JP2020136272A - Method and flow channel structure for uniforming flow rate distribution of fuel cell - Google Patents

Method and flow channel structure for uniforming flow rate distribution of fuel cell Download PDF

Info

Publication number
JP2020136272A
JP2020136272A JP2020022149A JP2020022149A JP2020136272A JP 2020136272 A JP2020136272 A JP 2020136272A JP 2020022149 A JP2020022149 A JP 2020022149A JP 2020022149 A JP2020022149 A JP 2020022149A JP 2020136272 A JP2020136272 A JP 2020136272A
Authority
JP
Japan
Prior art keywords
flow path
flow
hole
fluid
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020022149A
Other languages
Japanese (ja)
Inventor
周泊賢
Bo-Xian Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chin Ray Industrial Ltd
Chin Ray Ind Ltd
Original Assignee
Chin Ray Industrial Ltd
Chin Ray Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chin Ray Industrial Ltd, Chin Ray Ind Ltd filed Critical Chin Ray Industrial Ltd
Publication of JP2020136272A publication Critical patent/JP2020136272A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a method and a flow channel structure for uniforming flow rate distribution of a fuel cell.SOLUTION: In a method according to the present invention for a flow channel system of a stacked battery stack or a flat battery stack, after a fluid flows into the battery stack, the flow rate can be evenly distributed to flow channels of each flow channel plate, and a single line or multi-line flow system is adopted such that each of the channels has a uniform fluid flow rate, and therefore, a voltage generated by the combined batteries for each of the flow channels reach an average value, and no battery is damaged due to the low voltage, thereby extending the service life of the battery stack.SELECTED DRAWING: Figure 3

Description

本発明は、燃料電池の流量分布を均一する方法及び流路構造を提供し、とりわけシングルラインまたはマルチライン流通の方式を採用することにより、各流路ごとにいずれも均一な流体流量を有するため、その流路板により生成された電圧は、いずれも平均値に達することができる。 The present invention provides a method and a flow path structure for making the flow rate distribution of the fuel cell uniform, and in particular, by adopting a single-line or multi-line distribution method, each flow path has a uniform fluid flow rate. , The voltage generated by the flow path plate can reach an average value.

図1〜図2に示すように、現在、市販されている一般の燃料電池は、積層型70であっても、平板型80であっても、通常の流体(燃料や酸化剤)の流路板90への進入は、マルチラインで同時に流入することを採用するが、しかしこの過程において、往々にして流量分布不均一な状態が生じる。一般の電池スタックの流路分岐管がU字形やZ字形に設計され、通常、流路がU字形である場合、流体の入口に近づく流量が最も多く、出口での流量が最も少なくなる一方、流路がZ字形である場合、入、出口での流量が最も多く、中間部でのが最も少なくなる。U字形やZ字形に係らず、いずれも流量分布が不均一という問題がある。また、電池スタック中の流路板からは、1個の電圧が生成されることを意味し、各枚の流路板ごとに所在位置の違いに応じて異なる電圧差ΔPが存在し、かつ流路内に水が溜まる場合、電圧差が大きければ大きいほど、流量が小さくなり(燃料電池は、反応過程において水が生成されて流路に進入する)、該枚の流路板に水がますます溜まりやすくなる。低流量や流量不足において燃料電池が稼働される時、このような時には、不均一な状態をより一層顕著にすることで、一般の燃料電池を流量不足の条件下で操作することができない。 As shown in FIGS. 1 and 2, the general fuel cell currently on the market is a flow path of a normal fluid (fuel or oxidant) regardless of whether it is a laminated type 70 or a flat plate type 80. The approach to the plate 90 employs a multi-line simultaneous inflow, but in this process, a state of non-uniform flow distribution often occurs. When the flow path branch pipe of a general battery stack is designed in a U-shape or Z-shape, and the flow path is usually U-shaped, the flow rate approaching the inlet of the fluid is the highest and the flow rate at the outlet is the lowest. When the flow path is Z-shaped, the flow rate at the inlet and outlet is the largest, and the flow rate at the intermediate portion is the smallest. Regardless of the U-shape or Z-shape, there is a problem that the flow rate distribution is non-uniform. Further, it means that one voltage is generated from the flow path plates in the battery stack, and each of the flow path plates has a different voltage difference ΔP according to the difference in the location position, and the flow flows. When water collects in the path, the larger the voltage difference, the smaller the flow rate (in the fuel cell, water is generated during the reaction process and enters the flow path), and the water flows into the flow path plate. It becomes easier to collect. When the fuel cell is operated at a low flow rate or insufficient flow rate, in such a case, the non-uniform state becomes more prominent, so that a general fuel cell cannot be operated under the condition of insufficient flow rate.

以上に述べたことをまとめると、流量分布が不均一になった場合、流量不足の電池に低電圧が形成され、長時間にわたって低電圧が維持して電池の破損がもたらされ、少数の電池が破損してしまったら、電池スタック全体に補修を施したり、破損の電池を取替えたりする必要があるため、コストの無駄使いや給圧が不安定になる事態を招くという欠点が存在する。そこで、産業の進歩の要望に沿って使用者により多くの選択肢を提供できるように、実に具体的で斬新な方案を提出する必要がある。 To summarize the above, when the flow rate distribution becomes uneven, a low voltage is formed in the battery with insufficient flow rate, the low voltage is maintained for a long time, and the battery is damaged, resulting in a small number of batteries. If the battery is damaged, the entire battery stack needs to be repaired or the damaged battery needs to be replaced, which has the disadvantage of wasting costs and making the supply pressure unstable. Therefore, it is necessary to submit a very concrete and novel plan so that the user can be provided with more options in line with the demand for industrial progress.

従来技術における各流路板の流体の流量分布が不均一という欠点を解決するために、本発明の目的は、シングルライン流通の流路板を採用することにより、各流路板の間を単路で行き渡ると共に、流路を往復迂回することで、各流路板は均一な流体流量を有するため、電池スタックの使用寿命を延長する目的を達成する、燃料電池の流量分布を均一する方法及び流路構造を提供することである。 In order to solve the drawback that the flow rate distribution of the fluid in each flow path plate in the prior art is non-uniform, an object of the present invention is to adopt a flow rate plate for single-line flow in a single path between the flow path plates. Since each flow path plate has a uniform fluid flow rate by circulating and reciprocating around the flow path, a method and a flow path for making the flow rate distribution of the fuel cell uniform to achieve the purpose of extending the life of the battery stack. To provide the structure.

上述の目的を達成するために本発明が採用した技術手段及び方案は、以下の通りである。 The technical means and measures adopted by the present invention to achieve the above-mentioned object are as follows.

本発明に係る燃料電池の流量分布を均一する方法は、流体が電池スタックに流入した後、シングルライン流通の方式を採用することにより、流体を各流路板の間に順次に経路逐次流通させ、全ての流路板の流路まで流通させた後に電池スタックの出口から離去させることにより、流体流量を各流路板上ごとの流路に均一配分することで、各流路板ごとにより生成された電圧が一致化されることから、電池スタックの使用寿命を延長することを達成できる。
また、上述のほか、流体が電池スタックに流入した後、流体を各流路板の1本目の流路にマルチライン流入させた後に集約させ、次いで各流路板の2本目の流路にマルチライン流入させた後に集約させ、このように類推して最後の1本の流路まで集約させた後に電池スタックの出口から離去させることにより、各流路への均一配分の目的を達成する方法もある。
The method for making the flow rate distribution of the fuel cell uniform according to the present invention is to adopt a single-line distribution method after the fluid has flowed into the battery stack, so that the fluid is sequentially distributed between the flow path plates in sequence, and all of them are distributed. It is generated by each flow path plate by uniformly distributing the fluid flow rate to each flow path on each flow path plate by separating it from the outlet of the battery stack after circulating it to the flow path of the flow path plate. Since the fluids are matched, it is possible to extend the life of the battery stack.
In addition to the above, after the fluid has flowed into the battery stack, the fluid is multi-lined into the first flow path of each flow path plate and then aggregated, and then multi-lined into the second flow path of each flow path plate. A method of achieving the purpose of uniform distribution to each flow path by consolidating after flowing into the line, consolidating to the last one flow path by analogy, and then separating from the outlet of the battery stack. There is also.

本発明に係る燃料電池の流量分布を均一する流路構造は、互いに積み重ねられた複数の流路板及び複数の膜電極群を備え、当該流路板の間に膜電極群が設けられ、当該流路板に流路及び第1貫通孔が設けられ、前記膜電極群に第2貫通孔が設けられ、当該流路と第1貫通孔及び第2貫通孔とが相互に連接されてシングルライン流通の通路が形成され、流体のシングルライン流通を実施する時、流体は、流路板内に進入し、第1貫通孔を介して流路板の流路に流通し、次いで第1貫通孔を介して次の流路板の流路へ変換されると共に、途中に膜電極群の第2貫通孔が連接され、この流体が第1貫通孔及び第2貫通孔を経由して流路間にシングルライン流通することによって、全ての流路まで流通してから、第1貫通孔から流出する。
また、上述のほか、流路と第1貫通孔及び第2貫通孔とが相互に連接されてマルチライン流通の合流通路が形成され、流体のマルチライン流通を実施する時、流体は、第1貫通孔を介して同時に複数の流路板の流路内に進入すると共に、各流路の終端部及びコーナー部に貫設された第1貫通孔で合流流通を行い、また流路間の流通には膜電極群の第2貫通孔が連接され、この流体が第1貫通孔及び第2貫通孔を経由して流路間にマルチライン流通することによると共に、終端部及びコーナー部の第1貫通孔での合流により、全ての流路まで流通してから、第1貫通孔から流出する構造もある。
The flow path structure for uniform flow distribution of the fuel cell according to the present invention includes a plurality of flow path plates and a plurality of membrane electrode groups stacked on each other, and a membrane electrode group is provided between the flow path plates. A flow path and a first through hole are provided in the plate, a second through hole is provided in the membrane electrode group, and the flow path and the first through hole and the second through hole are connected to each other for single-line flow. When a passage is formed and a single line flow of the fluid is carried out, the fluid enters the flow path plate, flows through the flow path of the flow path plate through the first through hole, and then passes through the first through hole. Then, it is converted into the flow path of the next flow path plate, and the second through hole of the membrane electrode group is connected in the middle, and this fluid is single between the flow paths via the first through hole and the second through hole. By the line circulation, it flows to all the flow paths and then flows out from the first through hole.
Further, in addition to the above, when the flow path and the first through hole and the second through hole are connected to each other to form a confluence passage for multi-line distribution, and the multi-line distribution of the fluid is performed, the fluid is first. It enters the flow paths of a plurality of flow path plates at the same time through the through holes, and joins and flows through the first through holes formed at the end and corners of each flow path, and also flows between the flow paths. The second through hole of the membrane electrode group is connected to the surface, and this fluid is multi-lined between the flow paths via the first through hole and the second through hole, and the first of the terminal portion and the corner portion. There is also a structure in which the fluid flows out from the first through hole after flowing to all the flow paths by merging at the through hole.

本発明に係る燃料電池の流量分布を均一する流路構造は、流路底板、内側流路板及び外側流路板を備え、前記流路底板に横断路及び第1貫通孔が設けられ、前記内側流路板及び外側流路板にそれぞれ流路が設けられ、前記横断路、第1貫通孔と流路が相互に連接されてシングルライン流通の通路が形成され、流体が、流路底板の第1貫通孔を介して同時に内側流路板及び外側流路板の流路板内に進入して流通すると、次いで流路底板の横断路を介して次の流路に連通され、この流体が横断路を経由して流路間にシングルライン流通することによって、全ての流路まで流通してから、第1貫通孔から流出する。 The flow path structure for uniform flow rate distribution of the fuel cell according to the present invention includes a flow path bottom plate, an inner flow path plate, and an outer flow path plate, and the flow path bottom plate is provided with a cross passage and a first through hole. A flow path is provided in each of the inner flow path plate and the outer flow path plate, and the cross passage, the first through hole and the flow path are connected to each other to form a single-line flow path, and the fluid flows through the flow path bottom plate. When the fluid enters the inner flow path plate and the outer flow path plate at the same time through the first through hole and flows, the fluid is then communicated to the next flow path through the crossing path of the flow path bottom plate, and this fluid flows. By circulating in a single line between the flow paths via the crossing, the flow flows to all the flow paths and then flows out from the first through hole.

本発明は、任意の電池スタック上に応用できると共に、流体の流入、終了、流量不足、水溜まりに至った時は、いずれも電池の電圧上の分布差異をもたらすことがなく、電圧を均一化させるから、低電圧に起因して破損した電池がないので、電池スタックの寿命を延長することが可能となる。 The present invention can be applied to any battery stack, and when a fluid flows in, ends, a flow rate is insufficient, or a water pool is reached, the voltage is made uniform without causing a distribution difference on the battery voltage. Therefore, since no battery is damaged due to the low voltage, the life of the battery stack can be extended.

従来技術の積層型流路板の流体の流入状態を示す図である。It is a figure which shows the inflow state of the fluid of the laminated type flow board of a prior art. 従来技術の平板型流路板の流体の流入状態を示す図である。It is a figure which shows the inflow state of the fluid of the flat plate type flow board of a prior art. 本発明の積層型流路板のシングルライン流通流体の流入状態を示す図である。It is a figure which shows the inflow state of the single line flow fluid of the laminated type flow path plate of this invention. 本発明の積層型流路板をシングルライン流通する流体の1本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 1st flow path of the fluid which circulates in a single line through the laminated flow path board of this invention. 本発明の積層型流路板をシングルライン流通する流体の2本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 2nd flow path of the fluid which circulates in a single line through the laminated flow path board of this invention. 本発明の積層型電池スタックの組立て分解斜視図である。It is an assembly disassembled perspective view of the laminated battery stack of this invention. 本発明の積層型流路板のマルチライン流通流体の流入状態を示す図である。It is a figure which shows the inflow state of the multi-line flow fluid of the laminated type flow path plate of this invention. 本発明の積層型流路板をマルチライン流通する流体の1本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 1st flow path of the fluid which circulates in a multi-line through the laminated flow-through board of this invention. 本発明の積層型流路板をマルチライン流通する流体の2本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 2nd flow path of the fluid which circulates in a multi-line through the laminated flow-through board of this invention. 本発明の別の実施例の積層型電池スタックの組立て分解斜視図である。It is an assembly disassembled perspective view of the laminated battery stack of another Example of this invention. 本発明の平板型流路板のシングルライン流通流体の流入状態を示す図である。It is a figure which shows the inflow state of the single line flow fluid of the flat plate type flow path plate of this invention. 本発明の平板型流路板をシングルライン流通する流体の1本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 1st flow path of the fluid which circulates in a single line through the flat plate type flow path plate of this invention. 本発明の平板型流路板をシングルライン流通する流体の2本目の流路への流入状態を示す図である。It is a figure which shows the inflow state to the 2nd flow path of the fluid which circulates in a single line through the flat plate type flow path plate of this invention. 本発明の平板型電池スタックの組立て分解斜視図である。It is an assembly disassembled perspective view of the flat plate type battery stack of this invention.

図3、図5及び図7に示すように、本発明に係る燃料電池の流量分布を均一する方法及び流路構造は、とりわけ積層型電池スタックAまたは平板型電池スタックBに使用される流路板1に実施可能な構造を指し、各流路板1は、流体(燃料や酸化剤)Cの均一な流量を有するため、生成された電圧を一致化し得るので、電池スタックの寿命を延長することができる。その構造は、使用ニーズに応じてシングルライン流通2とマルチライン流通3との2種の方式に分けることができる。
まず、本発明のシングルライン流通2の方式について説明し、その積層型電池スタックAからなる構造は、以下の通りである。
As shown in FIGS. 3, 5 and 7, the method and flow path structure for making the flow rate distribution of the fuel cell according to the present invention uniform are the flow paths used for the laminated battery stack A or the flat plate battery stack B in particular. Refers to a structure that can be implemented in plate 1, and each flow path plate 1 has a uniform flow rate of fluid (fuel or oxidizer) C, so that the generated voltages can be matched, thus extending the life of the battery stack. be able to. The structure can be divided into two types, single-line distribution 2 and multi-line distribution 3, according to usage needs.
First, the method of the single line distribution 2 of the present invention will be described, and the structure including the stacked battery stack A is as follows.

図3〜図4に示すように、積層型U字形かつ3組の電池からなるものが例示され、それは第1陰極流路板111と、第2陰極流路板112と、第3陰極流路板113と、第1陽極流路板121と、第2陽極流路板122と、第3陽極流路板123と、2つの第1膜電極群41と、1つの第2膜電極群42とからなるシングルライン流通2の積層型U字形電池スタックであると共に、その各陰極流路板には、シングルライン疎通可能な配列を採用し、及び各陽極流路板には、シングルライン疎通可能な配列を採用し、次いで各陰極流路板、陽極流路板、膜電極群の第1貫通孔5及び第2貫通孔51を経由して直列に連通連結することにより、シングルライン流通の陰極流路板及び陽極流路板が形成される。 As shown in FIGS. 3 to 4, a laminated U-shaped battery consisting of three sets of batteries is exemplified, which includes a first cathode flow path plate 111, a second cathode flow path plate 112, and a third cathode flow path. The plate 113, the first anode flow path plate 121, the second anode flow path plate 122, the third anode flow path plate 123, the two first film electrode groups 41, and the one second film electrode group 42. It is a laminated U-shaped battery stack of a single line distribution 2 composed of, and an arrangement capable of single line communication is adopted for each cathode flow board, and a single line communication is possible for each anode flow board. By adopting an arrangement and then connecting in series via each cathode flow board, anode flow board, first through hole 5 and second through hole 51 of the film electrode group, the cathode flow of single line distribution A road plate and an anode flow plate are formed.

そのため、ほかに図3−1及び図3−2を合わせて参照し、ここでは陰極流路板を例として説明する。
流体(燃料や酸化剤)Cが第1陰極流路板111に流入する時、流体Cは、第1貫通孔5を介して第1陰極流路板111の1本目の流路131内に進入できると共に、第1貫通孔5を経由して順次に第2及び第3陰極流路板112,113の1本目の流路132,133に流れ込むと共に、途中に各第1膜電極群41及び第2膜電極群42の第2貫通孔51が連接され、最後に第3陰極流路板113で下向きの2本目の流路133を通り抜け、流体Cは、次いで順次に第3陰極流路板113、第2陰極流路板112、第1陰極流路板111の2本目の流路133,132,131に流通し、最後に第1陰極流路板111で下向きの3本目の流路131を通り抜け、このような類推によって、流体Cが陰極流路板の流路に沿って一定の距離を流入した後、第1貫通孔5及び第2貫通孔51を介して次の陰極流路板の流路に導入され、出口から流出するまで流路板の間にシングルライン流通し、これにより各流路板中ごとの流体流量の均一配分を保証し、安定な電圧を生成することで、電池スタックの寿命を延長する目的を達成することができる。
Therefore, FIG. 3-1 and FIG. 3-2 are also referred to, and here, the cathode flow path plate will be described as an example.
When the fluid (fuel or oxidizing agent) C flows into the first cathode flow path plate 111, the fluid C enters the first flow path 131 of the first cathode flow path plate 111 through the first through hole 5. As well as being able to flow into the first flow paths 132 and 133 of the second and third cathode flow path plates 112 and 113 in sequence via the first through hole 5, the first film electrode group 41 and the first film electrode group 41 and the first are in the middle. The second through hole 51 of the two-film electrode group 42 is connected to each other, and finally passes through the second downward flow path 133 at the third cathode flow path plate 113, and the fluid C is then sequentially passed through the third cathode flow path plate 113. , The second flow path 133, 132, 131 of the second cathode flow path plate 112 and the first cathode flow path plate 111, and finally the third downward flow path 131 of the first cathode flow path plate 111. After passing through and flowing a certain distance along the flow path of the cathode flow board by such an analogy, the next cathode flow board is passed through the first through hole 5 and the second through hole 51. It is introduced into the flow path and circulates in a single line between the flow path plates from the outlet to the outflow, which guarantees a uniform distribution of the fluid flow rate in each flow path plate and generates a stable voltage for the battery stack. The purpose of extending the life can be achieved.

次に、本発明の別の実施例のマルチライン流通3の方式について説明し、その積層型電池スタックAからなる構造は、図5〜図6に示すように、積層型U字形かつ3組の電池からなるものが例示され、それは第4陰極流路板114と、第5陰極流路板115と、第6陰極流路板116と、第4陽極流路板124と、第5陽極流路板125と、第6陽極流路板126と、2つの第3膜電極群43と、1つの第4膜電極群44とからなるマルチライン流通3の積層型U字形電池スタックであると共に、その各陰極流路板には、マルチライン疎通可能な配列を採用し、及び各陽極流路板には、マルチライン疎通可能な配列を採用し、次いで各陰極流路板、陽極流路板、膜電極群の第1貫通孔5及び第2貫通孔51を経由して直列に連通連結することにより、マルチライン流通の陰極流路板及び陽極流路板が形成される。 Next, the method of the multi-line distribution 3 of another embodiment of the present invention will be described, and the structure composed of the laminated battery stack A is a laminated U-shape and three sets as shown in FIGS. 5 to 6. An example consisting of a battery is an example, which is a fourth cathode flow path plate 114, a fifth cathode flow path plate 115, a sixth cathode flow path plate 116, a fourth anode flow path plate 124, and a fifth anode flow path. A multi-line distribution 3 laminated U-shaped battery stack consisting of a plate 125, a sixth anode flow path plate 126, two third film electrode groups 43, and one fourth film electrode group 44, and the same. A multi-line communicable arrangement is adopted for each cathode flow board, and a multi-line communicable arrangement is adopted for each anode flow board, and then each cathode flow board, anode flow board, and membrane are adopted. A cathode flow board and an anode flow board for multi-line flow are formed by communicating and connecting in series via the first through hole 5 and the second through hole 51 of the electrode group.

そのため、ほかに図5−1及び図5−2を合わせて参照し、ここでは陰極流路板を例として説明する。
流体(燃料や酸化剤)Cが陰極流路板に流入する時、流体Cは、第1貫通孔5を経由して各々第4陰極流路板114、第5陰極流路板115、第6陰極流路板116の1本目の流路134,135,136内に進入できると共に、途中に各第3膜電極群43及び第4膜電極群44の第2貫通孔51が連接され、その後、第6陰極流路板116で集約された後、下向きに2本目の流路136に向けて流通し、そして流体Cが第6陰極流路板116の2本目の流路136に進入した後、次いで第1貫通孔5を利用して各々第5、第4陰極流路板115,114の2本目の流路135,134内に進入し、このような類推によって、各流路板の2本目の流路134,135,136内に合流した後、次いで第4陰極流路板114の3本目の流路134に進入してから、上述と同様な工程を経て該層の流路に合流した後、次いで次の層に向けて流動すると共に、出口から流出するまでこの循環を続け、これにより各陰極流路板または陽極流路板中ごとの流体Cの流量の均一配分を保証し、安定な電圧を生成することで、電池スタックの寿命を延長する目的を達成することができる。
Therefore, FIG. 5-1 and FIG. 5-2 will be referred to together, and the cathode flow path plate will be described here as an example.
When the fluid (fuel or oxidizing agent) C flows into the cathode flow board, the fluid C passes through the first through hole 5 and passes through the fourth cathode flow board 114, the fifth cathode flow board 115, and the sixth, respectively. It is possible to enter the first flow path 134, 135, 136 of the cathode flow path plate 116, and the second through hole 51 of each third film electrode group 43 and the fourth film electrode group 44 is connected in the middle, and then After being aggregated by the sixth cathode flow board 116, it flows downward toward the second flow path 136, and after the fluid C enters the second flow path 136 of the sixth cathode flow board 116, Next, the first through hole 5 is used to enter the second flow paths 135 and 134 of the fifth and fourth cathode flow path plates 115 and 114, respectively, and by such an analogy, the second flow path plate of each flow path plate is used. After merging into the flow paths 134, 135, 136 of the above, then entering the third flow path 134 of the fourth cathode flow path plate 114, and then merging into the flow path of the layer through the same process as described above. After that, it flows toward the next layer and continues this circulation until it flows out from the outlet, which guarantees a uniform distribution of the flow rate of the fluid C in each cathode flow path plate or the anode flow path plate and is stable. The purpose of extending the life of the battery stack can be achieved by generating an electrode.

本発明の別の実施例の平板型電池スタックBのシングルライン流通2の方式について説明し、その平板型電池スタックBからなる構造は、図7〜図8に示すように、平板型U字形かつ3組の電池からなるものが例示され、それは2つの流路底板14と、2つの内側流路板15と、6つの外側流路板16と、1つの第5膜電極群45とからなるシングルライン流通2の平板型U字形電池スタック構造であり、それは第5膜電極群45の両側から順次対向配列された外側流路板16と、内側流路板15と、流路底板14とが互いに重ねられて組み立てられている。 The method of single-line distribution 2 of the flat plate type battery stack B of another embodiment of the present invention will be described, and the structure composed of the flat plate type battery stack B is flat plate type U-shaped and as shown in FIGS. 7 to 8. An example consisting of three sets of batteries is illustrated, which is a single consisting of two flow path bottom plates 14, two inner flow path plates 15, six outer flow path plates 16, and one fifth film electrode group 45. It is a flat plate type U-shaped battery stack structure of line distribution 2, in which the outer flow path plate 16, the inner flow path plate 15, and the flow path bottom plate 14 are sequentially arranged to face each other from both sides of the fifth film electrode group 45. It is assembled by stacking.

そのほかに、図7−1及び図7−2を合わせて参照し、流体Cが、流路底板14の第1貫通孔5から内側流路板15及び外側流路板16の1本目の流路137,138に進入して流通すると、この流路137,138の終端に流通した後、即ち、流路底板14の横断路141を介して次の組の電池の内側流路板15及び外側流路板16の2本目の流路137,138を横断し、そして3個目の電池組までに至った後、流体Cは、次いで流路底板14の横断路141を介して下層に向かって2本目の流路137,138を横断し、この流体Cが上層方向とは反対方向に沿って継続的に2個目、1個目の電池組に向かって流体Cの横断動作を行い、次いで1個目の電池組の2本目の流路137,138を介して下層に向かって3本目の流路137,138を横断し、このような類推によって、最後の1本の流路137,138の第1貫通孔5から流出するまて循環し、入口に流入した後の流体Cがシングルライン単流路のみで順次に電池組の間に流通するので、その流量を均一配分して安定な電圧を生成することで、電池スタックの寿命を延長する目的を達成することができる。 In addition, with reference to FIGS. 7-1 and 7-2, the fluid C flows from the first through hole 5 of the flow path bottom plate 14 to the first flow path of the inner flow path plate 15 and the outer flow path plate 16. When it enters 137, 138 and circulates, it circulates at the end of the flow paths 137, 138, that is, through the cross passage 141 of the flow path bottom plate 14, the inner flow path plate 15 and the outer flow of the next set of batteries. After traversing the second flow paths 137, 138 of the road plate 16 and reaching the third battery set, the fluid C then goes down 2 through the cross passage 141 of the flow path bottom plate 14. Crossing the main flow paths 137 and 138, this fluid C continuously traverses the fluid C toward the second and first battery packs in the direction opposite to the upper layer direction, and then 1 It crosses the third flow path 137,138 toward the lower layer via the second flow path 137, 138 of the second battery set, and by such an analogy, the last one flow path 137, 138 Since the fluid C that circulates until it flows out from the first through hole 5 and flows into the inlet is sequentially circulated between the battery sets only in a single line single flow path, the flow rate is uniformly distributed and a stable voltage is obtained. By generating the above, the purpose of extending the life of the battery stack can be achieved.

以上に述べたことをまとめると、3つの実施例では、電池スタック中のU字形積層型の配列方式のみを示すが、ほかにZ字形配列方式もある。その配列と流体流動方式は、いずれも上述の実施例に教示された技術と同様である。このため、本発明は、任意の電池スタック上に応用できると共に、流体の流入、終了、流量不足、水溜まりに至った時は、いずれも電池の電圧上の分布差異をもたらすことがなく、電圧を均一化させるから、低電圧に起因して破損した電池がないので、電池スタックの寿命を延長することが可能となる。 Summarizing the above, in the three examples, only the U-shaped stacked arrangement method in the battery stack is shown, but there is also a Z-shaped arrangement method. The arrangement and the fluid flow method are both similar to the techniques taught in the above-mentioned examples. Therefore, the present invention can be applied to any battery stack, and when the inflow, termination, insufficient flow rate, or pool of fluid is reached, the voltage is not caused to cause a distribution difference on the battery voltage. Since it is made uniform, there is no battery damaged due to the low voltage, so that the life of the battery stack can be extended.

従来技術
70 積層型
80 平板型
90 流路板
本発明
1 流路板
111 第1陰極流路板
112 第2陰極流路板
113 第3陰極流路板
114 第4陰極流路板
115 第5陰極流路板
116 第6陰極流路板
121 第1陽極流路板
122 第2陽極流路板
123 第3陽極流路板
124 第4陽極流路板
125 第5陽極流路板
126 第6陽極流路板
131,132,133,134,135,136,137,138 流路
14 流路底板
141 横断路
15 内側流路板
16 外側流路板
2 シングルライン流通
3 マルチライン流通
41 第1膜電極群
42 第2膜電極群
43 第3膜電極群
44 第4膜電極群
45 第5膜電極群
5 第1貫通孔
51 第2貫通孔
A 積層型電池スタック
B 平板型電池スタック
C 流体
Conventional technology 70 Laminated type 80 Flat plate type 90 Flow path plate The present invention 1 Flow path plate 111 1st cathode flow path plate 112 2nd cathode flow path plate 113 3rd cathode flow path plate 114 4th cathode flow board plate 115 5th cathode Flow board 116 6th cathode flow board 121 1st anode flow board 122 2nd anode flow board 123 3rd anode flow board 124 4th anode flow board 125 5th anode flow board 126 6th anode flow Road plate 131, 132, 133, 134, 135, 136, 137, 138 Flow path 14 Flow path bottom plate 141 Crossing path 15 Inner flow path plate 16 Outer flow path plate 2 Single line flow 3 Multi-line flow 41 First film electrode group 42 2nd film electrode group 43 3rd film electrode group 44 4th film electrode group 45 5th film electrode group 5 1st through hole 51 2nd through hole A Laminated battery stack B Flat plate type battery stack C Fluid

Claims (5)

流体が電池スタックに流入した後、シングルライン流通の方式を採用することにより、前記流体を各流路板の間に順次に経路逐次流通させ、全ての当該流路板の流路まで流通させた後に前記電池スタックの出口から離去させることにより、流体流量を各当該流路板上ごとの当該流路に均一配分することで、各当該流路板ごとにより生成された電圧が一致化されることを特徴とする、燃料電池の流量分布を均一する方法。 After the fluid has flowed into the battery stack, by adopting a single-line flow method, the fluid is sequentially circulated between the flow path plates in sequence, and after being circulated to all the flow paths of the flow path plates, the said By separating from the outlet of the battery stack, the fluid flow rate is uniformly distributed to the flow path on each of the flow path plates, so that the voltage generated by each of the flow path plates is matched. A characteristic method of making the flow rate distribution of a fuel cell uniform. 流体が電池スタックに流入した後、マルチライン流通の方式を採用することにより、前記流体を各々各流路板の1層目の流路に流入させると共に、当該流路の前、後端をいずれも貫通させることで、前記流体を合流させ得り、次いで下向きに層々逐次流通させ、このように類推して最後の1本の当該流路まで集約させた後に前記電池スタックの出口から離去させることにより、各当該流路への均一配分の目的を達成することで、各当該流路板ごとにより生成された電圧が一致化されることを特徴とする、燃料電池の流量分布を均一する方法。 After the fluid has flowed into the battery stack, by adopting the multi-line flow method, the fluid is allowed to flow into the first-layer flow path of each flow path plate, and the front or rear end of the flow path is either set. The fluids can be merged, and then the fluids are sequentially circulated downward in layers, and by analogy with this, they are aggregated to the last one of the flow paths and then separated from the outlet of the battery stack. A method for making the flow rate distribution of the fuel cell uniform, which is characterized in that the voltage generated by each of the flow path plates is matched by achieving the purpose of uniform distribution to each of the flow paths. .. 互いに積み重ねられた複数の流路板及び複数の膜電極群を備える燃料電池の流量分布を均一する流路構造であって、
当該流路板の間に当該膜電極群が設けられ、当該流路板に流路及び第1貫通孔が設けられ、当該膜電極群に第2貫通孔が設けられ、当該流路と当該第1貫通孔及び当該第2貫通孔とが相互に連接されてシングルライン流通の通路が形成され、流体のシングルライン流通を実施する時、前記流体は、当該流路板内に進入し、当該第1貫通孔を介して当該流路板の当該流路に流通し、次いで当該第1貫通孔を介して次の当該流路板の当該流路へ変換されると共に、途中に当該膜電極群の当該第2貫通孔が連接され、前記流体が当該第1貫通孔及び当該第2貫通孔を経由して当該流路間にシングルライン流通することによって、全ての当該流路まで流通してから、当該第1貫通孔から流出することを特徴とする、燃料電池の流量分布を均一する流路構造。
A flow path structure having a uniform flow rate distribution of a fuel cell having a plurality of flow path plates and a plurality of membrane electrode groups stacked on each other.
The membrane electrode group is provided between the flow path plates, the flow path plate and the first through hole are provided, the membrane electrode group is provided with the second through hole, and the flow path and the first through hole are provided. When the hole and the second through hole are connected to each other to form a single-line flow path and the single-line flow of the fluid is performed, the fluid enters the flow path plate and enters the first through. It flows through the hole to the flow path of the flow path plate, is then converted to the flow path of the next flow path plate through the first through hole, and is converted to the flow path of the next flow path plate, and in the middle, the first of the membrane electrode group. The two through holes are connected to each other, and the fluid flows through the first through hole and the second through hole in a single line between the flow paths, thereby flowing to all the flow paths, and then the first through hole. 1 A flow path structure that makes the flow distribution of the fuel cell uniform, characterized in that it flows out from the through hole.
互いに積み重ねられた複数の流路板及び複数の膜電極群を備える燃料電池の流量分布を均一する流路構造であって、
当該流路板の間に当該膜電極群が設けられ、当該流路板には流路及び第1貫通孔が設けられ、当該膜電極群に第2貫通孔が設けられ、当該流路と当該第1貫通孔及び当該第2貫通孔とが相互に連接されてマルチライン流通の合流通路が形成され、流体のマルチライン流通を実施する時、前記流体は、当該第1貫通孔を介して同時に前記複数の流路板の当該流路内に進入すると共に、各当該流路の終端部及びコーナー部に貫設された当該第1貫通孔で合流流通を行い、また当該流路間の流通には当該膜電極群の当該第2貫通孔が連接され、前記流体が当該第1貫通孔及び当該第2貫通孔を経由して当該流路間にマルチライン流通することによると共に、終端部及びコーナー部の当該第1貫通孔での合流により、全ての当該流路まで流通してから、当該第1貫通孔から流出することを特徴とする、燃料電池の流量分布を均一する流路構造。
A flow path structure having a uniform flow rate distribution of a fuel cell having a plurality of flow path plates and a plurality of membrane electrode groups stacked on each other.
The membrane electrode group is provided between the flow path plates, the flow path plate is provided with a flow path and a first through hole, the membrane electrode group is provided with a second through hole, and the flow path and the first through hole are provided. When the through hole and the second through hole are connected to each other to form a confluence passage for multi-line flow and the multi-line flow of the fluid is carried out, the fluid is simultaneously introduced through the first through hole. In addition to entering the flow path of the flow path plate, merging and flowing through the first through hole formed at the end and corner of each flow path, and the flow between the flow paths is the same. The second through hole of the membrane electrode group is connected, and the fluid flows through the first through hole and the second through hole between the flow paths in a multi-line manner, and at the end portion and the corner portion. A flow path structure having a uniform flow rate distribution of a fuel cell, characterized in that the flow flows to all the flow paths by merging at the first through hole and then flows out from the first through hole.
流路底板、内側流路板及び外側流路板を備える燃料電池の流量分布を均一する流路構造であって、
前記流路底板に横断路及び第1貫通孔が設けられ、前記内側流路板及び前記外側流路板にそれぞれ流路が設けられ、前記横断路、前記第1貫通孔と当該流路が相互に連接されてシングルライン流通の通路が形成され、流体が、前記流路底板の前記第1貫通孔を介して同時に前記内側流路板及び前記外側流路板の流路板内に進入して流通すると、次いで前記流路底板の前記横断路を介して次の当該流路に連通され、前記流体が前記横断路を経由して当該流路間にシングルライン流通することによって、全ての当該流路まで流通してから、前記第1貫通孔から流出することを特徴とする、燃料電池の流量分布を均一する流路構造。
A flow path structure having a uniform flow rate distribution of a fuel cell having a flow path bottom plate, an inner flow path plate, and an outer flow path plate.
A cross passage and a first through hole are provided in the flow path bottom plate, a flow path is provided in each of the inner flow path plate and the outer flow path plate, and the cross passage, the first through hole and the flow path are mutually provided. A single-line flow path is formed, and the fluid simultaneously enters the inner flow path plate and the flow path plate of the outer flow path plate through the first through hole of the flow path bottom plate. Once circulated, it is then communicated to the next flow path via the crossover of the flow path bottom plate, and the fluid circulates in a single line between the flow paths via the crossover, thereby causing all the flow. A flow path structure having a uniform flow rate distribution of a fuel cell, characterized in that the fluid flows to the road and then flows out from the first through hole.
JP2020022149A 2019-02-22 2020-02-13 Method and flow channel structure for uniforming flow rate distribution of fuel cell Pending JP2020136272A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108106022 2019-02-22
TW108106022A TWI686989B (en) 2019-02-22 2019-02-22 Method and flow channel structure for making fuel cell flow distribution uniform

Publications (1)

Publication Number Publication Date
JP2020136272A true JP2020136272A (en) 2020-08-31

Family

ID=70767349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022149A Pending JP2020136272A (en) 2019-02-22 2020-02-13 Method and flow channel structure for uniforming flow rate distribution of fuel cell

Country Status (2)

Country Link
JP (1) JP2020136272A (en)
TW (1) TWI686989B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580111B (en) * 2022-03-11 2022-10-25 武汉雄韬氢雄燃料电池科技有限公司 Air intake manifold design method based on double-stack flow distribution consistency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660901A (en) * 1992-08-04 1994-03-04 Hitachi Ltd Gas feeding structure for fuel cell
JP2008535189A (en) * 2005-04-05 2008-08-28 ビーワイディー カンパニー リミテッド Flow field plate and fuel cell stack including the flow field plate
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly
CN208000969U (en) * 2017-12-14 2018-10-23 苏州朔景动力新能源有限公司 Bipolar plate runner and bipolar plates and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM275545U (en) * 2005-05-13 2005-09-11 Antig Tech Co Ltd Flowing-channel plate with capillary flowing-channel structure for fuel battery
TWM278073U (en) * 2005-06-21 2005-10-11 Antig Tech Co Ltd Channel plate structure of fuel battery
TW201004015A (en) * 2008-07-03 2010-01-16 Chung Hsin Elec & Mach Mfg Fuel cell structure with external flow channels
TWI441380B (en) * 2011-08-05 2014-06-11 Gen Optics Corp The dark groove structure of electrochemical cell flow channel and its preparation method
CN103311560B (en) * 2012-03-16 2015-12-16 中国科学院宁波材料技术与工程研究所 Solid oxide fuel cell power generating system and battery pile thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660901A (en) * 1992-08-04 1994-03-04 Hitachi Ltd Gas feeding structure for fuel cell
JP2008535189A (en) * 2005-04-05 2008-08-28 ビーワイディー カンパニー リミテッド Flow field plate and fuel cell stack including the flow field plate
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly
CN208000969U (en) * 2017-12-14 2018-10-23 苏州朔景动力新能源有限公司 Bipolar plate runner and bipolar plates and fuel cell

Also Published As

Publication number Publication date
TWI686989B (en) 2020-03-01
TW202032841A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP6449778B2 (en) Fluid flow plate for fuel cell
JP2015210849A (en) Bipolar plate, redox flow cell, and method of manufacturing bipolar plate
KR101755937B1 (en) Separator for fuel cell
JP2018186087A (en) Fluid flow plate for fuel cell
WO2007018156A1 (en) Separator for fuel cell and fuel cell
JP6272838B2 (en) Bipolar plate for fuel cell
JP2020136272A (en) Method and flow channel structure for uniforming flow rate distribution of fuel cell
CN106033818A (en) Guide plate and fuel cell stack containing the same
CN102623721B (en) Collector plate, bipolar collector plate comprising same, monocell and flow redox cell
CN210576221U (en) Fuel cell unit, fuel cell stack structure and new energy automobile
CN107580734B (en) Flow field of fuel cell
JP2019121530A (en) Power generation cell
JP2009021050A (en) Fuel cell
CN204720508U (en) Baffler and the fuel cell pack containing this baffler
JP2008226811A (en) Fuel cell
JP2016506605A (en) Fluid flow plate for fuel cell
CN109428093B (en) Liquid flow frame and electric pile comprising same
KR20090015711A (en) Mambraneless micro fuel cell
JP5207440B2 (en) Fuel cell
JP2020136218A (en) Fuel battery cell and fuel battery cell stack
CN210272548U (en) Plate structure, double-plate device and fuel cell with double-plate device
JP2013149490A (en) Separator for fuel cell, and fuel cell
JP5358473B2 (en) Fuel cell structure and separator plate for use in this structure
US10361448B2 (en) Fuel cell stack
JP2002237323A (en) Cell frame and redox flow battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230215