JP2020134282A - Solidification material content measuring device, measuring method and measuring program - Google Patents

Solidification material content measuring device, measuring method and measuring program Download PDF

Info

Publication number
JP2020134282A
JP2020134282A JP2019027022A JP2019027022A JP2020134282A JP 2020134282 A JP2020134282 A JP 2020134282A JP 2019027022 A JP2019027022 A JP 2019027022A JP 2019027022 A JP2019027022 A JP 2019027022A JP 2020134282 A JP2020134282 A JP 2020134282A
Authority
JP
Japan
Prior art keywords
temperature
target
target soil
soil
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027022A
Other languages
Japanese (ja)
Other versions
JP7218204B2 (en
Inventor
勝紀 望月
Katsuki Mochizuki
勝紀 望月
森田 晃司
Koji Morita
晃司 森田
久保 博
Hiroshi Kubo
博 久保
善彰 長尾
Yoshiaki Nagao
善彰 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Tachibana Material Co Ltd
Original Assignee
Obayashi Corp
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Tachibana Material Co Ltd filed Critical Obayashi Corp
Priority to JP2019027022A priority Critical patent/JP7218204B2/en
Publication of JP2020134282A publication Critical patent/JP2020134282A/en
Application granted granted Critical
Publication of JP7218204B2 publication Critical patent/JP7218204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To measure a solidification material content in object soil with high accuracy.SOLUTION: A solidification material content measuring device comprises: an initial temperature acquisition section 161 which acquires initial temperatures of hydrochloric acids 320 and 420 and respective object soils 300 and 400; a reaction temperature acquisition section 163 which acquires reaction temperatures M and V of the respective object soils 300 and 400 when agitated with agitators 30 and 35; regression analysis sections 164, 165 and 166 which determine a maximum temperature from the reaction temperature M obtained when the object soil 300 is mixed and agitated with the hydrochloric acid 320 and different amounts of a solidification material 340, calculate a temperature rise Q of the object soil 300 on the basis of the maximum temperature and the initial temperature, and form a regression formula from the temperature rise Q and a solidification material content S; and a content calculation section 167 which determines the maximum temperature from the reaction temperature V obtained when the object soil 400 for main measurement is mixed and agitated with the hydrochloric acid 420, calculates a temperature rise W of the object soil 400 for main measurement on the basis of the maximum temperature and the initial temperature, and calculates a solidification material content Y on the basis of the temperature rise W and the regression formula.SELECTED DRAWING: Figure 5

Description

本開示は、固化材含有量の計測装置、計測方法及び、計測プログラムに関するものである。 The present disclosure relates to a solidifying material content measuring device, a measuring method, and a measuring program.

従来、地盤改良工事等においては、現場で採取した対象土の固化材含有量(例えば、セメント含有量)を計測する技術が種々提案されている。この種の技術として、例えば特許文献1には、セメントを含む対象土に塩酸を添加し、セメントと塩酸との反応熱による対象土の上昇温度に基づいて、対象土のセメント含有量を測定する塩酸溶解法を用いた技術が開示されている。 Conventionally, in ground improvement work and the like, various techniques for measuring the solidifying material content (for example, cement content) of the target soil collected at the site have been proposed. As a technique of this type, for example, in Patent Document 1, hydrochloric acid is added to a target soil containing cement, and the cement content of the target soil is measured based on the temperature rise of the target soil due to the heat of reaction between the cement and hydrochloric acid. A technique using the hydrochloric acid dissolution method is disclosed.

特開平08−054385号公報Japanese Unexamined Patent Publication No. 08-054385

ところで、固化材と塩酸との反応熱は、周辺温度の影響を受け易い。このため、上記塩酸溶解法に基づいた計測を、例えば低温環境下等で行うと、反応温度の上昇が低く抑えられることにより、固化材含有量が実際の含有量よりも少なく計測されるといった課題がある。 By the way, the heat of reaction between the solidifying material and hydrochloric acid is easily affected by the ambient temperature. Therefore, when the measurement based on the above-mentioned hydrochloric acid dissolution method is performed, for example, in a low temperature environment, the rise in the reaction temperature is suppressed to a low level, so that the solidifying material content is measured to be smaller than the actual content. There is.

本開示の技術は、対象土の固化材含有量を高精度に計測することができる計測装置、計測方法及び、計測プログラムを提供することを目的とする。 An object of the present disclosure technique is to provide a measuring device, a measuring method, and a measuring program capable of measuring the solidified material content of the target soil with high accuracy.

本開示の固化材含有量の計測装置は、対象土及び本計測用対象土に添加する塩酸と、該塩酸添加前の前記対象土及び前記本計測用対象土の初期温度とをそれぞれ取得する初期温度取得部と、少なくとも前記塩酸を添加した前記対象土及び前記本計測用対象土をそれぞれ撹拌可能な撹拌機と、前記撹拌機により撹拌される前記対象土及び前記本計測用対象土の反応温度をそれぞれ取得する反応温度取得部と、少なくとも2以上の前記対象土に前記塩酸及び異なる量の固化材をそれぞれ添加して、前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記対象土の初期温度とに基づいて前記対象土の上昇温度を演算し、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する回帰分析部と、前記本計測用対象土に前記塩酸を添加して前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記本計測用対象土の初期温度とに基づいて前記本計測用対象土の上昇温度を演算し、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する含有量演算部と、を備えることを特徴とする。 The solidifying material content measuring device of the present disclosure obtains the hydrochloric acid added to the target soil and the target soil for the main measurement, and the initial temperature of the target soil and the target soil for the main measurement before the addition of the hydrochloric acid, respectively. A temperature acquisition unit, a stirrer capable of stirring at least the target soil to which the hydrochloric acid is added and the target soil for the main measurement, and the reaction temperature of the target soil and the target soil for the main measurement to be agitated by the stirrer. When the hydrochloric acid and different amounts of the solidifying material are added to at least two or more of the target soils and stirred by the stirrer, the reaction temperature is acquired by the reaction temperature acquisition unit. The maximum temperature is determined from the reaction temperature, the rising temperature of the target soil is calculated based on the maximum temperature and the initial temperature of the target soil, and the rising temperature and the solidifying material content of the target soil are subjected to regression analysis. The maximum temperature is obtained from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid is added to the soil to be measured and stirred by the stirrer, and the regression analysis unit that creates a regression equation by doing so. At the same time as determining, the rising temperature of the target soil for measurement is calculated based on the maximum temperature and the initial temperature of the target soil for measurement, and the solidifying material content is determined based on the rising temperature and the regression equation. It is characterized by including a content calculation unit for calculation.

また、前記初期温度取得部は、前記対象土に添加する水の初期温度をさらに取得し、
前記回帰分析部は、前記2以上の対象土の前記上昇温度を、該2以上の対象土の前記最高温度と、前記初期温度取得部により取得した前記塩酸、前記2以上の対象土及び、前記水の各初期温度とに基づいて演算することが好ましい。
Further, the initial temperature acquisition unit further acquires the initial temperature of water to be added to the target soil, and obtains the initial temperature.
The regression analysis unit sets the rising temperature of the two or more target soils to the maximum temperature of the two or more target soils, the hydrochloric acid acquired by the initial temperature acquisition unit, the two or more target soils, and the above. It is preferable to calculate based on each initial temperature of water.

また、前記回帰分析部は、前記初期温度取得部により取得した前記2以上の対象土の初期温度と、前記塩酸の比熱と、前記2以上の対象土の比熱と、該2以上の対象土に添加する前記固化材の比熱とに基づいて算出した撹拌前温度を前記2以上の対象土の前記最高温度からそれぞれ差し引くことにより、前記2以上の対象土の前記上昇温度をそれぞれ演算することが好ましい。 Further, the regression analysis unit applies the initial temperature of the two or more target soils acquired by the initial temperature acquisition unit, the specific heat of the hydrochloric acid, the specific heat of the two or more target soils, and the two or more target soils. It is preferable to calculate the rising temperature of the two or more target soils by subtracting the pre-stirring temperature calculated based on the specific heat of the solidifying material to be added from the maximum temperature of the two or more target soils. ..

また、少なくとも前記撹拌機を含む計測ユニットと、少なくとも前記回帰分析部及び、前記含有量演算部を含む制御ユニットとが別体に構成されていることが好ましい。 Further, it is preferable that at least the measurement unit including the stirrer and at least the regression analysis unit and the control unit including the content calculation unit are separately configured.

本開示の固化材含有量の計測方法は、対象土に添加する塩酸及び、該塩酸添加前の前記対象土の初期温度を取得する第1工程と、該第1工程で初期温度を取得した少なくとも2以上の前記対象土に、前記第1工程で初期温度を取得した前記塩酸及び異なる量の固化材をそれぞれ添加して撹拌すると共に、撹拌される前記2以上の対象土の反応温度をそれぞれ計測し、計測される該反応温度の最高温度を判定する第2工程と、該第2工程で判定した前記最高温度と、前記第1工程で計測した前記初期温度とに基づいて、前記2以上の対象土の上昇温度をそれぞれ演算すると共に、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する第3工程と、本計測用対象土に添加する塩酸及び、該塩酸添加前の前記本計測用対象土の初期温度を取得する第4工程と、該第4工程で初期温度を取得した前記本計測用対象土に前記第4工程で初期温度を取得した前記塩酸を添加して撹拌すると共に、撹拌される前記本計測用対象土の反応温度を計測し、計測される該反応温度から最高温度を判定する第5工程と、該第5工程で判定した前記最高温度と、前記第4工程で計測した前記初期温度とに基づいて、前記本計測用対象土の上昇温度を演算すると共に、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する第6工程と、を含むことを特徴とする。 The method for measuring the content of the solidifying material of the present disclosure includes a first step of acquiring the initial temperature of the target soil to be added to the target soil and the target soil before the addition of the hydrochloric acid, and at least the initial temperature obtained in the first step. To the two or more target soils, the hydrochloric acid whose initial temperature was obtained in the first step and different amounts of the solidifying material are added and stirred, and the reaction temperatures of the two or more target soils to be stirred are measured. Then, based on the second step of determining the maximum temperature of the measured reaction temperature, the maximum temperature determined in the second step, and the initial temperature measured in the first step, the above two or more. The third step of creating a regression equation by calculating the rising temperature of the target soil and reverting the rising temperature and the solidifying material content of the target soil, the hydrochloric acid added to the target soil for measurement, and The fourth step of acquiring the initial temperature of the target soil for main measurement before the addition of hydrochloric acid, and the initial temperature of the target soil for main measurement for which the initial temperature was acquired in the fourth step were acquired in the fourth step. The fifth step of adding the hydrochloric acid and stirring, measuring the reaction temperature of the target soil for measurement to be stirred, and determining the maximum temperature from the measured reaction temperature, and the fifth step were determined. Based on the maximum temperature and the initial temperature measured in the fourth step, the rising temperature of the target soil for the main measurement is calculated, and the solidifying material content is calculated based on the rising temperature and the regression equation. It is characterized by including a sixth step of calculation.

本開示の計測プログラムは、固化材含有量を計測する計測装置のコンピュータを、対象土及び本計測用対象土に添加する塩酸と、該塩酸添加前の前記対象土及び前記本計測用対象土の初期温度とをそれぞれ取得する初期温度取得部、少なくとも前記塩酸を添加した前記対象土及び前記本計測用対象土を撹拌機にそれぞれ撹拌させる共に、撹拌される前記対象土及び前記本計測用対象土の反応温度をそれぞれ取得する反応温度取得部、少なくとも2以上の前記対象土に前記塩酸及び異なる量の固化材をそれぞれ添加して、前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記対象土の初期温度とに基づいて前記対象土の上昇温度を演算し、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する回帰分析部、前記本計測用対象土に前記塩酸を添加して前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記本計測用対象土の初期温度とに基づいて前記本計測用対象土の上昇温度を演算し、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する含有量演算部、として機能させることを特徴とする。 In the measurement program of the present disclosure, the computer of the measuring device for measuring the solidified material content is added to the target soil and the target soil for the main measurement, and the target soil before the addition of the hydrochloric acid and the target soil for the main measurement. The initial temperature acquisition unit for acquiring the initial temperature, at least the target soil to which the hydrochloric acid is added, and the target soil for the main measurement are stirred by a stirrer, and the target soil and the target soil for the main measurement are stirred. When the hydrochloric acid and different amounts of solidifying material are added to at least two or more target soils and stirred by the stirrer, the reaction temperature acquisition unit acquires the reaction temperature of each of the above. The maximum temperature is determined from the reaction temperature to be obtained, the rising temperature of the target soil is calculated based on the maximum temperature and the initial temperature of the target soil, and the rising temperature and the solidifying material content of the target soil are calculated. A regression analysis unit that creates a regression equation by performing regression analysis, the maximum temperature from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid is added to the target soil for measurement and stirred by the stirrer. Is determined, the rising temperature of the target soil for measurement is calculated based on the maximum temperature and the initial temperature of the target soil for measurement, and the solidifying material content is calculated based on the rising temperature and the regression equation. It is characterized in that it functions as a content calculation unit that calculates.

本開示の技術によれば、対象土の固化材含有量を高精度に計測することができる。 According to the technique of the present disclosure, the solidifying material content of the target soil can be measured with high accuracy.

本実施形態に係る計測装置を示す模式的な全体構成図である。It is a schematic whole block diagram which shows the measuring apparatus which concerns on this embodiment. 本実施形態に係る計測ユニットの模式的な分解斜視図である。It is a schematic exploded perspective view of the measurement unit which concerns on this embodiment. 本計測試験の前に行う検量線作成試験の手順を説明する模式図である。It is a schematic diagram explaining the procedure of the calibration curve preparation test performed before this measurement test. 本計測試験の手順を説明する模式図である。It is a schematic diagram explaining the procedure of this measurement test. 本実施形態に係るデータ処理部及び、関連する周辺構成を示す模式的な機能ブロック図である。It is a schematic functional block diagram which shows the data processing part which concerns on this embodiment, and the related peripheral structure. (A)は、内割検量線グラフの一例を示す模式図、(B)は、外割検量線グラフの一例を示す模式図である。(A) is a schematic diagram showing an example of an internal calibration curve graph, and (B) is a schematic diagram showing an example of an externally divided calibration curve graph. 本実施形態に係る固化材含有量の計測方法のフローを説明する図である。It is a figure explaining the flow of the method of measuring the solidifying material content which concerns on this embodiment.

以下、添付図面に基づいて、本実施形態に係る固化材含有量の計測装置、計測方法及び、計測プログラムについて説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, the solidifying material content measuring device, the measuring method, and the measuring program according to the present embodiment will be described with reference to the attached drawings. The same parts have the same reference numerals, and their names and functions are also the same. Therefore, detailed explanations about them will not be repeated.

[全体構成]
図1は、本実施形態に係る計測装置1を示す模式的な全体構成図であり、図2は、本実施形態に係る計測ユニット10の模式的な分解斜視図である。
[overall structure]
FIG. 1 is a schematic overall configuration diagram showing a measuring device 1 according to the present embodiment, and FIG. 2 is a schematic exploded perspective view of the measuring unit 10 according to the present embodiment.

図1に示すように、計測装置1は、計測ユニット10と、制御ユニット100とを備えて構成されている。計測ユニット10及び、制御ユニット100は、好ましくは別体に設けられており、ケーブル80を介して互いに通信可能に接続されている。なお、計測ユニット10と制御ユニット100との接続は、有線又は無線の何れであってもよい。 As shown in FIG. 1, the measuring device 1 includes a measuring unit 10 and a control unit 100. The measurement unit 10 and the control unit 100 are preferably provided separately and are connected to each other via a cable 80 so as to be communicable with each other. The connection between the measurement unit 10 and the control unit 100 may be either wired or wireless.

[計測ユニット]
図1及び図2に示すように、計測ユニット10は、保温容器11と、保温容器11を支持する台座部12と、台座部12の上面に載置される撹拌機本体部20と、塩酸容器40(図1参照)と、4本の温度センサ51,52,53,54(図1参照)とを備えている。
[Measurement unit]
As shown in FIGS. 1 and 2, the measuring unit 10 includes a heat insulating container 11, a pedestal portion 12 that supports the heat insulating container 11, a stirrer main body 20 mounted on the upper surface of the pedestal portion 12, and a hydrochloric acid container. It includes 40 (see FIG. 1) and four temperature sensors 51, 52, 53, 54 (see FIG. 1).

保温容器11は、上端が開口する有底筒状の容器であって、計測対象の対象土を収容する。保温容器11は、好ましく二重筒構造とされており、内部に収容した対象土の保温効果が得られるようになっている。保温容器11の容量は約300mL、高さHは約147mm、開口径Dは約74mmとされている。 The heat insulating container 11 is a bottomed tubular container having an open upper end, and accommodates the target soil to be measured. The heat-retaining container 11 preferably has a double-cylinder structure, so that the heat-retaining effect of the target soil contained therein can be obtained. The capacity of the heat insulating container 11 is about 300 mL, the height H is about 147 mm, and the opening diameter D is about 74 mm.

台座部12は、例えば、耐腐食性の塩化ビニル樹脂等で略矩形板状に形成されており、その略中心部には略円筒状の支持筒部13(図2に示す)が設けられている。支持筒部13の内径は、保温容器11の外径と略同径に形成されており、支持筒部13内に保温容器11を嵌め込むことにより、保温容器11が台座部12に着座支持されるようになっている。台座部12の所定部位(図示例では角部付近)には、上方に向かって突出する一対の位置決め突起14,15が設けられている。台座部12の長辺L1は約200mm、短辺L2は約170mmとされている。なお、位置決め突起14,15の個数は、図示例の2個に限定されず、3個以上であってもよい。 The pedestal portion 12 is formed of, for example, a corrosion-resistant vinyl chloride resin or the like in a substantially rectangular plate shape, and a substantially cylindrical support cylinder portion 13 (shown in FIG. 2) is provided at the substantially central portion thereof. There is. The inner diameter of the support cylinder portion 13 is formed to be substantially the same as the outer diameter of the heat insulating container 11, and the heat insulating container 11 is seated and supported by the pedestal portion 12 by fitting the heat insulating container 11 into the support cylinder portion 13. It has become so. A pair of positioning protrusions 14 and 15 projecting upward are provided at a predetermined portion of the pedestal portion 12 (near the corner portion in the illustrated example). The long side L1 of the pedestal portion 12 is about 200 mm, and the short side L2 is about 170 mm. The number of the positioning protrusions 14 and 15 is not limited to two in the illustrated example, and may be three or more.

撹拌機本体部20は、ベース部21と、ベース部21から上方に延びる支柱部24と、ベース部21から支柱部24と略平行に上方に延びる把持部26と、支柱部24の上部に設けられた蓋部28と、撹拌モータ30と、撹拌フィン35とを備えて構成されている。 The stirrer main body 20 is provided on the base portion 21, the strut portion 24 extending upward from the base portion 21, the grip portion 26 extending upward from the base portion 21 substantially parallel to the strut portion 24, and the upper portion of the strut portion 24. The lid 28, the stirring motor 30, and the stirring fins 35 are provided.

ベース部21は、例えば耐腐食性の塩化ビニル樹脂等で台座部12と略同形状の略矩形板状に形成されており、台座部12の上面に着座する。ベース部21の略中心部には、保温容器11よりも大径の貫通穴21A(図2に示す)が設けられている。また、ベース部21の位置決め突起14,15に対応する部位(図示例では角部付近)には、一対の位置決め穴22,23(図2に示す)が貫通形成されている。撹拌機本体部20を台座部12に載置する際は、位置決め穴22,23内に位置決め突起14,15を挿入させることにより、台座部12に対する撹拌機本体部20の位置合わせが容易に行えるようになっている。これら位置決め突起14,15及び、位置決め穴22,23の配置関係は、台座部12側に位置決め穴を、ベース部21側に位置決め突起を入れ替えて配置してもよい。 The base portion 21 is made of, for example, a corrosion-resistant vinyl chloride resin or the like and is formed in a substantially rectangular plate shape having substantially the same shape as the pedestal portion 12, and is seated on the upper surface of the pedestal portion 12. A through hole 21A (shown in FIG. 2) having a diameter larger than that of the heat insulating container 11 is provided in a substantially central portion of the base portion 21. Further, a pair of positioning holes 22 and 23 (shown in FIG. 2) are formed through the portions (near the corners in the illustrated example) corresponding to the positioning protrusions 14 and 15 of the base portion 21. When the stirrer body 20 is placed on the pedestal 12, the positioning protrusions 14 and 15 are inserted into the positioning holes 22 and 23 so that the stirrer body 20 can be easily aligned with the pedestal 12. It has become like. Regarding the arrangement of the positioning protrusions 14 and 15 and the positioning holes 22 and 23, the positioning holes may be arranged on the pedestal portion 12 side and the positioning projections may be arranged on the base portion 21 side.

支柱部24は、例えば耐腐食性の塩化ビニル樹脂等で保温容器11及び、支持筒部13(図2に示す)よりも大径の略円筒状に形成されている。また、支柱部24の高さ(軸方向長さ)は、保温容器11の高さよりも長く形成されている。支柱部24の内部には、台座部12に支持された保温容器11が収容される。支柱部24の筒壁部には、内部に収容した保温容器11及び、撹拌フィン35を視認可能にする開口窓25が設けられている。 The strut portion 24 is made of, for example, a corrosion-resistant vinyl chloride resin or the like, and is formed in a substantially cylindrical shape having a diameter larger than that of the heat insulating container 11 and the support cylinder portion 13 (shown in FIG. 2). Further, the height (axial length) of the support column portion 24 is formed to be longer than the height of the heat insulating container 11. Inside the support column 24, a heat insulating container 11 supported by the pedestal portion 12 is housed. The cylinder wall portion of the support column 24 is provided with a heat insulating container 11 housed inside and an opening window 25 for making the stirring fins 35 visible.

把持部26は、例えば耐腐食性の塩化ビニル樹脂等で形成されおり、作業者によって把持し易い略円柱状を呈している。把持部26の下端側はベース部21に固定されており、把持部26の上端側は板材27を介してベース部21に連結されている。把持部26は、支柱部24に対して所定の間隔を隔てて平行に立設されており、作業者が把持部26を把持することにより、撹拌機本体部20を容易にハンドリングできるように構成されている。 The grip portion 26 is made of, for example, a corrosion-resistant vinyl chloride resin or the like, and has a substantially cylindrical shape that is easy for an operator to grip. The lower end side of the grip portion 26 is fixed to the base portion 21, and the upper end side of the grip portion 26 is connected to the base portion 21 via a plate member 27. The grip portion 26 is erected in parallel with the support column portion 24 at a predetermined interval so that the operator can easily handle the stirrer main body portion 20 by gripping the grip portion 26. Has been done.

蓋部28は、例えば耐腐食性の塩化ビニル樹脂等で支柱部24と略同径の円板状に形成されており、支柱部24の上端開口を閉塞する。蓋部28の上面の略中心部には、撹拌モータ30(本開示の撹拌機の一部)が出力軸を支柱部24内に突出させるように固定されている。撹拌モータ30は、後述する制御ユニット100のバッテリ120からケーブル80を介して供給される電力で駆動する。なお、計測ユニット10と制御ユニット100とを無線通信で接続する場合には、撹拌機本体部20に撹拌モータ30用のバッテリを別体に設ければよい。 The lid portion 28 is formed of, for example, a corrosion-resistant vinyl chloride resin or the like in a disk shape having substantially the same diameter as the strut portion 24, and closes the upper end opening of the strut portion 24. A stirring motor 30 (a part of the stirrer of the present disclosure) is fixed to a substantially central portion of the upper surface of the lid portion 28 so that the output shaft protrudes into the strut portion 24. The stirring motor 30 is driven by electric power supplied from the battery 120 of the control unit 100, which will be described later, via the cable 80. When the measurement unit 10 and the control unit 100 are connected by wireless communication, a battery for the stirring motor 30 may be provided separately in the stirring machine main body 20.

撹拌モータ30の出力軸には、下方に延びる撹拌ロッド33が一体回転可能に接続されている。また、撹拌ロッド33の下端には、撹拌フィン35(本開示の撹拌機の一部)が一体回転可能に固定されている。撹拌フィン35は、保温容器11を支持した台座部12に撹拌機本体部20を載置すると、保温容器11内の対象土に挿入される。この状態で撹拌モータ30を駆動させると、撹拌フィン35の回転に伴い保温容器11内の対象土が撹拌されるようになっている。 A stirring rod 33 extending downward is integrally rotatably connected to the output shaft of the stirring motor 30. Further, a stirring fin 35 (a part of the stirrer of the present disclosure) is integrally rotatably fixed to the lower end of the stirring rod 33. When the stirrer main body 20 is placed on the pedestal portion 12 that supports the heat insulating container 11, the stirring fins 35 are inserted into the target soil in the heat insulating container 11. When the stirring motor 30 is driven in this state, the target soil in the heat insulating container 11 is stirred as the stirring fins 35 rotate.

本実施形態において、台座部12、撹拌機本体部20及び、撹拌モータ30を含めた計測ユニット10の高さHは、約260mmとされている。また、計測ユニット10の奥行Dきは、台座部12の長辺に相当する約200mmとされ、計測ユニット10の幅Wは、台座部12の短辺に相当する約170mmとされている。すなわち、計測ユニット10全体が作業者により容易に持ち運びができ、且つ、現場にも容易に搬入できるコンパクトなポータブルサイズで構成されている。 In the present embodiment, the height H of the measuring unit 10 including the pedestal portion 12, the stirrer main body portion 20, and the stirring motor 30 is about 260 mm. The depth D of the measurement unit 10 is about 200 mm, which corresponds to the long side of the pedestal portion 12, and the width W of the measurement unit 10 is about 170 mm, which corresponds to the short side of the pedestal portion 12. That is, the entire measurement unit 10 is configured in a compact portable size that can be easily carried by an operator and can be easily carried to the site.

4本の温度センサ51,52,53,54は、塩酸用温度センサ51(初期温度取得部の一例)と、土用温度センサ52(初期温度取得部の一例)と、水用温度センサ53(初期温度取得部の一例)と、反応熱用温度センサ54(反応温度取得部の一例)とにより構成されている。これら各センサ51〜54は、制御ユニット100と電気的に接続されており、検出温度が制御ユニット100にリアルタイムに送信されるようになっている。これらセンサ51〜54のうち、塩酸用温度センサ51及び、反応熱用温度センサ54は、塩酸による腐食を防止するために、少なくともそのセンサ部を樹脂被覆されている。 The four temperature sensors 51, 52, 53, 54 include a hydrochloric acid temperature sensor 51 (an example of an initial temperature acquisition unit), a soil temperature sensor 52 (an example of an initial temperature acquisition unit), and a water temperature sensor 53 (an example of an initial temperature acquisition unit). It is composed of an initial temperature acquisition unit) and a reaction heat temperature sensor 54 (an example of the reaction temperature acquisition unit). Each of these sensors 51 to 54 is electrically connected to the control unit 100, and the detected temperature is transmitted to the control unit 100 in real time. Of these sensors 51 to 54, at least the sensor portion of the hydrochloric acid temperature sensor 51 and the reaction heat temperature sensor 54 is coated with a resin in order to prevent corrosion by hydrochloric acid.

反応熱用温度センサ54は、撹拌機本体部20に対して着脱自在に設けられている。具体的には、撹拌機本体部20の蓋部28には、反応熱用温度センサ54のセンサ部を挿通させるセンサ挿入穴29(図2に示す)が貫通形成されている。反応熱用温度センサ54は、センサ部をセンサ挿入穴29に挿入させると共に、センサ部よりも大径の基端部を蓋部28のセンサ挿入穴29周縁に着座させることにより、撹拌機本体部20に取り付けられる。撹拌機本体部20に取り付けられた状態で、反応熱用温度センサ54のセンサ部は、保温容器11内の対象土に挿入される。 The reaction heat temperature sensor 54 is detachably provided with respect to the stirrer main body 20. Specifically, a sensor insertion hole 29 (shown in FIG. 2) through which the sensor portion of the heat of reaction temperature sensor 54 is inserted is formed through the lid portion 28 of the stirrer main body portion 20. The temperature sensor 54 for heat of reaction has a stirrer main body portion by inserting the sensor portion into the sensor insertion hole 29 and seating a base end portion having a diameter larger than that of the sensor portion on the peripheral edge of the sensor insertion hole 29 of the lid portion 28. Attached to 20. The sensor portion of the reaction heat temperature sensor 54 is inserted into the target soil in the heat insulating container 11 while being attached to the stirrer main body portion 20.

[制御ユニット]
制御ユニット100は、収容ボックス101と、入力表示パネル110と、電源としてのバッテリ120と、データ処理部160と、SDメモリカードやUSBメモリ等の外部記憶装置170とを備えている。なお、制御ユニット100は、外部電源装置(例えば、100V)に接続可能な不図示の電源プラグを備えれば、バッテリ120を省略してもよい。
[Controller unit]
The control unit 100 includes an accommodation box 101, an input display panel 110, a battery 120 as a power source, a data processing unit 160, and an external storage device 170 such as an SD memory card or a USB memory. The battery 120 may be omitted if the control unit 100 includes a power plug (not shown) that can be connected to an external power supply device (for example, 100V).

収容ボックス101は、内部に配されたバッテリ120やデータ処理部160、外部記憶装置170等を保護すべく、6面が閉塞された例えばステンレス製の箱状体であり、その上面には入力表示パネル110が取り付けられている。収容ボックス101の高さHは約200mm、奥行きDは約300mm、幅Wは約400mmとされており、作業者により容易に持ち運びができるポータブルサイズで形成されている。 The storage box 101 is, for example, a stainless steel box-shaped body having six surfaces closed in order to protect the battery 120, the data processing unit 160, the external storage device 170, etc. arranged inside, and an input display is displayed on the upper surface thereof. The panel 110 is attached. The height H of the storage box 101 is about 200 mm, the depth D is about 300 mm, and the width W is about 400 mm, and it is formed in a portable size that can be easily carried by an operator.

入力表示パネル110は、データ処理部160に接続されたタッチ操作式のディスプレイである。入力表示パネル110は、データ処理部160に種々の情報や指示等を入力する入力装置として機能しつつ、データ処理部160への入力内容やデータ処理部160による演算結果等を表示する表示装置としても機能する。なお、入力表示パネル110の入力機能を、別体のキーボードやマウス等により構成してもよい。 The input display panel 110 is a touch-operated display connected to the data processing unit 160. The input display panel 110 functions as an input device for inputting various information and instructions to the data processing unit 160, and also serves as a display device for displaying the input contents to the data processing unit 160 and the calculation result by the data processing unit 160. Also works. The input function of the input display panel 110 may be configured by a separate keyboard, mouse, or the like.

データ処理部160は、例えば、コンピュータ等の演算を行う処理装置であり、互いにバス等で接続されたCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を備え、計測プログラムを実行する。データ処理部160による各種演算処理の詳細については後述する。 The data processing unit 160 is, for example, a processing device that performs calculations such as a computer, and is a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, and the like, which are connected to each other by a bus or the like. Equipped with an output port, etc., to execute a measurement program. Details of various arithmetic processes performed by the data processing unit 160 will be described later.

[計測試験手順]
次に、図3及び図4に基づいて、本実施形態に係る計測装置1を用いた検量線作成試験及び、本計測試験の試験手順について説明する。なお、以下では、検量線作成試験に用いる対象土を単に「対象土300」といい、本計測試験に用いる対象土を「計測用対象土400」という。
[Measurement test procedure]
Next, a calibration curve preparation test using the measuring device 1 according to the present embodiment and a test procedure of this measurement test will be described with reference to FIGS. 3 and 4. In the following, the target soil used for the calibration curve preparation test is simply referred to as "target soil 300", and the target soil used for this measurement test is referred to as "measurement target soil 400".

[検量線作成試験]
図3は、本計測試験の前に行う検量線作成試験の手順を説明する模式図である。検量線作成試験は、現場にて採取した対象土300及び、現場にて実際に使用する固化材340(例えば、塩酸と反応するセメント、石灰、水ガラス等)を用い、塩酸添加後の対象土の上昇温度と固化材含有量とを回帰分析することにより、検量線(例えば、一次回帰式)を作成する工程である。検量線の作成は、例えば、以下の表1に示す複数の試験ケース1〜5について、各対象土300に対して塩酸320、水310、固化材340をそれぞれ添加すると共に、これらを添加後に撹拌した際の各対象土300の反応温度Mを計測することにより行われる。本開示において、検量線作成試験には、好ましくは、現場にて固化材340を含まない対象土300を採取して用いるものとするが、当該対象土300に現場の固化材340が含まれていることを排除しない。
[Calibration curve preparation test]
FIG. 3 is a schematic diagram illustrating the procedure of the calibration curve preparation test performed before the main measurement test. In the calibration curve preparation test, the target soil 300 collected at the site and the solidifying material 340 actually used at the site (for example, cement that reacts with hydrochloric acid, lime, water glass, etc.) were used, and the target soil after addition of hydrochloric acid was used. This is a step of creating a calibration curve (for example, a first-order regression equation) by performing regression analysis of the rising temperature and the content of the solidifying material. To prepare the calibration curve, for example, for a plurality of test cases 1 to 5 shown in Table 1 below, hydrochloric acid 320, water 310, and solidifying material 340 are added to each target soil 300, and these are added and then stirred. This is performed by measuring the reaction temperature M of each target soil 300 at that time. In the present disclosure, in the calibration curve preparation test, preferably, the target soil 300 that does not contain the solidifying material 340 is collected and used at the site, but the target soil 300 includes the solidifying material 340 at the site. Do not rule out being.

Figure 2020134282
Figure 2020134282

図3(A)に示すように、手順1では、現場にて採取した塩酸添加前の対象土300に対して土用温度センサ52を、水310に対して水用温度センサ53を、添加前の塩酸(塩酸容器40内)320に対して塩酸用温度センサ51をそれぞれ挿入し、対象土300の初期温度J、水310の初期温度I及び、塩酸320の初期温度Lをそれぞれ計測する。各初期温度J,I,Lの計測は、作業者が入力表示パネル110の「計測開始ボタン」を押すことにより開始される。各温度センサ51,52,53により計測される初期温度J,I,Lは、詳細を後述するデータ処理部160に送信される。 As shown in FIG. 3A, in step 1, the soil temperature sensor 52 was attached to the target soil 300 before addition of hydrochloric acid collected at the site, and the water temperature sensor 53 was attached to water 310 before addition. The hydrochloric acid temperature sensor 51 is inserted into the hydrochloric acid (in the hydrochloric acid container 40) 320, and the initial temperature J of the target soil 300, the initial temperature I of the water 310, and the initial temperature L of the hydrochloric acid 320 are measured, respectively. The measurement of each initial temperature J, I, L is started by the operator pressing the "measurement start button" on the input display panel 110. The initial temperatures J, I, and L measured by the temperature sensors 51, 52, and 53 are transmitted to the data processing unit 160, which will be described in detail later.

次いで、図3(B)に示す手順2では、上記表1の固化材量H(g)、水量O(g)、土量N(g)をそれぞれ採取して保温容器11内に、好ましくは、対象土300→固化材340→水310の順に入れる。例えば、試験ケース5であれば、固化材10.0g、水9.0g、土81.0gをそれぞれ採取して保温容器11内に入れる。これら対象土300、固化材340、水310を保温容器11内に入れたならば、好ましくは、ヘラ等で撹拌して土塊を潰すようにする。 Next, in step 2 shown in FIG. 3 (B), the amount of solidifying material H (g), the amount of water O (g), and the amount of soil N (g) shown in Table 1 above are collected and placed in the heat insulating container 11, preferably. , Target soil 300 → solidifying material 340 → water 310. For example, in the case of the test case 5, 10.0 g of the solidifying material, 9.0 g of water, and 81.0 g of soil are collected and placed in the heat insulating container 11. When the target soil 300, the solidifying material 340, and the water 310 are placed in the heat insulating container 11, the soil mass is preferably crushed by stirring with a spatula or the like.

次いで、図3(C)に示す手順3では、塩酸容器40にパッケージ化された100mLの塩酸320を保温容器11内に添加し、ヘラ等で軽く混合して土塊があれば潰すようにする。ここで、塩酸320は、規定量の100mLが予め塩酸容器40にパッケージ化されているため、作業者の計量作業等を省略することが可能となり、作業効率及び安全性の向上が図られるようになる。 Next, in step 3 shown in FIG. 3C, 100 mL of hydrochloric acid 320 packaged in the hydrochloric acid container 40 is added into the heat insulating container 11 and lightly mixed with a spatula or the like so that any lumps of soil are crushed. Here, since a specified amount of 100 mL of hydrochloric acid 320 is pre-packaged in the hydrochloric acid container 40, it is possible to omit the weighing work of the operator and improve the work efficiency and safety. Become.

次いで、図3(D)に示す手順4では、保温容器11を計測ユニット10にセットし、反応熱用温度センサ54を保温容器11内に挿入する。反応熱用温度センサ54を挿入した後、入力表示パネル110の「撹拌開始ボタン」を押すと、撹拌モータ30が駆動することにより反応温度Mの計測が開始される。以降、他の試験ケース1〜4についても、手順1〜4と同様の作業を繰り返す。各試験ケース1〜5の最高温度MMaxの判定、上昇温度Qの演算及び、検量線グラフg1,g2の生成は、詳細を後述するデータ処理部160によって自動的に処理される。 Next, in step 4 shown in FIG. 3D, the heat insulating container 11 is set in the measuring unit 10, and the temperature sensor 54 for heat of reaction is inserted into the heat insulating container 11. After inserting the reaction heat temperature sensor 54, when the "stirring start button" of the input display panel 110 is pressed, the stirring motor 30 is driven to start the measurement of the reaction temperature M. After that, the same operation as in steps 1 to 4 is repeated for the other test cases 1 to 4. The determination of the maximum temperature M Max of each test case 1 to 5, the calculation of the rising temperature Q, and the generation of the calibration curve graphs g1 and g2 are automatically processed by the data processing unit 160, which will be described in detail later.

[本計測試験]
図4は、本計測試験の手順を説明する模式図である。本計測試験は、現場にて採取した計測用対象土400の固化材含有量を、前述の検量線作成試験にて作成した検量線グラフg1,g2に基づいて計測する試験である。なお、本計測試験で用いる計測用対象土400は、固化材含有量の計測結果が0(ゼロ)の場合もあり得るため、固化材が実際に含まれているか否かを問わない。
[Main measurement test]
FIG. 4 is a schematic diagram illustrating the procedure of this measurement test. This measurement test is a test for measuring the solidified material content of the measurement target soil 400 collected at the site based on the calibration curve graphs g1 and g2 prepared in the above-mentioned calibration curve preparation test. Since the measurement result of the solidifying material content may be 0 (zero) in the measurement target soil 400 used in this measurement test, it does not matter whether or not the solidifying material is actually contained.

図4(A)に示すように、手順1では、現場にて採取した計測用対象土400に対して土用温度センサ52を、添加前の塩酸(塩酸容器40内)420に対して塩酸用温度センサ51それぞれ挿入し、計測用対象土400の初期温度T及び、塩酸420の初期温度Uをそれぞれ計測する。各初期温度T,Uの計測は、例えば、作業者が入力表示パネル110の「計測開始ボタン」を押すことにより開始される。各温度センサ51,52により計測される初期温度T,Uは、詳細を後述するデータ処理部160に送信される。 As shown in FIG. 4A, in step 1, the soil temperature sensor 52 was used for the measurement target soil 400 collected at the site, and the hydrochloric acid was used for hydrochloric acid (in the hydrochloric acid container 40) 420 before addition. Each of the temperature sensors 51 is inserted, and the initial temperature T of the target soil 400 for measurement and the initial temperature U of hydrochloric acid 420 are measured, respectively. The measurement of the initial temperatures T and U is started, for example, by the operator pressing the "measurement start button" on the input display panel 110. The initial temperatures T and U measured by the temperature sensors 51 and 52 are transmitted to the data processing unit 160 whose details will be described later.

次いで、図4(B)に示す手順2では、計測用対象土400を100g採取して保温容器11内に入れると共に、塩酸容器40にパッケージ化された100mLの塩酸420を保温容器11内に添加し、ヘラ等で軽く混合して土塊があれば潰すようにする。ここで、塩酸420は、規定量の100mLが予め塩酸容器40にパッケージ化されているため、作業者の計量作業等を省略することが可能となり、作業効率及び安全性の向上が図られるようになる。 Next, in step 2 shown in FIG. 4 (B), 100 g of the measurement target soil 400 was collected and placed in the heat insulating container 11, and 100 mL of hydrochloric acid 420 packaged in the hydrochloric acid container 40 was added into the heat insulating container 11. Then, lightly mix with a spatula or the like and crush any lumps of soil. Here, since the specified amount of 100 mL of hydrochloric acid 420 is pre-packaged in the hydrochloric acid container 40, it is possible to omit the weighing work of the operator and improve the work efficiency and safety. Become.

次いで、図4(C)に示す手順3では、保温容器11を計測ユニット10にセットし、反応熱用温度センサ54を保温容器11内に挿入する。反応熱用温度センサ54を挿入した後、入力表示パネル110の「撹拌開始ボタン」を押すと、撹拌モータ30が駆動することにより反応温度Vの計測が開始される。反応温度Vの最高温度VMaxが判定されると、該最高温度VMaxから上昇温度Wが算出され、検量線グラフg1,g2に基づいて固化材含有量Yが演算される。これら最高温度VMaxの判定、上昇温度Wの演算及び、固化材含有量Yの演算は、詳細を後述するデータ処理部160により自動的に処理される。 Next, in step 3 shown in FIG. 4C, the heat insulating container 11 is set in the measuring unit 10, and the temperature sensor 54 for heat of reaction is inserted into the heat insulating container 11. After inserting the reaction heat temperature sensor 54, when the "stirring start button" of the input display panel 110 is pressed, the stirring motor 30 is driven to start the measurement of the reaction temperature V. When the maximum temperature V Max reaction temperature V is determined, the temperature increase W from highest-temperature V Max is calculated, solidifying material amount Y is calculated based on a calibration curve graph g1, g2. The determination of the maximum temperature VMax , the calculation of the rising temperature W, and the calculation of the solidifying material content Y are automatically processed by the data processing unit 160, which will be described in detail later.

[データ処理部]
図5は、データ処理部160及び、関連する周辺構成を示す模式的な機能ブロック図である。データ処理部160は、計測プログラムの実行により、初期温度取得部161、記憶部162、反応温度取得部163、最高温度判定部164(本開示の回帰分析部の一部)、内割検量線生成部165(本開示の回帰分析部)、外割検量線生成部166(本開示の回帰分析部)、固化材含有量演算部167(本開示の含有量演算部)を備える装置として機能する。
[Data processing unit]
FIG. 5 is a schematic functional block diagram showing the data processing unit 160 and related peripheral configurations. By executing the measurement program, the data processing unit 160 includes an initial temperature acquisition unit 161, a storage unit 162, a reaction temperature acquisition unit 163, a maximum temperature determination unit 164 (a part of the regression analysis unit of the present disclosure), and an internal calibration curve generation. It functions as a device including a unit 165 (regression analysis unit of the present disclosure), an external calibration curve generation unit 166 (regression analysis unit of the present disclosure), and a solidifying material content calculation unit 167 (content calculation unit of the present disclosure).

初期温度取得部161は、前述の検量線作成試験の手順1にて、作業者により表示操作パネル110の「計測開始ボタン」が押されると、各温度センサ51,52,53から対象土300の初期温度J、水310の初期温度I及び、塩酸320の初期温度Lをそれぞれ取得する。また、初期温度取得部161は、前述の本計測試験の手順1にて、作業者により表示操作パネル110の「計測開始ボタン」が押されると、各温度センサ51,52から計測用対象土400の初期温度T及び、塩酸420の初期温度Uをそれぞれ取得する。初期温度取得部161により取得されるこれら各初期温度J,I,L,T,Uは、記憶部162に送信される。 When the operator presses the "measurement start button" on the display operation panel 110 in the procedure 1 of the calibration curve preparation test described above, the initial temperature acquisition unit 161 receives the target soil 300 from the temperature sensors 51, 52, 53. The initial temperature J, the initial temperature I of water 310, and the initial temperature L of hydrochloric acid 320 are obtained, respectively. Further, when the operator presses the "measurement start button" on the display operation panel 110 in the procedure 1 of the main measurement test described above, the initial temperature acquisition unit 161 receives the measurement target soil 400 from the temperature sensors 51 and 52. The initial temperature T and the initial temperature U of hydrochloric acid 420 are obtained, respectively. The initial temperatures J, I, L, T, and U acquired by the initial temperature acquisition unit 161 are transmitted to the storage unit 162.

記憶部162は、初期温度取得部161から送信される初期温度J,I,L,T,Uをそれぞれ記憶する。また、記憶部162は、前述の検量線作成試験及び、本計測試験にて、最高温度判定部164により判定される最高温度MMax,VMaxをそれぞれ記憶する。また、記憶部162は、前述の検量線作成試験にて、内割検量線生成部165により生成される内割検量線グラフg1及び、外割検量線生成部166により生成される外割検量線グラフg2をそれぞれ記憶する。さらに、記憶部162は、前述の本計測試験にて、固化材含有量演算部167により演算される計測用対象土400の上昇温度W及び固化材含有量Yをそれぞれ記憶する。記憶部162に記憶されるこれらデータ類の全部又は一部は、外部記憶装置170にも記憶可能に構成されている。 The storage unit 162 stores the initial temperatures J, I, L, T, and U transmitted from the initial temperature acquisition unit 161, respectively. Further, the storage unit 162 stores the maximum temperatures M Max and V Max determined by the maximum temperature determination unit 164 in the above-mentioned calibration curve preparation test and the main measurement test, respectively. Further, the storage unit 162 has an internal calibration curve graph g1 generated by the internal calibration curve generation unit 165 and an external calibration curve generated by the external calibration curve generation unit 166 in the above-mentioned calibration curve creation test. Each graph g2 is stored. Further, the storage unit 162 stores the rising temperature W and the solidifying material content Y of the measurement target soil 400 calculated by the solidifying material content calculation unit 167 in the above-mentioned main measurement test, respectively. All or a part of these data stored in the storage unit 162 is also configured to be storable in the external storage device 170.

反応温度取得部163は、前述の検量線作成試験又は本計測試験にて、作業者により表示操作パネル110の「撹拌開始ボタン」が押されると、撹拌モータ30を駆動させると共に、各対象土300,400の反応温度M,Vを反応熱用温度センサ54によりリアルタイムに取得する。反応温度取得部164により取得される反応温度M,Vは、最高温度判定部164にリアルタイムに送信される。反応温度取得部163により駆動された撹拌モータ30は、最高温度判定部164が最高温度MMax,VMaxを判定すると自動的に停止される。 When the operator presses the "stirring start button" of the display operation panel 110 in the above-mentioned calibration curve preparation test or the main measurement test, the reaction temperature acquisition unit 163 drives the stirring motor 30 and each target soil 300. , 400 reaction temperatures M and V are acquired in real time by the reaction heat temperature sensor 54. The reaction temperatures M and V acquired by the reaction temperature acquisition unit 164 are transmitted in real time to the maximum temperature determination unit 164. The stirring motor 30 driven by the reaction temperature acquisition unit 163 is automatically stopped when the maximum temperature determination unit 164 determines the maximum temperatures M Max and V Max .

最高温度判定部164は、前述の検量線作成試験又は本計測試験にて、反応温度取得部163からリアルタイムに送信される各対象土300,400の反応温度M,Vに基づいて、これらの最高温度MMax,VMaxをそれぞれ判定する。具体的には、塩酸が添加されて撹拌される各対象土300,400の反応温度M,Vは、図5中に符号M(V)で示すように、時間の経過とともに上昇し、最高温度に達すると、その後は低下する。最高温度判定部164は、反応温度M(V)が降下し始める点を検出し、反応温度M(V)が降下し始めるよりも前の最高温度値を取得することにより、これらの最高温度MMax,VMaxをそれぞれ判定する。最高温度判定部164により判定された最高温度MMax,VMaxは、記憶部162に送信される。 The maximum temperature determination unit 164 is based on the reaction temperatures M and V of the target soils 300 and 400 transmitted in real time from the reaction temperature acquisition unit 163 in the above-mentioned calibration curve preparation test or the main measurement test. The temperatures M Max and V Max are determined, respectively. Specifically, the reaction temperatures M and V of the target soils 300 and 400 to which hydrochloric acid is added and stirred increase with the passage of time as shown by reference numeral M (V) in FIG. 5, and the maximum temperature. When it reaches, it decreases thereafter. The maximum temperature determination unit 164 detects the point where the reaction temperature M (V) starts to drop, and acquires the maximum temperature value before the reaction temperature M (V) starts to drop, thereby obtaining these maximum temperatures M. Max and V Max are determined respectively. The maximum temperatures M Max and V Max determined by the maximum temperature determination unit 164 are transmitted to the storage unit 162.

内割検量線生成部165は、上記表1の試験ケース1〜5に対応する各対象土300の上昇温度Qと固化材含有量Sとを算出し、これらを回帰分析することにより一次回帰直線式(Y=aX+b)を求めて内割検量線グラフg1(図6(A)参照)を生成する。ここで、内割とは、固化材混合土:1m3に含まれる固化材量(kg/m3)であり、主としてプラント練り等で使用する。内割を選択するか否かは、作業者が入力表示パネル110の「内割選択ボタン」を押すことにより選択できるように構成されている。以下、内割検量線グラフg1の生成手順の詳細を説明する。 The internal calibration curve generation unit 165 calculates the rising temperature Q and the solidifying material content S of each target soil 300 corresponding to the test cases 1 to 5 in Table 1 above, and regresses these to perform a first-order regression line. The formula (Y = aX + b) is obtained to generate an internally divided calibration curve graph g1 (see FIG. 6 (A)). Here, the internal division is the amount of solidifying material (kg / m3) contained in the solidified material mixed soil: 1 m3, and is mainly used for plant kneading and the like. Whether or not to select the internal division is configured so that the operator can select by pressing the "internal division selection button" on the input display panel 110. Hereinafter, the details of the procedure for generating the internal calibration curve graph g1 will be described.

まず、内割検量線生成部165は、上記表1の試験ケース1〜5に対応する各対象土300の上昇温度Qを、最高温度MMaxから撹拌前温度Eを差し引く以下の数式(1)に従ってそれぞれ算出する。 First, the internal calibration curve generator 165 subtracts the temperature E before stirring from the maximum temperature M Max for the rising temperature Q of each target soil 300 corresponding to the test cases 1 to 5 in Table 1 below (1). Calculate according to each.

Q=MMax−E=MMax−((H×F×K)+(O×4.2×I)+(N×P×J)+(100×G×L))/((H×F)+(O×4.2)+(N×P)+(100×G)) ・・・(1) Q = M Max −E = M Max − ((H × F × K) + (O × 4.2 × I) + (N × P × J) + (100 × G × L)) / ((H ×) F) + (O × 4.2) + (N × P) + (100 × G)) ・ ・ ・ (1)

数式(1)において、撹拌前温度Eの分母は、撹拌前の対象土、塩酸、水、固化材の熱容量(J/℃)、分子は、撹拌前の対象土、塩酸、水、固化材の熱量(J)である。Iは水の初期温度(℃)、Jは土の初期温度(℃)、Lは塩酸の初期温度(℃)であり、検量線作成試験にて各温度センサ51〜53により取得した値である。Hは固化材量(g)、Oは水量(g)、Nは土量(g)であり、上述の表1に示す各試験ケース1〜5に応じた値を入力する。Fは固化材の比熱(J/g)であり、例えば、1.2が予めデフォルト値として設定されている。なお、固化材の比熱Fは、任意の値に設定可能としてもよい。Kは固化材温度(℃)であり、例えば、20(℃)が予めデフォルト値として設定されている。なお、固化材温度Kは、任意の値に設定可能としてもよい。Gは塩酸の比熱(J/mL)であり、2.9が予めデフォルト値として設定されている。なお、塩酸の比熱Gは、任意の値に設定可能としてもよい。Pは土の比熱(J/g)であり、土の含水比A(%)を含む数式(P=0.8×100/(100+A)+4.2×A/(100+A))から求められる。含水比A(%)は、例えば、地盤工学会等の既知の値を用いればよい。 In formula (1), the denominator of the temperature E before stirring is the heat capacity (J / ° C) of the target soil, hydrochloric acid, water, and solidifying material before stirring, and the molecule is the target soil, hydrochloric acid, water, and solidifying material before stirring. The amount of heat (J). I is the initial temperature of water (° C.), J is the initial temperature of soil (° C.), and L is the initial temperature of hydrochloric acid (° C.), which are the values obtained by each temperature sensor 51 to 53 in the calibration curve preparation test. .. H is the amount of solidifying material (g), O is the amount of water (g), and N is the amount of soil (g). F is the specific heat (J / g) of the solidifying material, and for example, 1.2 is preset as a default value. The specific heat F of the solidifying material may be set to an arbitrary value. K is the solidifying material temperature (° C.), and for example, 20 (° C.) is preset as a default value. The solidifying material temperature K may be set to an arbitrary value. G is the specific heat of hydrochloric acid (J / mL), and 2.9 is preset as a default value. The specific heat G of hydrochloric acid may be set to an arbitrary value. P is the specific heat (J / g) of the soil, and is obtained from a mathematical formula (P = 0.8 × 100 / (100 + A) + 4.2 × A / (100 + A)) including the water content ratio A (%) of the soil. For the water content ratio A (%), for example, a known value from the Japanese Geotechnical Society may be used.

次いで、内割検量線生成部165は、各対象土300の固化材含有量Sを以下の数式(2)に従ってそれぞれ算出する。 Next, the internal calibration curve generation unit 165 calculates the solidifying material content S of each target soil 300 according to the following mathematical formula (2).

S=H×1000/(H/C+N×100/(100+A)/B+N×A/(100+O)) ・・・(2) S = H × 1000 / (H / C + N × 100 / (100 + A) / B + N × A / (100 + O)) ・ ・ ・ (2)

数式(2)において、固化材量H(g)、土量N(g)、水量O(g)及び、含水比A(%)は、数式(1)と同じである。Bは、土の粒子密度(g/cm3)であり、例えば、地盤工学会等の既知の値を用いればよい。Cは、固化材の粒子密度(g/cm3)であり、例えば、高炉セメントの場合は3.05が予め設定されている。なお、特殊セメントを使用することも考えられるため、固化材の粒子密度Cは、任意の値に設定可能としてもよい。 In the formula (2), the solidifying material amount H (g), the soil amount N (g), the water amount O (g), and the water content ratio A (%) are the same as those in the formula (1). B is the particle density (g / cm3) of the soil, and for example, a known value of the Japanese Geotechnical Society or the like may be used. C is the particle density (g / cm3) of the solidifying material, and for example, in the case of blast furnace cement, 3.05 is preset. Since it is possible to use special cement, the particle density C of the solidifying material may be set to an arbitrary value.

内割検量線生成部165は、上記数式(1)に従って算出した上昇温度Q1〜Q5を横軸(X軸)、上記数式(2)に従って算出した固化材含有量S1〜S5を縦軸(Y軸)とし、これらを回帰分析することにより一次回帰直線式(Y=aX+b)を求めて、内割検量線グラフg1(図6(A)参照)を生成すると共に、当該一時回帰直線式(Y=aX+b)の相関係数の二乗(R)を算出する。これら内割検量線グラフg1、一次回帰直線式(Y=aX+b)及び、相関係数の二乗(R)は、記憶部162に格納されると共に、表示操作パネル110に表示される。 The internal division calibration curve generation unit 165 has the horizontal axis (X axis) for the rising temperatures Q1 to Q5 calculated according to the above formula (1) and the vertical axis (Y) for the solidifying material contents S1 to S5 calculated according to the above formula (2). Axis), and by performing regression analysis on these, the first-order regression linear equation (Y = aX + b) is obtained, and the internally divided calibration curve graph g1 (see FIG. 6 (A)) is generated, and the temporary regression linear equation (Y) is generated. = AX + b) The square of the correlation coefficient (R 2 ) is calculated. These in split calibration graph g1, primary regression line equation (Y = aX + b) and, of the correlation coefficient squared (R 2), as well is stored in the storage unit 162, is displayed on the display operation panel 110.

上昇温度Q1〜Q5及び固化材含有量S1〜S5のうち、内割検量線グラフg1の直線上から大きく外れているものがあれば、該当する試験ケース1〜5につき、上記図3に示す手順に従って計測をやり直せばよい。また、相関係数の二乗(R)が所望の値から外れている場合には、上記図3に示す手順に従って検量線作成試験をやり直せばよい。 If any of the rising temperatures Q1 to Q5 and the solidifying material contents S1 to S5 deviate significantly from the straight line of the internal calibration curve graph g1, the procedure shown in FIG. 3 above shows the corresponding test cases 1 to 5. The measurement should be repeated according to the above. If the square of the correlation coefficient (R 2 ) deviates from the desired value, the calibration curve preparation test may be repeated according to the procedure shown in FIG.

外割検量線生成部166は、上記表1の試験ケース1〜5に対応する各対象土300の上昇温度Qと固化材含有量Sとを算出し、これらを回帰分析することにより一次回帰直線式(Y=a’X+b)を求めて外割検量線グラフg2(図6(B)参照)を生成する。ここで、外割とは、原土:1m3に添加する固化材量(kg/m3)であり、主として原位置撹拌工法で使用する。外割を選択するか否かは、作業者が入力表示パネル110の「外割選択ボタン」を押すことにより選択できるように構成されている。以下、外割検量線グラフg2の生成手順の詳細を説明する。 The external calibration curve generator 166 calculates the rising temperature Q and the solidifying material content S of each target soil 300 corresponding to the test cases 1 to 5 in Table 1 above, and regresses these to perform a first-order regression line. The formula (Y = a'X + b) is obtained to generate an external calibration curve graph g2 (see FIG. 6B). Here, the outer split is the amount of solidifying material (kg / m3) added to the raw soil: 1 m3, and is mainly used in the in-situ stirring method. Whether or not to select the external allocation is configured so that the operator can select by pressing the "external allocation selection button" on the input display panel 110. The details of the procedure for generating the external calibration curve graph g2 will be described below.

まず、外割検量線生成部166は、上記表1の試験ケース1〜5に対応する各対象土300の上昇温度Qを、最高温度MMaxから撹拌前温度Eを差し引く上述の数式(1)に従ってそれぞれ算出する。 First, the external calibration curve generator 166 subtracts the temperature E before stirring from the maximum temperature M Max for the rising temperature Q of each target soil 300 corresponding to the test cases 1 to 5 in Table 1 above (1). Calculate according to each.

次いで、外割検量線生成部166は、各対象土300の固化材含有量Sを以下の数式(3)に従ってそれぞれ算出する。 Next, the external calibration curve generation unit 166 calculates the solidifying material content S of each target soil 300 according to the following mathematical formula (3).

S=H×1000/N×Z ・・・(3) S = H × 1000 / N × Z ・ ・ ・ (3)

数式(3)において、固化材量H(g)及び、土量N(g)は、数式(1)又は(2)と同じである。Z(g/cm3)は、地盤の湿潤密度であり、例えば、地盤工学会等の既知の値を用いればよい。 In the formula (3), the solidifying material amount H (g) and the soil amount N (g) are the same as those in the formula (1) or (2). Z (g / cm3) is the wet density of the ground, and for example, a known value of the Japanese Geotechnical Society may be used.

外割検量線生成部166は、上記数式(1)に従って算出した上昇温度Q1〜Q5を横軸(X軸)、上記数式(3)に従って算出した固化材含有量S1〜S5を縦軸(Y軸)とし、これらを回帰分析することにより一次回帰直線式(Y=a’X+b)を求めて、外割検量線グラフg2(図6(B)参照)を生成すると共に、当該一時回帰直線式(Y=a’X+b)の相関係数の二乗(R)を算出する。これら外割検量線グラフg2、一次回帰直線式(Y=a’X+b)及び、相関係数の二乗(R)は、記憶部162に格納されると共に、表示操作パネル110に表示される。 The external calibration curve generation unit 166 has the horizontal axis (X axis) for the rising temperatures Q1 to Q5 calculated according to the above formula (1) and the vertical axis (Y) for the solidifying material contents S1 to S5 calculated according to the above formula (3). Axis), and by performing regression analysis on these, the first-order regression linear equation (Y = a'X + b) is obtained, and the external calibration curve graph g2 (see FIG. 6 (B)) is generated, and the temporary regression linear equation is generated. Calculate the square (R 2 ) of the correlation coefficient of (Y = a'X + b). These outer split calibration curve graph g2, primary regression line equation (Y = a'X + b) and the square of the correlation coefficient (R 2), as well is stored in the storage unit 162, is displayed on the display operation panel 110.

上昇温度Q1〜Q5及び固化材含有量S1〜S5のうち、外割検量線グラフg2の直線上から大きく外れているものがあれば、該当する試験ケース1〜5につき、上記図3に示す手順に従って計測をやり直せばよい。また、相関係数の二乗(R)が所望の値から外れている場合には、上記図3に示す手順に従って検量線作成試験をやり直せばよい。 If any of the rising temperatures Q1 to Q5 and the solidifying material contents S1 to S5 deviate significantly from the straight line of the external calibration curve graph g2, the procedure shown in FIG. 3 above shows the corresponding test cases 1 to 5. The measurement should be repeated according to the above. If the square of the correlation coefficient (R 2 ) deviates from the desired value, the calibration curve preparation test may be repeated according to the procedure shown in FIG.

固化材含有量演算部167は、上述の本計測試験(図4参照)にて測定される計測用対象土400の初期温度T、塩酸420の初期温度Uに基づいて、撹拌後の計測用対象土400の最高温度VMaxから撹拌前温度E’を差し引く以下の数式(4)に従って、計測用対象土400の上昇温度Wを算出する。 The solidifying material content calculation unit 167 is a measurement target after stirring based on the initial temperature T of the measurement target soil 400 and the initial temperature U of hydrochloric acid 420 measured in the above-mentioned main measurement test (see FIG. 4). The rising temperature W of the soil 400 to be measured is calculated according to the following mathematical formula (4), which is obtained by subtracting the pre-stirring temperature E'from the maximum temperature V Max of the soil 400.

W=VMax−E’=VMax−((100×P×T)+(100×G×U))/((100×P)+(100×G))・・・(4) W = V Max −E'= V Max − ((100 × P × T) + (100 × G × U)) / ((100 × P) + (100 × G)) ... (4)

数式(4)において、土の比熱P(J/g)、塩酸の比熱G(J/mL)は、上記数式(1)と同じであり、説明は省略する。 In the formula (4), the specific heat P (J / g) of soil and the specific heat G (J / mL) of hydrochloric acid are the same as those of the above formula (1), and the description thereof will be omitted.

固化材含有量演算部167は、上記数式(4)に従って算出した計測用対象土400の上昇温度Wに基づいて、内割であれば内割検量線グラフg1を、外割であれば外割検量線グラフg2を参照し、X軸の上昇温度Wに対応するY軸の値を読み取ることにより、計測用対象土400の固化材含有量Yを自動計算する。固化材含有量演算部167により演算された固化材含有量Yは、入力表示パネル110に表示されると共に、記憶部162に格納される。 The solidifying material content calculation unit 167 uses the internal division calibration curve graph g1 for internal division and external division for external division based on the rising temperature W of the measurement target soil 400 calculated according to the above formula (4). By referring to the calibration curve graph g2 and reading the value on the Y-axis corresponding to the rising temperature W on the X-axis, the solidifying material content Y of the soil 400 for measurement is automatically calculated. The solidifying material content Y calculated by the solidifying material content calculating unit 167 is displayed on the input display panel 110 and stored in the storage unit 162.

次に、図7に基づいて、本実施形態に係る固化材含有量の計測方法のフローを説明する。 Next, the flow of the method for measuring the solidifying material content according to the present embodiment will be described with reference to FIG. 7.

ステップS10では、内割又は外割を選択する。内割であればステップS20に進み、外割であればステップS40に進む。 In step S10, the inner division or the outer division is selected. If it is an internal split, the process proceeds to step S20, and if it is an external split, the process proceeds to step S40.

ステップS20に進んだ場合、すなわち内割であれば、表示操作パネル110から以下の条件値を入力する。
(1)土の含水比A
(2)土の粒子密度B
(3)固化材の粒子密度C
(4)固化材の比熱F
(5)塩酸の比熱G
(6)土の比熱P
(7)固化材量H
(8)土量N
(9)水量O
(10)固化材量K
If the process proceeds to step S20, that is, if it is an internal division, the following condition values are input from the display operation panel 110.
(1) Soil water content ratio A
(2) Soil particle density B
(3) Particle density C of solidifying material
(4) Specific heat F of solidifying material
(5) Specific heat G of hydrochloric acid
(6) Specific heat of soil P
(7) Amount of solidifying material H
(8) Soil volume N
(9) Amount of water O
(10) Amount of solidifying material K

ステップS40に進んだ場合、すなわち外割であれば、表示操作パネル110から以下の各条件値を入力する。
(1)土の含水比A
(2)土の粒子密度B
(3)固化材の粒子密度C
(4)固化材の比熱F
(5)塩酸の比熱G
(6)土の比熱P
(7)固化材量H
(8)土量N
(9)水量O
(10)固化材量K
(11)地盤の湿潤密度Z
If the process proceeds to step S40, that is, if it is an external split, the following condition values are input from the display operation panel 110.
(1) Soil water content ratio A
(2) Soil particle density B
(3) Particle density C of solidifying material
(4) Specific heat F of solidifying material
(5) Specific heat G of hydrochloric acid
(6) Specific heat of soil P
(7) Amount of solidifying material H
(8) Soil volume N
(9) Amount of water O
(10) Amount of solidifying material K
(11) Wet density Z of the ground

次いで、ステップS21及び、ステップS41(本開示の第1工程)では、対象土300の初期温度J、水310の初期温度I、塩酸320の初期温度Lを計測する。 Next, in step S21 and step S41 (first step of the present disclosure), the initial temperature J of the target soil 300, the initial temperature I of water 310, and the initial temperature L of hydrochloric acid 320 are measured.

次いで、ステップS22及び、ステップS42(本開示の第2工程)では、対象土300に対して、水310、固化材340及び、塩酸320を添加して撹拌モータ30を駆動すると共に、反応熱用温度センサ54により反応温度Mを計測し、該反応温度Mの最高温度MMaxを判定する。 Next, in step S22 and step S42 (second step of the present disclosure), water 310, a solidifying material 340, and hydrochloric acid 320 are added to the target soil 300 to drive the stirring motor 30 and for heat of reaction. The reaction temperature M is measured by the temperature sensor 54, and the maximum temperature M Max of the reaction temperature M is determined.

次いで、ステップS23及び、ステップS43(本開示の第3工程)では、対象土300、水310、塩酸320の各初期温度J,I,L及び、土300、塩酸320の比熱P,Gに基づいて撹拌前温度Eを算出すると共に、最高温度MMaxから撹拌前温度Eを差し引くことにより、対象土300の上昇温度Qを演算し、該上昇温度Q及び対象土300の固化材含有量Sを回帰分析することにより検量線グラフg1,g2を生成する。 Next, in step S23 and step S43 (third step of the present disclosure), the initial temperatures J, I, L of the target soil 300, water 310, and hydrochloric acid 320, and the specific heats P and G of soil 300 and hydrochloric acid 320 are used. By calculating the pre-stirring temperature E and subtracting the pre-stirring temperature E from the maximum temperature M Max , the rising temperature Q of the target soil 300 is calculated, and the rising temperature Q and the solidifying material content S of the target soil 300 are calculated. Calibration curve graphs g1 and g2 are generated by regression analysis.

次いで、ステップS24及び、ステップS44(本開示の第4工程)では、計測用対象土400の初期温度T、塩酸420の初期温度Uを計測する。 Next, in step S24 and step S44 (fourth step of the present disclosure), the initial temperature T of the measurement target soil 400 and the initial temperature U of hydrochloric acid 420 are measured.

次いで、ステップS25及び、ステップS45(本開示の第5工程)では、計測用対象土400に対して塩酸420を添加して撹拌モータ30を駆動すると共に、反応熱用温度センサ54により反応温度Vを計測し、該反応温度Vの最高温度VMaxを判定する。 Next, in step S25 and step S45 (fifth step of the present disclosure), hydrochloric acid 420 is added to the measurement target soil 400 to drive the stirring motor 30, and the reaction temperature V is driven by the reaction heat temperature sensor 54. Is measured, and the maximum temperature V Max of the reaction temperature V is determined.

最後に、ステップS26及び、ステップS46(本開示の第6工程)では、計測用対象土400、塩酸420の各初期温度T,U及び、計測用対象土400、塩酸420の比熱P,Gに基づいて撹拌前温度E’を算出すると共に、最高温度VMaxから撹拌前温度E’を差し引くことにより、計測用対象土400の上昇温度Wを演算し、該上昇温度Wに応じた値を検量線グラフg1,g2から読み取ることにより計測用対象土400の固化材含有量Yを自動計算して計測を終了する。なお、上述のステップS20〜S23及び、ステップS40〜43による検量線作成試験は、計測を行う環境(例えば、気温)や、現場の土質に大きな変化が生じるまでの間は、原則として1回のみ行えばよく、その間はステップS24〜S26及び、ステップS44〜46による本計測試験を繰り返し実施することが可能である。 Finally, in steps S26 and S46 (sixth step of the present disclosure), the initial temperatures T and U of the measurement target soil 400 and hydrochloric acid 420, and the specific heats P and G of the measurement target soil 400 and hydrochloric acid 420 are set. 'calculates the stirring temperature before E from the highest temperature V Max' stirring temperature before E based by subtracting, calculates the temperature rise W of the measurement target earth 400, a calibration value corresponding to the temperature rise W By reading from the line graphs g1 and g2, the solidifying material content Y of the target soil 400 for measurement is automatically calculated, and the measurement is completed. In principle, the calibration curve preparation test according to steps S20 to S23 and steps S40 to 43 described above is performed only once until a large change occurs in the measurement environment (for example, air temperature) or the soil quality at the site. During that time, the measurement test according to steps S24 to S26 and steps S44 to 46 can be repeated.

以上詳述した本実施形態によると、検量線作成試験では、予め対象土300、水310及び、塩酸320の初期温度J,I,Lをそれぞれ計測し、これら初期温度J,I,Lと対象土300、塩酸320及び、固化材340の比熱P,G,Fとに基づいて撹拌前温度Eを算出すると共に、対象土300に固化材340及び塩酸320を添加して撹拌した際の最高温度MMaxから撹拌前温度Eを差し引くことにより、対象土300の上昇温度Qを演算する。また、本計測試験では、予め計測用対象土400及び、塩酸420の初期温度T,Uをそれぞれ計測し、これら初期温度T,Uと計測用対象土400及び塩酸420の比熱P,Gとに基づいて撹拌前温度E’を算出すると共に、塩酸420を添加して撹拌した際の最高温度VMaxから撹拌前温度E’を差し引くことにより、計測用対象土400の上昇温度Wを演算するように構成されている。これにより、周辺温度の影響を考慮した各対象土300,400の上昇温度Q,Wを算出することが可能となり、低温環境下或は高温環境下であっても、検量線グラフg1,g2の作成精度が向上されるようになり、さらには、固化材含有量Yの測定精度も効果的に向上することができる。 According to the present embodiment described in detail above, in the calibration line preparation test, the initial temperatures J, I, and L of the target soil 300, water 310, and hydrochloric acid 320 are measured in advance, and these initial temperatures J, I, and L are the targets. The pre-stirring temperature E is calculated based on the specific heats P, G, and F of the soil 300, hydrochloric acid 320, and the solidifying material 340, and the maximum temperature when the solidifying material 340 and hydrochloric acid 320 are added to the target soil 300 and stirred. By subtracting the pre-stirring temperature E from M Max, the rising temperature Q of the target soil 300 is calculated. Further, in this measurement test, the initial temperatures T and U of the measurement target soil 400 and the hydrochloric acid 420 are measured in advance, and these initial temperatures T and U and the specific heats P and G of the measurement target soil 400 and the hydrochloric acid 420 are set. The pre-stirring temperature E'is calculated based on this, and the rising temperature W of the measurement target soil 400 is calculated by subtracting the pre-stirring temperature E'from the maximum temperature V Max when hydrochloric acid 420 is added and stirred. It is configured in. This makes it possible to calculate the rising temperatures Q and W of each target soil 300 and 400 in consideration of the influence of the ambient temperature, and the calibration curve graphs g1 and g2 can be calculated even in a low temperature environment or a high temperature environment. The production accuracy can be improved, and further, the measurement accuracy of the solidifying material content Y can be effectively improved.

また、塩酸を使用する計測ユニット10と、腐食に弱いデータ処理部160等を含む制御ユニット100とを別体に構成したことより、データ処理部160等が塩酸により腐食して故障を引き起こすことを効果的に防止することができる。 Further, since the measurement unit 10 using hydrochloric acid and the control unit 100 including the data processing unit 160 and the like which are vulnerable to corrosion are separately configured, the data processing unit 160 and the like are corroded by hydrochloric acid and cause a failure. It can be effectively prevented.

また、計測ユニット10及び、制御ユニット100を、作業者が容易に持ち運びをできるコンパクトなポータブルサイズとしたことで、現場への搬入や設置スペースの確保、さらには現場からの搬出が容易となり、作業効率を確実に向上することができる。 In addition, by making the measurement unit 10 and the control unit 100 a compact and portable size that can be easily carried by the operator, it is easy to carry them in to the site, secure an installation space, and even carry them out from the site. Efficiency can be reliably improved.

また、塩酸を用いる計測ユニット10を、耐腐食性の塩化ビニル樹脂等で形成することにより、メンテナンス等の頻度や維持費を効果的に削減することができる。 Further, by forming the measuring unit 10 using hydrochloric acid with a corrosion-resistant vinyl chloride resin or the like, the frequency of maintenance and the maintenance cost can be effectively reduced.

また、各対象土300,400に添加する塩酸320,420を、予め塩酸容器40にパッケージ化したことにより、作業者の計量作業を省略することが可能となり、作業効率や安全性の向上を図ることができる。 Further, by pre-packaging the hydrochloric acid 320 and 420 to be added to the target soils 300 and 400 in the hydrochloric acid container 40, it is possible to omit the weighing work of the operator and improve the work efficiency and safety. be able to.

なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜に変形して実施することが可能である。 It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present disclosure.

例えば、上昇温度Q,Wや固化材含有量Yの演算式は、上記数式(1)〜(4)に限定されず、他の公式やモデル式等を用いてもよい。また、本開示の適用は、セメントや石灰に限定されず、塩酸と反応し得る他の固化材にも広く適用することが可能である。 For example, the calculation formulas for the rising temperatures Q and W and the solidifying material content Y are not limited to the above formulas (1) to (4), and other formulas, model formulas, and the like may be used. Further, the application of the present disclosure is not limited to cement and lime, and can be widely applied to other solidifying materials capable of reacting with hydrochloric acid.

1 計測装置
10 計測ユニット
11 保温容器
12 台座部
20 撹拌機本体部
21 ベース部
24 支柱部
26 把持部
28 蓋部
30 撹拌モータ
35 撹拌フィン
40 塩酸容器
51 塩酸用温度センサ51
52 土用温度センサ
53 水用温度センサ
54 反応熱用温度センサ
100 制御ユニット
101 収容ボックス
110 入力表示パネル
120 バッテリ
160 データ処理部
161 初期温度取得部
162 記憶部
163 反応温度取得部
164 最高温度判定部
165 内割検量線生成部
166 外割検量線生成部
167 固化材含有量演算部
170 外部記憶装置
1 Measuring device 10 Measuring unit 11 Heat insulation container 12 Pedestal part 20 Stirrer body 21 Base part 24 Strut part 26 Grip part 28 Lid part 30 Stirring motor 35 Stirring fin 40 Hydrochloric acid container 51 Hydrochloric acid temperature sensor 51
52 Soil temperature sensor 53 Water temperature sensor 54 Reaction heat temperature sensor 100 Control unit 101 Storage box 110 Input display panel 120 Battery 160 Data processing unit 161 Initial temperature acquisition unit 162 Storage unit 163 Reaction temperature acquisition unit 164 Maximum temperature determination unit 165 Internal calibration curve generator 166 External calibration curve generator 167 Solidifying material content calculation unit 170 External storage device

Claims (6)

対象土及び本計測用対象土に添加する塩酸と、該塩酸添加前の前記対象土及び前記本計測用対象土の初期温度とをそれぞれ取得する初期温度取得部と、
少なくとも前記塩酸を添加した前記対象土及び前記本計測用対象土をそれぞれ撹拌可能な撹拌機と、
前記撹拌機により撹拌される前記対象土及び前記本計測用対象土の反応温度をそれぞれ取得する反応温度取得部と、
少なくとも2以上の前記対象土に前記塩酸及び異なる量の固化材をそれぞれ添加して、前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記対象土の初期温度とに基づいて前記対象土の上昇温度を演算し、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する回帰分析部と、
前記本計測用対象土に前記塩酸を添加して前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記本計測用対象土の初期温度とに基づいて前記本計測用対象土の上昇温度を演算し、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する含有量演算部と、を備える
ことを特徴とする固化材含有量の計測装置。
An initial temperature acquisition unit that acquires hydrochloric acid added to the target soil and the target soil for the main measurement, and the initial temperatures of the target soil and the target soil for the main measurement before the addition of the hydrochloric acid, respectively.
A stirrer capable of stirring at least the target soil to which the hydrochloric acid has been added and the target soil for the present measurement, respectively.
A reaction temperature acquisition unit that acquires the reaction temperatures of the target soil and the target soil for measurement, which are agitated by the stirrer, respectively.
The maximum temperature is determined from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid and different amounts of the solidifying material are added to at least two or more target soils and stirred by the stirrer. Regression analysis for creating a regression equation by calculating the rising temperature of the target soil based on the maximum temperature and the initial temperature of the target soil, and performing regression analysis of the rising temperature and the solidifying material content of the target soil. Department and
The maximum temperature is determined from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid is added to the soil to be measured and stirred by the stirrer, and the maximum temperature and the object to be measured are measured. It is characterized by including a content calculation unit that calculates the rising temperature of the target soil for measurement based on the initial temperature of the soil and calculates the solidifying material content based on the rising temperature and the regression equation. A device for measuring the content of solidifying material.
前記初期温度取得部は、前記対象土に添加する水の初期温度をさらに取得し、
前記回帰分析部は、前記2以上の対象土の前記上昇温度を、該2以上の対象土の前記最高温度と、前記初期温度取得部により取得した前記塩酸、前記2以上の対象土及び、前記水の各初期温度とに基づいて演算する
請求項1に記載の固化材含有量の計測装置。
The initial temperature acquisition unit further acquires the initial temperature of water to be added to the target soil.
The regression analysis unit sets the rising temperature of the two or more target soils to the maximum temperature of the two or more target soils, the hydrochloric acid acquired by the initial temperature acquisition unit, the two or more target soils, and the above. The solidifying material content measuring device according to claim 1, which is calculated based on each initial temperature of water.
前記回帰分析部は、前記初期温度取得部により取得した前記2以上の対象土の初期温度と、前記塩酸の比熱と、前記2以上の対象土の比熱と、該2以上の対象土に添加する前記固化材の比熱とに基づいて算出した撹拌前温度を前記2以上の対象土の前記最高温度からそれぞれ差し引くことにより、前記2以上の対象土の前記上昇温度をそれぞれ演算する
請求項1又は2に記載の固化材含有量の計測装置。
The regression analysis unit adds the initial temperature of the two or more target soils acquired by the initial temperature acquisition unit, the specific heat of the hydrochloric acid, the specific heat of the two or more target soils, and the two or more target soils. Claim 1 or 2 for calculating the rising temperature of the two or more target soils by subtracting the pre-stirring temperature calculated based on the specific heat of the solidifying material from the maximum temperature of the two or more target soils, respectively. The measuring device for the solidifying material content described in 1.
少なくとも前記撹拌機を含む計測ユニットと、少なくとも前記回帰分析部及び、前記含有量演算部を含む制御ユニットとが別体に構成されている
請求項1から3の何れか一項に記載の固化材含有量の計測装置。
The solidifying material according to any one of claims 1 to 3, wherein at least the measuring unit including the stirrer, at least the regression analysis unit, and the control unit including the content calculation unit are separately configured. Content measuring device.
対象土に添加する塩酸及び、該塩酸添加前の前記対象土の初期温度を取得する第1工程と、
該第1工程で初期温度を取得した少なくとも2以上の前記対象土に、前記第1工程で初期温度を取得した前記塩酸及び異なる量の固化材をそれぞれ添加して撹拌すると共に、撹拌される前記2以上の対象土の反応温度をそれぞれ計測し、計測される該反応温度の最高温度を判定する第2工程と、
該第2工程で判定した前記最高温度と、前記第1工程で計測した前記初期温度とに基づいて、前記2以上の対象土の上昇温度をそれぞれ演算すると共に、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する第3工程と、
本計測用対象土に添加する塩酸及び、該塩酸添加前の前記本計測用対象土の初期温度を取得する第4工程と、
該第4工程で初期温度を取得した前記本計測用対象土に前記第4工程で初期温度を取得した前記塩酸を添加して撹拌すると共に、撹拌される前記本計測用対象土の反応温度を計測し、計測される該反応温度から最高温度を判定する第5工程と、
該第5工程で判定した前記最高温度と、前記第4工程で計測した前記初期温度とに基づいて、前記本計測用対象土の上昇温度を演算すると共に、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する第6工程と、を含む
ことを特徴とする固化材含有量の計測方法。
Hydrochloric acid to be added to the target soil, and the first step of acquiring the initial temperature of the target soil before the addition of hydrochloric acid, and
To at least two or more target soils whose initial temperature was obtained in the first step, the hydrochloric acid whose initial temperature was obtained in the first step and different amounts of solidifying material are added and stirred, and the mixture is stirred. The second step of measuring the reaction temperature of two or more target soils and determining the maximum temperature of the measured reaction temperature, and
Based on the maximum temperature determined in the second step and the initial temperature measured in the first step, the rising temperature of the two or more target soils is calculated, and the rising temperature and the target soil are calculated. The third step of creating a regression equation by regression analysis of the solidifying material content, and
Hydrochloric acid to be added to the target soil for measurement, and the fourth step of acquiring the initial temperature of the target soil for measurement before the addition of hydrochloric acid, and
The hydrochloric acid whose initial temperature was obtained in the fourth step is added to the measurement target soil whose initial temperature was obtained in the fourth step and stirred, and the reaction temperature of the measurement target soil to be stirred is measured. The fifth step of measuring and determining the maximum temperature from the measured reaction temperature,
Based on the maximum temperature determined in the fifth step and the initial temperature measured in the fourth step, the rising temperature of the target soil for the present measurement is calculated, and the rising temperature and the regression equation are used. A method for measuring the solidifying material content, which comprises a sixth step of calculating the solidifying material content based on the above.
固化材含有量を計測する計測装置のコンピュータを、
対象土及び本計測用対象土に添加する塩酸と、該塩酸添加前の前記対象土及び前記本計測用対象土の初期温度とをそれぞれ取得する初期温度取得部、
少なくとも前記塩酸を添加した前記対象土及び前記本計測用対象土を撹拌機にそれぞれ撹拌させる共に、撹拌される前記対象土及び前記本計測用対象土の反応温度をそれぞれ取得する反応温度取得部、
少なくとも2以上の前記対象土に前記塩酸及び異なる量の固化材をそれぞれ添加して、前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記対象土の初期温度とに基づいて前記対象土の上昇温度を演算し、該上昇温度と前記対象土の固化材含有量とを回帰分析することにより回帰式を作成する回帰分析部、
前記本計測用対象土に前記塩酸を添加して前記撹拌機により撹拌させた際に前記反応温度取得部により取得される反応温度から最高温度を判定すると共に、該最高温度と前記本計測用対象土の初期温度とに基づいて前記本計測用対象土の上昇温度を演算し、該上昇温度と前記回帰式とに基づいて固化材含有量を演算する含有量演算部、として機能させる
ことを特徴とする計測プログラム。
A computer for measuring equipment that measures the content of solidifying material,
An initial temperature acquisition unit that acquires hydrochloric acid added to the target soil and the target soil for the main measurement, and the initial temperatures of the target soil and the target soil for the main measurement before the addition of the hydrochloric acid, respectively.
A reaction temperature acquisition unit that agitates at least the target soil to which hydrochloric acid has been added and the target soil for main measurement with a stirrer, and acquires the reaction temperatures of the target soil for measurement and the target soil for main measurement to be agitated.
The maximum temperature is determined from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid and different amounts of the solidifying material are added to at least two or more target soils and stirred by the stirrer. Regression analysis for creating a regression equation by calculating the rising temperature of the target soil based on the maximum temperature and the initial temperature of the target soil, and performing regression analysis of the rising temperature and the solidifying material content of the target soil. Department,
The maximum temperature is determined from the reaction temperature acquired by the reaction temperature acquisition unit when the hydrochloric acid is added to the soil to be measured and stirred by the stirrer, and the maximum temperature and the object to be measured are measured. It is characterized by functioning as a content calculation unit that calculates the rising temperature of the target soil for this measurement based on the initial temperature of the soil and calculates the solidifying material content based on the rising temperature and the regression equation. Measurement program.
JP2019027022A 2019-02-19 2019-02-19 Measuring device and measuring method for solidifying material content Active JP7218204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027022A JP7218204B2 (en) 2019-02-19 2019-02-19 Measuring device and measuring method for solidifying material content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027022A JP7218204B2 (en) 2019-02-19 2019-02-19 Measuring device and measuring method for solidifying material content

Publications (2)

Publication Number Publication Date
JP2020134282A true JP2020134282A (en) 2020-08-31
JP7218204B2 JP7218204B2 (en) 2023-02-06

Family

ID=72262870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027022A Active JP7218204B2 (en) 2019-02-19 2019-02-19 Measuring device and measuring method for solidifying material content

Country Status (1)

Country Link
JP (1) JP7218204B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248327A (en) * 1993-02-26 1995-09-26 Unyusho Kowan Gijutsu Kenkyusho Quality testing method and system of mixed treated earth
JPH0854385A (en) * 1994-08-11 1996-02-27 Unyusho Kowan Gijutsu Kenkyusho Apparatus for testing content of cement or the like
JPH0933465A (en) * 1995-07-21 1997-02-07 Unyusho Kowan Gijutsu Kenkyusho Apparatus for measuring content of cement, etc.
JP2010256191A (en) * 2009-04-24 2010-11-11 Maeda Corp Method of estimating strength of ground-improving body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248327A (en) * 1993-02-26 1995-09-26 Unyusho Kowan Gijutsu Kenkyusho Quality testing method and system of mixed treated earth
JPH0854385A (en) * 1994-08-11 1996-02-27 Unyusho Kowan Gijutsu Kenkyusho Apparatus for testing content of cement or the like
JPH0933465A (en) * 1995-07-21 1997-02-07 Unyusho Kowan Gijutsu Kenkyusho Apparatus for measuring content of cement, etc.
JP2010256191A (en) * 2009-04-24 2010-11-11 Maeda Corp Method of estimating strength of ground-improving body

Also Published As

Publication number Publication date
JP7218204B2 (en) 2023-02-06

Similar Documents

Publication Publication Date Title
CN104596855B (en) A kind of tilted stratum physical simulation assay device and method
JP2017534783A5 (en)
US11604154B2 (en) Method and system for prediction of concrete maturity
JP2020134282A (en) Solidification material content measuring device, measuring method and measuring program
US20130248626A1 (en) Use of Temperature Measurements for Indirect Measurement of Process Variables in Milling Systems
Partanen et al. Traceable thermodynamic quantities for dilute aqueous sodium chloride solutions at temperatures from (0 to 80) C. Part 1. Activity coefficient, osmotic coefficient, and the quantities associated with the partial molar enthalpy
CN106018735B (en) A kind of stirring crushing energy method for assessing soil aggregate stability
Levin Wet granulation: end-point determination and scale-up
JP4945741B2 (en) Chemical process analysis method
CN104316561A (en) Active lime apparent digestion conversion rate measurement device
Kowalewski et al. On the relationship between the potential barrier and the activation energy for the internal rotation of a methyl group
Levin How to Scale-Up a Wet Granulation End Point Scientifically
Rakoczy Enhancement of solid dissolution process under the influence of rotating magnetic field
JP7208078B2 (en) Fiber amount measuring device and fiber amount measuring method
RU2513567C1 (en) Method to determine quantity of cement in soil-cement material of structure
JP4932679B2 (en) Method for calculating specifications of fine aggregate
JP2014021050A (en) Data acquisition device, strength measurement system, data acquisition method and strength measurement method
Wang et al. Thermodynamics of aqueous mixtures of magnesium chloride with sodium chloride from 298.15 to 573.15 K. New measurements of the enthalpies of mixing and of dilution
CN203965417U (en) Oil washing efficiency testing device
CN207908506U (en) A kind of concrete 's air-containing measurement device
CN107132247B (en) A method of the static breaking agent proportional spacing time is perfused in estimation by row
EP1664732A1 (en) A method of measuring the consistency of a mixture as well as an apparatus for carrying out the method
JP2009287354A (en) Determination method of additive amount of soil improving material
JP2023116193A (en) Flowability measurement method, flowability measurement apparatus, and flowability measurement system
JP4139787B2 (en) Test method of bentonite content in bentonite mixed soil

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210401

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20220126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7218204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150