋳造されるシリンダ1を中心として互いに反対側に対向して配置される。ボア形成部40は、シリンダ1に対して、例えば第一の鋳抜き孔形成部41と同じ側に配置される。 Next, the casting method of the cylinder 1 will be described. 6 and 7 show the main parts of the mold for casting the cylinder 1. At the time of casting, the center line of the cylinder 1 is set to, for example, the horizontal direction. The mold opening direction of the main mold (not shown) is, for example, the left-right direction with respect to the center line of the cylinder 1. The main type includes a fixed type and a movable type. The mold forms a bore forming portion 40 for forming the bore 10, a first cast hole forming portion 41 for forming the first cast hole 21, and a second cast hole 22. It is provided with a second cast hole forming portion 42 for the purpose. The bore forming portions 40 and the first and second cast hole forming portions 41 and 42 are driven along the center line direction. The moving directions of the bore forming portion 40 and the first and second cast hole forming portions 41 and 42 are orthogonal to the mold opening direction of the main mold. The first cast hole forming portion 41 and the second cast hole forming portion 42 are arranged so as to face each other on opposite sides of the cylinder 1 to be cast. The bore forming portion 40 is arranged with respect to the cylinder 1 on the same side as, for example, the first cast hole forming portion 41.

ボア形成部40は、所定の中心線を有する円柱状である。尚、ボア形成部40の外周面は所定の抜き勾配を有している。第一の鋳抜き孔形成部41は、ボア形成部40の中心線に沿って延びる薄い棒状であり、その断面形状は偏平形状である。第一の鋳抜き孔形成部41の個数は、第一の鋳抜き孔21の個数に対応している。合計六個の第一の鋳抜き孔形成部41は、ボア形成部40の径方向外側に一定角度毎に並んでいる。ボア形成部40と第一の鋳抜き孔形成部41をボア形成部40の先端側から見ると図6(a)のようになる。複数の第一の鋳抜き孔形成部41は、ボア形成部40を中心としてその周囲に一定角度毎に配置されている。一方、第二の鋳抜き孔形成部42は、第一の鋳抜き孔形成部41と同様の構成である。第二の鋳抜き孔形成部42は合計六個設けられていて一定角度毎に並んでいる。第二の鋳抜き孔形成部42を先端側から見ると図6(b)のようになる。第一の鋳抜き孔形成部41と第二の鋳抜き孔形成部42は互いに周方向に30度位置ずれしている。図6(a)に第二の鋳抜き孔形成部42を二点鎖線で示している。このように第一の鋳抜き孔形成部41と第二の鋳抜き孔形成部42とが互いに接近した状態では、隣り合う第一の鋳抜き孔形成部41同士の間に第二の鋳抜き孔形成部42が位置し、第一の鋳抜き孔形成部41と第二の鋳抜き孔形成部42は互いに周方向に交互に並ぶ。 The bore forming portion 40 is a columnar shape having a predetermined center line. The outer peripheral surface of the bore forming portion 40 has a predetermined draft. The first cast hole forming portion 41 has a thin rod shape extending along the center line of the bore forming portion 40, and its cross-sectional shape is flat. The number of the first cast hole forming portions 41 corresponds to the number of the first cast holes 21. A total of six first cast hole forming portions 41 are arranged at regular angles on the radial outer side of the bore forming portion 40. The bore forming portion 40 and the first cast hole forming portion 41 are as shown in FIG. 6A when viewed from the tip end side of the bore forming portion 40. The plurality of first cast hole forming portions 41 are arranged around the bore forming portion 40 at regular angles. On the other hand, the second cast hole forming portion 42 has the same configuration as the first cast hole forming portion 41. A total of six second cast hole forming portions 42 are provided and are arranged at regular angles. The second cast hole forming portion 42 is as shown in FIG. 6 (b) when viewed from the tip side. The first cast hole forming portion 41 and the second cast hole forming portion 42 are displaced from each other by 30 degrees in the circumferential direction. FIG. 6A shows the second punched hole forming portion 42 by a chain double-dashed line. When the first cast hole forming portion 41 and the second cast hole forming portion 42 are close to each other in this way, the second cast hole forming portion 41 is between the adjacent first cast hole forming portions 41. The hole forming portion 42 is located, and the first cast hole forming portion 41 and the second cast hole forming portion 42 are arranged alternately in the circumferential direction.

シリンダ1の鋳造方法は、鋳造したシリンダ1を金型から取り出す離型工程を備えている。離型工程は、主型を型開きする型開き工程と、鋳造されたシリンダ1からスライドコアを引き抜く引き抜き工程とを備えている。上述のボア形成部40と第一及び第二の鋳抜き孔形成部41,42はスライドコアである。引き抜き工程は型開き工程よりも前に行う。引き抜き工程は、ボア形成部40を引き抜くボア抜き工程と、第一の鋳抜き孔形成部41を引き抜く第一の孔抜き工程と、第二の鋳抜き孔形成部42を引き抜く第二の孔抜き工程とを有している。ボア抜き工程では、ボア形成部40を水平方向の第一方向に駆動して、シリンダ1の第一の端部11側からボア形成部40を第一方向に引き抜く。第一の孔抜き工程では、第一の鋳抜き孔形成部41をボア形成部40と同一方向に駆動して、シリンダ1の第一の端部11側から第一の鋳抜き孔形成部41を第一方向に引き抜く。第二の孔抜き工程では、第二の鋳抜き孔形成部42をボア形成部40や第一の鋳抜き孔形成部41とは反対方向である第二方向に駆動して、シリンダ1の第二の端部12側から第二の鋳抜き孔形成部42を第二方向に引き抜く。 The method of casting the cylinder 1 includes a mold release step of taking out the cast cylinder 1 from the mold. The mold release step includes a mold opening step of opening the main mold and a pulling step of pulling out the slide core from the cast cylinder 1. The above-mentioned bore forming portion 40 and the first and second cast hole forming portions 41 and 42 are slide cores. The drawing process is performed before the mold opening process. The drawing steps include a bore pulling step of pulling out the bore forming portion 40, a first hole punching step of pulling out the first cast hole forming portion 41, and a second hole punching of pulling out the second cast hole forming portion 42. Has a process. In the bore removing step, the bore forming portion 40 is driven in the first horizontal direction, and the bore forming portion 40 is pulled out in the first direction from the first end 11 side of the cylinder 1. In the first drilling step, the first punched hole forming portion 41 is driven in the same direction as the bore forming portion 40, and the first punched hole forming portion 41 is driven from the first end portion 11 side of the cylinder 1. Pull out in the first direction. In the second drilling step, the second cast hole forming portion 42 is driven in the second direction opposite to the bore forming portion 40 and the first punched hole forming portion 41 to drive the cylinder 1 to the first position. The second cast hole forming portion 42 is pulled out in the second direction from the second end portion 12 side.

工程の順序の一例を挙げる。図7のように、まず、第一の孔抜き工程とボア抜き工程とを同時に行う。即ち、ボア形成部40と第一の鋳抜き孔形成部41とを同時に駆動してそれらをまとめて第一方向に移動させてシリンダ1の第一の端部11側から引き抜く。その後、第二の孔抜き工程を行う。工程の順序の別の例を挙げる。まず、ボア抜き工程を行う。その後、第一の孔抜き工程と第二の孔抜き工程とを同時に行う。尚、第一の孔抜き工程と第二の孔抜き工程とを互いに時間差を設けて行ってもよい。このように、ボア抜き工程の後に第二の孔抜き工程を行うと、シリンダ1から第二の鋳抜き孔形成部42をスムーズに抜くことができる。第二の鋳抜き孔形成部42を引き抜く際の抵抗が小さくなるので、鋳造装置の大型化も抑制できる。 An example of the process sequence is given. As shown in FIG. 7, first, the first hole punching step and the bore punching step are performed at the same time. That is, the bore forming portion 40 and the first cast hole forming portion 41 are simultaneously driven to move them together in the first direction and pulled out from the first end portion 11 side of the cylinder 1. After that, the second hole punching step is performed. Another example of process sequence is given. First, the bore removal process is performed. After that, the first hole punching step and the second hole punching step are performed at the same time. The first hole punching step and the second hole punching step may be performed with a time lag from each other. As described above, when the second hole punching step is performed after the bore punching step, the second cast hole forming portion 42 can be smoothly punched out from the cylinder 1. Since the resistance when pulling out the second casting hole forming portion 42 is reduced, it is possible to suppress an increase in the size of the casting apparatus.

以上のように、本実施形態におけるシリンダ1は、第一の端部11側から鋳抜かれた第一の鋳抜き孔21と第二の端部12側から鋳抜かれた第二の鋳抜き孔22とを有している。そのため、シリンダ1における冷却通路の断面積は、中心線方向に沿って変化しにくく、第一の端部11側に偏ったり、あるいは、第二の端部12側に偏ったりしにくくなる。従って、シリンダ1を中心線方向に沿ってバランス良く冷却することができる。特に、第一の鋳抜き孔21と第二の鋳抜き孔22がシリンダ1の周方向に交互に設けられていると、周方向に沿った冷却バラツキも抑制でき、シリンダ1を周方向にもバランス良く冷却することができる。更に、第一の鋳抜き孔21と第二の鋳抜き孔22が互いに同数であると、冷却通路のトータルとしての断面積は中心線方向に沿って一定となる。そのため、シリンダ1を中心線方向に沿って均一に冷却できる。尚、第一の鋳抜き孔21が二個、その隣に第二の鋳抜き孔22が二個というように、第一の鋳抜き孔21と第二の鋳抜き孔22が周方向に沿って二個ずつ交互に配置されていてもよい。また、シリンダ1の全周のうち半周分には第一の鋳抜き孔21のみが形成され、残る半周分には第二の鋳抜き孔22のみが形成されてもよい。このように第一の鋳抜き孔21と第二の鋳抜き孔22の配置態様は種々であってよい。但し、第一の鋳抜き孔21と第二の鋳抜き孔22とが同数であって且つ周方向に一個ずつ交互に配置されていると、シリンダ1の冷却通路の全体としての断面積は、シリンダ1の全長に亘って一定となる。そのため、シリンダ1を全長に亘って均一に冷却でき、冷却効率に優れている。 As described above, in the cylinder 1 of the present embodiment, the first cast hole 21 cast from the first end 11 side and the second cast hole 22 cast from the second end 12 side. And have. Therefore, the cross-sectional area of the cooling passage in the cylinder 1 is less likely to change along the center line direction, and is less likely to be biased toward the first end portion 11 or toward the second end portion 12. Therefore, the cylinder 1 can be cooled in a well-balanced manner along the center line direction. In particular, if the first cast holes 21 and the second cast holes 22 are provided alternately in the circumferential direction of the cylinder 1, cooling variation along the circumferential direction can be suppressed, and the cylinder 1 can also be provided in the circumferential direction. It can be cooled in a well-balanced manner. Further, when the number of the first cast holes 21 and the second cast holes 22 is the same as each other, the total cross-sectional area of the cooling passage becomes constant along the center line direction. Therefore, the cylinder 1 can be uniformly cooled along the center line direction. The first cast hole 21 and the second cast hole 22 are along the circumferential direction, such that there are two first cast holes 21 and two second cast holes 22 next to them. Two of them may be arranged alternately. Further, only the first cast hole 21 may be formed in half of the entire circumference of the cylinder 1, and only the second cast hole 22 may be formed in the remaining half circumference. As described above, the arrangement mode of the first cast hole 21 and the second cast hole 22 may be various. However, if the number of the first cast holes 21 and the second cast holes 22 are the same and one is alternately arranged in the circumferential direction, the cross-sectional area of the cooling passage of the cylinder 1 as a whole becomes. It becomes constant over the entire length of the cylinder 1. Therefore, the cylinder 1 can be uniformly cooled over the entire length, and the cooling efficiency is excellent.

また、鋳抜き孔21,22の壁面の内側部分23の抜き勾配は、外側部分24の抜き勾配よりも小さい。そのため、モータを効率良く冷却することができる。特に、鋳抜き孔21,22の壁面の内側部分23の抜き勾配が0であると、鋳抜き孔21,22とシリンダ1の内周面14との間の距離が中心線方向に沿って一定となる。そのため、モータを中心線方向に沿って均一に冷却しやすくなり、冷却効率が向上する。 Further, the draft of the inner portion 23 of the wall surface of the cast holes 21 and 22 is smaller than the draft of the outer portion 24. Therefore, the motor can be cooled efficiently. In particular, when the draft of the inner portion 23 of the wall surface of the cast holes 21 and 22 is 0, the distance between the cast holes 21 and 22 and the inner peripheral surface 14 of the cylinder 1 is constant along the center line direction. It becomes. Therefore, it becomes easy to uniformly cool the motor along the center line direction, and the cooling efficiency is improved.

更に、鋳抜き孔21,22の断面形状が偏平形状であると、鋳抜き孔21,22の個数を過度に増やさなくても、モータを効率良く冷却できる。鋳抜き孔21,22の壁面の周方向両端部分25の抜き勾配によって、鋳抜き孔21,22の周方向の長さは鋳抜きの方向に向けて徐々に長くなる。即ち、第一の鋳抜き孔21においては、第一の端部11に向けて徐々に周方向の長さが長くなり、第二の鋳抜き孔22においては、第二の端部12に向けて徐々に周方向の長さが長くなる。また、鋳抜き孔21,22の壁面の外側部分24の抜き勾配によって、鋳抜き孔21,22の径方向の長さは鋳抜きの方向に向けて徐々に長くなる。即ち、第一の鋳抜き孔21においては、第一の端部11に向けて徐々に径方向の長さが長くなり、第二の鋳抜き孔22においては、第二の端部12に向けて徐々に径方向の長さが長くなる。鋳抜き孔21,22の断面形状が偏平形状である場合、鋳抜き孔21,22の周方向の長さは径方向の長さよりも長い。鋳抜き孔21,22の壁面の外側部分24の抜き勾配と周方向両端部分25の抜き勾配が同じであると、抜き勾配による長さの変化量は径方向と周方向で同じである。その一方、元の長さは周方向の長さの方が径方向の長さよりも長い。そのため、元の長さに対する、抜き勾配による長さの変化量の比率、即ち、(抜き勾配による長さの変化量)/(元の長さ)は、周方向の方が径方向よりも小さくなる。即ち、抜き勾配が長さの変化に与える影響は、周方向の方が径方向よりも小さい。そこで、外側部分24の抜き勾配を相対的に小さくし、周方向両端部分25の抜き勾配を大きくすることにより、抜き勾配が鋳抜き孔21,22の断面形状の変化に与える影響を抑制することができると共に、壁面の抜き勾配を確保することができる。従って、金型の抜き抵抗を抑制しつつ、冷却効率を総合的に向上させることができる。 Further, when the cross-sectional shape of the cast holes 21 and 22 is flat, the motor can be efficiently cooled without excessively increasing the number of the cast holes 21 and 22. Due to the draft of both end portions 25 in the circumferential direction of the wall surface of the cast holes 21 and 22, the length of the cast holes 21 and 22 in the circumferential direction gradually increases in the direction of casting. That is, in the first cast hole 21, the length in the circumferential direction gradually increases toward the first end portion 11, and in the second cast hole 22, toward the second end portion 12. The length in the circumferential direction gradually increases. Further, due to the draft of the outer portion 24 of the wall surface of the cast holes 21 and 22, the radial length of the cast holes 21 and 22 gradually increases in the casting direction. That is, in the first cast hole 21, the length in the radial direction gradually increases toward the first end portion 11, and in the second cast hole 22, toward the second end portion 12. The length in the radial direction gradually increases. When the cross-sectional shape of the cast holes 21 and 22 is flat, the length of the cast holes 21 and 22 in the circumferential direction is longer than the length in the radial direction. When the draft of the outer portions 24 of the wall surface of the cast holes 21 and 22 and the draft of both end portions 25 in the circumferential direction are the same, the amount of change in length due to the draft is the same in the radial direction and the circumferential direction. On the other hand, the original length is longer in the circumferential direction than in the radial direction. Therefore, the ratio of the amount of change in length due to the draft to the original length, that is, (the amount of change in length due to the draft) / (original length) is smaller in the circumferential direction than in the radial direction. Become. That is, the influence of the draft on the change in length is smaller in the circumferential direction than in the radial direction. Therefore, by making the draft of the outer portion 24 relatively small and increasing the draft of both end portions 25 in the circumferential direction, it is possible to suppress the influence of the draft on the change in the cross-sectional shape of the cast holes 21 and 22. At the same time, it is possible to secure the draft of the wall surface. Therefore, the cooling efficiency can be comprehensively improved while suppressing the die punching resistance.

一方、鋳造されたシリンダ1から金型を抜く際、ボア10の存在によってシリンダ1は内側に収縮しようとする。そのため、鋳抜き孔21,22の壁面の内側部分23の抜き勾配が小さくても、金型を容易に抜くことができる。一方、鋳抜き孔21,22の壁面の外側部分24の抜き勾配は内側部分23の抜き勾配よりも大きいので、金型の抜き抵抗、即ち離型抵抗が過度に大きくなることを抑制することができる。また、鋳抜き孔21,22の壁面の周方向両端部分25の抜き勾配が、鋳抜き孔21,22の壁面の外側部分24の抜き勾配よりも大きいと、離型抵抗を更に抑制できる。 On the other hand, when the mold is pulled out from the cast cylinder 1, the cylinder 1 tends to shrink inward due to the presence of the bore 10. Therefore, even if the draft of the inner portion 23 of the wall surface of the cast holes 21 and 22 is small, the die can be easily punched. On the other hand, since the draft of the outer portion 24 of the wall surface of the cast holes 21 and 22 is larger than the draft of the inner portion 23, it is possible to suppress the die punching resistance, that is, the mold release resistance from becoming excessively large. it can. Further, when the draft of both end portions 25 in the circumferential direction of the wall surface of the cast holes 21 and 22 is larger than the draft of the outer portions 24 of the wall surface of the cast holes 21 and 22, the mold release resistance can be further suppressed.

尚、本実施形態では、第一の鋳抜き孔21の抜き勾配と第二の鋳抜き孔22の抜き勾配を互いに同じにしたが、互いに異なっていてもよい。例えば、ボア形成部40と第一の鋳抜き孔形成部41とを同じ方向に同時に引き抜き、その後に第二の鋳抜き孔形成部42を反対方向に引き抜く場合には、第一の鋳抜き孔21の抜き勾配を第二の鋳抜き孔22の抜き勾配よりも大きくしてもよい。第一の鋳抜き孔21の壁面全体の抜き勾配を、第二の鋳抜き孔22の壁面全体の抜き勾配よりも大きくしてもよいし、第一の鋳抜き孔21の壁面の抜き勾配のうち一部のみを第二の鋳抜き孔22の対応箇所よりも大きくしてもよい。例えば、第一の鋳抜き孔21の壁面の内側部分23の抜き勾配を、第二の鋳抜き孔22の壁面の内側部分23の抜き勾配よりも大きくしてもよい。 In the present embodiment, the draft of the first cast hole 21 and the draft of the second cast hole 22 are the same, but they may be different from each other. For example, when the bore forming portion 40 and the first cast hole forming portion 41 are simultaneously pulled out in the same direction and then the second cast hole forming portion 42 is pulled out in the opposite direction, the first cast hole is pulled out. The draft of 21 may be larger than the draft of the second cast hole 22. The draft of the entire wall surface of the first cast hole 21 may be larger than the draft of the entire wall surface of the second cast hole 22, or the draft of the entire wall surface of the first cast hole 21. Only a part of them may be larger than the corresponding portion of the second cast hole 22. For example, the draft of the inner portion 23 of the wall surface of the first cast hole 21 may be larger than the draft of the inner portion 23 of the wall surface of the second cast hole 22.

また、上記実施形態では、貫通孔20が全長に亘って鋳抜き孔21,22である場合について説明したが、貫通孔20の全長のうち大部分が鋳抜き孔21,22であってもよい。例えば、貫通孔20の全長のうちの大部分が鋳抜き孔21,22であって貫通孔20の全長のうちの残部は鋳造後に切削加工等の機械加工によって形成された切削孔であってもよい。一例として第一の鋳抜き孔21の場合について説明する。図8(a)のように、シリンダ1の貫通孔20は、第一の鋳抜き孔21と切削孔50とから構成される。貫通孔20の全長のうち第一の端部11側の大部分が第一の鋳抜き孔21であり、貫通孔20の残部が切削孔50である。切削孔50の壁面は、切削加工によって形成されている。図8(b)のように、鋳造時にシリンダ1の第一の端部11側から鋳抜かれることにより非貫通の第一の鋳抜き孔21が形成される。非貫通の第一の鋳抜き孔21は、シリンダ1の全長のうち第二の端部12側の一部を除く大部分に形成される。この状態において、第一の鋳抜き孔21はシリンダ1の第一の端部11に開口しているものの第二の端部12には開口していない。鋳造後にシリンダ1の第二の端部12側から切削加工によって切削孔50を第一の鋳抜き孔21と同軸状に形成し、貫通孔20を完成させる。尚、鋳造後に第一の鋳抜き孔21に切削加工用の工具を挿入してシリンダ1の第一の端部11側から切削孔50を形成してもよい。第一の鋳抜き孔21の場合について説明したが第二の鋳抜き孔22の場合も同様である。 Further, in the above embodiment, the case where the through hole 20 is the cast hole 21 and 22 over the entire length has been described, but most of the total length of the through hole 20 may be the cast hole 21 and 22. .. For example, even if most of the total length of the through hole 20 is a cast hole 21 and 22, and the rest of the total length of the through hole 20 is a cutting hole formed by machining such as cutting after casting. Good. As an example, the case of the first cast hole 21 will be described. As shown in FIG. 8A, the through hole 20 of the cylinder 1 is composed of a first cast hole 21 and a cutting hole 50. Of the total length of the through hole 20, most of the first end 11 side is the first cast hole 21, and the rest of the through hole 20 is the cutting hole 50. The wall surface of the cutting hole 50 is formed by cutting. As shown in FIG. 8B, a non-penetrating first cast hole 21 is formed by casting from the first end 11 side of the cylinder 1 during casting. The non-penetrating first cast hole 21 is formed in most of the total length of the cylinder 1 except for a part on the second end 12 side. In this state, the first cast hole 21 is open to the first end 11 of the cylinder 1, but not to the second end 12. After casting, the cutting hole 50 is formed coaxially with the first cast hole 21 by cutting from the second end 12 side of the cylinder 1 to complete the through hole 20. After casting, a cutting tool may be inserted into the first cast hole 21 to form the cutting hole 50 from the first end 11 side of the cylinder 1. The case of the first cast hole 21 has been described, but the same applies to the case of the second cast hole 22.

また、冷却通路として非貫通の孔がシリンダ1に形成されていてもよい。例えば、図9のように、シリンダ1の第一の端部11側から鋳抜かれた非貫通の第一の鋳抜き孔21と、シリンダ1の第二の端部12側から鋳抜かれた非貫通の第二の鋳抜き孔22とを周方向に交互に配置することができる。隣り合う第一の鋳抜き孔21と第二の鋳抜き孔22との間の隔壁部26には連通孔51が設けられている。連通孔51は、第一の鋳抜き孔21の奥側の端部近傍の隔壁部26と、第二の鋳抜き孔22の奥側の端部近傍の隔壁部26に設けられている。この連通孔51を介して第一の鋳抜き孔21と第二の鋳抜き孔22とが連通する。図9に冷媒の流れを矢印で示している。尚、この場合には、第一のカバー2と第二のカバー3には凹溝30は形成されない。連通孔51は、鋳造後のシリンダ1に切削加工等の機械加工によって形成される。即ち、連通孔51は後加工によって形成される。図10に丸印で示している箇所に、シリンダ1の外周面から径方向内側に向けて横孔を途中まで形成することで、隔壁部26に連通孔51を形成することができる。横孔の外側部分は図示しない栓体で封止する。 Further, a non-penetrating hole may be formed in the cylinder 1 as a cooling passage. For example, as shown in FIG. 9, a non-penetrating first cast hole 21 cast from the first end 11 side of the cylinder 1 and a non-penetrating non-penetrating hole 21 cast from the second end 12 side of the cylinder 1. The second cast holes 22 of the above can be arranged alternately in the circumferential direction. A communication hole 51 is provided in the partition wall portion 26 between the adjacent first cast hole 21 and the second cast hole 22. The communication holes 51 are provided in the partition wall portion 26 near the end on the back side of the first cast hole 21 and the partition wall portion 26 near the end on the back side of the second cast hole 22. The first cast hole 21 and the second cast hole 22 communicate with each other through the communication hole 51. FIG. 9 shows the flow of the refrigerant with arrows. In this case, the concave groove 30 is not formed in the first cover 2 and the second cover 3. The communication hole 51 is formed in the cylinder 1 after casting by machining such as cutting. That is, the communication hole 51 is formed by post-processing. A communication hole 51 can be formed in the partition wall portion 26 by forming a horizontal hole halfway from the outer peripheral surface of the cylinder 1 toward the inside in the radial direction at a portion indicated by a circle in FIG. The outer part of the lateral hole is sealed with a plug (not shown).

尚、第一の鋳抜き孔21のみが設けられていたり、第二の鋳抜き孔22のみが設けられていたりしてもよい。 It should be noted that only the first cast hole 21 may be provided, or only the second cast hole 22 may be provided.

1 シリンダ
2 第一のカバー
2a 内面
3 第二のカバー
3a 内面
10 ボア
11 第一の端部
12 第二の端部
13 ネジボス
13a ネジ孔
14 内周面
20 貫通孔
21 第一の鋳抜き孔
22 第二の鋳抜き孔
23 内側部分
24 外側部分
25 両端部分
26 隔壁部
30 凹溝
40 ボア形成部
41 第一の鋳抜き孔形成部
42 第二の鋳抜き孔形成部
50 切削孔
51 連通孔
1 Cylinder 2 1st cover 2a Inner surface 3 2nd cover 3a Inner surface 10 Bore 11 1st end 12 2nd end 13 Screw boss 13a Screw hole 14 Inner peripheral surface 20 Through hole 21 1st cast hole 22 Second cast hole 23 Inner portion 24 Outer portion 25 Both end portions 26 Partition portion 30 Concave groove 40 Bore forming portion 41 First casting hole forming portion 42 Second casting hole forming portion 50 Cutting hole 51 Communication hole

Claims (3)

モータケースにおける鋳造製のシリンダであって、
冷媒が流される冷却通路を有し、冷却通路は、シリンダの中心線方向に鋳抜かれた鋳抜き孔を有し、鋳抜き孔の壁面のうちシリンダの内周面に近い内側部分の抜き勾配は、シリンダの外周面に近い外側部分の抜き勾配よりも小さい、モータケースのシリンダ。
A cast cylinder in a motor case
The cooling passage has a cooling passage through which the refrigerant flows, and the cooling passage has a cast hole cast in the direction of the center line of the cylinder. The cylinder of the motor case, which is smaller than the draft of the outer part near the outer peripheral surface of the cylinder.
鋳抜き孔の壁面の内側部分の抜き勾配は、0である請求項1記載のモータケースのシリンダ。 The cylinder of the motor case according to claim 1, wherein the draft of the inner portion of the wall surface of the cast hole is 0. 鋳抜き孔をシリンダの中心線方向と直交する方向に切断したときの断面形状は、シリンダの周方向に長い偏平形状であり、鋳抜き孔の壁面の外側部分の抜き勾配は、鋳抜き孔の壁面のうちシリンダの周方向の両端部分の抜き勾配よりも小さい請求項1又は2記載のモータケースのシリンダ。 The cross-sectional shape when the cast hole is cut in the direction orthogonal to the center line direction of the cylinder is a flat shape that is long in the circumferential direction of the cylinder, and the draft of the outer part of the wall surface of the cast hole is the cast hole. The cylinder of the motor case according to claim 1 or 2, which is smaller than the draft of both ends of the cylinder in the circumferential direction of the wall surface.
JP2019024420A 2019-02-14 2019-02-14 motor case cylinder Active JP7187345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019024420A JP7187345B2 (en) 2019-02-14 2019-02-14 motor case cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024420A JP7187345B2 (en) 2019-02-14 2019-02-14 motor case cylinder

Publications (2)

Publication Number Publication Date
JP2020137176A true JP2020137176A (en) 2020-08-31
JP7187345B2 JP7187345B2 (en) 2022-12-12

Family

ID=72279258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024420A Active JP7187345B2 (en) 2019-02-14 2019-02-14 motor case cylinder

Country Status (1)

Country Link
JP (1) JP7187345B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223449A (en) * 1984-04-18 1985-11-07 Sanii Kk Casing for electric motor
JP2008253024A (en) * 2007-03-29 2008-10-16 Fuji Heavy Ind Ltd Electric motor for vehicle
JP2016039726A (en) * 2014-08-08 2016-03-22 マツダ株式会社 Cooling structure for electric motor, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223449A (en) * 1984-04-18 1985-11-07 Sanii Kk Casing for electric motor
JP2008253024A (en) * 2007-03-29 2008-10-16 Fuji Heavy Ind Ltd Electric motor for vehicle
JP2016039726A (en) * 2014-08-08 2016-03-22 マツダ株式会社 Cooling structure for electric motor, and manufacturing method thereof

Also Published As

Publication number Publication date
JP7187345B2 (en) 2022-12-12

Similar Documents

Publication Publication Date Title
US8053938B2 (en) Enhanced motor cooling system
JP5337417B2 (en) Casting groove cooling mechanism of electric motor / generator
JP4648470B2 (en) Electric motor cooling device
US20120126643A1 (en) Apparatuses useful for cooling windings of rotor assemblies
US11780000B2 (en) Method of forming parallel spiral channels in housing to be formed by casting or molding process
JP2006060914A (en) Motor cooling structure and manufacturing method thereof
EP2149967A2 (en) Sealed type electric rotating machine
EP2360815A1 (en) Dynamo-electric machine and stator thereof
JP2010537115A (en) Cylinder block used for internal combustion engine
JP2019009946A (en) Rotor core
JP6164179B2 (en) Electric motor cooling structure and manufacturing method thereof
JP4897587B2 (en) Rotating electric machine
KR20180032616A (en) Cooling system for electrical machines
JP2020137173A (en) Motor case cylinder and casting method of the same
JP2014225987A (en) Rotary electric machine
KR101836259B1 (en) Cooling structure of drive motor
JP2020137176A (en) Motor case cylinder
BR102017028406A2 (en) rotary electric machine rotor
JP2009303343A (en) Rotor for rotating electrical machine
KR101221236B1 (en) A cooling system for an electric motor
JP4701895B2 (en) Magnet generator
US9638045B2 (en) Cooling structure for stationary blade
JP2007110828A (en) Sealed motor
JP2016146680A (en) Rotary electric machine
KR20170011865A (en) Dirve motor with one body style cooling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7187345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150