JP2020136529A - Ferroelectric film manufacturing method - Google Patents

Ferroelectric film manufacturing method Download PDF

Info

Publication number
JP2020136529A
JP2020136529A JP2019029472A JP2019029472A JP2020136529A JP 2020136529 A JP2020136529 A JP 2020136529A JP 2019029472 A JP2019029472 A JP 2019029472A JP 2019029472 A JP2019029472 A JP 2019029472A JP 2020136529 A JP2020136529 A JP 2020136529A
Authority
JP
Japan
Prior art keywords
film
bkt
bnt
liquid composition
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019029472A
Other languages
Japanese (ja)
Other versions
JP7230579B2 (en
Inventor
土井 利浩
Toshihiro Doi
利浩 土井
曽山 信幸
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019029472A priority Critical patent/JP7230579B2/en
Publication of JP2020136529A publication Critical patent/JP2020136529A/en
Application granted granted Critical
Publication of JP7230579B2 publication Critical patent/JP7230579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

To manufacture a ferroelectric film that does not contain lead and has excellent crystallinity and electrical characteristics.SOLUTION: A ferroelectric film manufacturing method includes a coating step of forming a coating film by coating a liquid composition containing at least Bi, K, and Ti on a substrate, a calcining step of calcining the coating film to form a calcined film, and a firing step of firing the calcined film. Between the calcinating step and the firing step, a decarbonization treatment process for removing carbon from the calcined film is included, and the decarbonization treatment is treatment of heating the calcined film at a temperature of 475°C or higher and 575°C or lower in a reduced pressure atmosphere.SELECTED DRAWING: None

Description

本発明は、鉛を含まず、結晶性と電気特性に優れた強誘電体膜の製造方法に関する。本明細書において、BNT−BKTは、(Bi,Na)TiO3−(Bi,K)TiO3の略称である。BNTはチタン酸ビスマスナトリウム((Bi,Na)TiO3)の略称であり、BKTはチタン酸ビスマスカリウム((Bi,K)TiO3)の略称である。 The present invention relates to a method for producing a ferroelectric film that does not contain lead and has excellent crystallinity and electrical properties. In the present specification, BNT-BKT is an abbreviation for (Bi, Na) TiO 3- (Bi, K) TiO 3 . BNT is an abbreviation for bismuth sodium titanate ((Bi, Na) TiO 3 ), and BKT is an abbreviation for potassium bismuth titanate ((Bi, K) TiO 3 ).

アクチュエータや超音波デバイスなどのMEMS(Micro Electro Mechanical System)と呼ばれる装置に搭載される圧電素子の圧電体膜として、高い圧電特性を有するPZT(チタン酸ジルコン酸鉛)がこれまで用いられてきた。しかし、環境面において鉛を含まない圧電材料の開発が求められている。その一つの圧電材料として、チタン酸ビスマスナトリウム(BNT)をベースとした非鉛圧電材料が開発されている。 PZT (lead zirconate titanate), which has high piezoelectric characteristics, has been used as a piezoelectric film for a piezoelectric element mounted on a device called a MEMS (Micro Electro Mechanical System) such as an actuator or an ultrasonic device. However, in terms of the environment, the development of lead-free piezoelectric materials is required. As one of the piezoelectric materials, a lead-free piezoelectric material based on bismuth sodium titanate (BNT) has been developed.

従来、化学溶液(CSD:chemical solution deposition)法により、この種のBNT−BKTをベースとした圧電材料を用いてBNT−BKT系膜を基板上に製造する方法が提案されている(例えば、非特許文献1参照。)。この方法では、72.5モル(Bi0.5Na0.5)TiO3−22.5モル(Bi0.50.5)TiO3−5モルBi(Mg0.5Ti0.5)O3(BNT−BKT−BMgT)の組成の圧電体膜を白金化したシリコン基板上に製造している。 Conventionally, a method of producing a BNT-BKT-based film on a substrate by using a piezoelectric material based on this type of BNT-BKT by a chemical solution deposition (CSD) method has been proposed (for example, non-CSD). See Patent Document 1). In this method, the composition of 72.5 mol (Bi 0.5 Na 0.5) TiO 3 -22.5 mol (Bi 0.5 K 0.5) TiO 3 -5 mol Bi (Mg 0.5 Ti 0.5) O 3 (BNT-BKT-BMgT) The piezoelectric film of No. 1 is manufactured on a platinumized silicon substrate.

具体的には、この方法では、酢酸ビスマスと酢酸ナトリウム・三水和物と酢酸カリウムと酢酸マグネシウム・四水和物とチタンイソブトキシドが前駆体液として用いられる。乾燥雰囲気でチタンイソプロポキシドが酢酸により安定化される。酢酸ビスマスが室温でプロピオン酸により溶解され、酢酸ナトリウム、酢酸カリウム及び酢酸マグネシウムがメタノールにより別々に溶解される。Bi、Na、K、Mgの各溶液がTi溶液に滴下されて液組成物が得られる。 Specifically, in this method, bismuth acetate, sodium acetate / trihydrate, potassium acetate, magnesium acetate / tetrahydrate and titanium isobutoxide are used as precursor solutions. Titanium isopropoxide is stabilized by acetic acid in a dry atmosphere. Bismus acetate is dissolved by propionic acid at room temperature, and sodium acetate, potassium acetate and magnesium acetate are separately dissolved by methanol. Each solution of Bi, Na, K, and Mg is added dropwise to the Ti solution to obtain a liquid composition.

得られた液組成物をPt/TiOx/SiO2/Si基板上に、3000rpmの回転速度で30秒間スピンコートする。スピンコート後に、塗膜は300℃の温度で30秒間仮焼して熱分解され、次いで仮焼した膜は大気雰囲気下、600℃以上700℃以下の温度範囲に変えられる炉で10分間焼成される。このプロセスを6回繰り返して約260nm〜270nmの厚さのBNT−BKT系膜が製造される。 The obtained liquid composition is spin-coated on a Pt / TiO x / SiO 2 / Si substrate at a rotation speed of 3000 rpm for 30 seconds. After spin coating, the coating film is calcined at a temperature of 300 ° C. for 30 seconds to be thermally decomposed, and then the calcined film is calcined in an air atmosphere for 10 minutes in a furnace that can be changed to a temperature range of 600 ° C. or higher and 700 ° C. or lower. To. This process is repeated 6 times to produce a BNT-BKT-based film having a thickness of about 260 nm to 270 nm.

Y. H. Jeon et al., "Large Piezoresponse and Ferroelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-Bi(Mg0.5Ti0.5)O3 Thin Films Prepared by Chemical Solution Deposition", J. Am. Ceram. Soc., 1-7 (2013)YH Jeon et al., "Large Piezoresponse and Ferroelectric Properties of (Bi0.5Na0.5) TiO3- (Bi0.5K0.5) TiO3-Bi (Mg0.5Ti0.5) O3 Thin Films Prepared by Chemical Solution Deposition", J . Am. Ceram. Soc., 1-7 (2013)

非特許文献1に示されるBNT−BKT系膜は、液組成物をスピンコート後に、塗膜を300℃の温度で30秒間仮焼し、続いて仮焼膜を大気雰囲気下、600℃以上700℃以下の温度で10分間焼成している。上記液組成物中のカリウムは、酸素雰囲気下の焼成中にカリウム炭酸塩に変化し、このカリウム炭酸塩が熱分解しにくいため、このカリウム炭酸塩が仮焼膜の結晶化を阻害する問題があった。 In the BNT-BKT-based film shown in Non-Patent Document 1, after the liquid composition is spin-coated, the coating film is calcined at a temperature of 300 ° C. for 30 seconds, and then the calcined film is calcined at 600 ° C. or higher in an air atmosphere. It is fired at a temperature below ° C. for 10 minutes. Potassium in the above liquid composition changes to potassium carbonate during firing in an oxygen atmosphere, and this potassium carbonate is difficult to thermally decompose, so that this potassium carbonate has a problem of inhibiting the crystallization of the calcined film. there were.

本発明の目的は、鉛を含まず、結晶性と電気特性に優れた強誘電体膜の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a ferroelectric film which does not contain lead and has excellent crystallinity and electrical properties.

本発明者らは、BNT−BKT系膜形成用液組成物を塗布し仮焼した後の焼成中、カリウム炭酸塩が500℃前後で生成され、このカリウム炭酸塩がBNT−BKT系膜の結晶性を低下させるけれども、このカリウム炭酸塩は仮焼した膜を減圧雰囲気下、500℃前後の温度範囲で加熱することにより生成しないことを知見し、本発明に到達した。 The present inventors applied a liquid composition for forming a BNT-BKT-based film and calcined it, and then during firing, potassium carbonate was produced at around 500 ° C., and this potassium carbonate was crystallized from the BNT-BKT-based film. It was found that this potassium carbonate is not formed by heating the calcined film in a temperature range of about 500 ° C. under a reduced pressure atmosphere, although the property is lowered, and the present invention has been reached.

本発明の第1の観点は、Bi、K及びTiを少なくとも含む液組成物を基板上に塗布して塗膜を形成する塗布工程と、前記塗膜を仮焼し仮焼膜を形成する仮焼工程と、前記仮焼膜を焼成する焼成工程を含む強誘電体膜の製造方法において、前記仮焼工程と前記焼成工程の間に前記仮焼膜から炭素を除去する脱炭素処理工程を含み、前記脱炭素処理工程は前記仮焼膜を減圧雰囲気下、475℃以上575℃以下の温度で加熱する処理工程であることを特徴とする。 The first aspect of the present invention is a coating step of applying a liquid composition containing at least Bi, K and Ti on a substrate to form a coating film, and a temporary baking of the coating film to form a baked film. In a method for producing a strong dielectric film including a firing step and a firing step of firing the calcined film, a decarbonization treatment step of removing carbon from the calcined film is included between the calcining step and the firing step. The decarbonization treatment step is a treatment step of heating the calcined film at a temperature of 475 ° C. or higher and 575 ° C. or lower under a reduced pressure atmosphere.

本発明の第2の観点は、第1の観点に基づく発明であって、前記強誘電体膜がBNT−BKT系膜である強誘電体膜の製造方法である。 A second aspect of the present invention is an invention based on the first aspect, which is a method for producing a ferroelectric film in which the ferroelectric film is a BNT-BKT-based film.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記塗布工程、前記仮焼工程、前記脱炭素処理工程及び前記焼成工程を1回以上繰返して強誘電体膜を製造する方法である。 A third aspect of the present invention is an invention based on the first or second aspect, wherein the coating step, the calcining step, the decarbonization treatment step, and the firing step are repeated one or more times to obtain a ferroelectric substance. This is a method for producing a film.

本発明の第4の観点は、前記液組成物がSr及びZrを更に含む強誘電体膜の製造方法である。 A fourth aspect of the present invention is a method for producing a ferroelectric film in which the liquid composition further contains Sr and Zr.

本発明の第1の観点の製造方法では、仮焼工程と焼成工程の間に仮焼膜から炭素を除去する脱炭素処理工程を含み、この脱炭素処理工程が仮焼膜を減圧雰囲気下、475℃以上575℃以下の温度で加熱処理する工程であることにより、仮焼膜中の炭素が炭化水素として揮発し易くなり仮焼膜から脱離する。この結果、従来カリウム炭酸塩の生成により強誘電体膜の結晶化が阻害されていたものが、この炭素の脱離によりカリウム炭酸塩が生成しなくなるため、結晶性と電気特性に優れた強誘電体膜を製造することができる。 The production method according to the first aspect of the present invention includes a decarbonization treatment step of removing carbon from the calcined film between the calcining step and the firing step, and this decarbonizing treatment step puts the calcined film in a reduced pressure atmosphere. By performing the heat treatment at a temperature of 475 ° C. or higher and 575 ° C. or lower, carbon in the calcined film is easily volatilized as hydrocarbons and is desorbed from the calcined film. As a result, the crystallization of the ferroelectric film was conventionally inhibited by the formation of potassium carbonate, but the desorption of this carbon prevents the formation of potassium carbonate, so that the ferroelectric has excellent crystallinity and electrical characteristics. Body membranes can be produced.

本発明の第2の観点の製造方法では、製造される強誘電体膜がBNT−BKT系膜であることにより、PZT膜と同等の電気特性が得られる。 In the manufacturing method according to the second aspect of the present invention, since the ferroelectric film to be manufactured is a BNT-BKT-based film, the same electrical characteristics as the PZT film can be obtained.

本発明の第3の観点の製造方法では、塗布工程、仮焼工程、脱炭素処理工程及び焼成工程を1回以上繰返すことにより、使用目的に応じた膜厚調整を行うことができる。 In the manufacturing method according to the third aspect of the present invention, the film thickness can be adjusted according to the purpose of use by repeating the coating step, the calcining step, the decarbonization treatment step and the firing step one or more times.

本発明の第4の観点の製造方法では、液組成物がSr及びZrを更に含むため、膜密度の高い強誘電体膜を作ることができる。 In the production method of the fourth aspect of the present invention, since the liquid composition further contains Sr and Zr, a ferroelectric film having a high film density can be produced.

本発明を実施するための形態を説明する。 A mode for carrying out the present invention will be described.

〔Bi、K及びTiを少なくとも含む液組成物〕
本実施形態のBi、K及びTiを少なくとも含む液組成物は、BNT−BKT系膜を形成するための液組成物であるゾルゲル液である。
[Liquid composition containing at least Bi, K and Ti]
The liquid composition containing at least Bi, K and Ti of the present embodiment is a sol-gel liquid which is a liquid composition for forming a BNT-BKT-based film.

BNT−BKT系膜としては、BNT−BKT((Bi,Na)TiO3−(Bi,K)TiO3)膜、BNT−BKT−BZT((Bi,Na)TiO3−(Bi,K)TiO3-Bi(Zn,Ti)O3)膜、BNT−BKT−BNT((Bi,Na)TiO3−(Bi,K)TiO3-Bi(Ni,Ti)O3)膜、BNT−BKT−SZ((Bi,Na)TiO3−(Bi,K)TiO3-SrZrO3)膜等が挙げられる。 Examples of the BNT-BKT film include a BNT-BKT ((Bi, Na) TiO 3- (Bi, K) TiO 3 ) film and a BNT-BKT-BZT ((Bi, Na) TiO 3- (Bi, K) TiO). 3- Bi (Zn, Ti) O 3 ) film, BNT-BKT-BNT ((Bi, Na) TiO 3- (Bi, K) TiO 3- Bi (Ni, Ti) O 3 ) film, BNT-BKT- Examples thereof include SZ ((Bi, Na) TiO 3- (Bi, K) TiO 3-- SrZrO 3 ) film.

〔BNT−BKT系膜形成用液組成物〕
本実施形態のBNT−BKT系膜を形成するための液組成物は、有機ビスマス化合物と有機ナトリウム化合物と有機チタン化合物と有機カリウム化合物とを少なくとも含有する有機金属化合物と溶媒を含む。この液組成物には、有機ストロンチウム化合物及び有機ジルコニウム化合物を含んでもよい。この液組成物から形成される代表的なBNT−BKT膜は、チタン酸ビスマスナトリウム((Bi,Na)TiO3)のペロブスカイト型構造の有機金属化合物とチタン酸ビスマスカリウム((Bi,K)aTiO3)のペロブスカイト型構造の有機金属化合物の複合酸化物により構成される。
[BNT-BKT-based film-forming liquid composition]
The liquid composition for forming the BNT-BKT-based film of the present embodiment contains an organic metal compound and a solvent containing at least an organic bismuth compound, an organic sodium compound, an organic titanium compound, and an organic potassium compound. This liquid composition may contain an organic strontium compound and an organic zirconium compound. A typical BNT-BKT film formed from this liquid composition is a perovskite-type organic metal compound of bismuth sodium titanate ((Bi, Na) TiO 3 ) and bismuth potassium titanate ((Bi, K) aTIO). It is composed of a composite oxide of an organic metal compound having a perovskite-type structure in 3 ).

Biの原料としては、酢酸ビスマス、2-エチルヘキサン酸ビスマス、硝酸ビスマス(III)・五水和物等が挙げられる。Naの原料としては、ナトリウムメトキシド:Na2(OMe)、ナトリウムエトキシド:Na2(OEt)、ナトリウムt−ブトキシド:Na2(OtBu)等のナトリウムアルコキシドが挙げられる。Tiの原料としては、チタンテトラエトキシド:Ti(OEt)4、チタンテトライソプロポキシド:Ti(OiPr)4、チタンテトラn−ブトキシド:Ti(OnBu)4、チタンテトライソブトキシド:Ti(OiBu)4、チタンテトラt−ブトキシド:Ti(OtBu)4、チタンジメトキシジイソプロポキシド:Ti(OMe)2(OiPr)2等のアルコキシドが挙げられる。Kの原料としては、酢酸カリウム、2-エチルヘキサン酸カリウム、カリウムエトキシド等が挙げられる。 Examples of the raw material of Bi include bismuth acetate, bismuth 2-ethylhexanoate, bismuth nitrate (III), pentahydrate and the like. Examples of the raw material for Na include sodium alkoxides such as sodium methoxide: Na 2 (OMe), sodium ethoxide: Na 2 (OEt), and sodium t-butoxide: Na 2 (OtBu). As raw materials for Ti, titanium tetraethoxydo: Ti (OEt) 4 , titanium tetraisopropoxide: Ti (OiPr) 4 , titanium tetra n-butoxide: Ti (OnBu) 4 , titanium tetraisobutoxide: Ti (OiBu) 4 , Titanium tetra t-butoxide: Ti (OtBu) 4 , Titanium dimethoxydiisopropoxide: Ti (OMe) 2 (OiPr) 2 and other alkoxides can be mentioned. Examples of the raw material of K include potassium acetate, potassium 2-ethylhexanoate, potassium ethoxydo and the like.

液組成物に有機ストロンチウム化合物及び有機ジルコニウム化合物を含む場合には、Srの原料として、酢酸ストロンチウム、2−エチルヘキサン酸ストロンチウム等が挙げられ、Zrの原料として、ジルコニウムブトキシド、ジルコニウムt−ブトキシド等が挙げられる。 When the liquid composition contains an organic strontium compound and an organic zirconium compound, examples of the raw material of Sr include strontium acetate and strontium 2-ethylhexanoate, and examples of the raw material of Zr include zirconium butoxide and zirconium t-butoxide. Can be mentioned.

BNT−BKT系膜形成用液組成物の溶媒としては、プロピレングリコール、エチレングリコール、1,3―プロパンジオール等のジオールを用いることができる。ジオールを溶媒に用いることによって液組成物の保存安定性を高めることができる。 As the solvent of the liquid composition for forming a BNT-BKT-based film, diols such as propylene glycol, ethylene glycol, and 1,3-propanediol can be used. The storage stability of the liquid composition can be enhanced by using the diol as a solvent.

他の溶媒としては、カルボン酸、ジオール以外のアルコール、エステル、ケトン類(例えば、アセトン、メチルエチルケトン)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル)、シクロアルカン類(例えば、シクロヘキサン、シクロヘキサノール)、芳香族系(例えば、ベンゼン、トルエン、キシレン)、その他テトラヒドロフラン等を用いることができる。 Other solvents include carboxylic acids, alcohols other than diols, esters, ketones (eg acetone, methyl ethyl ketone), ethers (eg dimethyl ether, diethyl ether), cycloalkanes (eg cyclohexane, cyclohexanol), aromatics. Group systems (eg, benzene, toluene, xylene), other tetrahydrofuran and the like can be used.

〔BNT−BKT系膜形成用液組成物の調製方法〕
最初に、BNT−BKT膜形成用液組成物の調製方法について説明する。
先ず容器に上述した溶媒と有機ナトリウム化合物を入れ、室温から170℃の温度に維持されたオイルバスで30分〜60分間還流することにより、赤褐色の懸濁液を得る。そこに有機チタン化合物を加えて、同一の温度でオイルバスで30分〜60分間還流して第1溶液を調製する。この第1溶液に有機ビスマス化合物と有機カリウム化合物と上述した溶媒を加えて、同一の温度でオイルバスで30分〜60分間還流して第2溶液を調製する。更に第2溶液にアセチルアセトン、酢酸等の安定化剤を加えて、同一の温度でオイルバスで30分〜60分間還流して第3溶液を調製する。ここで上記有機ビスマス化合物(Bi源)、上記有機ナトリウム化合物(Na源)、上記有機チタン化合物(Ti源)及び上記有機カリウム化合物(K源)は、金属モル比(Bi:Na:K:Ti)が0.45〜0.60:0.05〜0.90:0.05〜0.90:1.00になるようにそれぞれ秤量する。
[Method for preparing liquid composition for BNT-BKT film formation]
First, a method for preparing a liquid composition for forming a BNT-BKT film will be described.
First, the above-mentioned solvent and organic sodium compound are placed in a container and refluxed in an oil bath maintained at a temperature of 170 ° C. for 30 to 60 minutes to obtain a reddish brown suspension. An organic titanium compound is added thereto, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare a first solution. An organic bismuth compound, an organic potassium compound and the above-mentioned solvent are added to the first solution, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare a second solution. Further, a stabilizer such as acetylacetone or acetic acid is added to the second solution, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare the third solution. Here, the organic bismuth compound (Bi source), the organic sodium compound (Na source), the organic titanium compound (Ti source), and the organic potassium compound (K source) have a metal molar ratio (Bi: Na: K: Ti). ) Is 0.45 to 0.60: 0.05 to 0.90: 0.05 to 0.90: 1.00, respectively.

続いて減圧蒸留して第3溶液から溶媒を脱離して、有機溶媒及び反応副生成物を除去する。得られた溶液に、アルコール、水等を添加し、液を酸化物換算で6質量%〜20質量%まで希釈する。得られた液をフィルターでろ過することにより残留物を取り除き、BNT−BKT系膜形成用液組成物を得る。酸化物換算で6質量%未満では、良好なBNT−BKT系膜は得られるものの、層厚が薄すぎるため、所望の厚さを得るまでに生産性が低下しやすくなる。20質量%を超えると、BNT−BKT系膜形成用液組成物に沈殿が生じやすくなるおそれがある。 The solvent is subsequently removed from the third solution by vacuum distillation to remove the organic solvent and reaction by-products. Alcohol, water, etc. are added to the obtained solution, and the solution is diluted to 6% by mass to 20% by mass in terms of oxide. Residues are removed by filtering the obtained liquid with a filter to obtain a BNT-BKT-based film-forming liquid composition. If it is less than 6% by mass in terms of oxide, a good BNT-BKT-based film can be obtained, but the layer thickness is too thin, so that the productivity tends to decrease until a desired thickness is obtained. If it exceeds 20% by mass, precipitation may easily occur in the BNT-BKT-based film-forming liquid composition.

次にBNT−BKT−SZ膜形成用液組成物の調製方法について説明する。
先ず容器に上述した溶媒と有機ナトリウム化合物と有機カリウム化合物を入れ、室温から170℃の温度に維持されたオイルバスで30分〜60分間還流することにより、赤褐色の懸濁液を得る。そこに有機チタン化合物及び有機ジルコニウム化合物を加えて、同一の温度でオイルバスで30分〜60分間還流して第1溶液を調製する。この第1溶液に有機ビスマス化合物と有機ストロンチウム化合物と上述した溶媒を加えて、同一の温度でオイルバスで30分〜60分間還流して第2溶液を調製する。更に第2溶液にアセチルアセトン、酢酸等の安定化剤を加えて、同一の温度でオイルバスで30分〜60分間還流して第3溶液を調製する。ここで上記有機ビスマス化合物(Bi源)、上記有機ナトリウム化合物(Na源)、上記有機チタン化合物(Ti源)、上記有機カリウム化合物(K源)、上記有機ストロンチウム化合物(Sr源)及び上記有機ジルコニウム化合物(Zr源)は、金属モル比(Bi:Na:K:Sr:Zr:Ti)が0.45〜0.60:0.05〜0.90:0.05〜0.90:0.01〜0.10:0.01〜0.10:1.00になるようにそれぞれ秤量する。
Next, a method for preparing a liquid composition for forming a BNT-BKT-SZ film will be described.
First, the above-mentioned solvent, organic sodium compound and organic potassium compound are placed in a container, and the mixture is refluxed for 30 to 60 minutes in an oil bath maintained at a temperature of 170 ° C. from room temperature to obtain a reddish brown suspension. An organic titanium compound and an organic zirconium compound are added thereto, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare a first solution. An organic bismuth compound, an organic strontium compound and the above-mentioned solvent are added to the first solution, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare a second solution. Further, a stabilizer such as acetylacetone or acetic acid is added to the second solution, and the mixture is refluxed at the same temperature in an oil bath for 30 to 60 minutes to prepare the third solution. Here, the organic bismuth compound (Bi source), the organic sodium compound (Na source), the organic titanium compound (Ti source), the organic potassium compound (K source), the organic strontium compound (Sr source), and the organic zirconium. The compound (Zr source) has a metal molar ratio (Bi: Na: K: Sr: Zr: Ti) of 0.45 to 0.60: 0.05 to 0.90: 0.05 to 0.90: 0. Weigh each so as to be 01 to 0.10: 0.01 to 0.10: 1.00.

〔BNT−BKT系膜の形成方法〕
本実施形態のBNT−BKT系膜は、基板上に形成される。この基板は、シリコン製又はサファイア製の耐熱性のある基板本体を有する。シリコン製の基板本体の場合、この基板本体上にSiO2膜が設けられ、このSiO2膜上にPt、TiOx、Ir、Ru等の導電性を有し、かつBNT−BKT系膜と反応しない材料からなる下部電極が設けられる。例えば、下部電極を、基板本体側から順にTiOx膜及びPt膜の2層構造にすることができる。上記TiOx膜の具体例としては、TiO2膜が挙げられる。更に上記SiO2膜は密着性を向上するために形成される。Pt膜は、例えばスパッタリング法により(111)面に配向して形成される。
[Method for forming BNT-BKT-based film]
The BNT-BKT-based film of the present embodiment is formed on the substrate. This substrate has a heat resistant substrate body made of silicon or sapphire. For silicon of the substrate main body, SiO 2 film is provided on the substrate main body, Pt on the SiO 2 film, TiO x, Ir, has conductivity such as Ru, and BNT-BKT-based film and reaction A lower electrode made of a non-material material is provided. For example, the lower electrode can have a two-layer structure of a TiO x film and a Pt film in order from the substrate body side. A specific example of the above TiO x film is a TiO 2 film. Further, the SiO 2 film is formed to improve the adhesion. The Pt film is formed so as to be oriented toward the (111) plane by, for example, a sputtering method.

この下部電極のPt膜上にCSD法により上述した液組成物を塗布する塗布工程、塗膜を仮焼する仮焼工程、仮焼膜から炭素を脱離させる脱炭素処理工程及び脱炭素した仮焼膜を焼成する焼成工程を経て、BNT−BKT系膜が製造される。 A coating step of applying the above-mentioned liquid composition on the Pt film of the lower electrode by the CSD method, a calcining step of calcining the coating film, a decarbonization treatment step of decalcifying carbon from the calcined film, and a decarbonized temporary firing step. A BNT-BKT-based film is produced through a firing step of firing the firing film.

(1)液組成物の塗布工程
この液組成物の塗布は、酸素雰囲気下、スピンコーティング、ディップコーティング、LSMCD(Liquid Source Misted Chemical Deposition)法又は静電スプレー法などにより、仮焼した後で50nm以上150nm以下の厚さを有する塗膜(ゲル膜)になるように行われる。仮焼した後の膜厚が50nm未満では良好な膜は得られるものの、膜厚が薄すぎるため、所望の厚さを得るまでに生産性が悪くなるおそれがあり、150nmを超えると、焼成後のBNT−BKT系膜中にクラックが発生し易くなるおそれがある。
(1) Coating process of liquid composition The coating of this liquid composition is 50 nm after pre-baking by spin coating, dip coating, LSMCD (Liquid Source Misted Chemical Deposition) method, electrostatic spray method, etc. under an oxygen atmosphere. The coating film (gel film) having a thickness of 150 nm or less is formed. If the film thickness after calcining is less than 50 nm, a good film can be obtained, but since the film thickness is too thin, productivity may deteriorate until the desired thickness is obtained. If the film thickness exceeds 150 nm, after firing. There is a possibility that cracks are likely to occur in the BNT-BKT film.

(2)塗膜の仮焼工程
上記液組成物を塗布した後の塗膜の仮焼は、大気雰囲気下かつ常圧下で、例えば、ホットプレート又は赤外線急速加熱炉(RTA炉)により、150℃以上400℃以下、好ましくは200℃以上350℃以下の温度で行われる。仮焼する温度が150℃未満では、塗膜がゲル状にならないおそれがある。400℃を超えると、BNT−BKT系膜が結晶化しにくくなるおそれがある。また仮焼した後の仮焼膜の厚さが50nm未満では良好な膜は得られるものの、膜厚が薄すぎるため、所望の厚さを得るまでに生産性が悪くなるおそれがあり、150nmを超えると、焼成後のBNT−BKT系膜中にクラックが発生し易くなるおそれがある。
(2) Temporary baking step of the coating film The temporary baking of the coating film after applying the above liquid composition is carried out in an air atmosphere and under normal pressure, for example, by a hot plate or an infrared rapid heating furnace (RTA furnace) at 150 ° C. The temperature is 400 ° C. or lower, preferably 200 ° C. or higher and 350 ° C. or lower. If the temperature for calcining is less than 150 ° C., the coating film may not be gelled. If the temperature exceeds 400 ° C., the BNT-BKT-based film may be difficult to crystallize. Further, if the thickness of the calcined film after calcining is less than 50 nm, a good film can be obtained, but since the film thickness is too thin, the productivity may deteriorate until the desired thickness is obtained. If it exceeds, cracks may easily occur in the BNT-BKT film after firing.

(3)仮焼膜から炭素を脱離させる脱炭素処理工程
上記仮焼膜から炭素を脱離させる脱炭素処理工程は、減圧雰囲気下、例えば10Pa以下の圧力下、475℃以上575℃以下の温度まで昇温し、0分〜3分間保持する。これにより仮焼膜中の炭素が炭化水素として揮発し易くなりして仮焼膜から脱離するようになる。好ましい圧力は0.5Pa以下、好ましい温度は500℃〜550℃、好ましい保持時間は1分〜2分間である。減圧雰囲気でない大気雰囲気下では、また温度が475℃未満である場合には、仮焼膜から炭素が脱離しない。温度が575℃を超えると、部分的に結晶化が進行し膜中で組成のばらつきが出ることにより電気特性が劣化するおそれがある。この脱炭素処理工程における加熱は、ホットプレート又はRTA炉により行われる。短時間で炭素を脱離させるために、加熱はRTA炉で行うことが好ましい。その場合、10℃/秒以上、好ましくは50℃/秒〜100℃/秒の速度で昇温される。
(3) Decarbonization treatment step for desorbing carbon from the calcined film The decarbonization treatment step for desorbing carbon from the calcined film is performed in a reduced pressure atmosphere, for example, under a pressure of 10 Pa or less, at 475 ° C. or higher and 575 ° C. or lower. Raise to temperature and hold for 0 to 3 minutes. As a result, the carbon in the calcined film is easily volatilized as a hydrocarbon and is desorbed from the calcined film. The preferred pressure is 0.5 Pa or less, the preferred temperature is 500 ° C. to 550 ° C., and the preferred holding time is 1 minute to 2 minutes. Carbon does not desorb from the calcined film under an atmospheric atmosphere other than a reduced pressure atmosphere and when the temperature is lower than 475 ° C. If the temperature exceeds 575 ° C., crystallization may partially proceed and the composition may vary in the film, resulting in deterioration of electrical characteristics. The heating in this decarbonization treatment step is performed by a hot plate or an RTA furnace. In order to desorb carbon in a short time, heating is preferably performed in an RTA furnace. In that case, the temperature is raised at a rate of 10 ° C./sec or higher, preferably 50 ° C./sec to 100 ° C./sec.

(4)脱炭素処理工程後の焼成工程
仮焼膜から炭素を脱離させた後、この炭素を脱離した仮焼膜を焼成する。この焼成は、大気雰囲気下かつ常圧下で、即ち酸素(O2)が含まれる雰囲気中で、炭素を脱離した仮焼膜をRTA炉で10℃/秒以上の速度で600℃以上800℃以下の温度まで昇温し、0.5分以上5分以下の時間保持することにより行われる。好ましい昇温速度は40℃/秒以上60℃/秒以下であり、好ましい焼成温度は650℃以上750℃以下である。昇温速度が10℃/秒未満、焼成温度が600℃未満では、作製されるBNT−BKT系膜の結晶化度が十分でなく、その密度が低くなる。焼成温度が800℃を超えると、基板等にダメージが生じるおそれがある。
(4) Firing step after decarbonization treatment step After carbon is desorbed from the calcined film, the calcined film from which this carbon is desorbed is calcined. The firing is in an air atmosphere and normal pressure, i.e. oxygen (O 2) in an atmosphere containing, 600 ° C. or higher 800 ° C. The calcined film desorbed carbon at 10 ° C. / sec or faster in RTA furnace It is carried out by raising the temperature to the following temperature and holding the temperature for 0.5 minutes or more and 5 minutes or less. The preferred rate of temperature rise is 40 ° C./sec or higher and 60 ° C./sec or lower, and the preferred firing temperature is 650 ° C. or higher and 750 ° C. or lower. If the heating rate is less than 10 ° C./sec and the firing temperature is less than 600 ° C., the crystallinity of the produced BNT-BKT-based film is not sufficient and the density is low. If the firing temperature exceeds 800 ° C., the substrate or the like may be damaged.

〔複数層のBNT−BKT系膜の形成方法〕
本実施形態のBNT−BKT系膜は、BNT−BKT系膜形成用液組成物の塗布工程、仮焼工程、脱炭素処理工程及び焼成工程の各工程を1回行って単一層のBNT−BKT系膜を形成する以外に、この液組成物の塗布工程、仮焼工程、脱炭素処理工程及び焼成工程を1回以上繰返して複数層が積層されたBNT−BKT系膜を形成してもよい。
[Method of forming a multi-layer BNT-BKT-based film]
The BNT-BKT-based film of the present embodiment is a single-layer BNT-BKT obtained by performing each step of the coating step, the calcining step, the decarbonization treatment step, and the firing step of the liquid composition for forming the BNT-BKT-based film once. In addition to forming the system film, the BNT-BKT system film in which a plurality of layers are laminated may be formed by repeating the coating step, the calcining step, the decarbonization treatment step, and the firing step of this liquid composition one or more times. ..

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
フラスコにエタノールとナトリウムエトキシド(Na源)を入れ、室温で30分間撹拌することにより、赤褐色の懸濁液を得た。この懸濁液にテトラチタンイソプロポキシド(Ti源)を添加し、30分間還流して第1溶液を調製した。この第1溶液に2-エチルヘキサン酸ビスマス(Bi源)と2-エチルヘキサン酸カリウム(K源)とプロピレングリコールを添加し、30分間還流して第2溶液を調製した。第2溶液に安定化剤としてアセチルアセトンを添加し、30分間還流して第3溶液を調製した。続いて第3溶液から溶媒を脱離して、エタノール及び反応副生成物を除去した。得られた溶液にプロピレングリコールを添加し、酸化物換算で15質量%まで希釈した。更にこの希釈した液に安定化剤として、2−ジメチルアミノエタノールをTi:安定化剤がモル比で1:1となるように添加し、続けて1−ブタノールで液を酸化物換算で8質量%まで希釈した。得られた液をフィルターでろ過することによりゴミを取り除き、BNT−BKT膜形成用液組成物を得た。この液組成物の液組成は、Bi0.54(Na0.460.12)TiO3であった。
<Example 1>
Ethanol and sodium ethoxide (Na source) were placed in a flask and stirred at room temperature for 30 minutes to obtain a reddish brown suspension. Tetratitanium isopropoxide (Ti source) was added to this suspension and refluxed for 30 minutes to prepare a first solution. Bismuth 2-ethylhexanoate (Bi source), potassium 2-ethylhexanoate (K source) and propylene glycol were added to this first solution, and the mixture was refluxed for 30 minutes to prepare a second solution. Acetylacetone was added to the second solution as a stabilizer, and the mixture was refluxed for 30 minutes to prepare a third solution. Subsequently, the solvent was removed from the third solution to remove ethanol and reaction by-products. Propylene glycol was added to the obtained solution and diluted to 15% by mass in terms of oxide. Further, as a stabilizer, 2-dimethylaminoethanol was added to this diluted solution so that the Ti: stabilizer had a molar ratio of 1: 1 and then 1-butanol was added to the solution by 8 mass in terms of oxide. Diluted to%. Dust was removed by filtering the obtained liquid with a filter to obtain a liquid composition for forming a BNT-BKT film. The liquid composition of this liquid composition was Bi 0.54 (Na 0.46 K 0.12 ) TiO 3 .

このBNT−BKT膜形成用液組成物を用いて基板の電極上にBNT−BKT膜を次の方法により形成した。先ず、4インチのシリコン基板を熱酸化することにより、シリコン基板上に厚さ500nmの酸化膜を形成した。酸化膜上にTiをスパッタリング法により20nmの厚さに形成し、続いてRTA炉にて酸素雰囲気下、700℃で1分間焼成することにより酸化チタン膜を形成した。この酸化チタン膜上にスパッタリング法により100nmの厚さの(111)配向のPt下部電極を形成した。更にゾルゲル法により15nmの厚さの(100)配向のLaNiO3膜を形成し、LNO/Pt/TiOx/SiOx/Siの各層を有する基板を得た。 A BNT-BKT film was formed on the electrodes of the substrate by the following method using this liquid composition for forming a BNT-BKT film. First, a 4-inch silicon substrate was thermally oxidized to form an oxide film having a thickness of 500 nm on the silicon substrate. Ti was formed on the oxide film by a sputtering method to a thickness of 20 nm, and then fired in an oxygen atmosphere at 700 ° C. for 1 minute in an RTA furnace to form a titanium oxide film. A (111) oriented Pt lower electrode having a thickness of 100 nm was formed on the titanium oxide film by a sputtering method. Further, a (100) oriented LaNiO 3 film having a thickness of 15 nm was formed by a sol-gel method to obtain a substrate having each layer of LNO / Pt / TiO x / SiO x / Si.

得られた基板上に、上記BNT−BKT膜形成用液組成物を0.5mLを滴下し、3000rpmの回転速度で15秒間スピンコートを行った。続いてスピンコートした基板を300℃のホットプレートで5分間仮焼を行って仮焼膜を得た。続いてRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、475℃の温度で1分間保持することにより、仮焼膜から炭素を脱離させる脱炭素処理を行った。その後、RTA炉を酸素で満たし、常圧下、100℃/秒の速度で昇温し、700℃の温度で1分間保持することにより、脱炭素を行った仮焼膜を焼成して、単一層のBNT−BKT膜を得た。 0.5 mL of the above BNT-BKT film-forming liquid composition was added dropwise onto the obtained substrate, and spin coating was performed at a rotation speed of 3000 rpm for 15 seconds. Subsequently, the spin-coated substrate was calcined on a hot plate at 300 ° C. for 5 minutes to obtain a calcined film. Subsequently, a decarbonization treatment was performed in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec and holding at a temperature of 475 ° C. for 1 minute to desorb carbon from the calcined film. .. After that, the RTA furnace was filled with oxygen, the temperature was raised at a rate of 100 ° C./sec under normal pressure, and the temperature was maintained at 700 ° C. for 1 minute to fire the decarbonized calcined film to form a single layer. BNT-BKT film was obtained.

<実施例2>
実施例2では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、500℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 2>
In Example 2, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 500 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例3>
実施例3では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、525℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 3>
In Example 3, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 525 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例4>
実施例4では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、575℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 4>
In Example 4, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 575 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例5>
実施例5では、実施例3で行った液組成物の塗布・仮焼・脱炭素処理・焼成のプロセスを6回行い、脱炭素処理は実施例3と同一条件で行った。それ以外は、実施例1と同様にして、6層のBNT−BKT膜を得た。
<Example 5>
In Example 5, the process of application, calcining, decarbonization treatment, and firing of the liquid composition performed in Example 3 was performed 6 times, and the decarbonization treatment was performed under the same conditions as in Example 3. A 6-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例6>
フラスコにエタノールとナトリウムエトキシド(Na源)とカリウムエトキシド(K源)を入れ、室温で30分間撹拌することにより、赤褐色の懸濁液を得た。この懸濁液にテトラチタンイソプロポキシド(Ti源)とジルコニウムブトキシド(Zr源)を添加し、30分間還流して第1溶液を調製した。この第1溶液に2-エチルヘキサン酸ビスマス(Bi源)と酢酸ストロンチウム(Sr源)とプロピレングリコールを添加し、30分間還流して第2溶液を調製した。更に第2溶液に安定化剤としてアセチルアセトンを添加し、30分間還流して第3溶液を調製した。続いて第3溶液から溶媒を脱離して、エタノール及び反応副生成物を除去した。得られた溶液にプロピレングリコールを添加し、酸化物換算で15質量%まで希釈した。更にこの希釈した液に安定化剤として、2−ジメチルアミノエタノールをTi:安定化剤がモル比で1:1となるように添加し、続けて1−ブタノールで液を酸化物換算で8質量%まで希釈した。得られた液をフィルターでろ過することによりゴミを取り除き、BNT−BKT−SZ膜形成用液組成物を得た。この液組成物の液組成は、Bi0.54(Na0.460.12Sr0.02Zr0.02)TiO3であった。このBNT−BKT−SZ膜形成用液組成物を用いて、実施例1と同様にして、単一層のBNT−BKT−SZ膜を得た。脱炭素処理は実施例1と同一条件で行った。
<Example 6>
Ethanol, sodium ethoxide (Na source) and potassium ethoxide (K source) were placed in a flask and stirred at room temperature for 30 minutes to obtain a reddish brown suspension. Tetratitanium isopropoxide (Ti source) and zirconium butoxide (Zr source) were added to this suspension, and the mixture was refluxed for 30 minutes to prepare a first solution. Bismuth 2-ethylhexanoate (Bi source), strontium acetate (Sr source) and propylene glycol were added to this first solution, and the mixture was refluxed for 30 minutes to prepare a second solution. Further, acetylacetone was added to the second solution as a stabilizer, and the mixture was refluxed for 30 minutes to prepare a third solution. Subsequently, the solvent was removed from the third solution to remove ethanol and reaction by-products. Propylene glycol was added to the obtained solution and diluted to 15% by mass in terms of oxide. Further, as a stabilizer, 2-dimethylaminoethanol was added to this diluted solution so that the Ti: stabilizer had a molar ratio of 1: 1 and then 1-butanol was added to the solution by 8 mass in terms of oxide. Diluted to%. Dust was removed by filtering the obtained liquid with a filter to obtain a liquid composition for forming a BNT-BKT-SZ film. The liquid composition of this liquid composition was Bi 0.54 (Na 0.46 K 0.12 Sr 0.02 Zr 0.02 ) TiO 3 . Using this liquid composition for forming a BNT-BKT-SZ film, a single-layer BNT-BKT-SZ film was obtained in the same manner as in Example 1. The decarbonization treatment was carried out under the same conditions as in Example 1.

<実施例7>
実施例7では、実施例6と同一のBNT−BKT−SZ膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、570℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例6と同様にして、単一層のBNT−BKT−SZ膜を得た。
<Example 7>
In Example 7, a substrate spin-coated with the same BNT-BKT-SZ film-forming liquid composition as in Example 6 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 570. The decarbonization treatment was carried out by holding at a temperature of ° C. for 1 minute. A single-layer BNT-BKT-SZ film was obtained in the same manner as in Example 6 except for the above.

<実施例8>
フラスコにエタノールとテトラチタンイソプロポキシド(Ti源)を添加し、30分間還流して第1溶液を調製した。この第1溶液に2-エチルヘキサン酸ビスマス(Bi源)と2-エチルヘキサン酸カリウム(K源)とプロピレングリコールを添加し、30分間還流して第2溶液を調製した。第2溶液に安定化剤としてアセチルアセトンを添加し、30分間還流して第3溶液を調製した。続いて第3溶液から溶媒を脱離して、エタノール及び反応副生成物を除去した。得られた溶液にプロピレングリコールを添加し、酸化物換算で15質量%まで希釈した。更にこの希釈した液に安定化剤として、2−ジメチルアミノエタノールをTi:安定化剤がモル比で1:1となるように添加し、続けて1−ブタノールで液を酸化物換算で8質量%まで希釈した。得られた液をフィルターでろ過することによりゴミを取り除き、BKT膜形成用液組成物を得た。この液組成物の液組成は、Bi0.540.60TiO3であった。このBKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、500℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBKT膜を得た。
<Example 8>
Ethanol and tetratitanium isopropoxide (Ti source) were added to the flask, and the mixture was refluxed for 30 minutes to prepare a first solution. Bismuth 2-ethylhexanoate (Bi source), potassium 2-ethylhexanoate (K source) and propylene glycol were added to this first solution, and the mixture was refluxed for 30 minutes to prepare a second solution. Acetylacetone was added to the second solution as a stabilizer, and the mixture was refluxed for 30 minutes to prepare a third solution. Subsequently, the solvent was removed from the third solution to remove ethanol and reaction by-products. Propylene glycol was added to the obtained solution and diluted to 15% by mass in terms of oxide. Further, as a stabilizer, 2-dimethylaminoethanol was added to this diluted solution so that the Ti: stabilizer had a molar ratio of 1: 1 and then 1-butanol was added to the solution by 8 mass in terms of oxide. Diluted to%. Dust was removed by filtering the obtained liquid with a filter to obtain a liquid composition for forming a BKT film. The liquid composition of this liquid composition was Bi 0.54 K 0.60 TiO 3 . The substrate spin-coated with this BKT film-forming liquid composition was heated in an RTA furnace at a rate of 100 ° C./sec under a reduced pressure atmosphere of 5 Pa, and held at a temperature of 500 ° C. for 1 minute for decarbonization treatment. Was done. A single-layer BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例9>
実施例9では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて10Paの減圧雰囲気下、100℃/秒の速度で昇温し、500℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 9>
In Example 9, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 10 Pa at a rate of 100 ° C./sec to 500 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例10>
実施例10では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて10Paの減圧雰囲気下、100℃/秒の速度で昇温し、500℃の温度に達したところで、保持することなく、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 10>
In Example 10, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 10 Pa at a rate of 100 ° C./sec to 500 ° C. When the temperature was reached, decarbonization treatment was performed without holding. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<実施例11>
実施例11では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて0.5Paの減圧雰囲気下、100℃/秒の速度で昇温し、500℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Example 11>
In Example 11, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 0.5 Pa at a rate of 100 ° C./sec to 500. The decarbonization treatment was carried out by holding at a temperature of ° C. for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<比較例1>
比較例1では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、450℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Comparative example 1>
In Comparative Example 1, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 450 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<比較例2>
比較例2では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板をRTA炉にて5Paの減圧雰囲気下、100℃/秒の速度で昇温し、600℃の温度で1分間保持することにより、脱炭素処理を行った。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Comparative example 2>
In Comparative Example 2, a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1 was heated in an RTA furnace under a reduced pressure atmosphere of 5 Pa at a rate of 100 ° C./sec to 600 ° C. The decarbonization treatment was carried out by keeping the temperature for 1 minute. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<比較例3>
比較例3では、実施例1と同一のBNT−BKT膜形成用液組成物をスピンコートした基板を仮焼膜を得た後、脱炭素処理を行わずに、RTA炉を酸素で満たし、この仮焼膜を常圧下、100℃/秒の速度で昇温し、700℃の温度で1分間保持して焼成した。それ以外は、実施例1と同様にして、単一層のBNT−BKT膜を得た。
<Comparative example 3>
In Comparative Example 3, after obtaining a calcined film on a substrate spin-coated with the same BNT-BKT film-forming liquid composition as in Example 1, the RTA furnace was filled with oxygen without decarbonization. The calcined film was heated under normal pressure at a rate of 100 ° C./sec and held at a temperature of 700 ° C. for 1 minute for firing. A single-layer BNT-BKT film was obtained in the same manner as in Example 1 except for the above.

<比較例4>
比較例4では、比較例3で行った液組成物の塗布・仮焼・焼成のプロセスを6回行い、脱炭素処理は行わなかった。それ以外は、比較例3と同様にして、6層のBNT−BKT膜を得た。
<Comparative example 4>
In Comparative Example 4, the process of coating, calcining, and firing the liquid composition performed in Comparative Example 3 was performed 6 times, and the decarbonization treatment was not performed. A 6-layer BNT-BKT film was obtained in the same manner as in Comparative Example 3 except for the above.

<比較例5>
比較例5では、実施例6と同一のBNT−BKT−SZ膜形成用液組成物をスピンコートした基板を仮焼膜を得た後、脱炭素処理を行わずに、RTA炉を酸素で満たし、この仮焼膜を常圧下、100℃/秒の速度で昇温し、700℃の温度で1分間保持して焼成した。それ以外は、実施例6と同様にして、単一層のBNT−BKT−SZ膜を得た。
<Comparative example 5>
In Comparative Example 5, a substrate spin-coated with the same BNT-BKT-SZ film forming liquid composition as in Example 6 was obtained as a calcined film, and then the RTA furnace was filled with oxygen without decarbonization. The calcined film was heated at a rate of 100 ° C./sec under normal pressure and held at a temperature of 700 ° C. for 1 minute for firing. A single-layer BNT-BKT-SZ film was obtained in the same manner as in Example 6 except for the above.

<比較例6>
比較例6では、実施例8と同一のBKT膜形成用液組成物をスピンコートした基板を仮焼膜を得た後、脱炭素処理を行わずに、RTA炉を酸素で満たし、この仮焼膜を常圧下、100℃/秒の速度で昇温し、700℃の温度で1分間保持して焼成した。それ以外は、実施例8と同様にして、単一層のBKT膜を得た。
<Comparative Example 6>
In Comparative Example 6, after obtaining a calcined film on a substrate spin-coated with the same liquid composition for forming a BKT film as in Example 8, the RTA furnace was filled with oxygen without decarbonization treatment, and this calcining was performed. The film was heated at a rate of 100 ° C./sec under normal pressure, held at a temperature of 700 ° C. for 1 minute, and fired. A single-layer BKT film was obtained in the same manner as in Example 8 except for the above.

実施例1〜11及び比較例1〜6における17種類のBNT−BKT系膜形成用液組成物及びBKT膜形成用液組成物のそれぞれの液組成と、仮焼温度と、脱炭素処理温度と、脱炭素処理時の圧力と、膜の積層数を以下の表1に示す。 The liquid compositions of the 17 types of BNT-BKT film-forming liquid compositions and BKT film-forming liquid compositions in Examples 1 to 11 and Comparative Examples 1 to 6, the calcining temperature, and the decarbonization treatment temperature. The pressure during the decarbonization treatment and the number of laminated films are shown in Table 1 below.

<比較試験及び評価>
実施例1〜11及び比較例1〜6で得られた17種類のBNT−BKT系膜及びBKT膜について、次の方法で、膜の(100)面の回折ピーク強度と電気特性である比誘電率を評価した。この評価結果を表1に示す。
<Comparative tests and evaluations>
With respect to the 17 types of BNT-BKT-based films and BKT films obtained in Examples 1 to 11 and Comparative Examples 1 to 6, the diffraction peak intensity of the (100) plane of the film and the relative permittivity which are the electrical characteristics are obtained by the following method. The rate was evaluated. The evaluation results are shown in Table 1.

(1)膜の(100)面由来の回折ピーク強度
X線回折(XRD)装置(パナリティカル社製、型式名:Empyrean)を使用して、集中法によるX線回折(XRD)測定を行い、膜の(100)面由来の回折ピーク強度を評価した。
(1) Diffraction peak intensity derived from the (100) plane of the film Using an X-ray diffraction (XRD) device (manufactured by PANalytical Co., Ltd., model name: Empyrean), X-ray diffraction (XRD) measurement by a concentrated method is performed. The diffraction peak intensity derived from the (100) plane of the film was evaluated.

(2)膜の比誘電率
膜の表面に、スパッタリング法により250μm□の厚さ100nmのPt上部電極を形成した後、RTAを用いて酸素雰囲気中、700℃の温度で1分間ダメージリカバリーアニーリングを行った圧電素子を試験用サンプルとした。この試験用サンプルについて、レーザー干渉計(aix ACCT社製、DBLI (Double Beam Laser Interferometer):TFanalyzer-2000)を用いて1kHzの周波数で比誘電率を測定した。
(2) Relative Permittivity of Membrane After forming a Pt upper electrode with a thickness of 250 μm □ and a thickness of 100 nm on the surface of the membrane by a sputtering method, damage recovery annealing is performed for 1 minute at a temperature of 700 ° C. in an oxygen atmosphere using RTA. The carried-out piezoelectric element was used as a test sample. The relative permittivity of this test sample was measured at a frequency of 1 kHz using a laser interferometer (DBLI (Double Beam Laser Interferometer): TFanalyzer-2000) manufactured by aix ACCT.

表1から明らかなように、比較例1では、脱炭素処理の温度が450℃と低過ぎたため、仮焼膜から炭素が十分に脱離しない状態で仮焼膜が焼成され、膜の(100)面由来の回折ピーク強度が400と低く、比誘電率が430と小さかった。 As is clear from Table 1, in Comparative Example 1, since the temperature of the decarbonization treatment was too low at 450 ° C., the calcined film was fired in a state where carbon was not sufficiently desorbed from the calcined film, and the film (100) was fired. ) The diffraction peak intensity derived from the surface was as low as 400, and the relative permittivity was as small as 430.

比較例2では、脱炭素処理の温度が600℃と高過ぎたため、部分的に結晶化が進行し膜内部で組成が不均一になり、膜の(100)面由来の回折ピーク強度が1200と高くなく、比誘電率が490と小さかった。 In Comparative Example 2, since the temperature of the decarbonization treatment was too high at 600 ° C., crystallization partially proceeded and the composition became non-uniform inside the film, and the diffraction peak intensity derived from the (100) plane of the film was 1200. It was not high and the relative permittivity was as small as 490.

比較例3〜6では、脱炭素処理を行わなかったため、仮焼膜から炭素が脱離しない状態で仮焼膜が焼成され、膜の(100)面由来の回折ピーク強度が200〜500と低く、比誘電率が120〜600と小さかった。 In Comparative Examples 3 to 6, since the decarbonization treatment was not performed, the calcined film was fired in a state where carbon was not desorbed from the calcined film, and the diffraction peak intensity derived from the (100) plane of the film was as low as 200 to 500. The relative permittivity was as small as 120 to 600.

これに対して、実施例1〜4、6及び7のBNT−BKT系膜では、脱炭素処理を475℃以上575℃以下の温度で行ったため、仮焼膜から炭素が十分に脱離し、この状態で焼成され、膜の(100)面由来の回折ピーク強度が6100〜8700と高く、比誘電率が640〜880と大きかった。特に実施例5では、脱炭素処理を525℃の温度で行って、かつ6層に積層した膜を形成したため、この積層膜の(100)面由来の回折ピーク強度が36700と極めて高く、比誘電率が930と大きかった。 On the other hand, in the BNT-BKT film of Examples 1 to 4, 6 and 7, since the decarbonization treatment was performed at a temperature of 475 ° C. or higher and 575 ° C. or lower, carbon was sufficiently desorbed from the calcined film. It was fired in this state, and the diffraction peak intensity derived from the (100) plane of the film was as high as 6100 to 8700, and the relative permittivity was as high as 640 to 880. In particular, in Example 5, since the decarbonization treatment was performed at a temperature of 525 ° C. and a film laminated in 6 layers was formed, the diffraction peak intensity derived from the (100) plane of this laminated film was extremely high at 36700, and the relative permittivity was obtained. The rate was as high as 930.

また実施例8のBKT膜においても、脱炭素処理を500℃の温度で行ったため、仮焼膜から炭素が十分に脱離し、この状態で焼成され、膜の(100)面由来の回折ピーク強度が4200と高く、BKT膜としては比誘電率が310と大きかった。 Further, also in the BKT film of Example 8, since the decarbonization treatment was performed at a temperature of 500 ° C., carbon was sufficiently desorbed from the calcined film and fired in this state, and the diffraction peak intensity derived from the (100) plane of the film was obtained. Was as high as 4200, and the relative permittivity was as large as 310 for a BKT film.

更に実施例9〜11のBNT−BKT系膜では、脱炭素処理時の圧力を10Pa及び0.5Paにしても、また500℃まで昇温して保持時間を0分としても、仮焼膜から炭素が十分に脱離し、この状態で焼成され、膜の(100)面由来の回折ピーク強度が5800〜6800と高く、比誘電率が640〜700と大きかった。 Further, in the BNT-BKT film of Examples 9 to 11, even if the pressure during the decarbonization treatment is set to 10 Pa and 0.5 Pa, or the temperature is raised to 500 ° C. and the holding time is set to 0 minutes, the calcined film is used. Carbon was sufficiently desorbed and fired in this state, and the diffraction peak intensity derived from the (100) plane of the film was as high as 5800 to 6800 and the relative permittivity was as large as 640 to 700.

以上のことから、減圧雰囲気下、475℃以上575℃以下の温度で保持時間0分〜1分間で、0.5Pa〜10Paの圧力で仮焼膜を脱炭素処理を行うと、膜の結晶性と電気特性(比誘電率)が向上することが判った。 From the above, when the calcined film is decarbonized at a pressure of 0.5 Pa to 10 Pa at a temperature of 475 ° C. or higher and 575 ° C. or lower with a holding time of 0 minutes to 1 minute under a reduced pressure atmosphere, the film becomes crystalline. It was found that the electrical characteristics (relative permittivity) were improved.

本発明の強誘電体膜は、アクチュエータ、超音波デバイス、振動発電素子、焦電センサ、インクジェットヘッド、オートフォーカス等のMEMSアプリケーションの圧電体膜に用いることができる。 The ferroelectric film of the present invention can be used as a piezoelectric film for MEMS applications such as actuators, ultrasonic devices, vibration power generation elements, pyroelectric sensors, inkjet heads, and autofocus.

Claims (4)

Bi、K及びTiを少なくとも含む液組成物を基板上に塗布して塗膜を形成する塗布工程と、前記塗膜を仮焼し仮焼膜を形成する仮焼工程と、前記仮焼膜を焼成する焼成工程を含む強誘電体膜の製造方法において、
前記仮焼工程と前記焼成工程の間に前記仮焼膜から炭素を除去する脱炭素処理工程を含み、
前記脱炭素処理工程は前記仮焼膜を減圧雰囲気下、475℃以上575℃以下の温度で加熱する処理工程であることを特徴とする強誘電体膜の製造方法。
A coating step of applying a liquid composition containing at least Bi, K, and Ti on a substrate to form a coating film, a calcining step of calcining the coating film to form a calcined film, and the calcining film. In the method for producing a strong dielectric film including a firing step of firing,
A decarbonization treatment step of removing carbon from the calcined film is included between the calcining step and the firing step.
The method for producing a ferroelectric film, wherein the decarbonization treatment step is a treatment step of heating the calcined film at a temperature of 475 ° C. or higher and 575 ° C. or lower under a reduced pressure atmosphere.
前記強誘電体膜がBNT−BKT系膜である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the ferroelectric film is a BNT-BKT-based film. 前記液組成物の前記塗布工程、前記仮焼工程、前記脱炭素処理工程及び前記焼成工程を1回以上繰返して強誘電体膜を製造する請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the ferroelectric film is produced by repeating the coating step, the calcining step, the decarbonization treatment step, and the firing step of the liquid composition one or more times. 前記液組成物がSr及びZrを更に含む請求項1ないし3いずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the liquid composition further contains Sr and Zr.
JP2019029472A 2019-02-21 2019-02-21 Method for manufacturing ferroelectric film Active JP7230579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029472A JP7230579B2 (en) 2019-02-21 2019-02-21 Method for manufacturing ferroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029472A JP7230579B2 (en) 2019-02-21 2019-02-21 Method for manufacturing ferroelectric film

Publications (2)

Publication Number Publication Date
JP2020136529A true JP2020136529A (en) 2020-08-31
JP7230579B2 JP7230579B2 (en) 2023-03-01

Family

ID=72263587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029472A Active JP7230579B2 (en) 2019-02-21 2019-02-21 Method for manufacturing ferroelectric film

Country Status (1)

Country Link
JP (1) JP7230579B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145424A (en) * 1997-11-14 1999-05-28 Fujitsu Ltd Formation of ferroelectric thin film
WO2002032809A1 (en) * 2000-10-17 2002-04-25 Sharp Kabushiki Kaisha Oxide material, method for preparing oxide thin film and element using said material
JP2006269391A (en) * 2005-03-25 2006-10-05 Seiko Epson Corp Manufacturing method of ferroelectric thin film and manufacturing method of piezoelectric element as well as composition for ferroelectric thin film formation
JP2008143735A (en) * 2006-12-08 2008-06-26 Showa Denko Kk Coating agent for forming composite oxide film
JP2009302304A (en) * 2008-06-13 2009-12-24 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
JP2010188639A (en) * 2009-02-19 2010-09-02 Fujifilm Corp Piezoelectric element, and liquid ejector using the same
WO2018142151A1 (en) * 2017-02-03 2018-08-09 Xaar Technology Limited Methods of identifying a ceramic material exhibiting an electric field induced strain derived from a reversible phase transition, methods of preparation and ceramic materials obtainable therefrom
JP2018157182A (en) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 Method for manufacturing liquid composition for piezoelectric film formation, and method for forming piezoelectric film by use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145424A (en) * 1997-11-14 1999-05-28 Fujitsu Ltd Formation of ferroelectric thin film
WO2002032809A1 (en) * 2000-10-17 2002-04-25 Sharp Kabushiki Kaisha Oxide material, method for preparing oxide thin film and element using said material
JP2006269391A (en) * 2005-03-25 2006-10-05 Seiko Epson Corp Manufacturing method of ferroelectric thin film and manufacturing method of piezoelectric element as well as composition for ferroelectric thin film formation
JP2008143735A (en) * 2006-12-08 2008-06-26 Showa Denko Kk Coating agent for forming composite oxide film
JP2009302304A (en) * 2008-06-13 2009-12-24 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
JP2010188639A (en) * 2009-02-19 2010-09-02 Fujifilm Corp Piezoelectric element, and liquid ejector using the same
WO2018142151A1 (en) * 2017-02-03 2018-08-09 Xaar Technology Limited Methods of identifying a ceramic material exhibiting an electric field induced strain derived from a reversible phase transition, methods of preparation and ceramic materials obtainable therefrom
JP2020506146A (en) * 2017-02-03 2020-02-27 ザール テクノロジー リミテッドXaar Technology Limited Method for identifying ceramic material exhibiting electric-field-induced strain induced by reversible phase transition, manufacturing method, and ceramic material obtained therefrom
JP2018157182A (en) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 Method for manufacturing liquid composition for piezoelectric film formation, and method for forming piezoelectric film by use thereof

Also Published As

Publication number Publication date
JP7230579B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
KR101970832B1 (en) Method for producing ferroelectric thin film
KR101926194B1 (en) Method for producing ferroelectric thin film
TW201522273A (en) Method of producing PNbZT thin film
TWI669839B (en) Composition for forming mn and nb co-doped pzt-based piezoelectric film
KR102007543B1 (en) METHOD OF FORMING PNbZT FERROELECTRIC THIN FILM
JP2014177359A (en) Complex oxide, thin film capacitive element, droplet discharge head, and method for producing complex oxide
KR20160138383A (en) Manganese- and niobium-doped pzt piezoelectric film
JP6075152B2 (en) Method for producing composition for forming PZT-based ferroelectric thin film and method for forming PZT-based ferroelectric thin film using the composition
TW201644076A (en) PTZT piezoelectric film and method of manufacturing liquid composition for forming its piezoelectric film
JP7230579B2 (en) Method for manufacturing ferroelectric film
JP2020055716A (en) Coating liquid composition for depositing piezoelectric film, method for manufacturing the same, oriented piezoelectric film and liquid ejection head
JP2020057693A (en) Laminated piezoelectric film
JP7166800B2 (en) Coating liquid composition for oriented piezoelectric film, oriented piezoelectric film, and liquid ejection head
JP2018137334A (en) Pzt-based ferroelectric thin film and method of producing the same
JP7142875B2 (en) Oriented piezoelectric film, manufacturing method thereof, and liquid ejection head
JP6579012B2 (en) PZT piezoelectric film, method for forming the same, and composition for forming PZT piezoelectric film
JP6459563B2 (en) PZT-based ferroelectric thin film and method for forming the same
JP7124445B2 (en) BNT-BT film and method for forming the same
JP7192262B2 (en) Liquid composition for KNN film formation and method for forming KNN film using this liquid composition
JP2016157894A (en) PNbZT FILM AND MANUFACTURING METHOD OF PNbZT FILM FORMING COMPOSITION
JP5644975B2 (en) Method for manufacturing PZT ferroelectric thin film
JP2019220571A (en) Oriented piezoelectric film, method of manufacturing the same, and liquid ejection head
JP2021103736A (en) Knn film forming liquid composition and knn film forming method
JP2019167286A (en) Liquid composition for forming piezoelectric film and method for forming piezoelectric film in which said liquid composition is used
JP2007305779A (en) Piezo-electric element, manufacturing method thereof, and ink-jet recording head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7230579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150