JP2020134548A - Manufacturing method of silencer with acoustic phase shifter - Google Patents

Manufacturing method of silencer with acoustic phase shifter Download PDF

Info

Publication number
JP2020134548A
JP2020134548A JP2019023193A JP2019023193A JP2020134548A JP 2020134548 A JP2020134548 A JP 2020134548A JP 2019023193 A JP2019023193 A JP 2019023193A JP 2019023193 A JP2019023193 A JP 2019023193A JP 2020134548 A JP2020134548 A JP 2020134548A
Authority
JP
Japan
Prior art keywords
phase shifter
main pipe
sound
pipe
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019023193A
Other languages
Japanese (ja)
Other versions
JP7144853B2 (en
Inventor
坂本 秀一
Shuichi Sakamoto
秀一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2019023193A priority Critical patent/JP7144853B2/en
Publication of JP2020134548A publication Critical patent/JP2020134548A/en
Application granted granted Critical
Publication of JP7144853B2 publication Critical patent/JP7144853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide an inexpensive silencer with a phase shifter, which does not require a power source, has less failures and whose maintenance is easy.SOLUTION: A manufacturing method of a silencer having a main pipe and a branch pipe comprises: a process S1 for using, as the branch pipe, an acoustic phase shifter having a hollow cylinder partitioned by a plurality of plates separated from one another by a gap thickness b; a process S2 for deriving a relation expression of sound speed V in a gap between the plates; a process S3 for deriving a relation expression of sound speed V' becoming an opposite phase to the sound speed of the main pipe; and a process S4 for determining a size of the main pipe and a size of the phase shifter so that the sound speed V is matched with the sound speed V'. In the process S4, it is desirable that the gap thickness b and pipe lengths Land Lof the main pipe and the phase shifter are determined, for example.SELECTED DRAWING: Figure 1

Description

本発明は、電源不要な純音響式のフェイズシフタを備えた消音装置の製造方法に関するものである。 The present invention relates to a method for manufacturing a sound deadening device provided with a pure acoustic phase shifter that does not require a power source.

(従来の干渉型消音器)
干渉型消音器(いわゆる、パッシブ型消音器)は、主管と枝管とからなる消音器である。これらの消音器の原理は、主管に入射した音波を枝管に分岐させ、主管へ再び合流させる際に、その枝管に分岐した音波を主管の音波に対して逆位相の音波とすることで、重ね合わせの原理を利用し音波を打ち消すことで消音するものである。
(Conventional interference type silencer)
An interference type silencer (so-called passive type silencer) is a silencer composed of a main pipe and a branch pipe. The principle of these silencers is that when a sound wave incident on a main pipe is branched into a branch pipe and rejoined to the main pipe, the sound wave branched into the branch pipe is made a sound wave having a phase opposite to that of the main pipe. , The sound is muted by canceling the sound waves using the principle of superposition.

(従来の干渉型消音器の問題点)
しかしながら、上述した干渉型消音器では、特定の周波数においてのみ、有意義な消音性能を得ることができるが,それ以外の周波数ではあまり効果的とはいえない場合が多い。
(Problems with conventional interference type silencers)
However, with the above-mentioned interference type silencer, meaningful sound deadening performance can be obtained only at a specific frequency, but it is often not so effective at other frequencies.

(従来のアクティブノイズコントロール)
一方、より広い周波数域での消音を目指したものがアクティブノイズコントロールである。この手法は、通常、電子制御回路を用いてマイクで測定した音波を逆位相にしてスピーカから出力し合流させることで、より広帯域での消音を可能にするものである。
(Conventional active noise control)
On the other hand, active noise control aims to mute the sound in a wider frequency range. In this method, sound waves measured by a microphone using an electronic control circuit are usually out-phased and output from a speaker to be merged, thereby enabling sound deadening in a wider band.

(従来のアクティブノイズコントロールの問題点1)
しかしながら、アクティブノイズコントロールは、(1)コストが掛かり、(2)電源も必須で、(3)装置の故障も多くて、その保守も大変なことから、今後も、消音器の主流になるとは考えにくい。
(Problem 1 of conventional active noise control)
However, active noise control will continue to be the mainstream of mufflers in the future because (1) it is costly, (2) a power supply is essential, and (3) there are many equipment failures and maintenance is difficult. Very Hard to think.

(従来のアクティブノイズコントロールの問題点2)
また、アクティブノイズコントロールのもう一つの問題点は、制御時に膨大な計算量が必要となることである。ターゲットとなる周波数域を定め、その帯域を細かく分割し、各々の周波数に対して、振幅と位相とを検出する必要がある。アダプティブ音源用の信号は、アダプティブ音源の位置を想定して、各々の周波数成分について(1)逆位相で、(2)振幅が等しい信号を生成し、それらを合成して得られる。さらに誤差を修正するための制御も必要である。
(Problem 2 of conventional active noise control)
Another problem with active noise control is that it requires a huge amount of calculation during control. It is necessary to determine the target frequency range, divide the band into small pieces, and detect the amplitude and phase for each frequency. The signal for the adaptive sound source is obtained by assuming the position of the adaptive sound source, generating signals (1) having opposite phases and (2) having the same amplitude for each frequency component, and synthesizing them. Further control is needed to correct the error.

特開平02−041953号公報Japanese Unexamined Patent Publication No. 02-041953 特開昭62−110400号公報Japanese Unexamined Patent Publication No. 62-110400

Stinson, M. R. and Champou, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, Journal of the Acoustical Society of America. Vol 91, No. 2 (1992), pp. 685-695.Stinson, MR and Champou, Y., Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries, Journal of the Acoustical Society of America. Vol 91, No. 2 (1992), pp. 685-695 ..

(本発明の目的)
本発明は、このような事情に鑑みてなされたものであり、低コストで、電源も不要で、故障も少なく、その保守も容易なフェイズシフタを備えた消音装置を提供することである。
(Purpose of the present invention)
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sound deadening device provided with a phase shifter, which is low in cost, does not require a power supply, has few failures, and is easy to maintain.

(音響式フェイズシフタ)
ここで、本発明におけるフェイズシフタは、従来のアナログ或いはデジタル式のフェイズシフタ(例えば、特許文献1,2)とは異なり、純音響式のフェイズシフタである。
(Acoustic phase shifter)
Here, the phase shifter in the present invention is a pure acoustic phase shifter, unlike the conventional analog or digital phase shifter (for example, Patent Documents 1 and 2).

本発明者は、アクティブノイズコントロールで必須の処理のうち、上記(1)の逆位相の信号の生成プロセスを、電源が不要でかつ計算や制御回路も用いることの無い純音響式フェイズシフタ(つまり、可動部がない音響構造)により自動的に行うことを見出し、本発明を完成するに至った。 Among the processes essential for active noise control, the present inventor performs the above-mentioned (1) anti-phase signal generation process with a pure acoustic phase shifter (that is, a pure acoustic phase shifter that does not require a power supply and does not use a calculation or a control circuit. , An acoustic structure without moving parts), and have completed the present invention.

すなわち本発明は、例えば、以下の構成・特徴を備えるものである。
(態様1)
主管と枝管とを有した消音装置の製造方法であって、
前記主管に空の管を利用し、前記枝管に、隙間厚さbで離間した複数の板材で仕切られた中空筒体を有した音響式フェイズシフタを利用する工程S1と、
前記板材間の隙間における音速Vの関係式を導出する工程S2と、
前記主管の音速に対して逆位相となる音速V’の関係式を導出する工程S3と、
前記音速Vと前記音速V’とが一致するように前記主管の寸法と前記フェイズシフタの寸法を決定する工程S4と、
を含み、かつ、
前記工程S2では、以下の数式1で表される伝搬定数γを用い、
ここで、xは、前記フェイズシフタの長手方向の位置、yおよびzは隙間断面内の座標、cは空気中の音速、κは空気の比熱比、σはプラントル数、ρは空気の密度、μは空気の粘度、ωは角周波数であり、
前記伝搬定数γを以下の数式2により実部αと虚部βとに分けたうえで、
以下の数式3により前記音速Vの関係式が前記隙間厚さbの変数のみで表されるようにし、
前記工程S3では、以下の数式4を用いて、音速V’の関係式が、前記主管と前記フェイズシフタの管長L,Lの変数のみで表されるようにし、
前記工程S4で決定される前記主管の寸法と前記フェイズシフタの寸法とは、前記隙間厚さb、前記管長L,Lであること、
を特徴とする消音装置の製造方法。
(態様2)
前記工程S4では、前記主管の各周波数における位相変化量θと、前記フェイズシフタ位相変化量θと、の差(θ−θ)を求め、
前記差(θ−θ)が180°から±15°以内であることを、前記音速Vと前記音速V’とが一致するかどうかの判断基準とすること
を特徴とする態様1に記載の消音装置の製造方法。
(態様3)
前記消音装置に、マイクと、フィルタと、増幅器と、スピーカと、を用意する工程を、
さらに含み、
前記マイクは、前記フェイズシフタ通過後の音波を測定し、
前記増幅器は、前記フェイズシフタ内で減衰した分だけ前記音波を増幅し、
前記スピーカは、前記増幅器で増幅した前記音波を、前記フェイズシフタと前記主管との合流部に向けて出力することで、前記主管中を伝搬する音波を消音すること
を特徴とする態様1又は2に記載の消音装置の製造方法。
That is, the present invention has, for example, the following configurations and features.
(Aspect 1)
A method for manufacturing a silencer having a main pipe and a branch pipe.
A step S1 in which an empty pipe is used for the main pipe and an acoustic phase shifter having a hollow cylinder partitioned by a plurality of plate materials separated by a gap thickness b is used for the branch pipe.
Step S2 for deriving the relational expression of the sound velocity V in the gap between the plate materials, and
Step S3 for deriving the relational expression of the sound velocity V'that has the opposite phase to the sound velocity of the main pipe,
Step S4 in which the dimensions of the main pipe and the dimensions of the phase shifter are determined so that the sound velocity V and the sound velocity V'match.
Including and
In the step S2, the propagation constant γ represented by the following mathematical formula 1 is used.
Here, x is the position in the longitudinal direction of the phase shifter, y and z are the coordinates in the gap cross section, c is the speed of sound in air, κ is the specific heat ratio of air, σ is the Prandtl number, and ρ is the density of air. μ is the viscosity of air, ω is the angular frequency,
After dividing the propagation constant γ into a real part α and an imaginary part β by the following mathematical formula 2,
According to the following mathematical formula 3, the relational expression of the sound velocity V is expressed only by the variable of the gap thickness b.
In the step S3, using Equation 4 below, as relation of acoustic velocity V 'is the pipe length L A of the phase shifter and the main pipe, it represented only by variables L F,
The dimensions of the main dimensions and the phase shifter to be determined at the step S4, the gap thickness b, the pipe length L A, it is L F,
A method of manufacturing a silencer, which comprises.
(Aspect 2)
In the step S4, the difference (θ A − θ F ) between the phase change amount θ A and the phase shifter phase change amount θ F at each frequency of the main pipe is obtained.
The first aspect described in the first aspect, wherein the difference (θ A − θ F ) is within ± 15 ° from 180 ° as a criterion for determining whether or not the sound velocity V and the sound velocity V'match. How to manufacture a silencer.
(Aspect 3)
A step of preparing a microphone, a filter, an amplifier, and a speaker in the silencer.
Including more
The microphone measures the sound wave after passing through the phase shifter.
The amplifier amplifies the sound wave by the amount attenuated in the phase shifter.
Aspect 1 or 2 characterized in that the speaker outputs the sound wave amplified by the amplifier toward the confluence portion of the phase shifter and the main pipe to mute the sound wave propagating in the main pipe. The method for manufacturing a silencer according to.

本発明の音響式フェイズシフタは、電源や可動部も全く不要な音響構造のみを使って、広い周波数域で主管の音波と逆位相の信号を自動的かつ受動的に生成することができる。したがって、アクティブノイズコントロールで必須であった「逆位相を生成するデジタル信号処理」が全く不要になる。また、本発明の音響式フェイズシフタでは位相の制御が不要になるため、アダプティブ信号は、ゲインの周波数特性を線形フィルタにより調整するのみで生成できる。 The acoustic phase shifter of the present invention can automatically and passively generate a signal having a phase opposite to that of the main sound wave in a wide frequency range by using only an acoustic structure that does not require a power supply or a moving part at all. Therefore, the "digital signal processing that generates the opposite phase", which is indispensable for active noise control, becomes completely unnecessary. Further, since the acoustic phase shifter of the present invention does not require phase control, the adaptive signal can be generated only by adjusting the frequency characteristic of the gain with a linear filter.

本発明によれば、非常にシンプルな構造を有し、低コストで、電源が不要で、故障が無く保守が不要な消音装置が提供されることになる。つまり、本発明の消音装置は、通常のアクティブノイズコントロールでは達成されにくかった騒音制御の簡素化、消費電力低減、及び信頼性向上に貢献するものである。 According to the present invention, there is provided a muffling device having a very simple structure, low cost, no power supply, no failure, and no maintenance. That is, the muffling device of the present invention contributes to simplification of noise control, reduction of power consumption, and improvement of reliability, which are difficult to achieve with ordinary active noise control.

本発明の音響式フェイズシフタを設計するためのフローチャートを示す。The flowchart for designing the acoustic phase shifter of this invention is shown. 本発明の消音装置の概略図、板材間(二平面間)の隙間を直交座標系で示した図、及び管内に入射する音波を正弦波で示した図である。It is a schematic view of the muffling device of this invention, the figure which showed the gap between plate materials (between two planes) in a Cartesian coordinate system, and the figure which showed the sound wave incident in a pipe by a sine wave. 音速Vと音速V’とを比較した具体例を示した図である。It is a figure which showed the specific example which compared the sound velocity V and the sound velocity V'. 隙間厚さを一定(b=0.1mm)にして各管長L,Lを変化させた際の、フェイズシフタの音波と主管の音波の位相差(理論値)を比較した図である。Constant gap thickness (b = 0.1 mm) on to the pipe length L A, upon changing the L F, is a diagram comparing a phase difference between the sound waves and main phases shifter (theoretical value). 実際に試作したフェイズシフタの画像及びフェイズシフタの概略図を示す。An image of an actually prototyped phase shifter and a schematic diagram of the phase shifter are shown. 音響性能(位相変化量)測定装置の概略図及び写真を示す。A schematic diagram and a photograph of an acoustic performance (phase change amount) measuring device are shown. フェイズシフタにおける位相変化量θの理論値と実験値とを比較した図、及び、主管における位相変化量θの理論値と実験値とを比較した図を示す。A diagram comparing the theoretical value of the phase change amount θ F in the phase shifter with the experimental value, and a diagram comparing the theoretical value of the phase change amount θ A in the main pipe with the experimental value are shown. フェイズシフタと主管の位相差を算出した結果を示した図、及び、消音装置の各地点(入射部、合流部)における正弦波を示した図である。It is a figure which showed the result of having calculated the phase difference of a phase shifter and a main pipe, and the figure which showed the sine wave at each point (incident part, confluence part) of a silencer. フェイズシフタと主管の位相差を算出した結果(再掲)と、音波の重ね合わせによる透過損失(主管の合流部での音波の透過損失)の推定値と、を示した図である。It is the figure which showed the result of calculating the phase difference of a phase shifter and a main pipe (repost), and the estimated value of the transmission loss (the transmission loss of a sound wave at the confluence part of a main pipe) by superposition of sound waves.

以下、添付の図面を参照しながら下記の具体的な実施形態に基づき本発明を説明するが、本発明はこれらの実施形態に何等限定されるものではない。 Hereinafter, the present invention will be described based on the following specific embodiments with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

(音響式フェイズシフタの設計方法の概要)
図1に本発明の音響式フェイズシフタを設計するためのフローチャートを示す。本発明も、従来のサイドブランチ型消音器同様に、主管と枝管とを備えた干渉型消音構造の採用を前提とするが、本発明では、この枝管に後述する音響式フェイズシフタを利用すること(工程S1)に留意されたい。
(Outline of design method of acoustic phase shifter)
FIG. 1 shows a flowchart for designing the acoustic phase shifter of the present invention. The present invention also presupposes the adoption of an interference type silencer structure including a main pipe and a branch pipe as in the conventional side branch type silencer, but in the present invention, an acoustic phase shifter described later is used for this branch pipe. Note what to do (step S1).

(音響式フェイズシフタの構造)
本実施例では、図1に示すように、空の管を主管2に利用し、音響式フェイズシフタ1(以下、単に「フェイズシフタ」とも呼ぶ。)を枝管に利用する(工程S1)。これは、図5(b)に示すように、矩形断面を有した中空筒体内に隙間を持たせて板材(薄板)を重ねたアナログ制御装置である。この音響式フェイズシフタ1では、中空管からなる枝管の場合と異なり、板材間の隙間に入射した音波の音速が境界層の働きにより周波数に依存して変化し、これを利用して位相も変化させることができる可能性があることを本発明者は見出したのである。
(Structure of acoustic phase shifter)
In this embodiment, as shown in FIG. 1, an empty pipe is used for the main pipe 2, and an acoustic phase shifter 1 (hereinafter, also simply referred to as “phase shifter”) is used for the branch pipe (step S1). As shown in FIG. 5B, this is an analog control device in which plate materials (thin plates) are stacked with a gap inside a hollow cylinder having a rectangular cross section. In this acoustic phase shifter 1, unlike the case of a branch pipe made of a hollow pipe, the sound velocity of a sound wave incident on a gap between plate materials changes depending on the frequency due to the action of the boundary layer, and the phase is utilized by utilizing this. The inventor has found that it may also be possible to change.

(音響式フェイズシフタと通常の枝管との違い)
もし、枝管に通常の中空管(図示せず)が使用された場合、これに入射した音波の音速は一定であり、これを主管2に再合流させても、ある特定の周波数域でしか有意義な消音性能を得ることができない。
(Difference between acoustic phase shifter and normal branch pipe)
If a normal hollow tube (not shown) is used for the branch tube, the sound velocity of the sound wave incident on it is constant, and even if it is rejoined to the main tube 2, it will be in a specific frequency range. Only meaningful muffling performance can be obtained.

(音響式フェイズシフタを備えた消音装置)
図2(a)に、フェイズシフタ1を含んだ消音装置10の概略を示す。この消音装置10では、騒音源3から発生した音波が、主管2である中空管と、枝管であるフェイズシフタ1とを通過する。音波がフェイズシフタ1を通過すると、主管2を通過した音波と逆位相の音波が得られる。なお、フェイズシフタ1内の音波は減衰するため、通過後の音波をマイク5で測定し、フィルタ6(イコライザ)を通過した後、減衰した分だけ該音波を増幅器7で増幅する。その後、この増幅した音波をスピーカ8から主管2中の合流部4へ出力することで、主管2中を伝搬する音波に向けて、逆位相かつ同一振幅の音波が合流することとなり、音波の重ね合わせの原理により音波を打ち消し、消音する。
(Silencer with acoustic phase shifter)
FIG. 2A shows an outline of the muffling device 10 including the phase shifter 1. In the sound deadening device 10, sound waves generated from the noise source 3 pass through the hollow pipe which is the main pipe 2 and the phase shifter 1 which is a branch pipe. When the sound wave passes through the phase shifter 1, a sound wave having a phase opposite to that of the sound wave passing through the main pipe 2 is obtained. Since the sound wave in the phase shifter 1 is attenuated, the sound wave after passing is measured by the microphone 5, and after passing through the filter 6 (equalizer), the sound wave is amplified by the amplifier 7 by the amount of attenuation. After that, by outputting this amplified sound wave from the speaker 8 to the confluence portion 4 in the main pipe 2, sound waves having the opposite phase and the same amplitude merge toward the sound wave propagating in the main pipe 2, and the sound waves are superposed. Sound waves are canceled and muted by the principle of matching.

フェイズシフタ1を通過した音波はゲインの周波数特性を持つため、その周波数特性を打ち消して平坦な周波数特性に戻す必要がある。このため、フィルタ6にて上記周波数特性と逆の周波数特性を音波に与える処理を行う。なお、フィルタ6として、例えば、技術的に容易な線形フィルタを使用することができる。 Since the sound wave that has passed through the phase shifter 1 has a gain frequency characteristic, it is necessary to cancel the frequency characteristic and return it to a flat frequency characteristic. Therefore, the filter 6 performs a process of giving the sound wave a frequency characteristic opposite to the above frequency characteristic. As the filter 6, for example, a technically easy linear filter can be used.

(決定すべき消音装置のパラメータ)
ただし、主管2とフェイズシフタ1とは、上記消音メカニズムが上手く発揮される幾何学的関係が成立している必要があり、各要素の寸法を決定する必要がある。本実施例では、板材間(二平面間)の隙間における音速Vと、主管2の音速に対して逆位相となる音速V’と、をそれぞれ算出し(工程S2,S3)、これらのVとV’とを比較することで、消音効果のキーファクターとなる、フェイズシフタ1の管長L及び隙間bと、主管2の管長Lとを決定する。
(Parameter of silencer to be determined)
However, it is necessary that the main pipe 2 and the phase shifter 1 have a geometric relationship in which the above-mentioned sound deadening mechanism is exhibited well, and it is necessary to determine the dimensions of each element. In this embodiment, the sound velocity V in the gap between the plate materials (between two planes) and the sound velocity V'that is in the opposite phase to the sound velocity of the main pipe 2 are calculated (steps S2 and S3), respectively, and these Vs are used. by comparing the V ', a key factor for silencing effect, determines the pipe length L F and the gap b of the phase shifter 1, a main tube 2 and a tube length L a.

(板材間(二平面間)の隙間における音速Vの導出)
管内における空気の粘性を考慮した伝搬定数や特性インピーダンスの導出については、様々な報告がある。本実施例は、Stinsonの方法(非特許文献1参照)を応用し、板材間(二平面間)の隙間における音速Vの算出を試みた。具体的には、直交座標系を図2(b)のようにとり、Navier−Stokes方程式、連続の式、気体の状態方程式、エネルギー方程式、熱伝達を表す散逸関数を用いた三次元解析により、各周波数における伝搬定数γ及び板材間の隙間における音速Vを導出することとした(工程S2)。
(Drivation of sound velocity V in the gap between plate materials (between two planes))
There are various reports on the derivation of propagation constants and characteristic impedances in consideration of the viscosity of air in the pipe. In this example, the method of Stinson (see Non-Patent Document 1) was applied to attempt to calculate the sound velocity V in the gap between the plate materials (between two planes). Specifically, the Cartesian coordinate system is taken as shown in FIG. 2 (b), and each is performed by three-dimensional analysis using the Navier-Stokes equation, the continuity equation, the gas state equation, the energy equation, and the dissipation function representing heat transfer. It was decided to derive the propagation constant γ at the frequency and the sound velocity V in the gap between the plate materials (step S2).

(伝搬定数γ)
減衰を考慮した二平面内における伝搬定数γは、以下の数式(1)のように示される。ここで、xは直交座標系の長手方向の位置、yおよびzは隙間断面内の座標、cは空気中の音速(343.7m/s)、κは空気の比熱比、σはプラントル数、ρは空気の密度、μは空気の粘度、ωは角周波数、bは隙間の厚さである。
(Propagation constant γ)
The propagation constant γ in the two planes considering the attenuation is expressed by the following mathematical formula (1). Here, x is the position in the longitudinal direction of the Cartesian coordinate system, y and z are the coordinates in the gap cross section, c is the speed of sound in air (343.7 m / s), κ is the specific heat ratio of air, and σ is the Prandtl number. ρ is the density of air, μ is the viscosity of air, ω is the angular frequency, and b is the thickness of the gap.

また、伝搬定数γの実部を減衰定数α、虚部を位相定数βとすれば、数式(1)は、次の形(数式(2))に置き換えることができる。 Further, if the real part of the propagation constant γ is the attenuation constant α and the imaginary part is the phase constant β, the equation (1) can be replaced with the following form (formula (2)).

各周波数における二平面間の隙間の厚さbにおける音速Vは、伝搬定数の虚部(位相定数)βを用いて、次の数式(3)のように求めることができる。 The sound velocity V at the thickness b of the gap between the two planes at each frequency can be obtained by using the imaginary part (phase constant) β of the propagation constant as in the following equation (3).

上述の数式(1)及び(2)より、数式(3)において変数となるのは、隙間の厚さbのみなので,各周波数fにおける二平面間の隙間における音速Vは、隙間の厚さbを決定することで求めることが可能である(すなわち、V=V(b))。 From the above equations (1) and (2), since only the gap thickness b is a variable in the equation (3), the sound velocity V in the gap between the two planes at each frequency f is the gap thickness b. Can be obtained by determining (ie, V = V (b)).

(主管の音速に対して逆位相となる音速V’の導出)
管内に入射する音波の入射部Xでの正弦波yと、終端部Xでの正弦波yとは、それぞれ、次の数式(4)と、数式(5)とで表される(図2(c)も参照)。
(Derivation of sound velocity V'that is in phase opposite to the sound velocity of the main pipe)
A sine wave y I at the entrance portion X I of the acoustic waves incident on the tube, the sine wave y C at the end portion X C, respectively, are expressed out with the following equation (4), and Equation (5) (See also FIG. 2 (c)).

このときの管内での各周波数における位相変化量θは次の数式(6)より求められる。ここで、fは周波数、Lは管長、νは管内の音速である。 The phase change amount θ at each frequency in the pipe at this time can be obtained from the following equation (6). Here, f is the frequency, L is the pipe length, and ν is the speed of sound in the pipe.

この数式(6)を利用することで、主管2(中空の管)と枝管1(フェイズシフタ)それぞれの各周波数における位相変化量θ,θは、次のように求めることができる。ここで、Lは主管の管長、Lはフェイズシフタ1の管長、cは空気中の音速(343.7m/s)、V’はフェイズシフタ1側の音速である。 By using this formula (6), the phase change amounts θ A and θ F at each frequency of the main pipe 2 (hollow pipe) and the branch pipe 1 (phase shifter) can be obtained as follows. Here, L A is the pipe length of the main pipe, L F is the pipe length of the phase shifter 1, c is the speed of sound in air (343.7m / s), V 'is the velocity of sound phase shifter 1 side.

主管2の合流部4において、逆位相の音波をフェイズシフタ1から合流させるためには、この主管2とフェイズシフタ1それぞれの各周波数における上記位相変化量θ,θの差が、180°(πラジアン)でなければならない。すなわち、次の数式(9)を満たす必要がある。 In order to merge the sound waves of opposite phases from the phase shifter 1 at the confluence portion 4 of the main pipe 2, the difference between the phase change amounts θ A and θ F at each frequency of the main pipe 2 and the phase shifter 1 is 180 °. Must be (π radians). That is, it is necessary to satisfy the following mathematical formula (9).

つまり、各周波数における逆位相となるためのフェイズシフタ1側の音速V’の条件は、数式(7)、数式(8)、及び数式(9)を用いて、次の数式(10)のように求めることができる。 That is, the condition of the speed of sound V'on the phase shifter 1 side for having the opposite phase at each frequency is as shown in the following mathematical formula (10) using the mathematical formulas (7), (8), and (9). Can be asked for.

数式(10)において変数となるのは、主管2とフェイズシフタ1の管長L,Lである。つまり、各周波数における逆位相となるためのフェイズシフタ1側の音速V’は、それぞれの管長L,Lを決定することで求めることが可能である(V’=V’(L,L))。 Become a variable in the equation (10), the pipe length L A of the main pipe 2 and the phase shifter 1, a L F. That is, the acoustic velocity V of phase shifter 1 side to the opposite phase at each frequency 'can be determined by determining the respective pipe length L A, the L F (V' = V ' (L A, L F)).

(音速V,V’の比較による消音装置の寸法の決定)
上述の工程S2、S3の実行により、板材間の隙間における音速Vと逆位相となるためのフェイズシフタ1側の音速V’の条件を求めることが可能となる。具体的には、これらを比較し、上記音速Vの条件と上記音速V’の条件とが一致するような隙間の厚さbと管長L,Lを求める(工程S4)。
(Determination of the dimensions of the silencer by comparing the speeds of sound V and V')
By executing the steps S2 and S3 described above, it is possible to obtain the condition of the sound velocity V'on the phase shifter 1 side so that the phase is opposite to the sound velocity V in the gap between the plate materials. Specifically, by comparing these, the thickness of the gap, such as the condition of the above conditions sound velocity V and the sound velocity V 'coincides b and the pipe length L A, obtains the L F (step S4).

(工程S5:音速V,V’の比較に有効な判断手法)
なお、図1に示すように、上述の工程S4では、主管2の各周波数における位相変化量θと、フェイズシフタ1の位相変化量θと、の差(θ−θ)を求め、この差(θ−θ)が180°から±15°以内であるかいなかを、音速Vと音速V’とが一致するかどうかの判断基準とすることが好ましい(工程S5)。
(Step S5: Effective judgment method for comparing sound velocity V, V')
As shown in FIG. 1, in the above-mentioned step S4, the difference (θ A − θ F ) between the phase change amount θ A of the main pipe 2 at each frequency and the phase change amount θ F of the phase shifter 1 is obtained. It is preferable that whether or not this difference (θ A − θ F ) is within ± 15 ° from 180 ° is used as a criterion for determining whether or not the sound velocity V and the sound velocity V ′ match (step S5).

(工程S6: フェイズシフタ内の音波の減衰に対する対策)
なお、上述の工程S4(好ましくは工程S5)まで終了すると、フェイズシフタ1の所望の寸法等の決定は終了する。しかしながら、実際に消音装置として使用する際にはフェイズシフタ1内で音波の減衰が生ずるため、以下の工程S6も追加することが好ましい。すなわち、図1に示すように、消音装置10に、マイク5と、フィルタ6と、増幅器7と、スピーカ8と、を用意する(工程S6)。
(Step S6: Measures against attenuation of sound waves in the phase shifter)
When the above-mentioned step S4 (preferably step S5) is completed, the determination of the desired dimensions and the like of the phase shifter 1 is completed. However, when it is actually used as a muffling device, sound waves are attenuated in the phase shifter 1, so it is preferable to add the following step S6 as well. That is, as shown in FIG. 1, a microphone 5, a filter 6, an amplifier 7, and a speaker 8 are prepared in the muffling device 10 (step S6).

ここで、マイク5は、フェイズシフタ1通過後の音波を測定する。フィルタ6では、フェイズシフタ1によって透過損失が負の値になる周波数域の音波を増幅しないように処理を行う。増幅器7は、フェイズシフタ1内で減衰した分だけ音波を増幅する。スピーカ8は、増幅器7で増幅した音波を、フェイズシフタ1と主管2との合流部4に向けて出力することで、主管2中を伝搬する音波を消音することができる。 Here, the microphone 5 measures the sound wave after passing through the phase shifter 1. In the filter 6, processing is performed so that the phase shifter 1 does not amplify the sound wave in the frequency range in which the transmission loss becomes a negative value. The amplifier 7 amplifies the sound wave by the amount attenuated in the phase shifter 1. The speaker 8 can mute the sound waves propagating in the main pipe 2 by outputting the sound waves amplified by the amplifier 7 toward the confluence portion 4 of the phase shifter 1 and the main pipe 2.

(ある隙間厚さbでの音速V,V’の対比)
以下に、工程S4の具体例を示す。図3(a)に、フェイズシフタ1の隙間の厚さbを0.1mmとした場合の音速Vを実線で示す。また、図3(a)には、L及びLの値を適宜入力して得た3種類の音速V’の曲線も描画している。
(Comparison of sound velocity V, V'at a certain gap thickness b)
A specific example of step S4 is shown below. In FIG. 3A, the sound velocity V when the gap thickness b of the phase shifter 1 is 0.1 mm is shown by a solid line. Further, in FIG. 3 (a) also draws curves of L A and L F 3 types of sound speed V of the values obtained by inputting appropriate for '.

この図3(a)から、隙間の厚さbを0.1mmとしたとき、主管2の管長Lを290mm,フェイズシフタ1の管長Lを270mmとすると(すなわち、図3(a)中の破線の場合)、二つの音速V,V’の差が最も小さくなることが判った。 From this FIG. 3 (a), when a 0.1mm thick b of the gap, the pipe length L A of the main pipe 2 290 mm, when the tube length L F of the phase shifter 1 and 270 mm (i.e., FIGS. 3 (a) in (In the case of the broken line of), it was found that the difference between the two sound velocities V and V'was the smallest.

(フェイズシフタの音波と主管の音波の位相差の検討)
各管長L,Lを決めるにあたり、フェイズシフタ1の音波と主管2の音波の位相差についても検討し、比較してみた。具体的には、決定された隙間の厚さb=0.1mmを数式(1)に代入し、数式(2)及び(3)より音速Vを求めた。このVの値を数式(8)の音速V’に代入した。その後、数式(7)及び数式(8)より各管長L,Lを変化させた際の各位相変化量の理論値を算出し、フェイズシフタ1と主管2における音波の位相差の理論値を比較した。その結果を図4に示す。
(Examination of the phase difference between the sound wave of the phase shifter and the sound wave of the main pipe)
Each pipe length L A, Upon determining the L F, also examined the phase difference of the sound wave and the main pipe 2 of the wave phase shifter 1, it was compared. Specifically, the determined gap thickness b = 0.1 mm was substituted into the mathematical formula (1), and the sound velocity V was obtained from the mathematical formulas (2) and (3). The value of this V was substituted into the sound velocity V'in the equation (8). Then, Equation (7) and the tube length L A from Equation (8), to calculate the theoretical values for each phase change amount when changing the L F, the theoretical value of the phase difference of the sound wave in phase shifter 1 and the main pipe 2 Was compared. The result is shown in FIG.

透過損失は、位相差が180°から±15°以内のときに10dB以上の値を取ることができるため、この範囲内に位相差が収まる条件の管長L,Lを採用することが好ましい(工程S5)。この点も踏まえて、上述のように、隙間の厚さbを0.1mmとしたとき、フェイズシフタ1の管長L=270mm、主管の管長L=290mmが最も適切であると判断した。 Transmission loss, since the phase difference can take more than 10dB value when within ± 15 ° from 180 °, it is preferable to employ a tube length L A, L F conditions retardation within the range falls (Step S5). This point is also in light, as described above, when a 0.1mm thick b of the gap is determined that the pipe length L F = 270 mm of the phase shifter 1, the pipe length L A = 290 mm of the main pipe is most appropriate.

(別の隙間厚さbでの音速V,V’の対比)
一方、図3(b)に、フェイズシフタ1の隙間の厚さbを0.2mmとした場合の音速Vを実線で示す。また、図3(b)にも、L及びLの値を適宜入力して得た3種類の音速V’の曲線も描画している。
(Comparison of sound velocity V, V'at another gap thickness b)
On the other hand, FIG. 3B shows the sound velocity V when the gap thickness b of the phase shifter 1 is 0.2 mm with a solid line. Further, also FIG. 3 (b), also drawing curves of L A and L F 3 types of sound speed V of the values obtained by inputting appropriate for '.

隙間の厚さbを0.2mmとしたときは、主管2の管長Lを1080mm,フェイズシフタ1の管長Lを1000mmとすると(すなわち、図3(b)中の一点鎖線の場合)、二つの音速V,V’の差が最も小さくなることが判った。しかしながら、この場合、音速V,V’の差を小さくしようとすると各管長L,Lが1.0mを超えてしまう。また、板材間の隙間の厚さbをさらに大きくすると、これに伴い管長L及びLも増大する。 When set to 0.2mm thickness b of the gap, 1080 mm tube length L A of the main pipe 2, the pipe length L F of the phase shifter 1 When 1000 mm (i.e., if the one-dot chain line in FIG. 3 (b)), It was found that the difference between the two sound velocities V and V'was the smallest. However, in this case, the sound velocity V, the difference the less try to the respective pipe length L A of the V ', L F exceeds the 1.0 m. Moreover, when further increasing the thickness b of the gap between the plate material also increases the pipe length L A and L F accordingly.

(消音装置製作の検討)
次に、本発明のフェイズシフタ1を試作し、その音響性能の評価を行った。上述の工程S4により、音速V,V’の条件を比較することにより、消音装置10の重要な寸法(板材間の隙間の厚さb、各管長L,L)を幾つか決定することができた。このうち、消音装置10として現実的に検討できるのは、隙間の厚さbが0.1mmの場合での上記最適な条件と判断した。
(Examination of silencer production)
Next, the phase shifter 1 of the present invention was prototyped and its acoustic performance was evaluated. The above steps S4, by comparing the condition of the sound velocity V, V ', to some determined critical dimensions of the silencer 10 (the thickness b of the gap between the plate material, the pipe length L A, L F) to Was done. Of these, it was determined that the sound deadening device 10 can be realistically examined under the above-mentioned optimum conditions when the gap thickness b is 0.1 mm.

(フェイズシフタの試作)
図5(a)に実際に試作したフェイズシフタ1の画像を、図5(b)にフェイズシフタ1の概略図を、その諸元を以下の表1にそれぞれ示す。
(Prototype of phase shifter)
FIG. 5 (a) shows an image of the actually prototype phase shifter 1, FIG. 5 (b) shows a schematic view of the phase shifter 1, and the specifications thereof are shown in Table 1 below.

本実施例のフェイズシフタ1は、矩形管内(外径は縦25.6mm×横25.6mm,内径は縦24.6mm×横24.6mm)に隙間を作るための治具(厚さb=0.1mm)と板材(幅24.6mm,厚さ0.1mm)を交互に積み重ね、これらの板材を固定した後、治具を抜くことで製作した。図5(a)は、製作したフェイズシフタ1の後ろに「A」と書かれた紙を置き、隙間が出来ていることを示したものである。フェイズシフタ1の隙間厚さbと管長Lは、上述した設計工程により得られたb=0.1mm及びL=270mmを採用している。また、主管2についても管長L=290mmとして作成した。 The phase shifter 1 of this embodiment is a jig (thickness b =) for creating a gap in a rectangular tube (outer diameter is 25.6 mm in length × 25.6 mm in width, inner diameter is 24.6 mm in length × 24.6 mm in width). It was manufactured by alternately stacking 0.1 mm) and plate materials (width 24.6 mm, thickness 0.1 mm), fixing these plate materials, and then removing the jig. FIG. 5A shows that a paper with “A” is placed behind the manufactured phase shifter 1 and a gap is formed. Gap thickness b and the pipe length L F of the phase shifter 1 employs a b = 0.1 mm and L F = 270 mm obtained by the design process described above. Also, was created as a pipe length L A = 290mm also the main pipe 2.

また、後述の音響性能試験を行う際には、フェイズシフタ1を測定装置内に安定して設置するために、このフェイズシフタ1を、厚さ10mmのアルミ合金板(図示せず)で囲んで固定・保持するようにした。 Further, when performing the acoustic performance test described later, in order to stably install the phase shifter 1 in the measuring device, the phase shifter 1 is surrounded by an aluminum alloy plate (not shown) having a thickness of 10 mm. Fixed and held.

(フェイズシフタの変形例)
なお、本実施例のフェイズシフタ1(1A)では、矩形断面を有した中空筒体を想定したが、必ずしもこれに限定されない。例えば、円形断面や四角形以外の多角形(例えば、図5(c)の左側に示す六角形)断面を有した中空筒体1Bであってもよい。なお、本発明の板材(隙間厚さbを仕切る物体)は、上記実施例の平板に限られず、曲面を有した板材、シート状の薄板、又はフィルム状の膜体であってもよい。例えば、図5(c)の右側に示すように、円形断面の中空筒体の内部を、隙間厚さbで離間するように直径が徐々に小さくなる複数の同心円状の筒体で仕切った構造のフェイズシフタ1Cを採用してもよい。
(Modified example of phase shifter)
In the phase shifter 1 (1A) of this embodiment, a hollow cylinder having a rectangular cross section is assumed, but the present invention is not necessarily limited to this. For example, it may be a hollow cylinder 1B having a polygonal cross section other than a circular cross section or a quadrangle (for example, a hexagon shown on the left side of FIG. 5C). The plate material (object partitioning the gap thickness b) of the present invention is not limited to the flat plate of the above embodiment, and may be a plate material having a curved surface, a sheet-like thin plate, or a film-like film body. For example, as shown on the right side of FIG. 5C, a structure in which the inside of a hollow cylinder having a circular cross section is partitioned by a plurality of concentric cylinders whose diameters gradually decrease so as to be separated by a gap thickness b. Phase shifter 1C may be adopted.

(位相変化量の測定装置)
位相変化量の測定には、4マイクロホンインピーダンス管とFFTアナライザを用いた。測定装置の概略図を図6(a)、測定装置の写真を図6(b)に示す。測定試料(主管2又はフェイズシフタ1)は所定の位置に設置し、マイクロホンは測定試料の前後に1本ずつ取り付けられる。
(Measuring device for the amount of phase change)
A 4-microphone impedance tube and an FFT analyzer were used to measure the amount of phase change. A schematic diagram of the measuring device is shown in FIG. 6 (a), and a photograph of the measuring device is shown in FIG. 6 (b). The measurement sample (main pipe 2 or phase shifter 1) is installed at a predetermined position, and one microphone is attached to the front and back of the measurement sample.

(位相変化量の測定方法)
音源より基準信号(リニアマルチサイン波)による音波を発生させて、測定試料の入射側及び透過側の音波をマイクロホンで検出し、マイクロホン用の信号増幅器を介してFFTアナライザで解析することで、位相変化量の算出を行った。本実施例では、本発明の消音装置10の性能評価の前段階の評価として、フェイズシフタ1の位相変化量と主管の位相変化量とを別々に測定し、これらの測定結果を用いて消音装置の音響性能を予測・検証した。
(Measurement method of phase change amount)
A sound wave based on a reference signal (linear multi-sine wave) is generated from the sound source, the sound wave on the incident side and the transmission side of the measurement sample is detected by the microphone, and the phase is analyzed by the FFT analyzer via the signal amplifier for the microphone. The amount of change was calculated. In this embodiment, as a preliminary evaluation of the performance evaluation of the muffling device 10 of the present invention, the phase change amount of the phase shifter 1 and the phase change amount of the main pipe are separately measured, and the muffling device is used by using these measurement results. Predicted and verified the acoustic performance of.

(フェイズシフタの位相変化量の測定結果)
図7(a)に、フェイズシフタ1における位相変化量θの理論値と実験値の比較を示す。ここで、理論値と実験値を比較すると、周波数1600Hz以下において実験値が理論値より位相の変化が小さい値となっている。また周波数4500Hz〜6000Hzにおいては実験値が理論値より大きい値を示している。
(Measurement result of phase change amount of phase shifter)
FIG. 7A shows a comparison between the theoretical value and the experimental value of the phase change amount θ F in the phase shifter 1. Here, when the theoretical value and the experimental value are compared, the experimental value has a smaller phase change than the theoretical value at a frequency of 1600 Hz or less. Further, at frequencies of 4500 Hz to 6000 Hz, the experimental values are larger than the theoretical values.

(主管の位相変化量の測定結果)
一方、図7(b)に、主管2における位相変化量θの理論値と実験値の比較を示す。こちらの実験値は全体を通して、おおよそ理論値と一致している。しかし、周波数2000Hz以下では、実験値に多少の乱れが見られる。
(Measurement result of phase change of main pipe)
On the other hand, FIG. 7B shows a comparison between the theoretical value and the experimental value of the phase change amount θ A in the main pipe 2. The experimental values here are generally in agreement with the theoretical values. However, at a frequency of 2000 Hz or less, some disturbance is seen in the experimental values.

(フェイズシフタ内の音波と主管内の音波との位相差)
上述の各位相変化量の結果を利用して、フェイズシフタ1と主管2の位相差を算出した結果を図8(a)に示す。図中一点鎖線で示す理論値では、周波数1500Hzより大きくなると位相差が180°に漸近していき、周波数5000Hzになると180°に一致する。それ以上の周波数では位相差が180°より徐々に大きくなることが分かる。
(Phase difference between the sound wave in the phase shifter and the sound wave in the main pipe)
FIG. 8A shows the result of calculating the phase difference between the phase shifter 1 and the main pipe 2 by using the result of each phase change amount described above. According to the theoretical value shown by the alternate long and short dash line in the figure, the phase difference gradually approaches 180 ° when the frequency is higher than 1500 Hz, and coincides with 180 ° when the frequency is 5000 Hz. It can be seen that at frequencies higher than that, the phase difference gradually increases from 180 °.

一方、実験値では、周波数1600Hz以下では理論値と大きく乖離しており、あまり位相を反転させることができていないことが判る。周波数1600Hz〜4500Hzにおいては180°に近い位相差を得ることができているが、周波数4500Hz〜6000Hzでは位相差が理論値よりずれてしまっている。このような理論値とのズレが発生している原因は、試作したフェイズシフタ1の寸法精度の誤差などに起因したフェイズシフタ1側の位相変化が理想的ではないためであると考えられる。 On the other hand, in the experimental values, it can be seen that the frequency deviates greatly from the theoretical value at a frequency of 1600 Hz or less, and the phase cannot be inverted so much. At frequencies of 1600 Hz to 4500 Hz, a phase difference close to 180 ° can be obtained, but at frequencies of 4500 Hz to 6000 Hz, the phase difference deviates from the theoretical value. It is considered that the reason why such a deviation from the theoretical value occurs is that the phase change on the phase shifter 1 side due to an error in the dimensional accuracy of the prototype phase shifter 1 is not ideal.

(透過損失の算出)
次に、位相変化量のデータを利用し、音波を正弦波で表し、その振幅データより音波を合流させた際の透過損失TLを算出した。その算出方法を、以下に示す。先ず、フェイズシフタ1と主管2の入射部Xにおける正弦波yは次の数式11で表される。なお、図8(b)は、消音装置10の各地点(入射部、合流部)における正弦波を示した図である。
(Calculation of transmission loss)
Next, using the data of the amount of phase change, the sound wave was represented by a sine wave, and the transmission loss TL when the sound waves were merged was calculated from the amplitude data. The calculation method is shown below. First, a sine wave y I in the entrance part X I of the phase shifter 1 and the main pipe 2 is expressed by the following equation 11. Note that FIG. 8B is a diagram showing sine waves at each point (incident portion, confluence portion) of the silencer 10.

このとき、主管2及びフェイズシフタ1の終端部XCA,XCFでの正弦波y,yは、それぞれ以下の数式12,13で表すことができる。 At this time, the sine waves y A and y F at the end portions X CA and X CF of the main pipe 2 and the phase shifter 1 can be expressed by the following equations 12 and 13, respectively.

また、フェイズシフタ1側の音波を合流させる際に、フェイズシフタ1内で減衰した分を増幅器7を用いて増幅し元の主管2の音波の振幅と同等にするため、実際に合流する際のフェイズシフタ1側の音波の正弦波は、次のように表される。 Further, when the sound waves on the phase shifter 1 side are merged, the amount attenuated in the phase shifter 1 is amplified by the amplifier 7 to be equal to the amplitude of the sound waves of the original main pipe 2, so that the sound waves are actually merged. The sine wave of the sound wave on the phase shifter 1 side is expressed as follows.

これより、音波が合流した際の合成波の正弦波yは、音波の重ね合わせの原理により次の数式15のように表される。 From this, the sine wave y C of the synthesized wave when the sound waves merge is expressed by the following equation 15 by the principle of superposition of sound waves.

ここで求められた合成波の振幅Cと元々の音波の振幅Aから、以下の数式16を用いて透過損失を算出できる。 From the amplitude C of the composite wave obtained here and the amplitude A of the original sound wave, the transmission loss can be calculated using the following mathematical formula 16.

(音波の重ねあわせによる透過損失の評価)
上述の位相変化量の結果を利用して、フェイズシフタ1の音波を主管2の音波に合流させた際の透過損失TLを算出した結果を図9(b)に示す。また、参考としてフェイズシフタ1と主管2との位相差を算出した結果を図9(a)に再掲する。図9(a)は、図8(a)の位相差の結果に、位相差±15°の範囲内を示す破線と、位相差±60°の範囲内を示す実線と、を更に追加したものである。
(Evaluation of transmission loss due to superposition of sound waves)
FIG. 9B shows the result of calculating the transmission loss TL when the sound wave of the phase shifter 1 is merged with the sound wave of the main pipe 2 by using the result of the above-mentioned phase change amount. For reference, the result of calculating the phase difference between the phase shifter 1 and the main pipe 2 is shown again in FIG. 9A. FIG. 9A shows the result of the phase difference of FIG. 8A with the addition of a broken line indicating the range of the phase difference ± 15 ° and a solid line indicating the range of the phase difference ± 60 °. Is.

図9(a)と図9(b)とを比較すると、フェイズシフタ1と主管2との位相差が180°から±15°の範囲内にある周波数域では、安定して10dB以上の透過損失TLを得ることができていることが判る。また、図9(b)にて透過損失TLが負の値になっている周波数域があるが、これは位相差が180°から±60°以上になると音波が増幅され、合成波の振幅が合成前よりも大きくなるためである。実際にフェイズシフタ1を使用する際には、この透過損失TLが負の値になる周波数域において音波を増幅しないようなフィルタ6を掛けることが好ましい。 Comparing FIG. 9A and FIG. 9B, in the frequency range where the phase difference between the phase shifter 1 and the main pipe 2 is within the range of 180 ° to ± 15 °, the transmission loss is stable at 10 dB or more. It turns out that TL can be obtained. Further, in FIG. 9B, there is a frequency range in which the transmission loss TL has a negative value. In this frequency range, when the phase difference is 180 ° to ± 60 ° or more, the sound wave is amplified and the amplitude of the combined wave becomes large. This is because it will be larger than before synthesis. When actually using the phase shifter 1, it is preferable to apply a filter 6 so as not to amplify the sound wave in the frequency range where the transmission loss TL becomes a negative value.

本発明によれば、非常にシンプルな構造を有し、低コストで、電源が不要で、故障が無く保守が不要な消音装置10が提供されることになる。従って、本発明は、産業上の利用可能性及び利用価値は非常に高い。 According to the present invention, there is provided a muffling device 10 having a very simple structure, low cost, no power supply, no failure, and no maintenance. Therefore, the present invention has very high industrial applicability and utility value.

1 音響式フェイズシフタ
2 主管
3 騒音源
4 合流部
5 マイク
6 フィルタ
7 増幅器
8 スピーカ
10 消音装置
b 板材間の隙間の厚さ
,L 主管の管長,フェイズシフタの管長
1 acoustic phase shifter second main pipe 3 the noise source 4 merging portion 5 microphone 6 filter 7 amplifier 8 speaker 10 silencers b plate between the gap thickness L A, pipe length L F main, the pipe length of the phase shifter

Claims (3)

主管と枝管とを有した消音装置の製造方法であって、
前記主管に空の管を利用し、前記枝管に、隙間厚さbで離間した複数の板材で仕切られた中空筒体を有した音響式フェイズシフタを利用する工程S1と、
前記板材間の隙間における音速Vの関係式を導出する工程S2と、
前記主管の音速に対して逆位相となる音速V’の関係式を導出する工程S3と、
前記音速Vと前記音速V’とが一致するように前記主管の寸法と前記フェイズシフタの寸法を決定する工程S4と、
を含み、かつ、
前記工程S2では、以下の数式1で表される伝搬定数γを用い、
ここで、xは、前記フェイズシフタの長手方向の位置、yおよびzは隙間断面内の座標、cは空気中の音速、κは空気の比熱比、σはプラントル数、ρは空気の密度、μは空気の粘度、ωは角周波数であり、
前記伝搬定数γを以下の数式2により実部αと虚部βとに分けたうえで、
以下の数式3により前記音速Vの関係式が前記隙間厚さbの変数のみで表されるようにし、
前記工程S3では、以下の数式4を用いて、音速V’の関係式が、前記主管と前記フェイズシフタの管長L,Lの変数のみで表されるようにし、
前記工程S4で決定される前記主管の寸法と前記フェイズシフタの寸法とは、前記隙間厚さb、前記管長L,Lであること、
を特徴とする消音装置の製造方法。
A method for manufacturing a silencer having a main pipe and a branch pipe.
A step S1 in which an empty pipe is used for the main pipe and an acoustic phase shifter having a hollow cylinder partitioned by a plurality of plate materials separated by a gap thickness b is used for the branch pipe.
Step S2 for deriving the relational expression of the sound velocity V in the gap between the plate materials, and
Step S3 for deriving the relational expression of the sound velocity V'that has the opposite phase to the sound velocity of the main pipe,
Step S4, in which the dimensions of the main pipe and the dimensions of the phase shifter are determined so that the sound velocity V and the sound velocity V'match.
Including and
In the step S2, the propagation constant γ represented by the following mathematical formula 1 is used.
Here, x is the position in the longitudinal direction of the phase shifter, y and z are the coordinates in the gap cross section, c is the speed of sound in air, κ is the specific heat ratio of air, σ is the Prandtl number, and ρ is the density of air. μ is the viscosity of air, ω is the angular frequency,
After dividing the propagation constant γ into a real part α and an imaginary part β by the following mathematical formula 2,
According to the following mathematical formula 3, the relational expression of the sound velocity V is expressed only by the variable of the gap thickness b.
In the step S3, using Equation 4 below, as relation of acoustic velocity V 'is the pipe length L A of the phase shifter and the main pipe, it represented only by variables L F,
The dimensions of the main dimensions and the phase shifter to be determined at the step S4, the gap thickness b, the pipe length L A, it is L F,
A method of manufacturing a silencer, which comprises.
前記工程S4では、前記主管の各周波数における位相変化量θと、前記フェイズシフタ位相変化量θと、の差(θ−θ)を求め、
前記差(θ−θ)が180°から±15°以内であることを、前記音速Vと前記音速V’とが一致するかどうかの判断基準とすること
を特徴とする請求項1に記載の消音装置の製造方法。
In the step S4, the difference (θ A − θ F ) between the phase change amount θ A and the phase shifter phase change amount θ F at each frequency of the main pipe is obtained.
The first aspect of the present invention is that the difference (θ A − θ F ) is within ± 15 ° from 180 ° as a criterion for determining whether or not the sound velocity V and the sound velocity V ′ match. The method of manufacturing the silencer described.
前記消音装置に、マイクと、フィルタと、増幅器と、スピーカと、を用意する工程を、
さらに含み、
前記マイクは、前記フェイズシフタ通過後の音波を測定し、
前記増幅器は、前記フェイズシフタ内で減衰した分だけ前記音波を増幅し、
前記スピーカは、前記増幅器で増幅した前記音波を、前記フェイズシフタと前記主管との合流部に向けて出力することで、前記主管中を伝搬する音波を消音すること
を特徴とする請求項1又は2に記載の消音装置の製造方法。
The process of preparing a microphone, a filter, an amplifier, and a speaker in the silencer.
Including more
The microphone measures the sound wave after passing through the phase shifter.
The amplifier amplifies the sound wave by the amount attenuated in the phase shifter.
The speaker is characterized in that the sound wave amplified by the amplifier is output toward a confluence portion between the phase shifter and the main pipe to mute the sound wave propagating in the main pipe. 2. The method for manufacturing a silencer according to 2.
JP2019023193A 2019-02-13 2019-02-13 Manufacturing method of muffler with acoustic phase shifter Active JP7144853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023193A JP7144853B2 (en) 2019-02-13 2019-02-13 Manufacturing method of muffler with acoustic phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023193A JP7144853B2 (en) 2019-02-13 2019-02-13 Manufacturing method of muffler with acoustic phase shifter

Publications (2)

Publication Number Publication Date
JP2020134548A true JP2020134548A (en) 2020-08-31
JP7144853B2 JP7144853B2 (en) 2022-09-30

Family

ID=72278442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023193A Active JP7144853B2 (en) 2019-02-13 2019-02-13 Manufacturing method of muffler with acoustic phase shifter

Country Status (1)

Country Link
JP (1) JP7144853B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252340A (en) * 2003-02-21 2004-09-09 Toshiba Corp Branch duct silencer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252340A (en) * 2003-02-21 2004-09-09 Toshiba Corp Branch duct silencer

Also Published As

Publication number Publication date
JP7144853B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
Salissou et al. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers
Zhang et al. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor
Li et al. Acoustic impedance of micro perforated membranes: Velocity continuity condition at the perforation boundary
JP5973102B1 (en) Propagation constant acquisition method, sound absorption coefficient calculation method, sound absorption coefficient evaluation device
Jeong Guideline for adopting the local reaction assumption for porous absorbers in terms of random incidence absorption coefficients
Sachau et al. Development and experimental verification of a robust active noise control system for a diesel engine in submarines
Lee et al. Impact of perforation impedance on the transmission loss of reactive and dissipative silencers
Huang et al. Vibroacoustics of three-dimensional drum silencer
Phong et al. High frequency acoustic transmission loss of perforated plates at normal incidence
Elnady et al. An inverse analytical method for extracting liner impedance from pressure measurements
Gaborit et al. A simplified model for thin acoustic screens
Howard et al. Exhaust stack silencer design using finite element analysis
Jones et al. Effects of liner length and attenuation on nasa langley impedance eduction
JP2020134548A (en) Manufacturing method of silencer with acoustic phase shifter
Han et al. Active control of one-dimension impulsive reflection based on a prediction method
Holmer et al. Transmission of sound through pipe walls in the presence of flow
Yang Acoustic attenuation of a curved duct containing a curved axial microperforated panel
Tayong et al. On the simultaneous inversion of micro-perforated panels' parameters: Application to single and double air-cavity backed systems
Xiao et al. Inducing a nonreflective airborne discontinuity in a circular duct by using a nonresonant side branch to create mode complexity
Allam et al. Development of Acoustic Models for High Frequency Resonators for Turbocharged IC-Engines
Sardu et al. Noise filtering for wall-pressure fluctuations in measurements around a cylinder with laminar and turbulent flow separation
Liu et al. Noise suppression of a dipole source by tensioned membrane with side-branch cavities
Panneton Normal incidence sound transmission loss evaluation by upstream surface impedance measurements
Blandin et al. Multimodal radiation impedance of a waveguide with arbitrary cross-sectional shape terminated in an infinite baffle
Chu et al. Effect of bevel angle on the reflection coefficient from open unflanged pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220909

R150 Certificate of patent or registration of utility model

Ref document number: 7144853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150